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Abstract

Reducing the numerical precision of data and computation is extremely effective
in accelerating deep learning training workloads. Towards this end, 8-bit floating
point representations (FP8) were recently proposed for DNN training. However,
its applicability was only demonstrated on a few selected models and significant
degradation is observed when popular networks such as MobileNet and Trans-
former are trained using FP8. This degradation is due to the inherent precision
requirement difference in the forward and backward passes of DNN training. Using
theoretical insights, we propose a hybrid FP8 (HFP8) format and DNN end-to-end
distributed training procedure. We demonstrate, using HFP8, the successful train-
ing of deep learning models across a whole spectrum of applications including
Image Classification, Object Detection, Language and Speech without accuracy
degradation. Finally, we demonstrate that, by using the new 8 bit format, we can
directly quantize a pre-trained model down to 8-bits without losing accuracy by
simply fine-tuning batch normalization statistics. These novel techniques enable a
new generations of 8-bit hardware that are robust for building and deploying neural
network models.

1 Introduction

As Deep Neural Networks (DNNs) evolve rapidly and as models get more complex, training times
have increased significantly. To mitigate this challenge, efficient training through reduced precision
exploitation has become increasingly important. Using reduced precision for data representations
and general matrix multiplications (GEMM) can accelerate DNN training dramatically and save
significant computing time and power. Indeed, GPUs can already perform mixed-precision training
with 16-bit IEEE Half-Precision floating point formats for deep learning tasks [1]. Recently, a new (1-
5-2) (sign-exponent-mantissa) floating-point 8-bit format (FP8), was used to successfully train popular
ImageNet models [2] without much accuracy loss. In addition, 8-bit Fixed point formats (INT8) have
also been explored to train ResNet50 successfully although 1 of the 3 GEMM computations was
performed in higher precision [3]. In addition to DNN training, efficient low-precision deployment
is critical in a wide range of edge inference use cases where cost and energy constraints can limit
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performance [4]. Towards that end, Trans-Precision inference, where models are trained in higher
precision and deployed in lower precision formats, have become extremely important [5, 6, 7].

While 8-bit training techniques have progressed rapidly, recent work [2, 3, 8, 9] have only demon-
strated its applicability on a small subset of deep learning models—focused around convolution
networks such as ResNet [10]. Indeed, plethora of challenges exist to extend FP8 training to a
broader spectrum of applications such as image classification, object detection, speech and natural
language processing while preserving model accuracy. Furthermore, in large-scale distributed training
systems, FP8 acceleration of GEMM and Convolution operations within each learner makes the
communication between learners at the weight update step a critical bottleneck. Alleviating this
bottleneck using 8-bit communication schemes could substantially improve the end-to-end training
performance for distributed DNN training. In addition, for low-precision inference, fixed point
techniques involving costly retraining of networks for ultra-short bit-widths [11, 12, 13] as well as
post-training quantization for simpler deployment of the INT8/INT4 inference models [7, 14, 15, 16]
have been extensively explored, but the state-of-the-art techniques still lose significant model accuracy
when they are applied to compact models like MobileNet [17] on large datasets (e.g., ImageNet). In
comparison to the fixed-point representation, FP8 based schemes have a wider dynamic range and
do not need to find the right quantization range for each layer and channel—serving post-training
quantization more naturally.

Figure 1: Challenges in the previous FP8 (1-5-2) format. (a) FP8 training on MobileNetV2 with different
width multipliers—showcasing significant accuracy degradation from FP8 training for capacity constrained
models. (b) FP8 training on Transformer-based machine translation — large loss in BLEU scores. (c) Table for
Trans-Precision inference from FP32 to FP8 — large accuracy loss observed in various domains.

1.1 Challenges and Related Works

Training and inferencing smaller capacity models in 8-bit: A key challenge in (1-5-2) FP8
training is the ability to train smaller capacity models without losing accuracy. While networks such
as VGG [18] and ResNet [10] can be trained effectively, models like MobileNetV2 that have 1/7th the
capacity of ResNet50 suffer significant degradation (∼ 1%) if trained in FP8, as shown in Fig.1(a).
This training problem is further exacerbated when we reduce the layer width of MobileNetV2 by
0.5 and 0.35—resulting in 2 ∼ 3% degradation. Furthermore, as discussed in the previous section,
inferencing on the post-training quantized MobileNetV2 models [7] using INT8 and INT4 formats
results in significant accuracy degradation (>2%). Recent work has identified the small variance
of the depthwise convolution layers as the cause of such degradation [14], which has been partly
addressed in [15] by retraining the networks with the adaptable dynamic range. Techniques that can
resolve this low-precision training challenge for smaller capacity models and simultaneously avoid
the issues in post-training quantization can be extremely important for Edge deployment use cases.

Applicability of 8-bit Training to Other Domains: In Natural Language Processing(NLP) and
Speech domains, popular networks built on LSTMs and Transformer blocks perform simple matrix
multiplications using fully-connected (FC) layers rather than convolution operations. Training these
networks using FP8 has proven to be a significant challenge. As an example, we’ve observed slow
convergence and lower BLEU scores on the Transformer model on the WMT14 dataset trained
using (1-5-2) FP8 precision, as shown in Fig.1(b). Furthermore, in many state of the art Speech
and language models, the last FC layer has a very large dimension—corresponding to vocabulary
size(typically 10-100 times larger than ImageNet) [19, 20]. As a result, the last FC layer consumes
a significant fraction (> 20-30%) of the total computation time. Currently, 8-bit training solutions
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customized for convolution nets relax the last layer precision by keeping that layer in 16-bit (FP16)
since last layers computed in FP8 have shown to increase classification error rates [2]. However, this
solution is expensive for NLP and Speech tasks which have large last layers. In addition, Object
Detection and semantic segmentation networks such as MaskRCNN [21] and SSD [22] that load a
pre-trained ImageNet backbone model and fine-tune it with an Object Detection dataset have not
been investigated within the framework of 8-bit training. Finally, Trans-Precision Inference in (1-5-2)
FP8 (directly converted from FP32 trained models) results in significant accuracy degradation in
many of these models as shown in the table of Fig.1(c). The goal of this paper is to enable an 8-bit
training methodology that addresses all of the above challenges.

8-bit weight updates: The weight update phase of low precision training requires a master copy
of weights in higher precision to accumulate gradients across minibatches without losing critical
information due to "swamping" [23]. In INT 8 training, FP32 is used for this master copy, resulting
in increased latency due to the bandwidth needed for communication and AXPY (Y = AX + Y )
computation in 32-bits. In FP8 training, even with stochastic rounding techniques, 16-bit (FP16)
weights are still needed for the master copy to preserve convergence [2]. As a solution to this
problem, weight averaging has been proposed to facilitate exchange of 8-bit weights (while keeping
higher precision weights locally). This scheme, however, results in >4% accuracy degradation on
ResNet18/ImageNet [24]. An ideal weight update scheme should compress gradients and only
compute and communicate 8-bit weights during the training process.

1.2 Contributions

In this paper, we introduce a new hybrid FP8 format and technique that is applicable to both compu-
tations (training and inference) and communication to address all of these challenges. In comparison
to the state-of-the-art FP8 training and INT8 inference solutions, our primary contributions include:

1. A novel hybrid FP8 format that uses 4 exponent bits and 3 mantissa bits (1-4-3 with an expo-
nent bias) for forward propagation and 5 exponent bits and 2 mantissa bits (1-5-2) for backward
propagation—achieving negligible accuracy degradation on previously problematic models in-
cluding MobileNetV2 and Transformer.

2. Demonstrated the robustness of the HFP8 format on a wide spectrum of DNN tasks including
Image Classification, Object Detection, NLP and Speech—while fully preserving accuracy.

3. Through theoretical analysis, we’ve identified BN statistics as the primary reason for accuracy
loss in low-precision Trans-Precision inference and show that BN statistics could be fine tuned to
fully recover model accuracy while using our 1-4-3 FP8 precision.

4. Introduced a deterministic FP8 weight update scheme that can converge to baseline accuracies with-
out using stochastic rounding along with a compatible all-reduce technique that takes advantage
of low bit-width weights to speed up distributed learning.

2 New Hybrid FP8 (HFP8) Formats and Computations

2.1 Impact of FP8 formats on Trans-Precision Inference (Post-Training Quantization)

In this section, we explore how different FP8 precision formats for activations and weights impact
Trans-Precision Inference accuracy. Towards that end, we adapt the theoretical framework of Sakr et
al. [25] to quantify the mismatch probability between a reduced precision neural network and its
full-precision counterpart. Consider a neural network for a classification task such as MobileNetV2,
with quantized weights (W + qw) and activations (A+ qA), where each numerical output (Zi) after
the feedforward pass may be corrupted by a quantization noise (qzi). Using Taylor’s expansion
and ignoring the cross-products of quantization noise terms, the total quantization noise qzi can be
expressed as [25]:

qzi =
∑

ah∈A

qah

∂zi
∂ah

+
∑

wh∈W

qwh

∂zi
∂wh

, (1)

where A and W are index sets. By evaluating the probability of any pair of outputs (zi < zj) that
flipped due to quantization errors Pr(zi + qzi > zj + qzj ), the mismatch probability pm between
the reduced precision network and its full precision baseline yields an upper bound—defined by the
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quantization error of each activation and weight multiplied by the corresponding gradients called
“gain”. As the gains are network specific, we can evaluate them empirically using Eqn.1.

Fig.2 shows the computed mismatch probability due to activation and weight quantizations for each
layer of the MobileNetV2 (CIFAR-10) model. The results clearly show that by moving just one bit
from the exponent (1-5-2) to the mantissa (1-4-3), the mismatch probability corresponding to both
activations and weights decrease dramatically. This improvement comes from the fact that weights
and activations are represented with higher fidelity using the extra mantissa bit.

However, since the total bit-width is limited to 8, reduction in the exponent bit-width can result
in clamping of large weights and activations and/or truncation of small values to the minimum
representable value in (1-4-3). Given the typical numerical distribution of these tensors during
training, we found that underflow represents a more serious concern. To mitigate this effect,
we introduce a fixed exponent bias that shifts the coverage range of the (1-4-3) FP8 format to

[2−2
ebit−1

−bias+1, 2
mbit+1

−1

2mbit × 22
ebit−1

−bias].

By choosing an exponent bias of 4, we intend to better align the (1-4-3) format with the distributions
of activations and weights seen in a wide range of DNN layers and models. As verified in Fig.2,
introducing an extra bias of 4 on the exponent further reduces the impact of quantization—specifically
on the weights in the lower layers which appear to have much smaller magnitudes. In the (1-4-3) FP8
with bias=4 format, we reduce the maximum clamping value from 480 down to 30, large enough to
cover the wide variety of networks that we have investigated. In exchange, we are able to represent
smaller activations and weights down to 2−11 (much lower than the 2−7 truncation threshold in
1-4-3). For simplicity of notation, all the following (1-4-3) FP8 experiments have a default exponent
bias of 4. These experiments indicate that the 5-bit exponent range 2−15 − 216 is an overkill for
DNN inference, and 4 bit exponents with a bias of 4 have sufficient range and fidelity to represent
activations and weights for both training and Trans-Precision inference performance. Finally, we’ve
verified that these conclusions extend to a large number of neural network models and topologies.

Figure 2: The layer-wise decomposition of mismatch probability (Eqn.1) for (a) activation and (b) weight
quantizations on a MobileNetV2 (CIFAR-10) model (excluding the first and last layers which are in full
precision). (1-5-2) results in higher activation errors compared to (1-4-3) with or without bias=4. (1-4-3) with
bias=4 shows the lowest mismatch thanks to the extra fidelity needed for representing small weight values near
the network output.

2.2 Impact of FP8 Formats on Model Training Accuracy

In addition to increasing mismatch probability, we note that quantization noise also degrades the
Lipschitz property of loss surfaces, that is, the loss changes in a faster rate, and the magnitudes of
the gradients are larger too. In Fig.3, we plot (a) the loss surfaces of a FP32 trained model and (b) a
(1-5-2) FP8 trained model along two random directions with their coefficients scanned along the x and
y axis [26]. The loss surface of the (1-5-2) trained model shows multiple saddle points and appears
rougher—making gradient descent based training unstable as evidenced by the kinks in Fig.3(b). The
mitigation of such kinks has also explained the effectiveness of Batch Normalization [27]. In contrast,
by increasing the number of mantissa bits from 2 to 3 for the forward pass only (while keeping
gradients and errors in 1-5-2), the loss-surface appears to be significantly improved in Fig.3(c),
implying easier optimization. On the other hand, comparing the loss surfaces for training and test, we
can see that FP8 quantizations do not impact generalization.

Guided by these insights, we propose our Hybrid FP8 (HFP8) formats utilizing two different FP8
formats to customize the precision separately for the forward and backward passes of DNN training—
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Figure 3: The loss surfaces of models trained in different precisions: (a) FP32, (b) FP8 (all GEMMs in 1-5-2,
[2]), (c) HFP8 (1-4-3 only for forward pass). The top row for the loss surfaces from training data while the
bottom row from test data. The loss surfaces with HFP8 maintain good Lipschitz properties compared to FP32
while the loss surfaces with FP8 exhibit multiple saddle points which hinder training convergence.

improving the performance on training and Trans-Precision inference. The underlying reason for
this choice is that forward and backward passes have different optimal balances between range and
precision. While tensors in the forward pass prefer higher precision (and lower representational
error), gradients in the backward pass prefer a higher dynamic range. We describe our HFP8 training
methodology where weights and activations adopt the (1-4-3) format (bias=4) while tensors used
in backpropagation continue to be represented using the (1-5-2) format (in combination with loss
scaling techniques pioneered by [28])(see Fig.1 in Appendix A). Our experiment shows that this
simple change can significantly improve the performance of both MobileNet and Transformer models
(as shown in Fig.4(a) and (b)), in comparison to forward (1-5-2) based results that showed significant
degradation in Fig.1. In the following sections, we will show that this improvement is universally
applicable to both training and Trans-Precision inference (training results for Speech and Object
Detection models are shown in Fig.4(c) and (d)).

For errors and gradients in HFP8 back-propagation, we employ the (1-5-2) FP8 format, which
has proven to be optimal across various deep learning tasks. However, unlike activations and
weights, even 5-bit exponents are insufficient to represent the wide dynamic range seen in activation
gradients. Therefore, loss scaling has been adopted to enable gradients to become large enough to be
representable using the (1-5-2) format [2]. Nonetheless, it’s infeasible to seek a unique scaling factor
that fits a wide range of different models and datasets. Towards that end, we adapted auto-adjusted
scale factors for gradients and errors during HFP8 training using Apex [28] (details in Appendix B).
Finally, through hardware design experiments, we’ve confirmed that floating-point units (FPUs) that
can support both formats are only 5% larger than the original FPUs that only support 1-5-2.

Figure 4: Training curves using HFP8 on (a) MobileNetV2 with different width-multipliers (sizes) (b)
Transformer-base machine translation (c) LSTM-based Speech Model for the SWB300 dataset and (d) Mask
R-CNN model. No significant loss in accuracy is observed across DNN layer types, models and datasets. Final
training results on a diverse set of models are summarized in Table4.
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2.3 Last Layer Precision and the SoftMax Function

For networks with large output dimensions (typically seen in Speech and NLP), the last FC and
SoftMax layers contribute to a significant fraction of the total computation time due to large matrix-
multiplications and expensive exponential functions (especially if these need to be computed in FP16).
In these layers, it therefore becomes critical to be able to use 8-bit computations.

First, we note that when (1-4-3) FP8 is used along with (1-6-9) FP16 output precision no degradation
on LSTM-based SWB300 and Transformer-based translation tasks is observed. In contrast, when the
output precision of the FC layer is set to (1-4-3) as well, large loss in accuracy is observed (network
diverges in SWB300 and ∼ 1 BLEU degradation in WMT En-De). This occurs because the largest
output of the last FC layer may be quantized into the same values (bins) during conversion from 16 to
8-bit and therefore become indistinguishable to the ensuing SoftMax layer. Fig.5(a) and (b) shows the
distribution of output activations before and after FP8 (1-4-3) quantization in the transformer model
for WMT En-De translation(dout = 42720), showing that the largest numbers are poorly represented
by 8-bit in Fig.5(b). Interestingly, we discovered that if the quantization step is performed after the
max subtraction step (i.e. x−xmax) in SoftMax, this degradation in accuracy can be fully eliminated.
In Fig.5(c), the x − xmax sub-step of SoftMax moves the largest values closest to 0, where data
representation is strongest due to non-uniform nature of floating point representation. Furthermore,
this technique also allows SoftMax to be performed using just 8-bits. Detailed discussions on the
reduced precision SoftMax will be a focus of future work. Overall, the (1-4-3) HFP8 format in the
last FC layer when combined with an output precision of 1-6-9 and the max-subtracted SoftMax
function allows for efficient end-to-end HFP8 computations.

Figure 5: Output activation distributions of the last FC layer and its quantization (to 1-4-3 FP8) in Transformer
model before and after subtracting the max output. Quantization after subtracting with the max output allows the
largest inputs of SoftMax to be represented with high fidelity in 8-bits and fully preserves model accuracy.

3 Trans-Precision Inference in FP8

Guided by the theoretical framework in Section 2.1, we investigate how inference accuracies are
impacted when FP32 trained models are used directly with different FP8 formats for inference (i.e.
without any retraining). Using MobileNetV2 trained on ImageNet as an example, we immediately
observe that the (1-4-3) FP8 format is significantly more accurate than the (1-5-2) format—as shown
in the first 2 rows of the Table in Fig.6(a). This is consistent with mismatch probability based
predictions described earlier. However, even with the right FP8 format, we observe that we lose >5%
in model accuracy in comparison to FP32. To reduce this gap, we provide 2 additional insights. The
first key insight comes from a theoretical understanding of how quantization errors in weights and
activations directly impact the accuracy of outputs of the succeeding Batch Normalization (BN) layer.
Retuning the statistics (mean and variance) of the BN layer for the precision of interest (i.e. inference
precision) has the potential to significantly reduce this error. As shown in Eqn.2, the quantization
error at the output of a BN layer (Z - ZQ) can be expressed in terms of the variance of quantization

error in BN input σ2
Q and the variance of precise input σ2

Y —assuming Q and Y are not correlated
(please see Appendix C for a detailed derivation):

E[‖Z − ZQ‖2]











∼= γ2 σ
2
Q

σ2
Y

, original BN statistics.

∼= 2γ2(1− 1
√

1+
σ2
Q

σ2
Y

), retuning BN statistics. (2)
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Table 1: FP8 Trans-Precision inference for FP32 trained models after BN re-tuning (if applicable)

Model (Dataset) Baseline (FP32) 1-4-3 Inference 1-5-2 Inference

ResNet18 (ImageNet) 69.32 68.99 68.93
ResNet50 (ImageNet) 76.44 76.46 75.89
DenseNet121 (ImageNet) 74.76 74.78 74.40
AlexNet (ImageNet) 57.10 57.07 56.87
MobileNetV2 (ImageNet) 71.81 71.37 70.31
4-bidirectional-LSTM Speech (SWB300)a 9.90 9.90 10.10

Transformer-base (WMT14 En-De)b 27.53 27.47 27.06
SSD-Lite (VOC)c 68.79 68.22 67.40

MaskRCNN (COCO)d 33.58/29.27 33.43/29.10 32.83/28.65
aWord Error RatebBLEU scorec mean average precision(mAP)d Box/Mask average precision

Plotting this equation in Fig.6(b), we observe that E[‖Z − Zq‖2] increases linearly with σ2
Q when

preserving original BN parameters, but increases only sub-linearly when BN statistics are re-tuned.
This reveals the fact that the impact of quantization at BN output would be suppressed once BN
statistics are properly tuned. As shown in Rows 5 and 6 of Fig.6(a), re-tuning BN statistics using just
2% of a single epoch of the training dataset reduces this accuracy gap significantly.

The second key insight obtained using Eqn.2 indicates that layers that have very low σ2
Y have vastly

magnified output errors. Plotting σ2
Y as a function of layer number for MobileNetV2 (Fig.6(c)) leads

us to note that depthwise (DW) convolution layers produce activations that have orders of magnitude
smaller variance (σ2) in comparison to traditional convolution layers [14]. We therefore expect
the precision setting in these layers to strongly impact Trans-Precision inference accuracies. Since
DW layers contribute to <3% of the overall compute in the MobileNet family of networks [17], we
recommend setting the precision in these layers uniformly to FP16. As can be seen from Rows 3,4
(without BN re-tuning) and Rows 7,8 (with BN re-tuning), this precision setting in the DW layers
substantially improves inference accuracies to within ∼ 1% of the baseline.

A combination of these techniques – (a) picking the right precision format (1-4-3) for weights and
activations of convolution and FC layers (b) setting the precision for DW layers to FP16 and (c)
updating BN µ and σ2 with minimal training data – allows MobileNetV2 to hit accuracies within
∼ 0.5% of the full precision baseline. Furthermore, we show that these techniques extend very well
to other models; as shown in Table 1, FP8 1-4-3 with BN re-tuning can fully recover the baseline
inference accuracies for the entire spectrum of networks studied. Note that for BN re-tuning, data
does not need to be labeled and thus can be done at the edge devices.

Figure 6: (a) Trans-Precision inference accuracies using the FP32 MobileNetV2 Model in two different FP8
formats. Rows 5-8 further re-tune BN µ and σ2 using 2% of the training data while using FP8 precision. (b)
Visualization of the quantization error (Eqn.2) at BN output vs. the quantization error variance at BN input for
two different variances of precise BN input (c) The variances of precise BN input for 52 convolution layers in
MobileNetV2 showing DW layers having orders of magnitude smaller σ2.

4 Hybrid FP8 Distributed Training Scheme and Results

As DNN compute functions are accelerated in each learner using HFP8, the communication cost
among learners and memory bandwidth dominated tasks like weight updates become bottlenecks.
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Table 2: Ring based communication schemes among N learners using Hybrid FP8

Common ring-based weight update Proposed ring-based weight update & data format sent

(1) reduce-scatter gradients (1) reduce-scatter gradients FP16(1-6-9)
(2) all-gather gradients (2) locally update 1/N gradients to weights local
(3) locally update full size of weights (3) all-gather weights FP8 (1-4-3)

Table 3: Round-off residual based Hybrid FP8 weight update(per worker)
For each 1/N weight: Rt=0 ← 0 (Initialize round off residual)
For timestep t for each 1/N weight:

Ŵt ←Wt−1 − αt−1g(Wt−1)−Rt−1: (Apply gradients and carried-on residuals)

Wt ← QW(Ŵt) (Quantize new weights)

R̂t ←Wt − Ŵt (Overwrite residuals)

Rt ← QR(R̂t) (Quantize residuals, higher precision than QW)

Table 4: Baseline vs. Hybrid FP8 training on Image, Language, Speech and Object-Detection Models

Model(Dataset) Accuracy or [other metrics] Baseline(FP32) HFP8 + Round-off update

AlexNet (ImageNet) 57.28 57.21
ResNet18 (ImageNet) 69.38 69.39
ResNet50 (ImageNet) 76.44 76.22
MobileNetV2 (ImageNet) 71.81 71.61
DenseNet121 (ImageNet) 74.76 74.65
2-LSTM (PennTreeBank)[Test ppl.] 83.66 83.86
Transformer-base (WMT14 En-De)[BLEU] 27.50 27.27
4-bidirectional-LSTM Speech (SWB300)[WER] 9.90 10.00
MaskRCNN(ResNet50) (COCO)[Box/Mask AP] 33.58/29.27 33.06/28.86
SSD-Lite(MobileNetV2) (VOC)[mAP] 68.79 68.72

Hardware performance estimations indicate that this communication could take up to ∼ 41− 62% of
the end-to-end training time for ResNet50 with HFP8 GEMM (Appendix D for details). As illustrated
in Table 2, the conventional communication pattern used in deep learning algorithms exchanges
gradients through ring-based all-reduce [29, 30] and then each learner updates the whole model
locally. To take advantage of 8-bit weights in off-chip communication as well as to minimize local
memory bandwidth, we modify the existing distributed learning scheme slightly—so that each of N
learners updates only 1/N th of the model after the reduce-scatter phase minimizing local memory
transactions. When updating the model globally, the final 8-bit weights produced in each learner are
distributed in the all-gather phase, thereby improving off-chip communication by 2× compared to
conventional 16-bit gradient communication.

To improve the robustness of low-precision weight updates and to prevent "swamping" [2], we
propose a deterministic round-off residual update scheme that stores the weight in 8-bit while saving
the quantization errors locally as "round-off" residuals in FP16 as illustrated in Table 3. We study
this round-off residual scheme on a wide range of DNN applications and show that it does not impact
convergence (consistent with the rich body of theoretical work in this space [31, 32]). With 8-bit
weight updates and a modified ring-distribution scheme, our technique improves end-to-end training
time by 32− 38% on ResNet50 (for details, see Appendix D).

Finally, to demonstrate the wide applicability and the robustness of the HFP8 formats, 8-bit computa-
tions and round-off residual scheme, we tested it on a wide spectrum of deep learning models and
datasets without changes to network architectures, data pre-processing, or hyper-parameters(details in
Appendix E). As shown in Table 4, every single network tested achieved accuracy very close to
the full precision baseline, including tasks that were problematic for previous FP8 endeavors (such
as MobileNet and Transformers). More complex and challenging tasks, such as Object Detection,
Speech and Machine Translation in HFP8 are demonstrated and for the first time show performance
within 0.5% of the full precision baseline on large networks and datasets. Given the limited computa-
tional complexity in the first and last layers we set the precision in these layers to FP16 except for
Speech and Transformer networks, where we use the same HFP8 settings on the large final FC layer
and find no degradation.
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5 Conclusions

We have demonstrated DNN training with a new Hybrid FP8 format that adopts two different
FP8 formats for forward and backward propagation. In addition, we introduced a novel round-off
residual scheme which can significantly improve robustness of low-precision AXPY and reduce
communication bandwidth requirements. We’ve confirmed the superior accuracy of this approach over
previous 8-bit training proposals on a wide range of state of the art DNN models. In addition, we’ve
presented new insights in Batch Normalization and depthwise Convolutional layers that demonstrate
how the same FP8 format can be used for highly accurate Trans-Precision inference (starting from
higher precision FP32 models). These novel techniques enable a new generation of 8-bit hardware
systems that are robust for the entire spectrum of DNN training and inference applications.
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