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Background
DNA methylation is a chemical modification of DNA, which influences the genetic 
performance while keeping the DNA sequence unchanged. Based on the basic genetic 
sequence, gene activity differs in differentially methylated regions (DMRs) [1]. Many 
studies have shown that DNA methylation influences gene expression by regulating 
DNA replication, changing the chromatin structure and the way DNA interacts with 
proteins [2]. DNA methylation represents an important regulator of gene transcrip-
tion; hence, its biological function and mechanism have always attracted the interest of 
researchers [3].
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The most common forms of DNA methylation are 5mC, 6mA and 4mC [4]. The dif-
ferences between them are illustrated in descriptive images in Additional file 1: Fig. S1. 
The modification of 5mC and 6mA is not only important in prokaryotic genomes, but 
it also widely exists in high eukaryotic genomes, which have been extensively studied 
[5, 6]. Another important epigenetic modification is 4mC, which has been reported to 
mainly occur in prokaryotic genomes. In 4mC modification, which is catalyzed by the 
DNA methyltransferase, a methyl group is covalently bonded to the 4th carbon position 
of the cytosine in the genomic CpG dinucleotide.

The modification of 4mC contributes to our further understanding of epigenetic 
mechanisms. However, compared with the extensive research performed on 5mC [7] 
and 6mA modifications [8], we are still far enough from a deep understanding of the 
4mC modification function. DNA 4mC has been confirmed to be involved in the correc-
tion and regulation of the errors in DNA replication [4], cell cycle control [9] and protec-
tion of host DNA from degradation [10]. Hence, detecting the distribution of 4mC sites 
in the genome is critical for further research regarding its biological function. However, 
our knowledge of restrictive modification systems is still insufficient [11], and our lack 
of knowledge about 4mC methyltransferases or restriction enzymes makes it difficult to 
detect the genome-wide location of 4mC.

High-throughput sequencing has revolutionized the field of epigenetics [11, 12]. Single 
molecule real-time (SMRT) sequencing [13] and 4mC-Tet-assisted bisulfite sequencing 
(4mC-TAB-seq) have been developed for 4mC sites identification [14]. The SMRT tech-
nology can directly detect 4mC sites without the need for reference genomes [13]. How-
ever, it still cannot be considered as an ideal method to handle thousands of samples 
in the R-M system [14]. For bacterial species with an existing reference genome, 4mC-
Tet-assisted bisulfate sequencing can perform quick genome-wide detection of the 4mC 
sites in a cost-effective way [14].

Due to the cost and time consumption of the experimental methods, several machine 
learning and deep learning methods have been proposed for 4mC sites prediction 
(Additional file  1: Table  S1), such that they represent a supplement to the biological 
experiments.

By encoding DNA sequences according to the nucleotide chemistry and frequency, the 
iDNA4mC tool enables the identification of 4mC sites using the support vector machine 
(SVM) algorithm [15]. Due to the high false positives and false negatives, which may 
increase the verification cost of the biological experiment, four sequence-based encod-
ing schemes were integrated in the 4mcPred-SVM tool to enhance the feature extraction 
capabilities [16]; this enhanced the prediction performance on each species. Although 
several predictors were developed for the prediction of 4mC sites, it has been difficult to 
achieve equal performance when applied to genome-scale prediction [17]. To this end, 
eight feature descriptors were further considered in the 4mcPred-IFL tool, and iterative 
feature representation was introduced to improve the classification ability of the SVM 
algorithm [17].

Deep learning extracts the distributed feature representation of the data by transform-
ing low-level features into more abstract high-level features or representation attribute 
categories. In the last few years, it has been widely applied in bioinformatics research 
[18–20]. The 4mCCNN tool uses one-hot encoding matrix and convolutional neural 
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network (CNN) to detect 4mC sites [21]. However, due to the small deep learning archi-
tecture and datasets used in the algorithm, the learning ability of 4mCCNN could not be 
further expanded [22]. To further improve the prediction performance, the DNA4mC-
LIP tool integrates six existing classical predictors [15–17, 23–25]. DNA4mC-LIP 
explores the best weights and then assigns them to each predictor through a linear itera-
tive strategy. A comparison study on independent test datasets showed that DNA4mC-
LIP achieved an enhanced performance. Based on the sequence encoding schemes used 
by previous researchers, the Deep4mC tool discusses and selects four more representa-
tive schemes to construct the input of the CNN [26]. To further extend the deep learning 
framework, a bootstrapping method was used for species with a small number of sam-
ples. Compared with the existing approaches, Deep4mC achieved better performance.

With the gradual progress in the experimental 4mC site identification methods, the 
scale of the available 4mC sample size of multiple species has been greatly expanded. 
As a result, there is now a big difference in the sample size among different species. The 
number of samples has a significant impact on the predictor performance. Although 
many prediction tools already exist to enable the identification of 4mC sites, the large 
variability in the sample size of some species makes many prediction tools unsuitable for 
today’s prediction tasks. To further understand the function of 4mC modification, a suit-
able method for 4mC site prediction of species with different sample sizes is necessary. 
To this end, we propose a flexible hybrid DNA2vec-based framework, called Hyb4mC. 
The basic structure diagram of the framework is shown in Fig. 1. Hyb4mC firstly uses 
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Fig. 1  The framework of Hyb4mC. A The process of Hyb4mC dataset construction and sequence 
embedding. B The architecture of the Hyb_Caps subnet, which is suitable for predicting 4mC sites in small 
sample species, such as E. coli, G. subterraneus and G. pickeringii. C The architecture of the Hyb_Conv subnet, 
which is suitable for predicting 4mC sites in large sample species, such as C. elegans, D. melanogaster and A. 
thaliana 
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the sequence embedding method based on DNA2vec [27] to improve the representative 
ability of feature descriptors. Then, two different subnets, Hyb_Caps and Hyb_Conv, are 
used to enhance the performance of 4mC site prediction in multiple species. Hyb_Caps 
is constructed using a capsule neural network, for the first time for this task, based on 
dynamic routing algorithm. Meanwhile, Hyb_Conv uses the attention mechanism to 
capture more critical features in order to make accurate predictions. Compared with 
existing available predictors on independent test datasets, Hyb4mC achieves better pre-
diction performance.

Results and discussion
In this section, we discuss the performance of our proposed framework Hyb4mC in 
detail. Similar to most previous researchers, we started the discussion based on six spe-
cies: C. elegans, D. melanogaster, A. thaliana, E. coli, G. subterraneus and G. pickeringii 
[15–17, 21–26]. Most of these species are model organisms, we conduct research based 
on these species and hope to provide guidance for related or follow-up research. The 
intuitive distribution of the datasets is shown in Additional file 1: Table S2.

We explicitly construct species-specific models in the following studies by getting an 
overview of motif differences and similarities between different species. The improve-
ment in the performance of Hyb4mC using the capsule neural network is illustrated by 
further analysis. At the same time, by visualizing the data distribution of Hyb_Caps and 
Hyb_Conv on the same species, the necessity of employing two sub-networks became 
clearer. The performance of Hyb4mC was evaluated using independent test datasets of 
Hyb_2021 and Li_2020, as well as comparisons with other state-of-the-art predictors; 
these results are significant because they demonstrate the improved prediction perfor-
mance and robustness of Hyb4mC. Besides, based on the visualization of the similarity 
of motifs between different species enabled, cross-species validation was conducted to 
elucidate the link between the efficiency of knowledge transfer between species and their 
sequence motif similarity. Finally, further discussion and development of Hyb4mC’s lim-
itations is conducted.

Sequence analysis of conserved motif specificity

In order to accurately reveal the specific distribution of nucleotides around the 4mC/
non-4mC sites among different species, Hyb_4mC analyzed the training datasets for 
each species using the pLogo generation tool [28]. Based on the visual sequence motif 
identification of the Hyb_2021 dataset, we analyzed the nucleotides that are significantly 
over-represented or under-represented at each position in the sequence for each species 
(Additional file 1: Fig. S2).

In C. elegans, guanine (G) and cytosine (C) were significantly enriched at positions +7 
and +4, respectively, while thymine (T) and adenine (A) were significantly over-repre-
sented at most positions. The nucleotide distributions of D. melanogaster, A. thaliana 
and E. coli were similar in some regions, such that they all showed the enrichment of 
G in the −1 , +1 to +3 region and the enrichment of C at the −2 position. However, 
compared with D. melanogaster and A. thaliana, A and T were significantly enriched 
only at a few positions in E. coli. In G. subterraneus and G. pickeringii, C and G were 
significantly over-represented at upstream ( −1,−2 positions) and downstream positions 
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(+1, +2, +6 positions) of the 4mC sites. Besides, in G. subterraneus, A was significantly 
enriched at the +5 position.

In addition, we analyzed the Li_2020 dataset, which was proposed by Li [22] (Addi-
tional file 1: Fig. S3 and Table S3). The distribution of nucleotides surrounding 4mC sites 
was species-specific, according to the sequence logos.

Improving the predictive performance using the capsule neural network

Since capsule neural networks could improve the generalization performance on few 
samples, we used it in our work to improve the prediction performance of species with 
insufficient sample size. To perform a fair comparison, the 41*100 feature matrix of sam-
ple sequence was used as the input to train the three classifiers of RandomForest [29], 
AdaBoost [30] and NaiveBayes [31]. By comparing the independent test datasets of three 
species, the capsule neural network was shown to have an improved performance. Based 
on the same feature extraction module, the AUC value was increased to 0.996, 0.905 
and 0.962 in E. coli, G. subterraneus and G. pickeringii, respectively. The ROC curves are 
plotted in Fig. 2 (Additional file 1: Table S4, S5).

Comparing the predictive performance using Hyb_Conv and Hyb_Caps

To show the difference between the two subnets, we compared the prediction perfor-
mance of Hyb_Conv and Hyb_Caps on the same species. As shown in Fig. 3, on three 
species with large sample sizes (C. elegans, D. melanogaster and A. thaliana), Hyb_Conv 
improves prediction performance even further. Hyb_Caps significantly improves the 
prediction performance on three species with small sample sizes (E. coli, G. subterraneus 
and G. pickeringii), with an average increase of 19.8%.

To further illustrate the classification performance of the two subnetworks, we used 
the t-distributed stochastic neighbor embedding (t-SNE) method to plot the state of 
data distribution at specific layers in the network. While t-SNE plots of the embed-
ding layer described the original distribution state of the samples, t-SNE plots of 
the dense layer of Hyb_Conv and SiteCaps layer of Hyb_Caps were used to show the 
respective classification effects of the two subnetworks. Taking E. coli and C. elegans 
as examples, as shown in Fig.  4, 4mC and non-4mC sites contained samples were 
randomly distributed in the embedding layer. In Fig.  4A, the sample distribution of 
Hyb_Caps clearly has a stronger discrimination compared with Hyb_Conv. Mean-
while, Fig. 4B shows the sample distribution of Hyb_Conv is easier to distinguish on 

(A) E.coli (B) G.subterraneus (C) G.pickeringii

Fig. 2  Performance comparison of the capsule neural network with classical ML-based classifiers on the 
independent test dataset of Hyb_2021
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C. elegans, which has a large sample size. In addition, we also provided t-SNE plots of 
these three layers for other species discussed in this work (Additional file 1: Figs. S4 
and S5).

Performance on the Hyb_2021 and Li_2020 datasets

We performed performance evaluation tests on the Hyb_2021 and Li_2020 datasets, 
separately. We used our own dataset Hyb_2021 to train and test Hyb4mC. The individ-
ual AUC values for the six species of C. elegans, D. melanogaster, A. thaliana, E. coli, 
G. subterraneus and G. pickeringii reached 0.985, 0.979, 0.946, 0.996, 0.905 and 0.962, 
respectively.

C.elegans D.melanogaster A.thaliana E.coli G.subterraneus G.pickeringii

C
U

A

Fig. 3  Performance comparison of Hyb_Conv and Hyb_Caps on six species from Hyb_2021

Embedding Layer SiteCaps Layer of Hyb_CapsDense Layer of Hyb_Conv

Embedding Layer SiteCaps Layer of Hyb_CapsDense Layer of Hyb_Conv

(A)

(B)

Fig. 4  t-SNE plots of the embedding layer, dense layer of Hyb_Conv and SiteCaps layer of Hyb_Caps. A On E. 
coli, Hyb_Caps shows better classification performance. B On C. elegans, Hyb_Conv shows better classification 
performance
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For further evaluation, We used the Li_2020 dataset [22] and tested Hyb4mC on 
its independent test datasets of six species. The resulting individual AUC values for 
C. elegans, D. melanogaster, A. thaliana, E. coli, G. subterraneus and G. pickeringii 
reached 0.972, 0.980, 0.905, 0.964, 0.790 and 0.913, respectively. Although our test 
performance on G. subterraneus was not particularly satisfactory, the average AUC 
value of the other five species reached 0.947. For a more intuitive presentation, ROC 
curves are provided in Additional file 1: Fig. S6.

The prediction results on independent test datasets of six species from the 
Hyb_2021 and Li_2020 datasets showed the average AUC value for Hyb4mC on six 
species to be 0.962 (±0.001) and 0.920(±0.002), respectively. The individual confi-
dence intervals for AUC values on the six species datasets of Hyb_2021 and Li_2020 
are shown in Table 1. Hyb_4mC showed robustness on individual predictions for the 
six species.

Performance comparison with the existing methods on the Hyb_2021 dataset

Many prediction methods have been developed to predict 4mC sites in the above-
mentioned six species. While most methods provided a public web server instead of 
the source code, many of them were not accessible. We found the tools of 4mcPred-
SVM [16], 4mCCNN [21] and Deep4mC [26] to be available. We used the Hyb_2021 
independent test dataset to test the performance of Hyb4mC. For a fair comparison, 
the same independent test dataset was submitted to the above-mentioned web serv-
ers. Then, we downloaded the prediction results. Thus, we analyzed the performance 
difference between Hyb4mC and previous prediction methods, the predicted perfor-
mance comparison is shown in Figs. 5 and 6.

As shown in Fig.  5, Hyb4mC achieved an enhanced performance in terms of the 
AUC value on five species, such that the AUC value was increased by 3.1%, 2.9%, 
8.8%, 3.7% and 3.3% on C. elegans, D. melanogaster, A. thaliana, E. coli and G. picker-
ingii, respectively. Figure 6 shows the results of performance comparison in terms of 
other evaluation metrics. It can be observed that Hyb4mC achieved the best average 
performance on all five species except for G. subterraneus. Compared with the best 
performance that could be achieved by existing predictors, this indicated an increase 
of 4.6%, 6.4%, 2.8%, 3.4% and 4.9%, respectively (Additional file 1: Table S6).

Table 1  Confidence intervals for AUC values on six species datasets of Hyb_2021 and Li_2020

Species AUC​

Hyb_2021 Li_2020

C. elegans 0.985 ± 0.005 0.972 ± 0.004

D. melanogaster 0.979 ± 0.003 0.980 ± 0.003

A. thaliana 0.946 ± 0.005 0.905 ± 0.004

E. coli 0.996 ± 0.001 0.964 ± 0.005

G. subterraneus 0.905 ± 0.006 0.790 ± 0.008

G. pickeringii 0.962 ± 0.003 0.913 ± 0.003
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Comparison analysis with the existing methods on the Li_2020 dataset

In order to further investigate the performance of Hyb4mC, we compared its perfor-
mance with that of three state-of-the-art predictors on the independent test datasets of 
Li_2020.

As illustrated in Fig.  7, compared with the state-of-the-art prediction methods, 
Hyb4mC achieved the highest AUC values in all species except for G. subterraneus. 
Compared with the optimal AUC achieved by previous predictors, Hyb4mC increased 
the AUC by 3.2%, 2.6%, 3.4%, 1.7% and 4.4%, respectively. For other evaluation met-
rics, Hyb4mC achieved average accuracy, sensitivity, specificity, precision and F1_score 
of 0.838, 0.932, 0.743, 0.797 and 0.856, respectively, across the six species. Compared 
with the best performance of existing predictors, Hyb4mC improved the accuracy, 

Fig. 5  Comparison analysis of Hyb4mC with other methods in view of the AUC values on the independent 
test dataset of multiple species

(A) C.elegans (B) D.melanogaster (C) A.thaliana

(D) E.coli (E) G.subterraneus (F) G.pickeringii

Fig. 6  Performance comparison of Hyb4mC with other methods on the independent test dataset of six 
species
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sensitivity and F1_score by 0.7%, 7.6% and 2.4%, respectively (Additional file 1: Fig. S7 
and Table S7).

Analysis of cross‑species validation

The species category determines the number of 4mC sites that have been experimen-
tally verified to a certain extent. The distribution of nucleotides around the 4mC site 
is species-specific. Exploring the relationship between this specific distribution and 
knowledge transfer between species enables us to further understand the relationships 
between different species defined by epigenetic states. We transfer the model param-
eters learned from data of another species to help train the new model. Based on this 
approach, we obtained six species-specific models by separately learning the training 
dataset of each species. These six species-specific models were applied to predict the 
4mC sites of other species.

Figure 8 shows the prediction performance of the six species-specific models in form 
of a heat map. The cross-species AUC value corresponds to the color intensity of each 
square, and a change in the color from dark to light indicates an increase in the AUC 
value (Additional file  1: Table  S8). As shown in Fig.  8, knowledge transfer among the 
three species of D. melanogaster, A. thaliana and E. coli achieved better performance. 
In addition, transfer learning between G. subterraneus and G. pickeringii also achieved 
a similar performance. Knowledge transfer among species shows a correlation with the 
specific distribution of nucleotides around the 4mC sites in different species. This dis-
tribution-specific information helps to explore relationships between different species 
defined by epigenetic states.

Discussion and limitations

Instead of providing source code, most 4mC site prediction methods supplied a pub-
lic web server, and many of them were inaccessible. Therefore, we compared with three 

(D) E.coli (E) G.subterraneus (F) G.pickeringii

(A) C.elegans (C) A.thaliana(B) D.melanogaster

Fig. 7  Comparison analysis between Hyb4mC and other methods in terms of AUC values on an 
independent test dataset
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tools 4mcPred-SVM [16], 4mCCNN [21] and Deep4mC [26] on Hyb_2021 dataset and 
Li_2020 dataset.

According to the comparisons on the Hyb_2021 dataset, The performance of 4mC-
PredSVM and 4mCCNN on G. subterraneus and G. pickeringii was significantly inferior 
to the performance on other species. This may be due to the small deep learning archi-
tecture and dataset used in the algorithm. The learning ability of 4mC-PredSVM and 
4mCCNN cannot be further extended, and it is difficult to adapt them to the prediction 
of some species, because their available data have been greatly expanded. However, com-
pared with the other five species, 4mcPred-SVM obviously achieved a more enhanced 
performance on E. coli, possibly due to its small architecture, which is more suitable for 
the prediction of species with a small number of samples. In addition, the prediction 
performance of 4mCCNN on E. coli, G. subterraneus and G. pickeringii significantly 
decreased, which may be caused by the substantial increase in the amount of available 
data for the three species. Compared with other state-of-the-art predictors, Hyb4mC 
and Deep4mC achieved better robustness, and Hyb4mC achieved a better performance 
in multi-species 4mC site prediction.

As for comparisons on the Li_2020 dataset, Hyb4mC and Deep4mC showed more 
robust performance than other methods in the prediction of multi-species 4mC sites. It 
is worth mentioning that Deep4mC achieved better prediction performance on G. sub-
terraneus compared with other predictors, which is probably due to its use of a boot-
strapping method, extending its neural network framework. Besides, the performance 
of 4mcPred-SVM and 4mCCNN on some species was significantly better than other 
species with larger changes in the available data. For example, 4mCCNN managed to 

C.elegans

G.subterraneus

E.coli

A.thaliana

D.melanogaster

C.elegans

G.pickeringii

D.melanogaster A.thaliana E.coli G.subterraneus G.pickeringii

0.95

0.80
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Fig. 8  Heat map showing cross-species prediction performance
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achieve a better performance on the three species of C. elegans, D. melanogaster and 
A. thaliana. The results indicated that Hyb4mC performed better not only on the 
Hyb_2021 dataset but also on the Li_2020 dataset provided by others.

Although our method achieves performance improvement over previous research 
methods, there are still some aspects that need further research. (1) In our work, DNA 
sequences with a modQV score ≥ 30 from the MethSMRT database can be considered 
as candidate positive samples, after the data processing process, Hyb_2021 datasets is 
constructed for prediction. However, the identification of the 4mC sites only by DNA 
sequences is bound to be limited, and further investigation of the relevant functional 
information of 4mC sites may be an effective supplement to the sequence information. 
(2) Currently, the embedding matrix is not updatable, if a larger training background is 
available in the future, each embedding vector may be able to capture more information. 
(3) Some motifs were discovered to have more significant effects on methylation levels 
[32], despite being able to extract the outputs of specified layers in the network (Addi-
tional file 2, Additional file 3), the traceability of important motifs in Hyb4mC remains 
difficult, finding available methods to backtrack to some important motifs may help to 
further refine our predictor.

Conclusions
In this study, we proposed a prediction framework called Hyb4mC to predict the DNA 
4mC sites. The advances in sequencing technology led to a huge gap in the number of 
experimentally verified samples among different species. In order to build an effective 
4mC sites prediction model, we developed the Hyb4mC tool with two complementary 
subnetworks: Hyb_Caps and Hyb_Conv. The DNA2vec method was used for sequence 
embedding, with a 41*100 feature matrix containing more comprehensive and effec-
tive information compared with the sequence-based features. The convolution layer, 
maxpooling layer, PrimaryCaps layer and SiteCaps layer participated in Hyb_Caps. 
Meanwhile, the combination of text convolutional neural network and the attention 
mechanism in Hyb_Conv further improved the robustness of the 4mC site prediction 
performance across multiple species.

We used six species of C. elegans, D. melanogaster, A. thaliana, E. coli, G. subterra-
neus and G. pickeringii, and constructed an independent dataset for each species, called 
Hyb_2021. Compared with the current state-of-the-art methods, Hyb4mC significantly 
improved the performance of 4mC site identification. On the same independent test 
dataset of Hyb_2021, Hyb4mC increased the AUC of C. elegans, D. melanogaster, A. 
thaliana, E. coli and G. pickeringii to 0.972, 0.980, 0.905, 0.964 and 0.913, respectively. In 
addition, Hyb4mC also achieved an enhanced performance on the Li_2020 dataset.

This performance improvement can be attributed to the following factors: (1) The 
DNA2vec embedding vectors capture more efficient and comprehensive information 
than previous information features. (2) The capsule neural network achieves greater 
generalization with fewer samples. (3) Hyb4mC can flexibly adjust and use appropri-
ate subnets according to different target prediction species to enhance the prediction 
performance.

In addition, many sequence-based features were used for 4mC site prediction by 
DNA sequences (like k-mer, MBE, RFHC, EIIP, etc.). The feature matrix obtained by the 
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DNA2vec method effectively combines other complementary sequence features, which 
may further improve the prediction performance. However, the identification of the 
4mC sites only by DNA sequences is bound to be limited. The information derived from 
DNA sequences is often limited to nucleotide sequence, frequency of occurrence, phys-
icochemical information, etc., which have been widely used (Additional file 1: Table S1). 
However, it is difficult to satisfactorily improve the prediction effect. To the best of our 
knowledge, current research on the function of 4mC sites is not comprehensive. We 
consider that further investigation of the relevant functional information of 4mC sites 
can serve as an effective supplement to the sequence information, which may contribute 
to the development of more accurate and efficient predictors.

Methods
Datasets

Benchmark datasets from the MethSMRT database, proposed by Chen [15], have been 
extensively used. Since the MethSMRT database is being constantly updated, the bench-
mark datasets are small in comparison with the amount of data accessible. However, 
when trained on larger datasets, machine learning algorithms generally perform better 
and exhibit greater generalizability [33]. Hence, in this work, we constructed a new data-
set, called Hyb_2021.

The verified 4mC sites of multiple species from the MethSMRT database were con-
tained in Hyb_2021, including C. elegans, D. melanogaster, A. thaliana, E. coli, G. subter-
raneus and G. pickeringii. According to the description of methylation analysis technical 
[34, 35], the modification quality value (modQV) score shows that the IPD ratio is obvi-
ously different from the expected background, and a modQV score of 30 is the default 
threshold to regard a position as modified. Hyb_2021 selected the DNA sequences with 
a modQV score ≥ 30 from the MethSMRT database as candidate positive samples (4mC 
sites contained sequences).

Sequences in which SMRT does not detect central cytosine were regarded as candi-
date negative samples. Preliminary tests indicated that each sample was 41bp in length 
[15]. The CD-HIT program was utilized to filter similar sequences with a cutoff value 
of 0.7, since highly similar sequences may result in performance overestimation [36]. 
For the candidate positive samples processed with the CD-HIT program, we selected 
sequences with a modQV score ≥ 50 as a reliable independent test dataset, while the 
remaining sequences were used to construct the training datasets. The same numbers of 
negative samples were randomly chosen for a balanced dataset.

Hyb4mC framework

Our proposed framework, Hyb4mC, used the sequence embedding module DNA2vec to 
learn higher-order features from the sequence, which has been proven to be an effective 
way to represent the features [37, 38]. For subsequent feature extraction, two subnets 
were developed: Hyb_Caps and Hyb_Conv.

Sequence representation

DNA2vec was proposed by Ng et al. [27] to calculate the distributed representation of 
variable-length k-mers in DNA. This method exploits genomic DNA sequences to learn 
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the feature representation and converts each k-mer into a 100-D continuous vector 
space, inspired by word2vec, which uses a large corpus to train the model. Compared 
with the corresponding k-mer coding, the 100-D vector contains more comprehensive 
and effective information, which promotes the model ability to capture more compre-
hensive information.

The positive 4mC and negative non-4mC sequences were divided into fixed-length 
k-mers by a sliding window. For example, “TCA​TGC​AT” was divided into “TCA​TGC​
”, “CAT​GCA​” and “ATG​CAT​”. The most commonly used encoding scheme is one-
hot encoding, but as k increases, the dimension of the one-hot vector exponentially 
increases, potentially resulting in a dimensional explosion. Furthermore, one-hot encod-
ing ignores the order between k-mers and assumes that the k-mers are independent 
of one another. Here, we employed sequence embedding approach instead of one-hot 
encoding. Considering the comprehensiveness of the information and the computa-
tional efficiency, k was set to 6. In our embedding approach, each 6-mer fragment cor-
responded to an index from 1 to 4096. In order to keep the number of 6-mer equal to 
the sequence length, we added “NNNNN” padding in front of the sequence, and the 
6-mer that contained ‘N’ were indexed to 0. Every 6-mer was converted to a 100-D vec-
tor through the pre-trained DNA module, yielding an embedding matrix that represents 
the sequence information. The dimension of the matrix was 41*100. The process flow of 
sequence embedding is shown in Fig. 9.

Hyb_Caps

In the Hyb_Caps subnet, a capsule neural network was introduced to extract sequence 
features, and it is utilized here for the first time to predict 4mC sites. The capsule neural 
network was firstly proposed by Hinton et al. [39]. Capsules are not composed of neu-
rons, but can be understood as a group of neurons in essence. The conventional capsule 
neural network consists of a PrimaryCaps layer and a SiteCaps layer, and a “dynamic 
routing” algorithm is used for propagation between the capsules [40]. Instead of the 
original translational invariance, the capsule neural network uses a new architecture that 
imitates the human visual system to obtain translational covariance, so that it needs less 
data to get more generalization under different perspectives.

To extract comprehensive features of the 41*100 matrix, a convolutional layer was 
used, with a total of 128 filters and a filter size of 5*100. A globalmaxpooling layer was 

Fig. 9  The sequence embedding algorithm
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used for downsampling after the convolutional layer, so that each DNA sequence corre-
sponded to a 128-D vector.

In order to make reasonable use of all elements of the 128-D vector, and referring to 
the experience of previous researchers [41, 42], we used a total of 16 capsules, each with 
8 elements, in the PrimaryCaps following the globalmaxpooling layer. The SiteCaps layer 
was used to store high-level vectors, which contained 2 capsules corresponding to our 
binary classification problem, each with 16 elements. The affine transformation was used 
to process the output of the PrimaryCaps layer, defined as Eq. 1:

where h represents the affine transformation matrix, and u represents the output vector 
of the PrimaryCaps layer.

Finally, the two vectors in SiteCaps were modulated to predict the probability that the 
sample sequence contained 4mC sites.

It is worth mentioning that the dynamic routing algorithm was used for propagation 
from the PrimaryCaps layer to the SiteCaps layer, and based on literature, the number 
of routes T was set to 2. The dynamic routing algorithm pseudo code is shown in Algo-
rithm 1. The example layer structure of the Capsule network and the process of dynamic 
routing is shown in Additional file 1: Fig. S8, Capi is defined as the i-th capsule in the 
PrimaryCaps layer, Capj is defined as the j-th capsule in the SiteCaps layer.

Hyb_Conv

In Hyb_Conv, a text convolutional neural network(TestCNN) was constructed with 
a convolutional layer and a maxpooling layer to further analyse the embedded 41*100 
matrix. The amount of filters in the convolutional layer was set to 64, with a filter length 
of 60, a pooling length of 30 and a step size of 1. To prevent overfitting, we added a drop-
out layer with the value of 0.5.

The attention mechanism [43] has been widely used in various types of deep learning 
tasks [44–47]. The features extracted by the TextCNN were passed through an attention 
layer in the Hyb_Conv subnet. The more important the features, the higher the weights 
given through the attention mechanism, so that the model can capture more important fea-
tures. The process of the attention mechanism is defined as Eqs. 2–4. The process diagram 

(1)û = u · h
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is shown in Additional file 1: Fig. S9. Furthermore, two dense layers with a sigmiod activa-
tion function were used to predict the 4mC sites.

where Query represents the context vector, Keyi represents the i-th feature, and wi repre-
sents the weight coefficient corresponding to valuei.

Model training setup

Hyb4mC was implemented in Python 3.6 using Keras (2.1.6) with the backend of Tensor-
Flow (1.12.0). In the Hyb_Caps subnet, a margin loss function was used, defined in Eq. 5. 
The training process used 10-fold cross-validation. The number of epochs was set to 30, 
and the batch size was set to 16. Meanwhile, we performed 10-fold cross-validation on the 
training dataset. In the Hyb_Conv subnet, the binary cross entropy was set as the loss func-
tion, defined in Eq. 6. The epoch was set to 90, and the batch size was set to 64. The Adam 
optimizer was used in both subnetworks.

where m+ = 0.9 , m− = 0.1 , � = 0.5 , and Tc = 1 if category c is present.

where y represents binary tag 0 or 1, and p(y) represents the probability of belonging to 
the y.

Evaluation metrics

The area under the ROC curve (AUC) was used to evaluate the performance of Hyb4mC. 
In addition, five widely used metrics were also used for performance evaluation [48–52], 
defined in Eqs. 7–11:

(2)Simi = Query · Keyi

(3)Wi = Softmax(Simi) =
eSimi

Lx
j=1e

Simj

(4)Attention =
∑Lx

i=1Wi · Valuei

(5)Lc = Tc max(0,m+− � Vc �)
2 + �(1− Tc)max(0, � Vc � −m−)2

(6)Loss = −
1

N

∑N
i=1 yi · log(p(yi))+ (1− yi · log(1− p(yi))

(7)Sn =
TP

TP + FN

(8)Sp =
TN

TN + FP

(9)Precision =
TP

TP + FP
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where TP represents the number of true positives, TN represents the number of true 
negatives, FP represents the number of false positives, and FN represents the number of 
false negatives.

Abbreviations
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SVM	   �    Support vector machine
CNN	   �    Convolutional neural network
AUC​	   �    The area under the ROC curve
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FN	   �    False negative
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