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Hybrid Analytical Modeling of Saturated Linear and Rotary

Electrical Machines: Integration of Fourier Modeling and Magnetic

Equivalent Circuits

J. Bao, B.L.J. Gysen and E.A. Lomonova

Department of Electrical Engineering, Eindhoven University of Technology, 5612 AP Eindhoven, The Netherlands

This paper presents a 2D hybrid analytical modeling method for the analysis of the magneto-static field distribution with the
capability of including nonlinear materials. The model combines Fourier modeling, which is accurate and fast, with meshed magnetic
equivalent circuits, which have unique permeability in mesh elements and therefore, can model local saturation. To present the
diverse applicability of the proposed method, it is applied to a linear machine with permanent magnet excitation and a rotary
machine with current excitation. Magnetic field calculations are compared to finite element analysis (FEA) with good agreement.

Index Terms—Electrical machine, analytical modeling, saturation, Fourier analysis, magnetic equivalent circuit, hybrid modeling.

I. INTRODUCTION

MODELING of the electromagnetic field distribution is

of major importance in the design process of electro-

magnetic devices. In recent years, several advanced methods

are being researched, e.g., SchwarzChristoffel (SC) method,

boundary element (BE) method, Fourier modeling, etc [1]. The

SC mapping provides an analysis tool that allows the trans-

formation from polygonal boundaries to a simpler domain,

circumventing difficulties encountered when solving boundary

value problems on complicated geometries [2], [3]. Facing

the challenge associated with mapping function evaluation,

it is developed to use SC toolbox in Matlab to automate

mapping numerically [2]. It is successfully applied in [4] for

a switched reluctance machine (SRM) with linear materials.

The BE method is derived from the Poisson or Laplace

equations in integral form. The integral equation only has

to be evaluated at the boundaries of the domain, so that the

number of elements can be reduced significantly compared

to finite element method [3]. However, the requirement of

linear material property limits the application of the method

for structures involving soft-magnetic material [5].

For structures with periodicity, Fourier modeling is partic-

ularly interesting, however, the limitation is the unavailability

to take circumferential variations of material property (e.g.

magnetic permeability) into account [1], which is a significant

drawback in the case of stator/rotor slotting [6], [7]. In [7]–

[11], a hybrid analytical modeling (HAM) technique that

integrates Fourier modeling and meshed magnetic equivalent

circuit (MEC) is discussed. This method is capable of includ-

ing small geometric features with high-permeable materials.

In [8]–[11], the mesh-based MEC is only connected to one

side of the Fourier modeling. A promising result of the

magnetic field is provided in the airgap in [8] for a linear PM

structure, and cogging force/torque is precisely estimated in [9]

for various electromagnetic structures. Furthermore, material

nonlinearity is shortly discussed in [10], that calculates the
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Fig. 1. Geometry of the PM machine in the Cartesian coordinate system.

Air: Fourier region

Stator: MEC region

Airgap: Fourier region

Rotor: MEC region

Shaft: Fourier region

Even periodic boundary

hry

hrt

g
hst

hsy

rθ

zrsh
Coil Iron

αs

αr ∆r

xp
A1

B2

C1

A2

B1

C2

+

--
+

+

-

-

+

+

-

-

+

Fig. 2. Geometry of the 12/8 SRM in the polar coordinate system.

cogging force for PM machines with different slot geometries,

considering saturation in the stator. However, the derivation

of MEC formulation regarding the saturation, especially the

change in source terms, is not explained. In [7], bidirectional

coupling on both sides of the MEC regions are applied,

achieving excellent matching of flux density in the overall



ii

TABLE I
Dimensions of the model in Cartesian coordinate system.

Parameter Description value

hm Height of mover 5 mm
g Airgap length 0.5 mm
ht Height of teeth 3 mm
hs Height of stator 5 mm
τm Magnet width 15 mm
τp Pole pitch 30 mm
∆s Stator position 4 mm
τt Teeth width 8 mm
τs Slot width 12 mm
xp Width of periodicity 60 mm
Lz Stack length 50 mm

TABLE II
Dimensions of the model in polar coordinate system.

Parameter Description value

rsh Shaft radius 20.5 mm
hry Rotor yoke height 10.5 mm
hrt Rotor teeth height 14.5 mm
g Airgap length 0.5 mm
hst Stator teeth height 14.5 mm
hsy Stator yoke height 9.5 mm
αs Stator tooth arc 16◦

αr Rotor tooth arc 22◦

∆r Rotor position 4◦

xp Width of periodicity 180◦

Lz Axial length 87.5 mm

structure with linear material properties.

In this paper, the incorporation of saturation with the

bidirectional-coupled HAM, is further investigated and val-

idated by utilizing locally linearized B-H relationship for

both linear and rotary machines, which are shown in Fig. 1

and Fig. 2. The content is first focused on the model for-

mulation and description of magnetic sources (PM/current),

followed by the formulation of material nonlinearity in MEC

element and the iterative algorithm. Validation of the proposed

method is performed by the comparison with FEA.

II. MODELING FORMULATION

To obtain the magnetic field solution, the following assump-

tions are made: 1) the problem is described in a 2D coordinate

system; 2) source terms (PM/current) are invariant in the z-

direction and 3) the problem is quasi static.

To present the diverse applicability of the proposed method

for saturated electrical machines, it is applied to two geome-

tries in two coordinate systems with different presences of

magnetic sources (PM/current). For the Cartesian coordinate

system, a slotted linear PM machine shown in Fig. 1 is mod-

eled, and for the polar coordinate system, a three-phase 12/8

SRM [12] shown in Fig. 2 is modeled. The dimensions are

given in TABLE I and TABLE II, respectively.

In the two examples, periodicities are respectively applied

in the x- or θ-directions, while regions are divided in the y-

or r-directions. The division in regions are shown in Fig. 1

and Fig. 2. Generally, only air and shaft regions are modeled

using Fourier expressions, since Fourier modeling divides the

geometry in periodical regions with homogeneous permeabil-

ity and does not allow to model local saturation. The meshed

TABLE III
Fourier functions in Cartesian and polar coordinate systems.

Cartesian polar

Bpsn aneωny + bne−ωny anrωn−1 + bnr−ωn−1

Bpcn −cneωny − dne−ωny −cnrωn−1 − dnr−ωn−1

Bqsn cneωny − dne−ωny cnrωn−1 − dnr−ωn−1

Bqcn aneωny − bne−ωny anrωn−1 − bnr−ωn−1

Notes: spatial frequency ωn = 2πn/xp.
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Fig. 3. Schematic graphs of a meshed MEC region and the mesh elements.

MEC, on the other hand, is used for regions with nonlinear

material (such as stator and mover/rotor), since each mesh

element is able to have its unique permeability and hence, is

capable to take local saturation into account. For generality of

the explanations in the following content, the normal direction

(y or r) is referred as the p-direction, while the tangential

direction (x or θ) is referred as the q-direction.

A. Definition of Fourier regions

In Fourier regions, the magnetostatic problem is formulated

in the terms of magnetic vector potential. Since there are no

source terms in Fourier regions, the magnetostatic Maxwell

equation reduces to a Laplace equation. The resulting solution

of the flux density can be written as,

~B = Bp~p+Bq~q =

∞
∑

n=1

(Bpsn sin (ωnq) +Bpcn cos (ωnq))~p

+

∞
∑

n=1

(Bqsn sin (ωnq) +Bqcn cos (ωnq))~q,

(1)

where Bpsn, Bpcn, Bqsn and Bqcn are listed in TABLE III [6].

B. Definition of MEC regions

A MEC region is divided into elements with rectangular

and circular sector shapes in Cartesian and polar coordinate

systems, respectively. Each element contains the information

of reluctance, permeability and magnetic source. An example

of a meshed MEC region is shown in Fig. 3, as can be seen, the
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TABLE IV
Distribution of current-related mmf in the Cartesian coordinate system.

Pos. Fk
p± for J1 Fk

q± for J1 Fk
p± for J2 Fk

q± for J2
Yoke 0 FJ1,q 0 FJ2,q

Tooth FJ1,p 0 -FJ2,p 0

Slot 2xkFJ1,p/τs ykFJ1,q/ht -2xkFJ2,p/τs ykFJ2,q/ht

mesh is formed such that the material boundaries coincide with

the mesh element edges, hence each MEC element contains

homogeneous permeability [7]. In both ±p- and ±q-directions,

a reluctance is assumed as shown in Fig. 3.

Magnetostatic problem in MEC regions is described using

scalar potential. Each MEC element has a potential node, the

flux goes into the node equals to the flux goes out, such

conservation of flux gives [7],

φkq− + φkp− − φkp+ − φkq+ = 0. (2)

The fluxes in (2) are defined by the potential of element k and

its surroundings, e.g.,

φkp− =
ψk−L − ψk + F

k−L
p+ + Fk

p−

ℜ
k−L
p+ + ℜk

p−

, (3)

where ψk−L represents the potential of element k −L that is

at the bottom of element k, while Fk
p−, Fk−L

p+ , Rk
p− and Rk−L

p+

represent the magnetomotive force (mmf ) and reluctances in

p±-directions for element k and k − L, respectively.

For elements that represent a PM, the definition of the mmf
is determined by the magnetization and the element size

F
k
p+ = F

k
p− = ~Mk

p l
k
p

/

(

2µk
r

)

(4)

F
k
q+ = F

k
q− = ~Mk

q l
k
q

/

(

2µk
r

)

(5)

where ~Mp, ~Mq , lkp and lkq are the magnetization and dimen-

sions of element k in the p-and q-directions. For elements

related to current excitation, the distribution of the mmf
sources has to fulfill the Ampere’s law for any arbitrary paths.

In [8], the current is expressed merely in the q-direction for

the situation of homogeneous current density in one slot,

while in this paper, mmf sources are modeled in both p-

and q-directions for two current densities in one slot. The

expressions of current related mmf are divided into three

categories depending on the location, i.e. in the yoke, tooth or

slot. The mmf in the yoke or tooth only has respectively the

values in the q- or p-direction, while both terms are assumed in

the slot. The magnitude of these mmf sources in the Cartesian

coordinate system is illustrated in Fig. 4 and TABLE IV, that

is basically linear to the x or y locations of the element (xk or

yk) before reaching the coil edges. The derivation in the polar

coordinate system is similar, and hence, not repeated here.

C. Boundary conditions

After obtaining the expressions of magnetic field inside the

MEC and Fourier regions, the boundary conditions are defined.

Between the Fourier and MEC regions, continuity of magnetic

field has to be ensured. i.e., consistent normal flux density and

tangential magnetic field intensity in both spatial frequency
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Fig. 4. Current related mmf for Cartesian coordinate system in the yoke,
tooth and slot, where FJ1,p = J1Aslky/(4ht), FJ1,q = J1Aslkx/(2τs),

FJ2,p = J2Aslky/(4ht), FJ2,q = J2Aslkx/(2τs) with As = τsht/2.

and space domains. The explanations are elaborated in [7]. At

the edge of the outer air and shaft regions, the magnetic field

vanishes to zero, the implementation is described in [7], [13].

III. MODELING OF NONLINEAR MATERIAL

The B-H characteristic of the soft magnetic material used in

this paper is shown in Fig. 5. For a random working point C,

the expression of B-H relationship can be locally linearized

by a tangent line and the expression becomes,

HC =
BC

µ0∆µr,iron

−
1

∆µr,iron

Br,iron

µ0

(6)

where ∆µr,iron is the incremental relative permeability de-

fined by the slope of the tangent line and Br,iron is the

remanent magnetic flux density defined by the intercept. By

such expression, it is possible to make an analogy of the

term ‘Br,iron/µ0’ to the magnetization of a PM. Since the

magnitude of Br,iron is positively correlated to the flux

density, the ‘magnetization’ is decomposed in pq−axes using

the following expressions,

~Mp,iron =
Bp

√

B2
p +B2

q

Br,iron

µ0

~p (7)

~Mq,iron =
Bq

√

B2
p +B2

q

Br,iron

µ0

~q, (8)

which defines a Pythagorean theorem between flux density

in pq-axes (Bq , Bq) and the ‘magnetization’. As such, the

material property of iron is defined by ∆µr,iron and additional

mmf sources obtained by (4)-(8).

The saturation problem is solved iteratively using the

flowchart shown in Fig. 5. For each iterative step, the re-

luctances and mmf have to be re-calculated using the up-

dated ∆µr,iron, ~Mp,iron and ~Mq,iron. Values of Bp and Bq

are derived by solving the boundary conditions with the newly

defined MEC. Afterwards, ∆µr,iron, ~Mp,iron and ~Mq,iron are

updated corresponding to the newly obtained Bp and Bq [14].

Different convergence conditions are applicable, e.g. differ-

ence of force or torque between two adjacent iterative steps is

smaller than a certain level (0.2% in this paper).
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Fig. 5. B-H curve of the iron used in the examples and the flowchart of the
HAM.

Fig. 6. Magnetic flux density for the PM machine: (a) the magnitude of flux
density obtained by HAM and (b) the difference between FEA and HAM.

IV. FINITE-ELEMENT VERIFICATION

The modeling method is validated by FEA. For PM ma-

chine, the magnitude of the flux density obtained by HAM

and the difference compared to FEA is shown in Fig. 6.

For the SRM exmaple, the comparison of the flux density

between HAM and FEA in the center of the airgap is shown

in Fig. 7. The flux linkage waveforms for both machines is

shown in Fig. 8. An overall excellent agreement is observed,

showing that the algorithm for saturation is valid.
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Fig. 7. Magnetic flux density obtained by FEA and HAM in the center of
the airgap for the SRM (current density = 16 A/mm2 in phase A): (a) radial
and (b) circumferential component.
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Fig. 8. Flux linkage waveforms of (a) phase A in PM machine at no load
and (b) coil A1 in SRM for current density = 16 A/mm2 in phase A.

V. CONCLUSION

This paper uses the hybrid analytical modeling that in-

tegrates meshed MEC and Fourier modeling to calculate

magnetic field in saturated electrical machines. It shows the

capability to obtain accurate results in both Cartesian and

polar coordinate systems with PM or current excitations. This

method has the potential to be faster than FEA since the airgap

region is not meshed, while a high mesh density is required in

FEA. Additionally, since the expression of the magnetic field

in the airgap is obtained analytically, force/torque calculations

are straightforward and fast since the Maxwell stress tensor

can be solved analytically. Furthermore, HAM implemented in

Matlab can easily be integrated with algorithms for topology

and geometry optimization. Future research will focus on

implementation for different motor topologies, derivation of

secondary parameters, etc.
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