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Abstract

As the number of transistors integrated on a chip continues
to increase, a growing challenge is accurately modeling per-
formance in the early stages of processor design. Analytical
models have been employed to rapidly search for higher
performance designs, and can provide insights that detailed
simulators may not. This paper proposes techniques to predict
the impact of pending cache hits, hardware prefetching, and
realistic miss status holding register (MSHR) resources on
superscalar performance in the presence of long latency
memory systems when employing hybrid analytical models
that apply instruction trace analysis. Pending cache hits are
secondary references to a cache block for which a request
has already been initiated but has not yet completed. We
find pending hits resulting from spatial locality and the
fine-grained selection of instruction profile window blocks
used for analysis both have non-negligible influences on
the accuracy of hybrid analytical models and subsequently
propose techniques to account for their effects. We then
introduce techniques to estimate the performance impact of
data prefetching by modeling the timeliness of prefetches and
to account for a limited number of MSHRs by restricting
the size of profile window blocks. As with earlier hybrid
analytical models, our approach is roughly two orders of
magnitude faster than detailed simulations. When modeling
pending hits for a processor with unlimited outstanding
misses we improve the accuracy of our baseline by a factor
of 3.9, decreasing average error from 39.7% to 10.3%. When
modeling a processor with data prefetching, a limited number
of MSHRs, or both, the techniques result in an average error
of 13.8%, 9.5% and 17.8%, respectively.

1. Introduction

To design a new microprocessor architects typically create
a cycle-accurate simulator and run numerous simulations
to quantify performance trade-offs. Not only is the task of
creating such a simulator time-consuming, but also running
such simulations can be slow. Both are significant components

of overall design-to-market time. As microprocessor design
cycles stretch with increasing transistor budgets, architects
effectively start each new project with less accurate informa-
tion about the eventual process technology that will be used,
leading to designs that may not achieve the full potential of
a given process technology node.

An orthogonal approach to obtaining performance esti-
mates for a proposed design is analytical modeling [36].
An analytical model employs mathematical formulas that
approximate the performance of the microprocessor being
designed based upon program characteristics and microar-
chitectural parameters. One of the potential advantages of
analytical modeling is that it can require much less time than
crafting and running a performance simulator. Thus, when an
architect has analytical models available to evaluate a given
design, the models can help shorten the design cycle. While
cycle-accurate simulator infrastructures exist that leverage re-
use of modular building blocks [10], [34], and workload
sampling [29], [35] can reduce simulation time, another key
advantage of analytical modeling is its ability to provide
insights that a cycle-accurate simulator may not.

Several analytical models have been proposed before [8],
[16], [19], [23], [24], [25], [26], [27], [28] and Karkhanis
and Smith’s first-order model [19] is relatively accurate.
Their first-order model separately estimates the cycles per
instruction (CPI) component due to branch mispredictions,
instruction cache misses, and data cache misses, then adds
each CPI component to an estimated CPI under ideal con-
ditions to arrive at a final model for the performance of a
superscalar processor. However, little prior work has focused
on analytically modeling the performance impact of data
prefetching and the performance impact of hardware support
for a limited number of overlapping long latency data cache
misses due to finite MSHR resources. In this paper we explore
how to accurately model these important aspects of modern
microprocessor designs.

One significant aspect of long latency data cache misses is
the large effect of pending data cache hits (PH) on overall
performance. A pending data cache hit is a memory reference
to a cache block for which a request has already been initiated



by another instruction but has not yet completed (i.e., the
requested block is still on its way from memory). Figure 1
compares actual CPI due to long latency data cache misses
to modeled CPI due to long latency data cache misses for
mcf with increasing memory access latency. The first bar
(actual) shows the result from a cycle-accurate simulator
whose configuration is described in Section 4. The second bar
(baseline) shows the result from a careful re-implementation
of a previously proposed hybrid analytical model [19]1. The
third bar (SWAM w/ PH) illustrates the result from a new
technique that we propose in this paper (see Section 3.5.1).
In this paper, a modeled CPI due to long latency data
cache misses (CPID$miss) is always derived by dividing the
total extra cycles due to long latency data cache misses by
the total number of instructions committed. From Figure 1
we observe that the error becomes increasingly significant
as memory latency grows. Therefore, to accurately model
the performance of future superscalar microprocessors, it is
necessary to carefully model pending data cache hits.

This paper makes the following contributions:

• It shows that the performance impact of pending data
cache hits is non-negligible for memory intensive ap-
plications and describes how to model their effect on
performance in the context of a trace driven hybrid
analytical model (Section 3.1).

• It presents a novel technique to more accurately com-
pensate for the potential overestimation of the modeled
CPID$miss, which relies upon analysis of a program’s
individual characteristics (Section 3.2).

• It proposes a technique to model the CPID$miss when a
data prefetching mechanism is applied in a microproces-
sor, without requiring a detailed simulator (Section 3.3).

• It describes a technique to analytically model the im-
pact of a limited number of outstanding cache misses
supported by a memory system (Section 3.4).

• It also proposes two novel profiling techniques to better
analyze overlapped data cache misses (Section 3.5).

We evaluate our approach for modeling data prefetching by
using it to predict the performance impact of three different
prefetching strategies and find the average error of our model
is 13.8% versus 50.5% when not using the technique we
propose. As the instruction window of future microprocessors
becomes larger [9], a limited number of Miss Status Holding
Registers (MSHRs) can have a dramatic impact on the per-

1. Our analysis shows that pending data cache hits can significantly impact
model accuracy. However, we note that the prediction error of the CPI due to
long latency data cache misses we report for our baseline modeling technique
(described in Section 2) is in some cases large relative to those reported
in [19]. Our baseline modeling technique is our implementation of the first-
order model described in [19] based upon the details described in that paper
and the follow-on work [18], [20]. We believe the discrepancy is partly due
to our use of a smaller L2 cache size of 128 KB versus 512 KB used in [19],
and partly due to their use of a technique similar to the one we describe in
Section 3.5.1 [32].
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Figure 1. Comparison of CPI component due to long
data cache miss versus modeled result for mcf with
different memory access latencies

formance of the whole system [33]. Our technique reduces
the arithmetic mean of the absolute error of our baseline from
33.6% to 9.5% when the maximum number of outstanding
misses supported is limited. As with earlier hybrid modeling
approaches [19], [18], [20], we find our model is two orders of
magnitude faster than detailed simulations. Our improvement
increase the realism (and hence applicability) of analytical
models for microprocessor designers.

In this paper, we use arithmetic mean of the absolute
error to validate the accuracy of an analytical model, which
we argue is the correct measure since it always reports
the largest error numbers and is thus conservative in not
overstating the case for improved accuracy. Note that we
are interested in averaging the error of the CPI prediction
on different benchmarks, not the average CPI predicted for
an entire benchmark suite, which often allows errors on
individual benchmarks to “cancel out” in a way that suggests
the modeling technique is more accurate than it really is. We
also report the geometric mean and harmonic mean of the
absolute error to allay any concerns that these numbers might
lead to different conclusions. In all cases the improvements
resulting from applying our new modeling techniques are
robust enough that the selection of averaging technique does
not impact our conclusions.

The rest of this paper is organized as follows. Section 2
reviews the first-order model [18], [19], [20]. Section 3
describes how to accurately model the effects of pending
data cache hits, data prefetching, and hardware that supports
a limited number of outstanding data cache misses. Sec-
tion 4 describes the experimental methodology and Section 5
presents and analyzes our results. Section 6 reviews related
work and Section 7 concludes the paper.

2. Background: First-Order Model
Before explaining the details of our techniques introduced

in Section 3, it is necessary to be familiar with the ba-
sics of the first-order model of superscalar microprocessors.
Karkhanis and Smith’s first-order model [19] leverages the
observation that the overall performance of a superscalar
microprocessor can be estimated reasonably well by subtract-
ing the performance losses due to different types of miss-
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Figure 2. Useful instructions issued per cycle (IPC) over
time used in the first order model [19]

events from the processor’s sustained performance under the
absence of miss-events. The miss-events considered include
long latency data cache misses (e.g., L2 cache misses for a
memory system with two-level cache hierarchy), instruction
cache misses, and branch mispredictions.

Figure 2 illustrates this approach. When there are no miss-
events, the performance of the superscalar microprocessor is
approximated by a stable IPC, expressed through a constant
useful instructions issued per cycle (IPC) over time. When
a miss-event occurs, the performance of the processor falls
and the IPC gradually decreases to zero. After the miss-event
is resolved, the decreased IPC ramps up to the stable value
under ideal conditions. A careful analysis of this behavior
leads to the first-order model [19].

While Figure 2 shows that a miss-event occurs only after
the previous miss-events have been resolved, in a real proces-
sor it is possible for different types of miss-events to overlap.
For example, a load instruction can miss in the data cache
a few cycles after a branch is mispredicted. However, it has
been observed (and we confirmed) that overlapping between
different types of miss-events is rare enough that ignoring it
results in negligible error in typical applications [19], [12].

This paper focuses on improving the accuracy of the mod-
eled CPID$miss (i.e., CPI component due to long latency
data cache misses) since it is the component with the largest
error in prior first-order models [18], [19]. Note that short
latency data cache misses (i.e., L1 data cache misses that hit
in the L2 cache in this paper) are not regarded as miss-events
in prior first-order models [18], [19] and they are modeled as
long-execution-latency instructions when modeling the base
CPI. In the rest of this paper, we use the term “cache
misses” to represent long latency data cache misses. As
noted by Karkhanis and Smith [19], the interactions between
microarchitectural events of the same type cannot be ignored.

Our baseline technique for modeling data cache misses,
based upon Karkhanis and Smith’s first-order model [19],
analyzes dynamic instruction traces created by a cache simu-
lator. To differentiate such models, which analyze instruction
traces, from earlier analytical models [8], [23], [1], [26], [16],
[27] that do not, we also refer to them as hybrid analytical
models in this paper. In each profile step, a ROBsize number
of consecutive instructions in the trace are put into the
profiling window (or block) and analyzed, where ROBsize

is the size of the re-order buffer. If all of the loads missing in
the data cache in a profile step are data independent of each
other, they are considered overlapped (i.e., the overlapped
misses have the same performance impact as a single miss).

When data dependencies exist between misses, the maximum
number of misses in the same data dependency chain is
recorded and the execution of all the other misses are modeled
to be hidden under this dependency chain.

In the rest of this paper, num serialized D$miss repre-
sents the sum of the maximum number of misses measured in
any single data dependency chain in a block of instructions,
accumulated over all blocks making up the entire instruction
trace. When all instructions in the trace have been analyzed,
the CPID$miss can be estimated as

CPID$miss =
num serialized D$miss × mem lat

total num instructions
(1)

where mem lat stands for the main memory latency and
total num instructions is the total number of instructions
committed (of any type).

The CPID$miss modeled in Equation 1 often overesti-
mates the actual CPID$miss since out-of-order execution
enables overlap of computation with long latency misses. A
simple solution proposed by Karkhanis and Smith [19] is to
subtract a fixed number of cycles per serialized data cache
miss based upon ROB size to compensate. The intuition for
this compensation is that when a load issues and accesses
the cache, it can be the oldest instruction in the ROB, the
youngest instruction in the ROB, or somewhere in between.
If the instruction is the oldest or nearly the oldest, the perfor-
mance loss (penalty of the instruction) is the main memory
latency. On the other hand, if the instruction is the youngest
or nearly the youngest one in the ROB and the ROB is full,
its penalty can be partially hidden by the cycles required to
drain all instructions before it, and can be approximated as
mem lat− ROBsize

issue width [19]. It has been observed that loads
missing in the cache are usually relatively old when they
issue [19]; and thus, perhaps the simplest (though not most
accurate) approach is to use no compensation at all [19]. The
mid-point of the two extremes mentioned above can also be
used (i.e., a load missing in the cache is assumed to be in the
middle of ROB when it issues), and the numerator in Equa-
tion 1 becomes num serialized D$miss × (mem lat −

ROBsize

2×issue width) [18].

3. Modeling Long Latency Memory Systems

In this section, we describe how we model pending cache
hits, data prefetching, and a limited number of MSHRs.

3.1. Modeling Pending Data Cache Hits

The method of modeling long latency data cache misses
described in Section 2 profiles dynamic instruction traces
generated by a cache simulator [19]. Since a cache simulator
provides no timing information, it classifies the load or store
bringing a block into the cache as a miss and all subsequent
instructions accessing the block before it is evicted as hits.



i1: LD, R1, 0(R2) miss (Block A)

i2: LD, R3, 4(R2) pending hit (Block A)

i3: LD, R4, 0(R3) miss (Block B)

fictitious dependence we model to account for the effect of spatial locality

spatial
locality

Figure 3. An example showing how two data indepen-
dent misses (i1, i3) are connected by a pending hit (i2),
upon which i3 is data dependent.
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Figure 4. Impact of pending data cache hit latency on the
CPI due to long latency cache misses (measured over all
instructions committed from a detailed simulator)

However, the actual latency of many instructions classified
as a hit by a cache simulator is much longer than the cache hit
latency. For example, if there are two close load instructions
accessing data in the same block that is not currently in
the cache, the first load will be classified as a miss by the
cache simulator and the second load as a hit, even though
the data would still be on its way from memory in a real
processor implementation. Therefore, since the second load
is classified as a hit in the dynamic instruction trace, it is
ignored in the process of modeling CPID$miss using the
approach described in Section 2.

More importantly, a significant source of errors results
when two or more data independent load instructions that
miss in the data cache are connected by a third pending data
cache hit. We elaborate what “connected” means using the
simple example in Figure 3. In this example, i1 and i3 are two
loads that miss and they are data independent of each other,
while i2 is a pending hit since it accesses the data in the same
cache block as i1. The model described in Section 2 classifies
i1 and i3 as overlapped and the performance penalty due to
each miss using that approach is estimated as half of the
memory access latency (total penalty is the same as if there
is a single miss). However, this approximation is inaccurate
since i3 is data dependent on the pending data cache hit i2
and i2 gets its data when i1 obtains its data from memory
(i.e., i1 and i2 are waiting for the data from the same block).
Therefore, in the actual hardware, i3 can only start execution
after i1 gets its data from memory although there is no true
data dependence between i1 and either i2 or i3. This scenario
is common since most programs contain significant spatial
locality. The appropriate way to model this situation is to
consider i1 and i3 to be serialized in our analytical model,
even though they are data independent and access distinct
cache blocks.

Figure 4 shows the impact that pending data cache hits
combined with spatial locality have on overall performance

for processors with long memory latencies. The first bar (w/
PH) illustrates measured CPID$miss for each benchmark on
the detailed simulator described in Section 4 and the second
bar (w/o PH) shows the measured CPID$miss when all the
pending data cache hits are simulated as having a latency
equal to the L1 data cache hit latency. From this figure, we
observe that the difference is significant for eqk, mcf , em,
hth [37], and prm.

To model the effects of pending data cache hits analytically,
we first need to identify them without a detailed simulator.
At first, this may seem impossible since there is no timing
information provided by the cache simulator. We tackle this
by assigning each instruction in the dynamic instruction
trace a sequence number in program order and labeling each
memory access instruction in the trace with the sequence
number of the instruction that first brings the memory block
into the cache. Then, when we profile the instruction trace, if
a hit accesses data from a cache block that was first brought
into the cache by an instruction still in the profiling window,
it is regarded as a pending data cache hit.

For every pending hit identified using this approach (e.g.,
i2 in Figure 3), there is a unique instruction earlier in
the profiling window that first brought in the cache block
accessed by that pending hit (e.g., i1 in Figure 3). When we
notice a data dependence between a later cache miss (e.g., i3
in Figure 3) and the pending hit (i2), we model a dependence
between the early miss (i1) and the instruction that is data
dependent on the pending hit (i3) since the two instructions
(i1 and i3) have to execute serially due to the constraints of
the microarchitecture.

3.2. Accurate Exposed Miss Penalty Compensation

While the model described in Section 2 uses a fixed number
of cycles to adjust the modeled CPID$miss, we found that
compensation with a fixed number of cycles (a constant
ratio of the reorder buffer size) does not provide consistently
accurate compensation for all of the benchmarks that we
studied, resulting in large modeling errors (see Figure 10).
To capture the distinct distribution of long latency data cache
misses of each benchmark, we propose a novel compensation
method. The new method is motivated by our observation
that the number of cycles hidden for a load missing in the
cache is roughly proportional to the distance between the load
and the immediately preceding load that missed in the cache
(we define the distance between two instructions to be the
difference between their instruction sequence number). This
is because when a load instruction misses in the cache, most
of the instructions between that load and the immediately
preceding long latency miss are independent of that load.
Therefore, we approximate the latency of the later load that
can be overlapped with useful computation as the time used
to drain those intermediate instructions from the instruction



window, which we estimate as the distance between the two
loads divided by the issue width. When we profile an in-
struction trace, the average distance between two consecutive
loads missing in the cache is also collected and used to adjust
the modeled CPID$miss. If the distance between two misses
exceeds the window size, it is truncated since the miss latency
can be overlapped by at most ROBsize − 1 instructions.

Equation 2, below, shows how the CPID$miss is ad-
justed by subtracting a compensation term, dist

issue width ×
num D$miss, from the numerator in Equation 1.

CPID$miss =
num serialized D$miss × mem lat − comp

total num instructions

comp = (
dist

issue width
× num D$miss) (2)

Here dist is the average distance between two consecutive
loads that miss in the cache and the term dist

issue width repre-
sents the average number of cycles hidden for each cache
miss. The product of this term and the total number of
loads missing in the cache (num D$miss) becomes the total
number of cycles used to compensate for the overestimation
of the baseline profiling method.

3.3. Modeling Data Prefetching

Data prefetching is a technique to bring data from mem-
ory into the cache before it is required so as to hide (or
partially hide) long memory access latency. Many hardware
data prefetching strategies have been proposed before [2],
[14], [17], [30]. In this section, we demonstrate how to
extend our model described in Section 3.1 to estimate the
CPID$miss when a data prefetching technique is employed
without running detailed simulations.

To model the CPID$miss when a particular prefetching
method is applied, a cache simulator implementing that
prefetching method is needed to generate a dynamic in-
struction trace. While this does require some coding, we
found that the resulting analytical model obtains very accurate
results and is two orders of magnitude faster than detailed
simulations. As described in Section 3.1, when a cache
simulator generates an instruction trace, each memory access
instruction in the trace is labeled with the sequence number
of the instruction that first brought the data into the cache. If
the data required by a load was brought into the cache by a
prefetch, then the load is labeled with the sequence number
of the previous instruction that triggered the prefetch.

Recall that, when no prefetching mechanism is applied, an
instruction trace generated by a cache simulator is divided
into blocks of instructions and each block is analyzed in a
profile step. In each profile step, the maximum number of
loads that are in a dependence chain and miss in the cache is
recorded. However, when an effective prefetching method is
implemented, many loads that would have missed in the cache

become hits. To be more specific, many of them become
pending hits given that some of the prefetches cannot fully
hide the memory access latency. We found that to accurately
model prefetch performance, it is necessary to approximate
the timeliness of the prefetches and consequently the latencies
of these pending hits relatively accurately.

Figure 5 illustrates how we analyze a pending hit in an
instruction trace when a particular prefetching mechanism is
applied. Here a pending hit can either be due to a prefetch
or a demand miss and, in both cases, it is analyzed using
the algorithm in Figure 5. For each pending hit (crntInst
in Figure 5), we find the instruction (prevInst in Fig-
ure 5) that brought crntInst’s required data into the
cache. We approximate crntInst’s latency based upon the
observation that typically the further prevInst is from
crntInst, the more latency of crntInst can be hidden.
The hidden latency of crntInst is estimated as the number
of instructions between crntInst and prevInst divided
by the issue width of the microprocessor being modeled.
Note that we employ the approximation of ideal CPI equal to
1/issueWidth in this calculation. Then, crntInst’s latency
is estimated as the difference between the memory access
latency and the hidden latency, or zero if the memory latency
is completely hidden. This latency is in cycles, and we
normalize it by dividing it by the main memory latency since
the accumulated num serialized D$miss after each profile
step is represented in units of main memory latency.

The part of the code marked B in Figure 5 models a signif-
icant phenomenon (late or tardy prefetches) that we observed
in our study of various hardware prefetching mechanisms.
Since the instruction trace being analyzed is generated by a
cache simulator that is not aware of the out-of-order execution
of the superscalar microprocessor being modeled, a pending
hit due to prefetching indicated by the cache simulator is often
actually a miss during out-of-order execution. Figure 6 shows
a simplified example illustrating how this may happen. In
this example, there are eight instructions and they are labeled
from i1 to i8 in program order. Figure 6 shows the data
dependency graph constructed during profiling according to
an instruction trace generated by a cache simulator assuming
the pseudo-code marked B in Figure 5 is not included. In
Figure 6, i1 and i5 are loads missing in the data cache
(represented by the shaded circles) and i6 triggers a prefetch
that brings the data accessed by a load i8 into the cache
when i6 issues (represented by the broken line arrow labeled
“prefetch” from i6 to i8). For each instruction, the longest
normalized length of the data dependency chain up to and
including that instruction is shown (in units of main memory
latency). For example, “i3.length=1” above i3 in Figure 6
means that it takes one memory access latency from when i1
(the first instruction in the profile step) issues until i3 finishes
execution since i3 is data dependent on i1, which missed in
the cache. Since i8 is a pending hit (represented by the circle



if ( the instruction (crntInst) is a pending hit (e.g., i8 in Fig 6) ) {
find the most recent instruction (prevInst) in profiling window (e.g., i6 in Fig 6) that brings crntInst’s required data into the cache

crntInst.lat = max(memLat - (crntInst.iseq – prevInst.iseq) / issueWidth, 0)    // calculate the latency of the current instruction 
crntInst.lat = crntInst.lat / memLat // normalize the crntInst.lat to the memory latency 

crntInst.length = max(inst.length) where inst is an instruction on which crntInst directly depends 
(true data dependency exists, e.g., i7 i8 in Fig 6)

if (crntInst.length < prevInst.length – prevInst.lat) {
crntInst.length = critInst.length + 1
crntInst.lat = 1

} else {
accmLength = prevInst.length – prevInst.lat + crntInst.lat
if (accmLength > crntInst.length) {

crntInst.lat = accmLength – crntInst.length
crntInst.length = accmLength

}
else

crntInst.lat = 0
}

}

Notation
crntInst: the current instruction being analyzed
prevInst: the instruction bringing the data required

by the current instruction into the cache
crntInst.iseq: the instruction sequence number of 

the current instruction
issueWidth: the issue width of the microprocessor
memLat: the memory access latency
crntInst.lat: the normalized time interval between 

the issue and the writeback of the 
current instruction 

crntInst.length:  the normalized length of the data
dependency chain up to the current 
instruction 

C

B

A

timely
prefetch

tardy
prefetch

estimated hidden latency

Figure 5. Algorithm for analyzing a pending hit in an instruction trace when a prefetching mechanism is applied
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i5.length = 2 i6.length = 2 

i7.length = 1 i8.length =  2 + i8.lat 

prefetch

should be 1+i8.lat 

Figure 6. An example motivating Figure 5 part B

filled with hatching) and the associated prefetch is started
when i6 issues, i8.length is calculated, without B, as the sum
of i6.length and i8.lat, where i8.lat is estimated in part A in

Figure 5 as memLat− i8.iseq−i6.iseq
issueW idth

memLat . In this example, i8.lat is
almost equal to 1.0 since i8 is very close to i6.

Although the data accessed by i8 is regarded as being
prefetched by the algorithm in Figure 5 without B, i8 is
actually (as determined by detailed simulation) a miss rather
than a pending hit due to out-of-order execution. In Figure 6,
we observe that i6.length is bigger than i7.length. Therefore,
before i6 (e.g., a load instruction) issues (and hence triggers
a hardware generated prefetch), i8 has already issued and
missed in the data cache. Thus, the prefetch provides no
benefit. The code marked B in Figure 5 accurately takes
account of this significant effect of out-of-order scheduling by
checking if crntInst (i8) issues before the prefetch is triggered.
We observed that removing part B in Figure 5 increases the
average error for the three prefetching techniques that we
model from 13.8% to 21.4% while adding part B slows our
model by less than 2%.

An example in Figure 7 shows how the part of code marked
C in Figure 5 models the case when a useful prefetch occurs
in out-of-order execution (i.e., a prefetch which lowers CPI).
In Figure 7, only nine relevant instructions are shown out
of the 256 instructions included in a profile step (assuming

i86

i2

i3 i4

i83

i84

i85 i245

i1

i1.length = 1 

i2.length = 0 

i3.length = 1 

i4.length = 2

i84.length = 2 

i85.length = 2 

i86.length = 2 

i245.length = 2.8 

i83.length = 2 prefetch

prefetch

Figure 7. An example explaining Figure 5 part C

ROBsize is 256). Among these nine instructions, i1 and i4 are
loads that miss in the data cache and both i3 and i85 trigger
prefetches, making i83 and i245, respectively, pending hits.
The number of cycles hidden in the prefetch triggered by i3 is
estimated as i83.iseq−i3.iseq

issueWidth = 83−3
4 = 20 (when issue width

is four), and then the remaining latency after normalization is
calculated as memLat−20

memLat = 0.9 (we assume throughout our
examples that memory access latency is 200 cycles). How-
ever, since i83 is data dependent of i4 and i4.length=2, when
i83 issues, its prefetched data has already arrived at the data
cache and its real latency becomes zero (this case corresponds
to the “else part” inside of part C in Figure 5). The number
of cycles hidden by the prefetch for i245 is estimated (from
part A in Figure 5) as i245.iseq−i85.iseq

issueWidth = 245−85
4 = 40 with

remaining normalized latency of memLat−40
memLat = 0.8. Since

the instruction triggering the prefetch (i85) and the instruction
that i245 directly depends on (i86) finish execution around the
same time (i.e., i85.length=i86.length), i245.length becomes
2.8 and i245.lat becomes 0.8 (this case corresponds to the “if
part” inside of part C in Figure 5).

3.4. Modeling a Limited Number of MSHRs

The method of analytically modeling the CPI due to long
latency data cache misses described in Section 2 assumes that
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Figure 8. An example showing profiling with ROBsize =
8 and NMSHR = 4. Each arrow corresponds to a
dynamic instruction in the trace. Data cache misses
are filled with patterns. Corresponding data dependency
graph is shown to the right.

at most ROBsize cache misses can be overlapped. However,
this assumption is unreasonable for most modern processors
since the maximum number of outstanding cache misses the
system supports is limited by the number of Miss Status
Holding Registers (MSHRs) [21], [13], [3] in the processor.
In a real processor, the issue of memory operations to the
memory system has to stall when available MSHRs run out.

Based upon the technique described in Section 2, the pro-
filing window with the same size as the instruction window
is always assumed to be full when modeling CPID$miss. In
order to model a limited number of outstanding cache misses,
we need to refine this assumption. During a profile step, we
first stop putting instructions into the profiling window when
the number of instructions that miss in the data cache and
have been analyzed is equal to NMSHR (number of MSHRs)
and then update num serialized D$miss only based upon
those instructions that have been analyzed to that point2.

Figure 8 illustrates how the profiling technique works when
the number of outstanding cache misses supported is limited
to four. Once we encounter NMSHR (four) cache misses
in the instruction trace (i.e., i1, i2, i4, and i6), the profile
step stops and num serialized D$miss is updated (i.e., the
profiling window is made shorter). In the example, the four
misses are data independent of each other (and not connected
with each other via a pending hit as described in Section 3.1),
thus num serialized D$miss is incremented by only one.
Although i7 also misses in the cache, it is included in the
next profile step since all four MSHRs have been used.

3.5. Profiling Window Selection

In this section, we present two important refinements to
the profiling technique described in Section 2 (which we
will refer to hereafter as plain profiling) to better model the
overlapping between cache misses.

2. In real execution, cache misses that are regarded as not present in
the profiling window simultaneously due to lack of available MSHRs could
actually be in the instruction window simultaneously. Reducing the profiling
window size only approximates the performance loss due to a limited number
of MSHRs. We leverage this observation in Section 3.5.2.

1st profile step 

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14

2nd profile step 

(a) Plain Profiling

i9 i10i1 i2 i3 i4 i5 i6 i7 i8 i11 i12 i13 i14

A profile step starts with a miss 

(b) SWAM Profiling

Figure 9. An example comparing plain profiling and
SWAM profiling with ROBsize = 8. Each arrow is a
dynamic instruction. Data cache misses are shaded.

3.5.1. Start-with-a-miss (SWAM) Profiling. We observe
that often the plain profiling technique described in Section 2
does not account for all of the cache misses that can be
overlapped, due to the simple way in which it partitions an
instruction trace. Figure 9(a) shows a simple example. In
this example, we assume that all the cache misses (shaded
arrows) are data independent of each other for simplicity.
Using the profiling approach described in Section 2, a profile
step starts at pre-determined instructions (for example, i1,
i9, i17..., when ROBsize is eight). Therefore, although the
latency of i5, i7, i9, and i11 can be overlapped, the plain
profiling technique does not account for this.

By making each profile step start with a cache miss, we
find that the accuracy of the model improves significantly.
Figure 9(b) illustrates this idea. Rather than starting a profile
step with i1, we start a profile step with i5, so that the
profiling window will include i5 to i12. Then, the next profile
step will seek and start with the first cache miss after i12. We
call this technique start-with-a-miss (SWAM) profiling and in
Section 5.1 we will show that it decreases the error of plain
profiling from 29.3% to 10.3% with unlimited MSHRs.

We explored a sliding window approximation (start each
profile window on a successive instruction of any type),
but found it did not improve accuracy while begin slower.
SWAM improves modeling accuracy because it more accu-
rately reflects what the contents of the instruction window of
a processor would be (a long latency miss would block at the
head of the ROB).

3.5.2. Improved SWAM for Modeling a Limited Number
of MSHRs (SWAM-MLP). The technique for modeling
MSHRs proposed in Section 3.4 can be combined with
SWAM to better model the performance when the number of
outstanding cache misses supported by the memory system is
limited. The basic idea is to have each profile step start with
a miss and finish either when the number of instructions that
have been analyzed equals the size of the instruction window
or when the number of cache misses that have already
been analyzed equals the total number of MSHRs. However,
choosing a profiling window independent of whether a cache
miss is data dependent on other misses (or connected to other



Table 1. Microarchitectural Parameters
Machine Width 4

ROB Size 256
LSQ Size 256

L1 D-Cache 16KB, 32B/line, 4-way, 2-cycle latency
L2 Cache 128KB, 64B/line, 8-way, 10-cycle latency

Memory Latency 200 cycles

misses via pending hits as described in Section 3.1) leads
to inaccuracy because data dependent cache misses cannot
simultaneously occupy an MSHR entry.

To improve accuracy further, we stop a profile step when
the number of cache misses that are data independent of
misses that have been analyzed in the same profile step (rather
than the number of cache misses being analyzed) equals the
total number of MSHRs. In the rest of this paper we call this
technique SWAM-MLP since it improves SWAM by better
modeling memory level parallelism. When a miss depends
on an earlier miss in the same profiling window, the later
miss cannot issue until the earlier one completes and SWAM-
MLP improves model accuracy because it takes into account
that out-of-order execution can allow another independent
miss that is younger than both of the above misses to issue.
Therefore, the number of instructions that miss in the data
cache and that should be analyzed in a profile step should,
in this case, be more than the total number of MSHRs.

4. Methodology

To evaluate our analytical model, we have modified Sim-
pleScalar [5] to simulate the performance loss due to long
latency data cache misses when accounting for a limited
number of MSHRs. We compare against a cycle accurate
simulator rather than real hardware to validate our models
since a simulator provides insights that would be challenging
to obtain without changes to currently deployed superscalar
performance counter hardware [12]. We believe the most im-
portant factor is comparing two or more competing (hybrid)
analytical models against a single detailed simulator provided
the latter captures the behavior one wishes to model ana-
lytically. Table 1 describes the microarchitectural parameters
used in this study. Note we are focusing on predicting only
the CPI component for data cache misses using our model.
We verified that the CPI contribution due to overlapping
miss events is small for our benchmarks with realistic branch
prediction and instruction caches [7] so our comparisons in
Section 5 is to a detailed cycle accurate simulator in which
instruction cache misses have the same latency as hits and
all branches are predicted perfectly. In the rest of this paper,
we focus on how to accurately predict CPID$miss, which is
the performance loss due to long latency data cache misses
when both branch predictor and instruction cache are ideal
(this is the same methodology applied to model CPID$miss

described in [19]).

Table 2. Benchmarks
Benchmark Label Miss rate Suite
173.applu app 31.1MPKI SPEC 2000
179.art art 117.1MPKI SPEC 2000
183.equake eqk 15.9MPKI SPEC 2000
189.lucas luc 13.1MPKI SPEC 2000
171.swim swm 23.5MPKI SPEC 2000
181.mcf mcf 90.1MPKI SPEC 2000
em3d em 74.7MPKI OLDEN
health hth 45.7MPKI OLDEN
perimeter prm 18.7MPKI OLDEN
470.lbm lbm 17.5MPKI SPEC 2006

To evaluate the technique proposed in Section 3.3 for
estimating the CPID$miss when a prefetching mechanism
is applied, we have applied our modeling techniques to
predict the performance benefit of three different prefetching
mechanisms: prefetch-on-miss [30], tagged prefetch [14], and
stride prefetch [2]. When prefetch-on-miss [30] is applied,
an access to a cache block that results in a cache miss will
initiate a prefetch for the next sequential block in memory
given that the block is not in the cache. The tagged prefetch
mechanism [14] adds a tag bit to each cache block to indicate
whether the block was demand-fetched or prefetched. When
a prefetched block is referenced, the next sequential block
is prefetched if it is not in the cache. The stride prefetch
technique [2] uses a reference prediction table (RPT) to
detect address referencing patterns. Each entry in the RPT
is assigned a state and a state machine is applied to control
the state of each entry. Whether a prefetch is initialized or
not depends on the current state of the entry [2]. In this study,
we modeled a 128-entry, 4-way RPT that is indexed by the
microprocessor’s program counter (PC).

To stress our model, we simulate a relatively small L2
cache compared to contemporary microprocessors. We note
that the size of the L2 cache that we simulated is close in
size to those employed in microprocessors shipped at the time
when those benchmarks we use were released. The bench-
marks chosen are ones from SPEC 2000 [31] and OLDEN [6]
that have at least 10 long latency data cache misses for every
1000 instructions simulated (10MPKI). Table 2 illustrates
the miss rates of these benchmarks and the labels used to
represent them in figures. Moreover, for each benchmark, we
select 100M representative instructions to simulate using the
Sim-Point toolkit [29].

5. Results
This section summarizes our experimental results.

5.1. Modeling Pending Data Cache Hits
Section 2 describes prior proposals for compensating for

the overestimation of modeled penalty cycles per serialized
miss using a fixed number of cycles. Figure 10(a) and
Figure 10(b) illustrate the modeled results after compensation
with constant cycles both without, and with the pending



hit compensation technique described in Section 3.1, re-
spectively. In these two figures, we show results using five
different constant compensation factors. The first bar (oldest)
corresponds to the assumption that an instruction that misses
in the cache is always the oldest one in the instruction window
when it issues (accesses the first level cache). The second
bar (1/4) corresponds to the assumption that there are always
1
4ROBsize = 64 in-flight instructions older than a cache miss
when it issues and it is similar to the next two bars, (1/2) and
(3/4). The fifth bar (youngest) corresponds to the assumption
that there are always ROBsize − 1 older instructions in the
window when the instruction issues (i.e., the instruction is
always the youngest one in the window when it issues).
The last bar (actual) shows the simulated penalty cycles per
cache miss from cycle accurate simulation. From this data, we
observe that there is no one fixed cycle compensation method
that performed consistently the best for all of the benchmarks
we studied. For example, in Figure 10(a) we observe that
error is minimized using “youngest” for app, art, luc, swm,
and lbm, but minimized using “oldest” for em, mcf, and
hth, while, eqk and prm requires something in-between. The
harmonic mean for each fixed cycle compensation method is
also shown and we notice that, due to the fact that positive
and negative errors cancel out, the harmonic means of some
fixed cycle compensation methods appear close to the detailed
simulation results. However, it is important to recognize that
their accuracy on individual benchmarks is quite poor. By
using the fixed cycle compensation method, we find that the
smallest arithmetic mean of absolute error is 43.5% when not
modeling pending hits and 26.9% when modeling pending
hits, resulting when employing “youngest” compensation.

To account for the distinct behavior of each benchmark,
we use the average distance between two consecutive cache
misses to compensate for the overestimation of the modeled
extra cycles due to long latency data cache misses as de-
scribed in Section 3.2. Figure 11(a) compares the CPID$miss

for both the plain profiling technique described in Section 2
and the start-with-a-miss (SWAM) profiling technique de-
scribed in Section 3.5.1 (with pending hits modeled) to the
results from detailed simulation. The first bar (Plain w/o
comp) and the third bar (SWAM w/o comp) correspond to
the modeled results without any compensation; the second bar
(Plain w/ comp) and the fourth bar (SWAM w/ comp) are the
modeled results with the compensation technique described
in Section 3.2.

Figure 11(a) and Figure 11(b) show that for benchmarks
with heavy pointer chasing such as mcf , em3, and hth,
ignoring the effects of pending data cache hits results in
a dramatic underestimate for CPID$miss. As discussed in
Section 3.1, the reason for this is that many data independent
misses are connected by pending cache hits, which must be
appropriately modeled. Moreover, as we expect, SWAM pro-
filing is more accurate than plain profiling since it can capture
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(b) Modeling pending data cache hits

Figure 10. Penalty cycles per miss with fixed num-
ber of cycles compensation for plain profiling (Unlimited
MSHRs)

more overlapping data cache misses. Figure 11(b) illustrates
the error of each modeling technique after compensation.
From Figure 11(b) we observe that the arithmetic mean of
the absolute error (mean) decreases from 39.7% to 29.3%
when modeling pending cache hits. We also observe from
Figure 11(b) that the arithmetic mean of the absolute error for
SWAM profiling when pending data cache hits are modeled
(SWAM w/ PH) is about 3.9 times lower than plain profiling
when pending hits are not modeled (Plain w/o PH): the
arithmetic mean of the absolute error decreases from 39.7%
to 10.3%. Geometric mean of the absolute error decreases
from 26.4% to 8.2%, and harmonic mean of the absolute
error decreases from 15.3% to 6.9%. Accuracy also improves,
and not just for “micro-benchmarks” [37]: In Figure 11(b),
comparing “Plain w/o PH” to “SWAM w/ PH”, we find
that, on average, the arithmetic mean of the absolute error
decreases from 31.6% to 9.1% for the five SPEC 2000
benchmarks excluding mcf .

5.2. Modeling Different Prefetching Techniques

In this section, we evaluate CPID$miss when modeling
the three prefetching techniques mentioned in Section 4
(with unlimited MSHRs). Figure 12(a) compares the actual
CPID$miss to the modeled one for the three prefeching
methods. For each prefetching method, both the prediction
when each pending hit is analyzed according to the algorithm
described in Figure 5 (labeled “w/ PH”) and the prediction
when pending hits are treated as normal hits (labeled with
“w/o PH”) are shown. We use SWAM in both cases. When
employing the algorithm in Figure 5, we apply SWAM as



Plain w/o comp Plain w/ comp SWAM w/o comp
SWAM w/ comp actual

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

app art eqk luc swm prm lbm

C
P

I d
u

e 
to

 D
$m

is
s

0

1

2

3

4

5

6

7

8

mcf em hth

C
P

I d
u

e 
to

 D
$m

is
s

(a) CPI due to D$miss

-100
-80
-60
-40
-20

0
20
40
60
80

100

ap
p ar

t
eq

k
lu

c
sw

m
prm lb

m
m

cf em hth
m

ea
ner

ro
r 

(%
)

Plain w/o PH Plain w/ PH SWAM w/ PH

(b) Modeling error

Figure 11. CPI due to D$miss and modeling error for
different profiling techniques (Unlimited MSHRs)

follows: When we analyze the trace we let each profile step
start with a miss or a hit due to a prefetch. The latter refers to
a demand request whose data was brought into the data cache
by a previous prefetch (we start with it since its latency may
not be fully hidden and thus it may stall commit). Figure 12(b)
shows the error of the model for each benchmark.

From Figure 12(b) we observe that if pending hits are not
appropriately modeled (i.e., a pending hit is simply treated as
a hit and not analyzed based upon the algorithm in Figure 5),
the modeled CPID$miss always underestimates the actual
CPID$miss. The reason is that with a prefetching technique
applied, a large fraction of the misses occurring when there
is no prefetching become pending hits since prefetches gen-
erated by that prefetching technique cannot fully hide the
memory access latency of those misses. By using the method
of analyzing pending hits that we propose in Section 3.3 to
model prefetching, the arithmetic mean of the absolute error
decreases from 22.2% to 10.7% for prefetch-on-miss, from
56.4% to 9.4% for tagged prefetch technique, and from 72.9%
to 21.3% for stride prefetch technique (i.e., the arithmetic
mean of the absolute error decreases from 50.5% to 13.8%
overall for the three data prefetching techniques modeled).

5.3. Modeling Limited Number of MSHRs
All of the results that we have seen thus far are for

modeling a processor with an unlimited number of MSHRs.
This section compares modeled CPID$miss when the number
of available MSHRs is limited. Figure 13(a), (b), and (c)
compare the modeled CPID$miss to the simulated results
when the maximum number of MSHRs in a processor is
sixteen, eight, and four, respectively. We show data for eight
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(a) CPI due to D$miss with different prefetching techniques
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Figure 12. CPI due to D$miss and modeling error while
prefetch-on-miss (POM), tagged prefetch (Tag), or stride
prefetch (Stride) technique is applied.

MSHRs and four MSHRs since we note that Prescott has only
eight MSHRs [4] and Williamette has only four MSHRs [15].
For each benchmark, the first bar (Plain w/o MSHR) shows
the modeled CPID$miss from plain profiling (i.e., it is not
aware that there are a limited number of MSHRs and always
provides the same result for each benchmark) and the second
bar (Plain w/ MSHR) shows the modeled CPID$miss from
plain profiling with the technique of modeling a limited
number of MSHRs (Section 3.4) included. The third and the
fourth bar illustrates the modeled CPID$miss from SWAM
(Section 3.5.1) and SWAM-MLP (Section 3.5.2), respectively.
For these four profiling techniques, pending hits are modeled
using the method described in Section 3.1. The modeling
error based on the data in Figure 13(a)–(c) is illustrated in
Figure 14(a)–(c).

SWAM-MLP is consistently better than SWAM. We ob-
serve that as the total number of MSHRs decreases, the
advantage of SWAM-MLP over SWAM becomes significant,
especially for eqk, mcf , em, and hth, for which it is
more likely to have data dependence among cache misses
thus affecting the size of the profiling window that SWAM-
MLP chooses. SWAM decreases the arithmetic mean of the
absolute error from 32.6% (Plain w/o MSHR) to 9.8%,
from 32.4% to 12.8%, and from 35.8% to 23.2%, when the
number of MSHRs is sixteen, eight, and four, respectively3.

3. Geometric mean is reduced from 19.4% to 7.4%, from 21.5% to 9.7%,
and from 21.8% to 10.9%; harmonic mean is reduced from 8.5% to 5.8%,
from 14.5% to 7.0%, and from 10.2% to 5.1%
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(b) NMSHR = 8
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(c) NMSHR = 4

Figure 13. CPI due to D$miss for NMSHR = 16, NMSHR = 8, and NMSHR = 4.
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Figure 14. Error of the modeled CPID$miss for NMSHR = 16, NMSHR = 8, and NMSHR = 4.

SWAM-MLP further decreases the error to 9.3%, 9.2%, and
9.9%4 (i.e., SWAM-MLP decreases the error of plain profiling
(Plain w/o MSHR) from 33.6% to 9.5% when the number of
MSHRs is limited). Note that accuracy improves not only for
pointer-chasing benchmarks: For the SPEC 2000 benchmarks
excluding mcf , average error reduces from 48.1% to 7.0%
comparing Plain w/o MSHR to SWAM-MLP.

5.4. Putting It All Together

We also evaluated the combination of the techniques
for modeling prefetching (Section 3.3) and SWAM-MLP to
model the performance of the three prefetching methods
with limited MSHRs. On average, the error of modeling
prefetching is 15.2%, 17.7%, and 20.5%, when the number
of MSHRs is sixteen, eight, and four, respectively (average
of 17.8% across all three prefetch methods).

5.5. Speedup of the Hybrid Analytical Model
One of the most important advantages of the hybrid analyti-

cal model we present in this paper versus detailed simulations
is its fast speed of analysis. On average our model is 150, 156,
170, and 229 times faster than the detailed simulator when
the number of MSHRs is unlimited, sixteen, eight, and four,
respectively, with a minimum speedup of 91×. Moreover,
for estimating the performance impact of prefetching, on
average our model is 184, 185, 215, and 327 times faster
than the detailed simulator when the number of MSHRs
is unlimited, sixteen, eight, and four, respectively, with a

4. Geometric mean of the absolute error is 6.5%, 6.7%, 5.2%, and
harmonic mean of the absolute error is 4.6%, 5.2%, 3.3%, when the number
of MSHRs is sixteen, eight, and four, respectively.

minimum speedup of 87×. These speedups were measured
on a 2.33 GHz Intel Xeon E5345 processor.

6. Related Work
There exist many analytical models proposed for super-

scalar microprocessors [24], [25], [26], [28]. A common
limitation of early models is that they assume a perfect data
cache. As the gap between memory and microprocessor speed
increases, data cache misses must be properly modeled to
achieve reasonable accuracy.

Agarwal et al. [1] present an analytical cache model
estimating cache miss rate given cache parameters. However,
in a superscalar, out-of-order execution microprocessor, the
cache miss rate itself is not enough to predict the real perfor-
mance of the program analyzed. Jacob et al. [16] propose an
analytical memory model that applies a variational calculus
approach to determine a memory hierarchy optimized for the
average access time given a fixed hardware budget with an
(implicit) assumption that memory level parallelism does not
occur. Noonburg and Shen present a superscalar micropro-
cessor Markov chain model [27] that does not model long
memory latency. The first-order model proposed by Karkhanis
and Smith [19] is the first to attempt to account for long
latency data cache misses. Our analytical model improves
the accuracy of our re-implementation of their technique
described in Section 2 (based upon details available in the
literature) by modeling pending data cache hits, and extends
it to estimate the performance impact of data prefetching
techniques and a limited number of outstanding cache misses.

Some earlier work has investigated the performance impact
increasing the number of MSHRs using detailed simula-



tions [13], [3]. The hybrid analytical model that we propose
can be used to estimate the performance impact of a limited
number of MSHRs without requiring a detailed simulator.

Concurrent with our work, Eyerman proposed an approach
similar to SWAM described in Section 3.5.1, except that the
profile window slides to begin with each successive long
latency miss [11]. Reportedly, a pending hit compensation
mechanism was used [22].

7. Conclusions
In this paper, we proposed and evaluated several improve-

ments to an existing analytical performance model for su-
perscalar processors. We showed the importance of properly
modeling pending data cache hits and proposed a technique
to accurately model their performance impact, while not
requiring a performance simulator. We then extended this
model to estimate the performance of a microprocessor when
an arbitrary data prefetching method is applied. Moreover,
we proposed a technique to quantify the impacts of a limited
number of MSHRs. Overall, the techniques we introduced in
this paper can reduce the modeling error of our baseline from
39.7% to 10.3% for a set of memory intensive benchmarks.
The average error of our model is 13.8% when modeling
several prefetching strategies and 9.5% when modeling a
limited number of supported outstanding cache misses.
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