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Abstract: The nurse rostering problem is an important search problem that features many constraints.

In a nurse rostering problem, these constraints are defined by processes such as maintaining work

regulations, assigning nurse shifts, and considering nurse preferences. A number of approaches to

address these constraints, such as penalty function methods, have been investigated in the literature.

We propose two types of hybrid metaheuristic approaches for solving the nurse rostering problem,

which are based on combining harmony search techniques and artificial immune systems to balance

local and global searches and prevent slow convergence speeds and prematurity. The proposed

algorithms are evaluated against a benchmarking dataset of nurse rostering problems; the results

show that they identify better or best known solutions compared to those identified in other studies

for most instances. The results also show that the combination of harmony search and artificial

immune systems is better suited than using single metaheuristic or other hybridization methods for

finding upper-bound solutions for nurse rostering problems and discrete optimization problems.

Keywords: nurse rostering problem; harmony search; artificial immune systems; hybridization;

metaheuristics

1. Introduction

The problem of staff scheduling has been studied extensively over the past several decades [1].

It has been recognized as an important problem in academic and industrial fields. In today’s fast-paced

business environment, corporations have attempted to achieve two goals to gain a competitive

advantage: improving customer satisfaction and reducing costs. Staff scheduling problem requires

achieving both these goals. Personnel scheduling is especially complex when we consider both shift

scheduling and day-off scheduling for organizations that operate seven days a week (e.g., airlines,

hotels, call centers, and hospitals). Furthermore, when demand fluctuates over small intervals

compared to the shift length, a generic allocation model becomes less useful for personnel scheduling,

and an advanced model for allocation that includes overlapping shifts is needed. Thus, most

personnel scheduling problems are non-deterministic polynomial-time-hard (NP-hard) problems

for which various solution methods including mathematical models and heuristic approaches have

been proposed.

Nurse rostering problems (NRPs) have been proven to be NP-hard; they are composed of many

soft constraints that result in additional penalties when violated, along with a few hard constraints [2–4].

Ernst et al. [5] conducted a comprehensive review of the main research direction and solving method

for such problems for facilitating companies that attempt to distribute their operations in ways that
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are cost effective, observant of industrial regulations, and attentive to individuals’ work preferences.

Cheang et al. [6] conducted a review of the literature on modeling and solution methodologies for NRPs

that highlighted the specificity of the solution approaches and availability of benchmark problems for

the various basic models of NRPs. Van den Bergh et al. [1] reviewed the literature on staff scheduling

problems and identified various perspectives from which the existing literature could be classified and

published work in the relevant fields of interest could be traced. They also identified trends and areas

for future research. Ernst et al. [7] reviewed the rostering problem in specific application areas, as well

as models and algorithms that have been reported in the literature for the solution to this problem; they

also surveyed commonly used methods for solving the rostering problem. Burke et al. [8] described

and critically evaluated solution approaches that span the interdisciplinary spectrum, from operation

research techniques to artificial intelligence methods, and surveyed the strengths and weaknesses of

the literature in outlining the key issues that must be addressed in future nurse rostering research.

Over the years, researchers have used various techniques to implement solutions for NRPs,

including exact methods, metaheuristic approaches, and others. Exact methods have been used

successfully to find complete solutions [9,10]. Unfortunately, such deterministic solutions require a

great deal of computational time and resources to handle the many constraints involved. Thus, this

approach is somewhat limited. Metaheuristic approaches that produce relatively good solutions within

reasonable computational time frames are well known to be effective methods.

Examples of the use of metaheuristics to solve NRPs include application of genetic algorithms [11–13],

simulated annealing [14], tabu search [15], and ant colony optimization [16].

In contrast to applications of a single metaheuristic, methods that combine two and more

metaheuristics have also been introduced. Bai et al. [17] proposed an approach that combined a

genetic algorithm and simulated annealing. In their study, simulated annealing was used as the local

search method within a genetic algorithm procedure. Burke et al. [18] hybridized a steepest-descent

improvement with a genetic algorithm and demonstrated that this hybridization was an adequate

approach for solving NRPs. Awadallah et al. [19] proposed a hybridized approach for the application

of the hill climbing optimization method to an artificial bee colony. In this approach, the process of

the employed bee operator is replaced by that of the hill-climbing optimizer. The performance of the

proposed method was evaluated by comparing with other hybridization approaches published in

the literature.

Most previous studies on this subject have focused on solving NRPs by combining population-based

metaheuristics (P-metas) for global search and either single-solution-based metaheuristics (S-metas) or

local optimizers for local search [20–22]. Based on the advantage of the hybrid methods proposed in

the literature [23,24], we propose a hybrid approach that involves the use of harmony search (HS) and

artificial immune systems (AIS), both of which are well-known P-metas.

The advantages of a hybrid approach involving HS and AIS in solving optimization problems

include the fact that HS is an emerging algorithm for swarm intelligence optimization and heuristic

global search algorithms. This approach generates a new individual via cooperation among individuals,

and its local searching ability is enhanced by fine-tuning the mechanism employed in HS. Although

the use of HS may be suitable because it is simple, robust, and converges rapidly, it only updates when

the solution generated is not better than the worst solution in the existing harmony memory (HM)

pool during the current iteration.

AISs are universal optimal algorithms that impose few constraint conditions in an optimization

problem. The use of AIS has yielded significant progress in many fields, such as function optimization,

machine learning, pattern recognition, image disposal, and combinatorial optimization. However,

AIS also has some shortcomings such as low convergence speed and prematurity. Recent studies

have shown that the combination of AIS and other searching algorithms, especially random searching

algorithms, can greatly improve the performance of AIS [25,26].

To the best of our knowledge, little research has been conducted on the application of AIS to the

solution of NRPs, and few studies have mentioned the application of HS [27–29]. Awadallah et al. [27]
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evaluated only specific instances defined in the 2010 International Nurse Rostering Competition. Their

study did not investigate how HS would perform for large or complex NRP instances. To overcome

this limitation, Hadwan et al. [28] used a real dataset from a large hospital in Malaysia to assess the

performance of HS and evaluated nurse rostering benchmark problems using their advanced nurse

rostering model (ANROM) [30].

We compared the results of previous research on ANROM with our proposed method to

demonstrate the efficiency and effectiveness of the proposed method in producing high-quality

solutions in shorter amounts of time.

The remainder of this paper is organized as follows. The basic explanation and definition of

NRPs is presented in Section 2, and HS and AIS for NRPs are presented in Section 3. The procedure

for hybridization and combination of HS and AIS in solving NRPs is presented in detail in Section 4.

The computational experiments conducted and their results are discussed in Section 5. Conclusions

and future research directions are presented in Section 6.

2. Problem Definition

NRPs involve producing a periodic (weekly, fortnightly, or monthly) duty roster for nursing staff

that is subject to a variety of hard and soft constraints such as legal regulations, personnel policies,

nurse preferences, and other requirements specific to a given hospital. In addition, a schedule avoiding

difficult-to-follow shift patterns should be constructed and the work contract of each employee

should be respected as much as possible. The term “work contract” refers to the agreement signed

between the nurse and the hospital, which addresses requests for days or shifts on and off, working

on weekends, maximum acceptable consecutive workdays, etc. Some work contract elements can

be considered as legal requirements. It is worth considering the fairness of the problem from the

work contracts perspective. For example, contract violations should be distributed evenly among all

available nursing staff.

We studied various instances of NRPs based on the ANROM, one of the representative benchmark

datasets of NRPs, and we demonstrated the superiority of the proposed algorithm using these

benchmark data. ANROM, which was first implemented in a hospital in 1995, was the initial

version, but the system evolved to deal with new and more complex real-world problems that

appear continually. More than 40 hospitals in Belgium, some of which contain approximately

100 wards, replaced their time-consuming manual scheduling with this system. Although the problem

is user-defined to a large extent, the software must be efficient in different settings. Each specific

hospital ward should be able to formulate its problem within the restrictions of the model described in

the following sections.

The constraints of NRPs can be divided into two classes: hard constraints and soft constraints;

hard constraints are those that must always be satisfied. To address real-world hospital situations,

ANROM considers the following set of hard constraints: a maximum of one assignment per shift type

per day, which precludes the assignment of the same shift to a member of the ward more than once

per day; and personnel requirements, which are usually expressed in terms of the minimum number

of personnel required and the preferred number of personnel to meet the patients’ needs. ANROM

considers a high number of soft constraints, as shown in Table 1. They should preferably be satisfied,

but violations can be tolerated when penalties are included in the evaluation function. The main goal

of this study was to minimize the sum of the penalties that occur when soft constraints are violated and

hard constraints are satisfied through experiments conducted using ANROM data. Table 1 presents

the types of constraints indicated by each problem.
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Table 1. Hard and soft constraints considered by ANROM instances.

Hard Constraints

A Nurse Can Only Work One Shift Per Day, Nurse Skill Levels and Categories, Nurses’ Requirements

Soft Constraints
Instance

1.8.1 2.46.1 3.46.1 3.46.2 4.13.1 5.4.1 6.13.1 7.10.1 8.13.1 A.12.1 A.12.2

Minimum time between
two assignments

√ √ √ √ √ √ √ √ √ √ √

Nurses workload
(minimum/maximum)

√ √ √ √ √ √ √ √ √ √ √

Maximum number of
consecutive working days

√ √ √ √ √ √ √ √ √ √ √

Maximum number of
assignments on bank holidays

√ √ √ √ √ √ √ √ √ √

Maximum number of
consecutive free days

√ √ √ √ √ √

Minimum number of
consecutive free days

√ √ √ √ √ √ √ √ √ √

Maximum number of
consecutive working weekends

√ √ √ √ √ √ √ √ √ √ √

Maximum number of working
weekends in four weeks

√ √ √ √ √ √ √ √ √ √

Assign complete weekends
√ √ √ √ √ √ √ √ √ √ √

Assign identical shift types
during the weekend

√ √ √ √ √

No night shift before a
free weekend

√ √ √ √ √ √ √ √

Assign two free days after
night shifts

√ √ √ √ √ √ √ √

Maximum number of
assignments per day

of the week

√ √ √ √ √ √ √ √ √ √

Number of consecutive
shift types

√ √ √ √ √ √ √ √ √ √ √

Maximum number of
assignments for each shift type

√ √ √ √ √ √ √ √ √ √ √

Maximum number of a shift
type per week

√ √ √ √ √ √ √ √ √ √ √

Maximum number of
hours worked

√ √ √ √ √ √ √ √ √ √ √

Minimum number of
hours worked

√ √ √ √ √ √ √

Maximum number of hours
per week

√ √ √

Restriction on the succession of
shift types

√ √ √ √ √ √ √ √ √ √ √

Alternative skill category
√ √ √ √ √ √ √ √ √ √ √

Tutorship
√ √ √ √ √ √ √ √

People not allowed to
work together

√ √ √ √ √ √ √ √

Day off
√ √ √ √ √ √ √ √ √

Day on
(Requested assignments)

√ √ √

Shift off
√ √ √ √ √ √ √

Shift on
(Requested assignments)

√ √ √ √
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3. Harmony Search and Artificial Immune Systems for NRPs

3.1. Harmony Search for NRPs

Harmony search, which was originally proposed by Lee and Geem [31] and Geem et al. [32], is a

phenomenon-mimicking algorithm (also known as a metaheuristic algorithm) that was inspired by the

improvisation process of musicians described in 2001. It has exhibited relatively good performance in

various research areas such as city design, routing problem, RNA structure problem, and planetary

migration. From an optimization perspective, each musician is represented by a decision variable and

the best harmony achievable when playing together is the global optimum. A harmony search consists

of the harmony memory (HM), which is similar to the population of a genetic algorithm; the harmony

memory size (HMS), which reflects the size of the HM; and three operators, i.e., memory considering

(MC), pitch adjusting (PA), and random selecting (RS), which are used to generate the new harmony.

The HS procedure consists of the following five main steps.

Step 1: Initialize the problem and parameters

Step 2: Initialize the harmony memory

Step 3: Improvise a new harmony

Step 4: Update the harmony memory

Step 5: Repeat Steps 3 to 4 until a predefined stopping condition is reached

For application of HS to NRPs, we designed HS vectors with a two-dimensional array structure.

The array’s columns represent individual days, and the array’s rows represent individual nurses.

A solution in the HM is two-dimensionally expressed as a specific day and nurse, as shown in Figure 1.

The HS consists of three operators: MC, PA, and RS. Operators in the HS need to be carefully designed

to avoid violating hard constraints. In the example illustrated in Figure 1, the information from two

day shifts on Day 1 and Day 3 in HM 1 are first allocated to Day 1 and Day 3 of the new solution from

the current HM, respectively. Here, the shift of Day 1 is made by harmony memory and considering

the rate (HMCR) and pitch adjusting rate (PAR) leads to the shift of Day 3.

 

Figure 1. Application of Harmony Search (HS) operators for Nurse rostering problems (NRPs).
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For the HS operator, Day 1 in HM 2 is copied to Day 1 of the new solution. For the PA operator,

Day 3 shift information for the new solution is produced from Day 3 information for HM, which is

randomly chosen in the HM. The shifts of randomly selected nurses are then swapped with other shifts

on the same day. The frequency of swapping depends on the size of the instance. The RS operation is

performed by swapping between two nurses on the same day (Day 5 in Figure 1) that are randomly

selected in the new solution.

3.2. Artificial Immune Systems for NRPs

Artificial immune systems have been studied by Hunt and Cooke [33], Dasgupta [34], McCoy

and Devarajan [35], Dasgupta [36], Hofmeyr and Forrest [37], and Hofmeyr [38], among others,

and have been widely applied to engineering problems. These systems, well known to be efficient

searching algorithms applicable for various types of combinatorial and sequence optimization

problems, are inspired by theoretical immunology and observations of the principles and models of

immune functions.

We utilized a clonal selection algorithm that extracts only the cloning and mutation steps of an

entire AIS procedure for efficient hybridization with HS. The clonal selection algorithm is based on the

principles of extraction from clonal expansion and affinity maturation [39]. The basic mechanism of

clonal selection is that, when an antigen (Ag) is detected, antibodies (Abs) that become aware of this

Ag will proliferate by a clonal process. The immune response is specific for each Ag.

The immune cells reproduce along with a recreating Ag until the desired results are achieved in

fighting this Ag. Some of the newly cloned cells will be distinguished by plasma cells and memory.

Because of the mutation procedure, the plasma cells promote genetic variation from their origins to

reproduce new Abs. The memory cells are in charge of the immunologic response against future Ag

attack. The best cells with the highest affinity to the Ag in the next population remain.

The following steps describe the basic procedure of the clonal selection algorithm [40,41]:

Step 1: Generate a random initial population of antibodies

Step 2: Compute the affinity of each of the antibodies

Step 3: Create new clones by cloning all cells in the population of antibodies

Step 4: Maturate cloned antibodies by mutation

Step 5: Evaluate affinity values of the clone population

Step 6: Select the best antibodies to compose the new antibody population

Step 7: Repeat Steps 3 to 6 until a predefined stopping condition is reached

Figure 2 illustrates the clonal selection mechanism used to improve global search for solving NRPs.

After evaluating the affinity of each clone population, some of the antibodies with the best affinity

values will clone to a degree that is inversely proportional to their affinities. Figure 3 illustrates the

procedure for cloning and mutation of a single antibody. The cloned antibodies mutate to reproduce a

mature clone population. To prevent generation of infeasible solutions, three swapping-based mutation

operators with the same probability are applied. Case (a) in Figure 3 illustrates a “swap-shifts” situation

in which the shifts of two nurses are exchanged for each of the selected days. Case (b) illustrates a

“swap-nurses” situation in which two nurses are selected and then their schedules are partially or

completely exchanged.
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Figure 2. Application of artificial immune systems (AIS) operators for NRPs.

Figure 3. Application of three mutations of AIS for NRPs.

Case (c) illustrates the mutation, “swap-days”, in which shifts between two differentiated days for

each of the selected nurses are exchanged. Unlike the “swap-shifts” and “swap-nurses” scenarios, this

scenario includes a repair process because of the possibility of violation of hard constraints. Figure 3

illustrates an example in which, if the first and fourth days of nurse 1 are interchanged, a repair would

be performed by changing the shifts of nurses 3 and 4 to maintain feasibility.

4. Hybrid and Cooperative Strategies Using Harmony Search and Artificial Immune Systems

4.1. Why We Hybridize and Cooperate HS and AIS

In achieving combinatorial optimization using metaheuristic algorithms, a major concern is how

to maintain the balance between two major components: diversification and intensification. These two

components seem to contradict each other, but their balanced combination is crucially important to

the success of obtaining a qualified solution. Proper diversification guarantees that the search in the

solution space can effectively explore as many locations and regions as possible. It also ensures that

the evolving system will not be trapped at biased local optima. If the diversification is too strong, it

may explore too many locations in a stochastic manner and subsequently slow the convergence of the

algorithm. Conversely, appropriate intensification exploits the history and experience of the search

process. It also permits the convergence to be accelerated when necessary by reducing randomness

and limiting diversification.
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To reconcile these two conflicting components, hybrid methods using P-meta and S-meta heuristics

have been used in many studies. P-metaheuristics are utilized to search among the diverse solutions in

the solution space in the first and subsequent iterations. S-metaheuristics are used in the final iteration

to generate solutions in the neighborhood of current ones discovered using the P-metaheuristics.

In traditional HS, a new harmony vector is generated using three rules, namely HMC, RS, and PA.

A decision variable of harmony vectors is selected based on either an HMC rule with a probability

of HMCR or an RS rule with a probability of 1-HMCR. A PA rule with a probability of (HMCR PAR)

is then utilized to change the values of the decision variables from the HMC. Except for the PA rule,

application of an HMC rule for the generation of a new harmony from the existing HMS and RS rules

that generate a new harmony randomly is difficult for balancing intensification and diversification.

Many studies have attempted to develop advanced harmony searchers to maintain a balance

between intensification and diversification. A typical and popular method is the improved harmony

search (IHS) algorithm introduced by Mahdavi et al. [42], which employs enhanced fine-tuning

characteristics and an enhanced HS convergence rate. As shown in Equations (1) and (2), the algorithm’s

performance is improved by dynamically increasing the pitch adjusting rate and the bandwidth (BW) as

the iteration progresses.

PAR(t) = PARmin +
PARmax − PARmin

tmax
× t (1)

BW(t) = BWmax × e
(ln( BWmax

BWmin
)× t

tmax
)

(2)

Although effective control of BW can be useful in balancing intensification and diversification, the

characteristics of sequential optimization with main constraints such as NRPs result in the limited

application of BW because of the possibility of generating worse solutions. The application of

fine-tuning by PAR also has some drawbacks in early iterations in which the value of PAR is low.

In spite of the critical importance of the PA rule in balancing exploitation and exploration, low values

of PAR in early iterations forces premature convergence.

Highly reliable harmony search (HRHS) has been proposed by Taherinejad [43] to overcome

a critical issue in IHS that may result in premature convergence in early iterations. As shown in

Equation (3), HRHS guarantees diversification of good solutions that are generated in early iterations

by increasing the probability of generation of neighbor solutions and vice versa. HRHS still has major

drawbacks in the final iteration, where the value of PAR is close to zero and may result in stagnation in

convergence of the algorithm.

PAR(t) = PARmax −
PARmax − PARmin

tmax
× t (3)

Subsequently, effectively maintaining the balance between exploration and exploitation is difficult for

dynamically changing PAR.

Another problem of HS is that the solution generated using the three rules is updated only when

its value is better than the worst of the existing solutions. Thus, if the solution generated is not better,

the existing HM does nothing. Even if a new harmony is better than the worst solution, only a new

harmony is added to the existing HM. This is the weakness of HS in achieving the desired results

from diversification. Hence, a new harmony is highly dependent on the solution characteristics of

each harmony that consists of the existing HM. When premature convergence occurs, the HS method

is limited in that it continually searches only local solutions. To overcome some of the limitations

mentioned earlier, we propose two methods for combining HS and AIS. Determining how and when

to update the existing HM is essential to the success of this approach.
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4.2. How We Hybridize and Cooperate HS and AIS

The first method, “Hybrid harmony search with artificial immune systems” (HHSAIS), and its

procedure are shown in Figure 4. The existing HM is updated whenever a new harmony generated

by three rules is not better than the worst harmony. A new harmony not being better than the worst

harmony means that the current HM may be composed of similar solutions, and this makes it extremely

difficult to search the solution space thoroughly. In such a case, the insertion and support of AIS with

cloning and mutation can help renew the existing HM.

Figure 4. Application procedure for hybrid harmony search with artificial immune systems.

The second approach involves good solutions that are reproduced from both HS and AIS being

handed over to the opposite population during iterations while each population of the two algorithms

is maintained separately. We refer to this as the cooperative harmony search and artificial immune

systems (CHSAIS) approach. CHSAIS is a way to update each existing population of HS and AIS

through the injection of the opposite metaheuristics. Its core differences, compared with HHSAIS, are

the sequential execution of HS and AIS and the exchange of good solution(s) generated from each

other. The good solution that is generated in HS procedure is transferred to the AIS procedure to

generate better solutions through the clonal and mutation operation. Conversely, the good solutions

from the AIS procedure are delivered to the HM procedure to update the existing HM pool and help

improve the new harmony.

By combining these two algorithms, we expect that the population of each metaheuristic during

its iterations will be updated through the injection of solution(s) generated by the other party and that

in the generation of a solution in the next iteration of each algorithm, the combination of the existing

population and the injected good solution will have a higher probability of achieving a better solution.

Figure 5 illustrates the procedure for applying CHSAIS.
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Figure 5. Application procedure for cooperative harmony search and artificial immune systems.

5. Computational Experiments

NRP benchmarking problems were defined and addressed for the purposes of validating and

demonstrating the applicability of the two proposed hybrid strategies using HS and AIS. For this

purpose, four algorithms were applied: HS, IHS, HHSAIS, and CHSAIS. The experiments were

programmed in the C# language and carried out using a personal computer with an Intel G500

2.60-GHz processor with 4 GB of RAM and a Windows 7 operating system. As shown in Table 2, a total

18 cases—3–5 cases for each algorithm—were considered.

Cases 1 to 5 of HS were performed by changing HMCR and PAR. Cases 6 to 8 were performed by

changing HMCR while performing IHS within the range of 0.1–0.9 of PAR. Cases 9 to 13 and 14 to 18

were performed by change the AIS parameters while applying HHSAIS and CHSAIS, respectively,

as for Case 6. Each experimental case was replicated 30 times for each benchmarking set within the

maximum number of iterations, which was set to 50,000 for all runs. The HMS, HS, and AIS population

sizes were set to 10, 30, and 50, respectively, based on the number of nurses.

The experimental results are summarized in Tables 3–6 in terms of the best, mean, and worst

values, standard deviations, and running times for the various cases considered. The best and mean

values for each case are highlighted in bold. Table 7 shows that among the best cases for each of the

four algorithms, the two proposed algorithms, HHSAIS and CHSAIS, yield results that are superior to

those achieved by the HS and IHS algorithms, respectively. Figure 6a–c presents the typical solution

history graphs by iteration for the four algorithms and for the BCV-5.4.1, BCV-7.10.1, and BCV-3.46.1

benchmarking sets. It can be observed that the evolution curves of the CHSAIS algorithm descend

much faster and reach better solution than those of the other algorithms.
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Table 2. Experimental design of proposed algorithms for different cases.

Algorithm Applications Cases
Harmony Search Artificial Immune Systems

HMCR PAR Threshold Proportion New Clone Proportion

HS

Case 1 0.99 0.1 - -
Case 2 0.95 0.1 - -
Case 3 0.90 0.1 - -
Case 4 0.99 0.4 - -
Case 5 0.99 0.7 - -

IHS

Case 6 0.99 0.1–0.9 - -
Case 7 0.95 0.1–0.9 - -
Case 8 0.90 0.1–0.9 - -

HHSAIS

Case 9 0.99 0.1–0.9 0.3 0.3
Case 10 0.99 0.1–0.9 0.2 0.3
Case 11 0.99 0.1–0.9 0.1 0.3
Case 12 0.99 0.1–0.9 0.3 0.2
Case 13 0.99 0.1–0.9 0.3 0.1

CHSAIS

Case 14 0.99 0.1–0.9 0.3 0.3
Case 15 0.99 0.1–0.9 0.2 0.3
Case 16 0.99 0.1–0.9 0.1 0.3
Case 17 0.99 0.1–0.9 0.3 0.2
Case 18 0.99 0.1–0.9 0.3 0.1

A comparison of the results with those reported in the literature shows that the CHSAIS algorithm

proposed in this paper usually yields better results than either HS and IHS alone. The results

summarized in Table 8 show that CHSAIS yields competitive results in some instances. For the

BCV-1.8.1, BCV-A12.1, and BCV-A12.2 cases, we obtained better results than the algorithms reported

in the literature. For the BCV-4.13.1, BCV-5.4.1, BCV-7.10.1, and BCV-8.13.1 cases, CHSAIS yields the

same best known results as the other methods. In the cases of BCV-2.46.1, BCV-3.46.2, and BCV-6.13.1,

the results are slightly worse than the best known results. The average results for CHSAIS were

compared to those reported in the literature. As the results show, CHSAIS matched the best average

results obtained by other approaches in four instances and achieved better average results for six of

eleven instances.
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Table 3. Results of harmony search (HS) (Bold, optimal solutions).

Instances
Case 1 Case 2 Case 3 Case 4 Case 5

Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time

BCV-1.8.1 252 264.9 388 31.4 114 252 346.3 478 103.4 115 252 961.6 1348 357.5 102 252 263.3 422 43.1 140 252 252 252 0 131
BCV-2.46.1 2089 2259.1 2468 85.3 528 3191 3819.3 4110 226.6 444 6989 8710.9 10,310 872.6 357 1966 2189.8 2444 104.0 626 1875 2091.0 2448 116.1 697
BCV-3.46.1 3567 3732.0 3838 74.8 845 5623 6248.1 6542 224.8 515 13,222 14,941 16,543 869.3 401 3536 3752.4 3895 92.5 760 3557 3762.5 3870 95.0 733
BCV-3.46.2 1137 1616.3 1928 159.7 549 3734 4628.4 5903 431.6 510 10,056 11,380 12,845 782.1 506 1171 1566.4 2038 226.6 541 1121 1587.7 1980 196.9 539
BCV-4.13.1 10 23.8 64 20.5 165 10 32.6 64 21.4 150 10 52.4 148 40.8 122 10 45.9 105 38.4 161 10 38.6 108 34.1 161
BCV-5.4.1 48 48 48 0 60 48 48 48 0 55 48 48 48 0 54 48 48 48 0 56 48 48 48 0 55

BCV-6.13.1 858 880.0 949 35.1 154 840 987.0 1117 72.2 141 916 2305.5 2772 552.4 115 816 871.7 911 41.9 151 810 861.9 908 43.4 151
BCV-7.10.1 381 381 381 0 162 381 475.3 607 103.4 164 877 1200.4 1477 177.8 146 381 398 551 51.9 200 381 381 381 0 187
BCV-8.13.1 148 170.0 239 35.1 171 160 296.9 425 68.5 155 1058 1790.0 2128 253.8 127 148 203.3 243 42.4 167 148 200.1 246 43.1 167
BCV-A.12.1 2120 2366.8 2630 165.2 342 2803 3640.4 3984 346.2 319 6260 7602.9 9979 985.9 260 2078 2255.5 2663 148.9 450 1887 2101.2 2468 135.4 502
BCV-A.12.2 2632 2892.9 3254 186.1 414 3326 4204.6 4822 342.5 326 6757 8107.4 10479 1015.8 274 2582 2800.7 3297 176.0 490 2381 2646.1 2968 147.3 542

Table 4. Results of improved harmony search (IHS) (Bold, optimal solutions).

Instances
Case 6 Case 7 Case 8

Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time

BCV-1.8.1 252 252 252 0 124 252 309.2 462 89.3 110 252 830.7 1336 445.4 88
BCV-2.46.1 1701 1947.1 2050 89.9 753 2992 3768.9 4043 227.1 636 5801 7184.7 8184 506.8 509
BCV-3.46.1 3478 3723.0 3827 89.3 873 5865 6643.8 6916 227.5 447 13,530 14,885.0 15,417 471.4 381
BCV-3.46.2 1247 1561.5 2177 206.4 508 3872 4555.6 5749 387.8 473 9877 11,410.1 13,129 625.8 511
BCV-4.13.1 10 21.9 64 19.1 199 10 28.1 84 24.1 186 10 27.5 52 16.4 153
BCV-5.4.1 48 48 48 0 65 48 48 48 0 63 48 48 48 0 62

BCV-6.13.1 806 840.1 897 37.3 186 806 927.8 997 51.9 174 889 1963.0 2320 368.7 143
BCV-7.10.1 381 381 381 0 178 381 438.2 591 89.3 157 856 1205.0 1465 158.5 126
BCV-8.13.1 148 182.1 239 37.3 206 158 272.9 339 46.3 193 1017 1410.2 1676 175.9 158
BCV-A.12.1 1772 1900.5 2362 105.4 501 2550 3614.6 4012 316.9 447 5702 7025.8 8075 462.9 360
BCV-A.12.2 2272 2402.9 2862 104.7 537 3067 4117.6 4512 314.4 463 6348 7533.5 8575 448.3 363
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Table 5. Results of hybrid harmony search with artificial immune systems (Bold, optimal solutions).

Instances
Case 9 Case 10 Case 11 Case 12 Case 13

Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time

BCV-1.8.1 252 252 252 0 268 252 252 252 0 282 252 252 252 0 255 252 252 252 0 258 252 252 252 0 261
BCV-2.46.1 1723 1868.7 2440 122.0 762 1688 1839.4 2374 116.5 761 1734 1903.6 2378 108.8 718 1693 1825.3 2469 135.5 729 1720 1852.1 2687 168.1 738
BCV-3.46.1 3580 3830.3 3948 94.8 854 3627 3802.1 3921 93.5 865 3646 3870.3 3993 104.1 884 3660 3786.7 3924 79.6 876 3540 3807.2 3949 99.1 837
BCV-3.46.2 954 971.1 1025 12.4 1771 947 975.8 1058 18.9 993 950 979.7 1029 15.8 1050 947 976.3 1014 15.4 1233 964 1001.9 1132 29.4 1360
BCV-4.13.1 10 13 38 7.5 284 10 13.2 36 7.6 281 10 13.2 36 7.3 274 10 12.9 38 7.3 283 10 13.2 34 6.8 276
BCV-5.4.1 48 48 48 0 160 48 48 48 0 152 48 48 48 0 149 48 48 48 0 158 48 48 48 0 152

BCV-6.13.1 824 852.8 883 26.5 266 814 841.2 887 32.5 264 794 828.2 882 39.8 257 798 840.9 883 40.7 264 805 839.6 916 23.7 260
BCV-7.10.1 381 381 381 0 383 381 381 381 0 403 381 381 381 0 364 381 381 381 0 368 381 381 381 0 372
BCV-8.13.1 148 196.5 239 40.6 294 148 187.3 243 41.2 292 148 183.9 238 40.1 284 148 194.9 239 43.0 293 148 170.1 233 32.1 286
BCV-A.12.1 1659 1912.9 2316 115.7 584 1695 1843.7 2174 88.5 576 1710 1948.9 2267 120.3 544 1752 1883.8 2181 93.9 551 1632 1902.7 2199 109.6 561
BCV-A.12.2 2200 2417.1 2816 112.0 552 2056 2341.9 2674 99.5 561 2008 2445.0 2767 137.9 591 2165 2383.8 2681 98.1 578 2188 2408.6 2699 101.6 537

Table 6. Results of cooperative harmony search and artificial immune systems (Bold, optimal solutions).

Instances
Case 14 Case 15 Case 16 Case 17 Case 18

Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time Best Mean Worst Std. Time

BCV-1.8.1 252 252 252 0 278 252 252 252 0 254 252 252 252 0 255 252 252 252 0 254 252 252 252 0 263
BCV-2.46.1 1618 1704.9 1877 50.7 733 1621 1713.5 1782 49.4 731 1601 1690.5 1800 57.2 719 1593 1686.6 1791 45.2 752 1607 1726.3 1977 73.2 763
BCV-3.46.1 3429 3603.4 3705 71.5 902 3490 3617.7 3725 70.8 857 3345 3584.6 3693 74.7 834 3312 3492.4 3654 91.1 902 3430 3612.2 3753 81.9 885
BCV-3.46.2 933 943.2 962 6.1 1826 925 935.9 945 5.7 1117 920 944.9 965 10.0 957 902 913.3 928 9.3 1356 931 955.1 977 12.9 1896
BCV-4.13.1 10 10.8 18 2.4 271 10 10.4 18 1.6 277 10 10.5 14 1.2 274 10 10 11 0.2 276 10 10.1 11 0.3 275
BCV-5.4.1 48 48 48 0 148 48 48 48 0 145 48 48 48 0 147 48 48 48 0 159 48 48 48 0 173

BCV-6.13.1 800 820.5 879 33.9 256 803 831.2 885 37.2 262 798 828.3 885 38.6 259 792 808.8 877 27.4 261 797 835.4 884 39.7 260
BCV-7.10.1 381 381 381 0 397 381 381 381 0 363 381 381 381 0 364 381 381 381 0 363 381 381 381 0 375
BCV-8.13.1 148 174.0 235 35.5 281 148 182.6 241 40.9 287 148 183.2 241 39.5 284 148 165.7 234 29.9 286 148 190.4 240 40.7 285
BCV-A.12.1 1609 1778.5 1882 70.8 534 1574 1764.7 1873 83.0 514 1558 1732.0 1854 73.1 518 1491 1659.9 1787 81.9 533 1606 1782.1 1910 76.3 588
BCV-A.12.2 2109 2245.1 2382 79.1 531 2074 2274.7 2374 89.2 542 1998 2209.4 2316 72.8 523 1998 2162.9 2287 82.5 576 2098 2285.9 2410 80.1 607
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Table 7. Comparison of results by representative cases (Bold, optimal solutions).

Instances
Case 5 (HS) Case 6 (IHS) Case 12 (HHSAIS) Case 17 (CHSAIS)

Best Mean Time Best Mean Time Best Mean Time Best Mean Time

BCV-1.8.1 252 252 131 252 252 124 252 252 258 252 252 254
BCV-2.46.1 1875 2091 697 1701 1947 753 1693 1825.3 729 1593 1686.6 752
BCV-3.46.1 3557 3763 733 3478 3723 873 3660 3786.7 876 3312 3492.4 902
BCV-3.46.2 1121 1588 539 1247 1562 508 947 976.33 1233 902 913.3 1356
BCV-4.13.1 10 38.6 161 10 21.9 199 10 12.867 283 10 10 276
BCV-5.4.1 48 48 55 48 48 65 48 48 158 48 48 159

BCV-6.13.1 810 861.9 151 806 840.1 186 798 840.93 264 792 808.8 261
BCV-7.10.1 381 381 187 381 381 178 381 381 368 381 381 363
BCV-8.13.1 148 200.1 167 148 182.1 206 148 194.87 293 148 165.7 286
BCV-A.12.1 1887 2101 502 1772 1900 501 1752 1883.8 551 1491 1659.9 533
BCV-A.12.2 2381 2646 542 2272 2403 537 2165 2383.8 578 1998 2162.9 576

Figure 6. Evolution of average penalty value by algorithm.
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Table 8. Comparison of CHSAIS results and other metaheuristic methods (Bold, optimal solutions).

Instances
CHSAIS (Proposed) A1 A2 A3 A4

Best Mean Best Mean Best Mean Best Mean Best Mean

BCV-1.8.1 252 252 270 272.6 272 288 252 253 256 261
BCV-2.46.1 1593 1686.6 1612 1630.2 1572 1587 1572 1572 1572 1572
BCV-3.46.1 3312 3492.4 3380 3391.6 3565 3631 3351 3357 3364 3387
BCV-3.46.2 902 913.3 905 909.8 908 911 894 894 900 902
BCV-4.13.1 10 10 11 12 12 45 10 10 10 10
BCV-5.4.1 48 48 48 48 48 136 48 48 48 48
BCV-6.13.1 792 808.8 796 869 964 1060 784 784 875 930
BCV-7.10.1 381 381 386 411.4 381 387 381 382 381 381
BCV-8.13.1 148 165.7 158 164.4 148 149 148 148 148 148
BCV-A.12.1 1491 1659.9 2210 2491.8 1880 2239 1600 1733 1640 1843
BCV-A.12.2 1998 2162.9 1998 2223.6 2528 2812 2180 2321 2465 2562

A1, Harmony search by Hadwan et al. [28]; A2, Scatter search using hill climber by Burke et al. [44]; A3, Scatter
search using variable-depth search by Burke et al. [44]; A4, Memetic algorithm by Burke et al. [18].

In addition, we did experiments with INRC 2010 instances [45] for comparing among our

proposed and previous works. Table 9 show the gaps among the results of our proposed and previous

works published previously. The results lead that our proposed is superior over the other ones in

solving the NRP.

Table 9. Comparison of CHSAIS results and other meta-heuristic methods on benchmark NRPs (Bold,

best known solutions).

Instances Best Known
CHSAIS

B1 Best B2 Best
Best Mean

Sprint_Early01 56 56 58.5 56 58
Sprint_Early02 58 58 60.5 58 60
Sprint_Early03 51 51 53.7 51 53
Sprint_Early04 59 59 61.8 59 62
Sprint_Early05 58 58 61.0 58 59

Medium_Early01 240 244 247.3 245 270
Medium_Early02 240 241 247.4 245 275
Medium_Early03 236 238 243.6 242 265
Medium_Early04 237 242 244.4 240 263
Medium_Early05 303 308 311.1 308 334

Long_Early01 197 197 205.1 197 256
Long_Early02 219 219 226.4 229 299
Long_Early03 240 242 249.3 240 286
Long_Early04 303 303 311.0 303 356
Long_Early05 284 284 291.9 284 337

B1, Hybrid Artificial Bee Colony Algorithms by Awadallah et al. [19]; B2, Global best harmony search by
Awadallah et al. [29].

Table 10 shows the comparative results between CHSAIS and general GA. As you can see, despite

the various changes of parameters of GA, the results lead to our algorithm being superior to all cases

of GA. Because of having randomness during iterations, the corresponding t-test was conducted to

assess the statistical significance is determined by the p-value.
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Table 10. Comparative results between CHSAIS and Genetic Algorithms (Bold, optimal solutions).

Instances

CHSAIS
(Proposed)

GA-1 GA-2 GA-3 GA-4 GA-5

CRate: 0.99/MRate: 0.1 CRate: 0.95/MRate: 0.1 CRate: 0.90/MRate: 0.1 CRate: 0.99/MRate: 0.4 CRate: 0.99/MRate: 0.7

Best Mean Best Mean
Significance
Probability

Best Mean
Significance
Probability

Best Mean
Significance
Probability

Best Mean
Significance
Probability

Best Mean
Significance
Probability

BCV-1.8.1 252 252 252 282.6 0.000275 252 381.1 0.000004 285 1090.9 0.000000 252 281.8 0.001488 252 273.1 0.000068
BCV-2.46.1 1593 1686.6 2258 2786.5 0.000000 3567 4581.9 0.000000 7794 10745.1 0.000000 2194 2698.5 0.000000 1999 2548.6 0.000000
BCV-3.46.1 3312 3492.4 3674 4523 0.000002 6166 7348.9 0.000000 14,635 17,718.3 0.000000 3605 4479.9 0.000001 3478 4547.2 0.000000
BCV-3.46.2 902 913.3 1424 1984.3 0.000000 3872 5560.9 0.000000 11,464 14,124.4 0.000000 1446 1884.9 0.000000 1350 1894.4 0.000000
BCV-4.13.1 10 10 10 24 0.000790 10 32.7 0.000003 10 52.5 0.000004 10 46.4 0.000012 10 36.5 0.000032
BCV-5.4.1 48 48 48 48 - 48 48 - 48 48 - 48 48 - 48 48 -
BCV-6.13.1 792 808.8 865 955.8 0.000000 933 1068.1 0.000000 976 2515.3 0.000000 837 961.3 0.000000 821 943.5 0.000000
BCV-7.10.1 381 381 381 395.1 0.000001 381 492.3 0.000003 1130 1254.4 0.000000 381 406.2 0.021185 381 385 0.019940
BCV-8.13.1 148 165.7 228 483 0.000000 267 357.9 0.003998 1058 1790 0.000000 155 209.5 0.000000 149 201.9 0.000004
BCV-A.12.1 1491 1659.9 2310 2830.4 0.000000 2925 4456.8 0.000000 6723 9098.9 0.000000 2146 2822.1 0.000000 2042 2564.4 0.000000
BCV-A.12.2 1998 2162.9 2705 3404.6 0.000000 3661.0 5124.5 0.000000 7124.0 9757.4 0.000000 2779.0 3496 0.000000 2534 3251.4 0.000000

Crate, Crossover Rate; MRate, Mutation Rate.
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6. Conclusions

In this paper, two strategies in applying two population based metaheuristics, named HHSAIS

and CHSAIS, is designed. We approach HHSAIS to solve NRP because, even though the new solution

generated from HS procedure is not better than the worst existing HM, we expect that AIS can make

it a better solution by searching neighbor solutions through cloning and mutation operator. Unlike

local search, which provides pure exploitation without exploration, the hybridization of HS and AIS

can be better harmony in dealing with the NPR’s nature of the search space for the highly constrained

optimization problem.

The proposed methods were applied in combination with general HS procedures to newly

updated HM and sequential executions of HS and AIS, with solution exchanges. We evaluated the

various methods in terms of instances of NRP benchmarking collected from ANROM.

The experimental results using HHSAIS demonstrate justification of our beliefs. Second is

CHSAIS, which is cooperative of HS and AIS. In this approach, both algorithms operate individually

and solutions generated from each algorithm are exchanged in the opposite population every iteration.

Through this approach, we expect that, even if the computation time is longer than HS alone and

CHSAIS, it has significant advantages as the solutions are swapped between each other from opposite

algorithm, thus can actively explore different search space regions. Clearly, the CHSAIS matched the

best average results obtained by other approaches in four instances and achieved better average results

for six of eleven instances by other comparative methods. The fact that the proposed CHSAIS has the

ability to explore the solution search space of the NPR in different ways to generate desired solutions

could be an exploratory for researchers in the future.

In future research, we will test the superiority of our algorithm by applying it to real hospital

data and we will attempt to generalize our algorithm to solve various combinatorial and sequential

optimization problems.
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