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Hybrid Approaches to Solve Dynamic Fleet Management 

Problems 

 

 

Yong Jin Kim, PhD. 

 The University of Texas at Austin, 2003 

 

Supervisors:  Hani S. Mahmassani, Patrick Jaillet  

 

The growing demand for customer-responsive, made-to-order 

manufacturing is stimulating the need for improved dynamic decision-making 

processes in commercial fleet operations. Moreover, the rapid growth of 

electronic commerce through the Internet is also requiring advanced and precise 

real-time operation of vehicle fleets. Accompanying these demand side 

developments/pressures, the growing availability of technologies such as AVL 

(Automatic Vehicle Location) systems and continuous two-way communication 

devices is driving developments on the supply side. These technologies enable the 

dispatcher to identify the current location of trucks and to communicate with 

drivers in real time affording the carrier fleet dispatcher the opportunity to 

dynamically respond to changes in demand, driver and vehicle availability, as 

well as traffic network conditions.  

This research investigates key aspects of real-time dynamic routing and 

scheduling problems in fleet operation particularly in a truckload pickup-and-
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delivery problem under various settings, in which information of stochastic 

demands is revealed on a continuous basis, i.e., as the scheduled routes are 

executed. The most promising solution strategies for dealing with this real-time 

problem are analyzed and integrated. Furthermore, this research develops, 

analyzes, and implements hybrid algorithms for solving them, which combine fast 

local heuristic approach with an optimization-based approach. Simulation 

experiments are developed and conducted to evaluate the performance of these 

algorithms. 
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Chapter 1 Introduction 

1.1 MOTIVATION 

The trucking industry comprises a large portion of the economy. In the 

USA, revenue from the trucking industry is nearly five percent of the Gross 

Domestic Product (GDP). Furthermore, approximately 81 percent of shipping 

costs were attributed to the trucking industry in 1997 (http://www.fhwa.dot.gov/ 

freightplanning/weart.htm). An estimate based on the Commodity Flow Survey 

shows that trucks (single mode excluding multiple modes cases) carried 

approximately $4.98 trillion worth of goods over 1,023 billion ton-miles in 1997 

(http://www.bts.gov/ntda/cfs/97tcf-us.pdf). Based on these statistics, it is 

understandable that even a slight improvement in the operating efficiency of the 

trucking industry would greatly contribute to the overall economy. Furthermore, 

the current technology and economic environment in both supply and demand 

motivate the improvement of efficiency in the trucking industry.  

On the demand side, the motivation to improve stems from a growing 

demand for the kind of customer-responsive, made-to-order manufacturing that 

has been a major factor in the global success of the likes of Dell Computer 

Corporation. This trend is shifting the logistics and transportation process from 

relying on long-planned lead times to an extremely dynamic short-term process. 

An indicator illustrating this trend is the inventory to retail sales ratio over the 

total business. The ratio was 1.53 in January 1993, 1.44 in January 1998 and had 
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decreased to 1.37 in December 2002 (http://www.census.gov/mtis/www/current. 

html).  

Furthermore, according to the US Census Bureau data, E-commerce retail 

sales, which is defined as “the sales of goods and services where an order is 

placed by the buyer or price and terms of sale are negotiated over an Internet, 

extranet, Electronic Data Interchange (EDI) network, electronic mail, or other 

online system. Payment may or may not be made online (http://www.census.gov/ 

mrts/www/current.html)”, increase from 5,481 million dollars (0.7% out of total 

retail sales) in 1999, 4th quarter to 14,334 million dollars (1.6%) in 2002, 4th 

quarter. Explosive growth in the electronic commerce and the development of 

virtually integrated supply chains through the Internet require advanced and 

precise real-time operation of vehicle fleets in freight transportation systems. 

Accompanying these developments on the demand side are equally 

compelling developments on the supply side, driven in part by the growing 

availability of advanced technologies such as Automatic Vehicle Location (AVL) 

systems and continuous two-way communication devices. These systems enable 

the dispatcher to identify the current location and status of trucks and to 

communicate with drivers in real-time. With these technologies, the carrier fleet 

dispatcher can dynamically respond to stochastically requested demand, changes 

in demand, driver and vehicle availability, as well as traffic network conditions. 

While real-time information allows system operators to make on-line decisions on 

a continuing basis to optimize performance, the manner in which this information 

is used will critically determine its effectiveness; inappropriate use of 
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information, in conjunction with incorrectly formulated models and inadequate 

algorithms, could result in worse performance.  

While adoption of commercial real-time location-communication systems 

by motor carriers has been growing rapidly, the full potential of these 

technologies to optimize load assignment, vehicle routing and scheduling, and 

overall fleet logistics operations remains vastly underutilized. Surveys performed 

under a University of Texas at Austin project and by University of California-

Irvine researchers (Regan & Golob 1999) reveal that almost 60% of major-carrier 

trucking fleets are equipped with some form of real-time location-communication 

device. However, only a very small fraction is actually using this information as 

part of a formal optimization procedure to support fleet operation decisions. To 

date, methodological developments that explicitly address on-line fleet decisions 

under real-time information remain in their early stages of development. 

 

1.2 PROBLEM STATEMENT 

The principal focus of this thesis is to find good and computationally 

efficient ways in which a commercial vehicle fleet operations decision maker, or 

dispatcher, can take advantage of real-time information such as current vehicle 

location and status, and two-way communication technologies, to dynamically 

manage available resources to serve the general pattern of stochastic, time-

sensitive customer truckload pickup-and-delivery demands.  

In this study, it is assumed that demand information including origin, 

destination, and service time-windows (and/or demand type) of the demand, is 
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revealed dynamically, i.e. the demand requests arrive at the carrier on a 

continuous basis. In trucking operations, the fraction of demands that carriers 

know in advance is typically limited. The fraction may vary widely by company, 

regional orientation, and the sectors of the economy in which their primary 

shippers tend to operate. For instance, Powell (1988) reports that sixty percent of 

a given day’s loads at a large national carrier may be accepted on the same day 

that they are moved. Throughout the thesis, it is assumed that 100 percent of the 

demand information is revealed dynamically. The customer has his/her own 

desirable time frame called time-window, within which the demand should be 

served. It is assumed that time-window width of demands is relatively wide 

enough, as compared to the haul-length, to be able to construct routing schedule 

with multiple legs.  

A dispatcher, as a decision maker, has the responsibility to make a 

decision on the activities of trucks in the fleet. First, the dispatcher should be able 

to determine the feasibility and desirability of a particular load request 

(acceptance/rejection decision) and inform the customer (shipper) of the decision 

in near real-time, or within a short time after receiving the request. This decision 

may have an impact on the ability to accept future demands. Second, the 

dispatcher must make a feasible routing schedule of the fleet of trucks, which 

includes assignment of the newly requested demand to a driver and possible 

reassignment of the existing accepted-but-not-served demands to other vehicles. 

Assignment of a requested load to a vehicle is not a permanent decision due to the 

reassignment possibility and is not necessarily communicated to a driver until 
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he/she is ready to travel to pick up the assigned demand. The above two decisions 

are tightly coupled in that each decision has significant impact on the other 

decision.  

 

Figure 1.1 Conceptual diagram of real time decision process 

Figure1.1 depicts the conceptual diagram of the real-time decision process 

of a dispatcher, where solid line represents the loaded movement and the dotted 

line represents the empty movement of the trucks. 
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Based on this problem setting, the objective of the decision maker is to 

maximize the profit by proper assignment and acceptance/rejection decisions on 

the dynamically realized demands. This problem is classified as a dynamic VRP 

(Vehicle Routing Problem) in the sense that the decision-maker does not have 

complete information on the demands in advance, and the input information is 

updated either during the execution of the route, or during the execution of the 

solution algorithm. In this problem, a decision at a given instant has a significant 

impact on the status of vehicles at subsequent decision instant, as well as on the 

overall performance of the system to serve dynamically requested demands.  

 

1.3 RESEARCH CONTEXT AND GENERAL APPROACH 

Routing and scheduling problems are known to be notorious NP-Hard 

problems, for which there is no guarantee of a polynomial time solution 

algorithm. Hence, the problem complexity is an impediment for a decision maker 

seeking an optimal solution in a short time even for a static version of the 

problem. Furthermore, in a dynamic environment, the decision-maker has limited 

information for demands at a decision moment and the information is updated 

with newly requested demands, service completion, changes in driver and vehicle 

availability and modified traffic network conditions.  

There are two main categories of solution approaches to solve these 

dynamic problems. First, stochastic methods explicitly incorporate uncertainty of 

future demands assuming some probabilistic models of the future. These methods, 

however, have a limitation of problem size due to the nature of the stochastic 
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models; state space grows quickly with problem size (Ichoua et al. 2000). 

Therefore, most of the existing stochastic methods employ simple pure 

assignment models (or vehicle allocation models) as a base model and use 

aggregated time and space, for examples, Frantzeskakis and Powell (1990) and 

Powell (1986b, 1987, 1988). Second, the algorithms for static problems are 

adopted in order to solve these dynamic problems. In this case, static algorithms 

are repeatedly applied according to the dynamically revealed demand information. 

This approach is relatively easy to implement and can deal with relatively large 

size problems.   

The choice between above two approaches should take into account the 

demand nature, particularly time-window width. For a time sensitive long-haul (as 

compared to the time-window duration of the requested demands) delivery 

service, the stochastic programming approaches may be appropriate. This is 

because long service duration reduces the flexibility of assignment. In this case, 

once a demand is assigned to a vehicle, it is hard to reassign it to another vehicle.  

Furthermore, if the time-window is tight (the specified latest pickup time is close 

to the demand arrival time), immediate assignment is required. In contrast, the 

short-haul with wide time-window demands allow a dispatcher to construct 

routing schedules with multiple legs. In other words, the dispatcher can hold the 

demands in the service queue. Moreover, adaptive modification of these routes 

according to the updated information may lead to great benefit. Therefore, in this 

thesis, whenever updated information occurs, static algorithms are applied 

repeatedly to solve a local snapshot problem (deterministic problem assuming no 
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future demand) as close to optimality as possible. Note that, the solution of a local 

problem is a routing schedule of the fleet of vehicles (and acceptance decision on 

a newly requested demand) and the optimality addressed here denotes the myopic 

(local) optimality rather than the global or hindsight (after the fact) optimality. 

Even these local snapshot problems encountered at every decision epoch 

may require extremely long computation time in order to obtain the optimal 

solution. However, the dynamic nature of the problem necessitates short 

computation time. First, the dispatcher needs to provide an acceptance/rejection 

decision to the shipper in a short time. Second, the long computation time of the 

solution procedure may cause a conflict between the schedule obtained from the 

solution and the updated vehicle status. Finally, new demand requests may arrive 

during the solution procedure so that a dispatcher may lose an opportunity to 

utilize the updated information.  

If the decision maker does not pursuit the optimal solution for the local 

problems, there are alternative heuristic algorithms, which can provide ‘good’ 

feasible solution for the snapshot routing and scheduling problems in a relatively 

short time while not guaranteeing the optimal solution. The basic approach to 

solve the dynamic problems, in this thesis, is to develop hybrid solution 

approaches, using efficient heuristic rules for a quick response to the customer 

while generating an initial feasible routing schedule combined with optimization-

based procedures seeking the optimal solution, which are designed to improve 

system efficiency within the time requirements of the dynamic problem. 
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In this procedure, it is required to develop dynamic operational policies 

determining how to identify the local snapshot problems, how to apply the 

algorithms, and how to apply the solutions obtained from the problems to the 

dynamic operation of the fleet. This is because, execution time of any algorithm 

guaranteeing a feasible solution is not short enough to avoid all the conflicts 

stated above. Furthermore, the timing of the next demand arrival is not known to 

the dispatcher in advance.   

Another important issue addressed in this thesis is the load 

acceptance/rejection decisions. Under low to moderate arrival rate situations, 

feasibility-based acceptance/rejection decisions may be appropriate. That is, a 

decision maker accepts as many demands as possible in order to maximize 

revenue. Furthermore, if the demands have relatively tight time-windows, it may 

be necessary for the carriers to be more proactive. For example, the carrier may be 

able to predict and identify regions in which potential future demands will 

originate, and ‘reposition’ available vehicles to accept the future (unknown) 

demands within their time-windows. In other words, available idle vehicles move 

to high potential regions in anticipation of future demands. In this thesis, 

however, it is assumed that the time-windows are long enough Hence, the 

feasibility criteria would be employed for the acceptance decision under low to 

moderate arrival rate situations, in which most of the requested demands can be 

accepted and served within their time-windows. 

In contrast, in over-saturated demand situations, the excessive demand not 

only precludes the dispatcher from accepting all the requested demands but also 
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provides the opportunity to select high potential demands. Since the revenue 

realized from loaded movements is determined by which loads are accepted, the 

acceptance decision should take into account the system status and the 

characteristics of the individual demand under consideration. In this case, 

feasibility-based acceptance decisions lead the system towards “saturation”, 

whereby the system holds the maximum number of demands in the queue of 

vehicles. This saturated situation interferes with the efficient operation of the 

system with respect to the routing schedule. In other words, it becomes difficult to 

find reassignment opportunities to reduce the operating cost (empty movement) 

because of not enough room for swapping and re-sequencing. Therefore, the 

status of the system represented by the number of demands in the system is a 

possible criterion of the acceptance decision. Furthermore, fast local heuristic 

rules used in the hybrid solution approach can provide a good measure to 

characterize the potential of a requested demand in a short time. When an 

additional demand attribute, demand type is introduced to classify the customers 

according to customers’ requirements, more careful exploration of the system 

status and demand characteristics is required. 

 

1.4 RESEARCH OBJECTIVES 

The primary objective of this thesis is to investigate key aspects of 

dynamic problems in fleet operation for truckload pickup-and-delivery service; 

namely, to analyze and formulate the dynamic fleet management problems, and to 

develop, analyze, and implement algorithms to solve them. 
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The specific goals of this research are as follows:  

 

1. Formulate the dynamic fleet management problem under the 

assumption of the availability of real-time control of the fleet as well 

as real-time information on vehicle locations and states.  

 

2. Develop operations research methodologies, Mixed Integer 

Programming (MIP) models, for static and deterministic version of the 

truckload pickup-and-delivery problems with time-windows; one for 

homogeneous demands and the other for mixed demand types with 

various time-window configurations. 

 

3. Develop dynamic operational policies determining how to set local 

snapshot problems, how to solve the local problems using the MIP 

models as well as various heuristic rules, and how to apply the 

solutions of these problems into the dynamic operation of the fleet in a 

dynamic context.  

 

 

4. Develop revenue management policies through acceptance/rejection 

decisions under various demand situations raging from a low demand 

arrival rate situation to an over-saturated demand situation. In addition, 

develop revenue management policies with multiple demand types.  
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5. Provide a methodology to evaluate the performance of the developed 

dynamic decision policies and algorithms: First, to build simulation 

frameworks. Second, identify evaluation benchmarks under dynamic 

environment.  

  

1.5 DISSERTATION ORGANIZATION  

Chapter 2 presents a review of literature and the current technologies 

employed in relation to this research. It begins with an introduction of 

Commercial Vehicle Operation (CVO) as a part of Intelligent Transportation 

Systems (ITS) followed by a discussion of various technologies available in the 

current market such as electronic trip recorders, two-way communication devices 

and Automatic Vehicle Location (AVL) systems. A review of the operations 

research literature on the topic of fleet management is also provided. The 

discussion begins with classical deterministic and static problems such as the 

Traveling Salesman Problem (TSP) and various types of Vehicle Routing 

Problems (VRP). Then dynamic and stochastic vehicle routing problems are 

discussed. Various solution approaches are presented including a discussion of 

stochastic programming approaches, solution approaches adopting static 

algorithms, and meta-heuristics. Finally, literature related to the acceptance 

decision problem is provided.  

Chapter 3 introduces the problem definition as well as conceptual and 

theoretical framework for solution procedures. The general problem context is 
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discussed including problem statement, objectives and the time-windows 

properties. Then, a formal problem definition is provided. This is followed by a 

discussion of solution approaches, which include two MIP (Mixed Integer 

Programming) models for deterministic local snapshot problems and dynamic 

operational decision policies. Finally, a conceptual framework of a simulation, 

which provides the methodology for evaluating algorithm performance, is 

presented.      

Chapter 4 introduces an idealized problem setting: a small fleet operation 

with moderate demand request rate. Various algorithms and heuristic strategies to 

solve the problem are proposed and tested. This problem is tackled by a hybrid 

(two phase) approach implementing local heuristic rules for constructing an initial 

feasible routing schedule and acceptance/rejection decision along with the MIP 

model for re-optimizing existing schedule.  

In Chapter 5, the fleet size (and therefore, problem size) increases. Fleet 

size is an important factor influencing the complexity of the problem. Therefore, a 

large fleet with a low to moderate demand arrival rate is the next target problem 

setting of this thesis. To solve this large fleet problem, various partitioning 

strategies are developed based on a ‘divide and conquer’ technique. 

In Chapter 6, the target problem is under an over-saturated demand 

situation, in which the solution algorithm execution time for a local snapshot 

problem is more critical than in the previous problem settings due to the relatively 

congested demand arrivals. In this situation, it is important to recognize the 

relationship between computation time and vehicle movements during this time. 
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Furthermore, the limited capacity of the system mainly due to the specified time-

windows of the demands precludes serving all requested demands. Therefore, 

acceptance/rejection decision policies considering system status and individual 

demand characteristics are addressed along with this problem.  

Chapter 7 discusses revenue management through load acceptance 

decision-making for two types of demand (priority and regular demands). Each 

customer has his/her own requirement for delivery service. Hence, a real-time 

truckload routing and scheduling problem associated with two classes of demand 

accommodating various customer requirements is targeted.  

The final chapter concludes the dissertation, and provides 

recommendations for continuing research topics. 
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Chapter 2 Background Review 

This chapter reviews literature on the topic of real-time information 

technologies and operations research literature relevant to this thesis. Commercial 

Vehicle Operations (CVO) applications to Intelligent Transportation Systems 

(ITS) are presented in Section 2.1. Section 2.2 introduces the existing models for 

fleet operation, which include classical problems such as Traveling Salesman 

Problems (TSP) and Vehicle Routing Problems (VRP). In addition, the dynamic 

version of VRP, which is closely related to this research, is discussed. Section 2.3 

focuses on the solution approaches to these problems.  

 

2.1 REAL-TIME INFORMATION TECHNOLOGIES 

2.1.1 Definition of CVO 

ITS are designed to increase the safety and efficiency of surface 

transportation systems using advanced technologies including information 

processing, communications, control, and electronics. The major areas of ITS 

include Advanced Public Transportation Systems (APTS), Advanced Rural 

Transportation Systems (ARTS), Advanced Traffic Management Systems 

(ATMS), Advanced Traveler Information Systems (ATIS), Commercial Vehicle 

Operations (CVO), and Advanced Vehicle Control System (AVCS).  

Most of these areas are aimed at controlling individual drivers, which 

prevents ITS technology from being directly implemented at the user level. This 

is because the required equipment costs, such as in-vehicle technologies, to the 
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individual users are prohibitive. Furthermore, it is impossible to fully control the 

activities of individual drivers. In contrast, the economic incentive from CVO 

application makes implementation of new technologies easier. In addition, fleet 

managers have the authority to control the activities of the vehicles.  

The definition of CVO by the USDOT (U.S. Department of 

Transportation) is as follows: “CVO include all the operations associated with 

moving goods and passengers via commercial vehicles over the North American 

highway system and the activities necessary to regulate the operations” (USDOT, 

1999). There are four main CVO applications: safety assurance, credentials 

administration, electronic screening and carrier operations. Carrier operations 

consist of three major topics: fleet and vehicle management, traveler information 

systems, and hazardous materials incident response. This research focuses on 

‘fleet and vehicle management’ and more specifically on the dispatching system 

using real-time information.  

This research assumes that real-time information is available to a 

dispatcher. In other words, all vehicles are equipped with an Automatic Vehicle 

Location (AVL) system and continuous two-way communication systems. The 

technologies employed in CVO will be reviewed in the following section. 

 

2.1.2 CVO Technologies 

The major technologies used for fleet management are electronic trip 

recorders, communication systems, AVL systems and dispatching operation 
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systems. A brief description of these technologies is presented in the following 

sections. 
 

2.1.2.1 Electronic Trip Recorders 

Electronic trip recorders are also known as onboard computers. These 

devices automatically monitor and record the performance of vehicles and drivers. 

Electronic trip recorders include a trip data display, speed and rpm audio alarms, a 

fuel consumption display, time of day, trip statistics and hours of service records. 

Furthermore, event data, discrete data and driver input can be recorded in 

protected areas of memory. A mobile communication system enables the driver to 

transfer the information to a dispatcher in real-time. As a result, a dispatcher can 

monitor the vehicle/driver performance historically and in real-time, this reduces 

the administrative workload and improves vehicle diagnostics. 

Various products are available on the market today. For example, 

Centrodyne Inc. provides a family of “Silent 1000” trip recorders and Zepco Sales 

& Service Inc. products includes the ZTR 9200. 

 

2.1.2.2 Two-way communication Systems  

In this thesis, it is assumed that real-time two-way communication 

systems, which provide driver–to–driver and driver-to-dispatcher 

communications, are available. They allow a dispatcher to direct the fleet of 

vehicles in real-time. The available systems on the market range from mobile 

phones and citizen band radios to digital broadcast systems depending on cost and 
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sophistication. One example, Qualcomm’s OmniTRACS system allows the 

transfer of real-time data. 

 

2.1.2.3 Automatic Vehicle Location (AVL) System 

Various alternatives are available to identify vehicle location relative to a 

map in real-time. The Global Positioning System (GPS), a current market leader, 

determines a user's worldwide location (latitude, longitude and altitude) by 

tracking signals from four or more satellites out of 24 satellites orbiting the Earth. 

The GPS can provide real-time position with accuracy within meters depending 

on the type of receiver and other conditions.  

An announcement made by President Clinton on May 1, 2000 calling for 

cessation of Selective Availability (SA), which is the intentional degradation of 

GPS signals available to the public to prevent abuse by hostile countries, 

increased the accuracy of the GPS dramatically (The White House, 2000). For 

example, a before and after survey conducted by National Geodetic Survey 

(NGA, 2000) at Erlanger, Kentucky shows that 95% of the points were within a 

radius of 45.0 meters with SA. In contrast, 95% of the points now fall within a 

radius of 6.3 meters after removal of SA.  Leading GPS device providers include 

Trimble, Novatel Inc., Magellan Corporation, THALES Navigation, and 

GARMIN International. 
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2.2 MODELING OF FLEET OPERATIONS 

2.2.1 Classical Problems 

This section discusses classical descriptions of fleet operations problems. 

 

2.2.1.1 Traveling Salesman Problem (TSP) 

Classical and fundamental problem in fleet operation is the Traveling 

Salesman Problem (TSP). The goal of the TSP is to minimize the total travel 

distance when a salesman, starting from his home city, is to visit each city exactly 

once on a pre-specified list and then return home (Hoffman, 1985). This simple 

problem has gained importance because not only can it be extended to many 

applications including vehicle routing, facility location, and machine scheduling 

problems but its general solution algorithm can also be used to solve other 

problems of its genre: combinatorial optimization. In general, the combinatorial 

optimization problem cannot be solved by traditional differential calculus because 

the decision is to find a tour (sequence) instead of determining a continuous value.  

Except for the special form, for example a TSP with an upper triangular 

distance matrix (i.e. cij =0 if i>j), the TSP problem is a ‘NP-hard’ problem. An 

NP-hard problem is extremely unlikely to have a polynomial algorithm to solve it 

optimally although it is not proved that the worst case exponential solution 

running times are unavoidable (Hoffman, 1985). The formal definition of NP-hard 

is as follows (NIST, 2001): 

 “The complexity class of decision problems that are intrinsically harder 

than those that can be solved by a nondeterministic Turing machine (It is a 
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"parallel" Turing machine which can take many computational paths 

simultaneously, with the restriction that the parallel Turing machines 

cannot communicate) in polynomial time. When a decision version of a 

combinatorial optimization problem is proven to belong to the class of 

NP-complete problems, an optimization version is NP-hard.” 

 

The simplest approach to a TSP problem is to enumerate all possible 

sequences which results in a complexity of the problem equal to O(n) = (n-1)! 

namely, the necessary computational effort grows exponentially with problem 

size. For example, if the computation time required for a calculation is one nano-

second (10-9 sec), a 20-city TSP would require 3.8 years to solve. Therefore, other 

solution algorithms are necessary to solve this class of problems.  

A mathematical Integer Programming (IP) formulation is presented before 

investigating the solution algorithms. Let xij be a binary variable, which indicates 

whether a salesman visits city j immediately after city i, and cij be the distance 

between the two cities (i and j). The objective function is to minimize the realized 

travel distance. The constraints listed below, (2) and (3), represent the flow 

conservation.  Constraints (4) represent the subtour elimination, which prohibits 

the salesman from constructing subtours consisting of several subsets of cities 

(Wolsey, 1998). The subtour elimination constraints make the TSP hard because 

the constraint (4) represents a large number of constraints: 2n-2. The mathematical 

formulation of the TSP is similar to the assignment problems except for the 

subtour elimination constraint. 
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2.2.1.2 Variations of the TSP 

The TSP has evolved into various forms depending on applications; these 

are briefly introduced in this section. 

 

Bottleneck TSP: The objective is to minimize the longest distance between cities 

rather than the sum of these distances, while a salesman travels all the given list of 

cities (Garfinkel, 1985). 

 

The time dependent TSP: The costs (distance) between cities change depending on 

the time when a salesman travels. The objective is the same as for the original 

TSP (Garfinkel, 1985). 
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Probabilistic TSP (PTSP): The number of cities to be visited in each problem 

instance is a random variable where the probability that a subset of cities at an 

instance occurs is P(S) (Powell et al. 1995, Jaillet and Odoni 1988). 

 

TSP with Time-windows (TSPTW): Each city has its own time-windows such that 

a salesman visits a city between the earliest and latest pickup time. This problem 

can be divided into two sub-problems:  the TSP with hard time-windows and the 

TSP with soft time-windows. In the latter case, the time-windows may be violated 

but a penalty is then added to the objective function. Calvo (2000) proposes a 

heuristic algorithm for this problem based on the solution of an auxiliary problem. 

 

2.2.1.3 Vehicle Routing Problem (VRP) 

The vehicle routing problem (VRP) is a generic name given to a class of 

problems in which ‘vehicles’ visit ‘customers’ (Christofides, 1985). The 

deterministic and static version of the mathematical model that best describes 

certain aspects of the fleet management problem of interest falls in to this class. It 

seeks the efficient assignment of available vehicles to (known) demands, and the 

sequencing of the demands served by each vehicle, subject to various constraints.  

The VRP has various forms depending on the nature of the problem such 

as the nature of demand, the information on the demand, the vehicle fleet, the 

crew, scheduling and the data requirements (Assad, 1988). A detailed 

classification of the problem is presented in Table 2.1.  
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Table 2.1 General characteristics of routing problems (Assad, 1988 p12) 

Pure pickup or pure deliveries 
Pickups with backhaul option 
Single or multiple commodities 
Must serve all demands? 
Common carrier option 

Nature of Demand 

Priorities for customers 
All demands known in advance? 
Many repeat demands 
Fixed frequencies for visits 
Uncertain demands 

Information on Demand 

Real-time inflow of demands 
Homogeneous fleet or multiple vehicle types 
Weight and capacity restrictions 
Compartments 
Loading restrictions/equipment 
Vehicle type/site dependencies 
Vehicle type/commodity compatibility 
Fixed or variable fleet size 

Vehicle Fleet 

Fleet based at single depot or multiple terminals 
Pay structure: • length of workday 

 • minimum and maximum on duty times 
 • overtime option 

Fixed or variable number of drivers 
Driver start times and locations 
Lunch or other breaks 

Crew Requirement 

Multiple-day trips allowed 
Assignment of customers to day of the week 
Time-windows for pickup/delivery (soft, hard) 
Open and close times 

Scheduling 

Requirements 

Load/unload (dwell) times 
Geographic database, road networks 
Customer addresses and locations 
Travel times 
Vehicle location information 

Data Requirements 

Customer credit and billing information 
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Solomon (1987), Christofides (1985b), and Golden and Assad (1986, 

1988) provide extensive survey papers for Vehicle Routing Problems. Solomon 

and Desrosiers (1988) concentrate on ‘VRP with Time Windows’ (VRPTW), in 

which they discuss the single and multiple traveling salesman problems, the 

shortest path problem, the minimum spanning tree problem, the generic vehicle 

routing problem, the pickup and delivery problem, the multiperiod vehicle routing 

problem and the shoreline problem. Note that, the VRP, in its various forms, is a 

notoriously NP-Hard problem. 

  

2.2.2 Stochastic/Dynamic Vehicle Routing Problems 

Stochastic and static versions of the VRP called SVRP have random 

components in problem settings. Stewart and Golden (1983) formulate the 

problem as a stochastic programming problem with recourse. Berman and 

Simchi-Levi (1989) consider the TSP with random travel times between demands, 

and focus on the optimal depot. Another direction is to model a problem called 

probabilistic TSP, in which the demands are identified in advance only by a 

probability distribution. The objective is to find optimal a priori routes and to 

update them. This model is initiated by Jaillet (1985, 1988). Bertsimas et al. 

(1990) also discusses the topic. 

The Dynamic VRP is the dispatching system of vehicles to satisfy a 

multiple demand service that evolves in a real-time (dynamic) fashion (Psaraftis, 

1988). In this system, the input information changes and is updated either during 

the execution of the route, or during the execution of the algorithm that solves it. 
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This differentiates the problem from a static vehicle routing problem, which is 

based on known information. Furthermore, Psaraftis (1988) identifies the 

difference between the dynamic and the static VRP as follows: (1) Time 

dimension is essential; (2) Problem may be open-ended; (3) Future information 

may be imprecise or unknown; (4) Near-term events are more important; (5) 

Information update mechanisms are essential; (6) Resequencing and reassignment 

decisions may be warranted; (7) Faster computation times are necessary; (8) 

Indefinite deferment mechanisms are essential; (9) Objective function may be 

different; (10) Time constraints may be different; (11) Flexibility to vary vehicle 

fleet size is lower; and (12) Queueing considerations may become important.  

Various dynamic VRP models have been proposed and are summarized 

below. Golden and Assad (1986) present various perspectives on vehicle routing 

methodologies and technologies in a practical environment. Dejax and Crainic 

(1987) provide in their survey paper, a review on the major research trends of 

empty flow and fleet management models. They also discuss the advantage of 

dynamic flavor models (a hierarchically integrated approach for the simultaneous 

management of empty and loaded freight vehicle movements). Psaraftis (1988) 

provides an extensive review of dynamic vehicle routing problems and identifies 

important issues along with static a version of VRP. Powell, Jaillet, and Odoni 

(1995) present a comprehensive discussion of the issues associated with dynamic 

network modeling problems that arise in logistics and distribution systems, and of 

solution approaches to these problems, including a priori optimization and on-line 

decision policies for stochastic routing problems. The context of this review 
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includes (1) the definition of specific application areas; (2) development of 

tractable mathematical models, with particular emphasis on optimization under 

uncertainty; (3) development of efficient formulation and solution algorithms; and 

(4) the evaluation of alternative models. Specific solution approaches are 

introduced in the following section.  

 

2.3 SOLUTION APPROACHES 

There are two main approaches to solve this dynamic problem: adopting 

of static algorithm vs. stochastic models. The latter incorporates uncertainty 

explicitly into the model. Uncertainty arises from various exogenous sources such 

as demand forecasts, external supplies of equipment and drivers, performance of 

the network, management of the network and errors in the data (Powell et al., 

1996). The incorporation of uncertainty may make a model explosively large 

resulting in an intractable one. On the other hand, the former are easy to formulate 

and can use existing static solution algorithms. Nevertheless, they may be too 

sensitive to the updated information resulting in cost increase.  

 

2.3.1 Stochastic Approaches  

One of the approaches to solve this class of problems is to predict future 

demands for service and availability of vehicles in making assignment decisions. 

Before addressing specific references, it is necessary to identify the Dynamic 

Vehicle Allocation (DVA) or Assignment problems. DVA problems assume that 

a vehicle is dedicated to a single customer at a time, thus it cannot take another 
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demand until the current demand is completed, and it cannot construct a tour 

schedule explicitly.  

Leading contributions to these approaches are attributed to Powell. He 

proposes a formulation based on the Markov decision process (1986b), algorithms 

for the DVA problems (1988), and a hybrid stochastic formulation of the dynamic 

Vehicle assignment problem (1996). Frantzeskakis and Powell (1990) use linear 

approximation to solve this DVA problem. Powell also presents an operational 

planning model (1987) and a restrict recourse strategy with random arc capacities 

with co-workers (Powell & Frantzeskakis, 1994). Bertsimas and Van Ryzin 

(1991) introduce and analyze a model for the stochastic and dynamic vehicle 

routing problem in the Euclidean plane with a single vehicle and extend their 

study (1993) to multiple vehicle problems with random on-site service time, in 

which they consider pure pick-ups or pure deliveries.  

 

2.3.2 Adoption of Static Algorithm 

Another line of research is based on the adoption of static algorithms. As 

new input occurs, static snapshot of local problems are solved repeatedly. This 

approach is classified into two categories depending on the time horizon to be 

considered (Ichoua et al. 2000). 

 

2.3.2.1. Fast Local Operation 

Fast local operations, which mainly use an insertion technique, fall into 

the first category. This method is easy to implement and delivers a fast 
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computation time. This ‘fast local’ operation is appropriate for a dynamic 

environment, where computation time is an important factor. The works of Regan, 

Mahmassani and Jaillet (1996a, 1996b, 1997, 1998) use this fast methodology, 

which explicitly recognizes the expanded set of choice dimensions available to 

the operator as a result of real-time information. They present and investigate 

various local rules for the dynamic assignment of vehicles to loads under real-

time information. These computationally efficient procedures are evaluated using 

simulation experiments that illustrate the relatively good performance attainable 

through these heuristics in a stochastic dynamic environment.  However, the 

results also suggest that one can do better through formal optimization procedures 

of judiciously formulated mathematical models. In other words, these approaches 

lose the opportunity of re-optimizing existing routes by swapping and/or 

reordering to improve the solution. Powell, Towns and Marar (2000) investigate 

the trade-off between myopic and global optimality by applying a simple load-

matching algorithm repeatedly for local problems. 

 

2.3.2.2 Sophisticated Static Problem-Solving Procedure 

The second category is a sophisticated static problem-solving procedure, 

which involves a re-optimization of existing routes. In this category, Yang, Jaillet, 

and Mahmassani (2000, 2002) introduce formal optimization-based approaches, 

in which they introduce a formal optimization-based approach and test it against 

the previously developed heuristic rules (Regan, Mahmassani & Jaillet, 1996a). 

This approach consists of solving a mathematical programming formulation 
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embedded in a rolling horizon framework for the dynamic assignment and 

sequencing of trucks to jobs when requests for service arise on a continuous basis. 

The MIP formulation of the problem faced at each stage allows for the dynamic 

reassignment of trucks to loads, including diversion of a truck to a new load when 

already en-route to pick up another load, as well as for the dynamic resequencing 

of the order in which loads are to be served, as new loads arrive and conditions 

unfold.  Loads have associated time windows for pick up and delivery, and the 

objective function includes an explicit penalty cost for not serving a particular 

load.  The resulting off-line VRP problem is solved using a commercial 

optimization solver (CPLEX in this case). However, applicability of that approach 

is at present limited to relatively small problems, because of its computational 

intensiveness.  This is a serious drawback from an operational standpoint in the 

time-constrained dynamic decision problem environment described earlier. 

Furthermore, it is still only a local optimization approach from the standpoint of 

the entire dynamic problem horizon as it cannot guarantee global optimality over 

the entire stream of still unknown demands, given the stochastic dynamic nature 

of these systems.   

Powell, Snow, and Cheung develop heuristic approaches (2000) in which 

they introduce a mathematical formulation and two optimization-based heuristics. 

Comparison with one of these algorithms is presented in Chapter 5. 
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2.3.3 Meta-heuristics 

Another solution approach is to use meta-heuristics based on a searching 

algorithm. The effectiveness of these methods depends on their ability to adapt to 

a particular realization, to avoid entrapment at a local solution, and to exploit the 

basic structure of the problem. The drawback of these approaches is that the 

solution quality is unstable. In other words, the solution quality depends on the 

parameter settings. As a result, new parameter settings might be required 

depending on the problem realization.  

 

2.3.31 Tabu Search 

The basic concept of ‘tabu search’ is as follows. Tabu search starts at an 

initial solution and allows moves to inferior neighboring solutions. This 

movement utilizes a list of ‘tabu moves’, which are unallowable moves, as they 

are likely to return the search to a neighborhood already investigated. Badeau et 

al. (1997) propose a parallel tabu search algorithm for the static version of VRP 

with time windows and Gendreau, Guertin, Potvin and Taillard (1999) introduce 

parallel tabu search heuristics for real-time vehicle routing and dispatching 

problems. In addition, Ichoua, Gendreau and Potivin (2000) investigate a 

diversion issue in the class of pick up only problems based on the tabu search 

algorithm. The diversion means redirecting an empty vehicle on its way to make a 

pick up to a newly arrived and more profitable demand.  
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2.3.3.2 Other Meta-heuristics 

In addition to the ‘tabu search’ algorithm, other promising meta-heuristic 

algorithms are ‘simulated annealing’ and ‘genetic algorithm’. The simulated 

annealing is a local searching procedure designed to avoid being entrapped at a 

local optimum by allowing moves to inferior neighbor solutions with a probability 

proportional to difference and cooling temperature.  Chiang and Russell (1996) 

present an algorithm for VRPTW based on this meta-heuristic.  

Inspired from biological evolution, in which organic methods for encoding 

the structure of living beings operates on chromosomes rather than on beings, the 

genetic algorithm was developed. Jung and Haghani (2000) propose a genetic 

algorithm for pickup and delivery problems with time windows.  

 

2.4 ACCEPTANCE DECISION 

Airline yield management problems, in which seat inventory control 

among the various fare classes has been studied for a long time, provide good 

insight into real-time acceptance decision-making in a dynamic routing and 

scheduling problem with priority demand. McGill and Van Ryzin (1999) provide 

a comprehensive overview on the revenue management problems. Liang (1999) 

formulates the yield management problem as a continuous time, stochastic 

dynamic programming model. Other principle problems presenting conceptual 

ideas for the acceptance decision problem are the various forms of the dynamic 

and stochastic knapsack problem (Kleywegt & Papastavrou, 2001; Papastavrou et 

al., 1996). Kleywegt and Papastavrou (1998) present the acceptance and 
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dispatching policies for a distribution problem. However, most of the research 

efforts in this field assume that the capacity of the system is fixed so that each 

accepted demand would reduce the capacity. In contrast, in the dynamic routing 

and scheduling problem the capability of the system to accept requested demands 

would be recouped as the system completes the delivery service. Furthermore, the 

system shows a different level of capability to accept the different types of 

demands due to specified time-windows. In other words, the system at a given 

status in which a demand is feasible, cannot accept another demand, which has a 

relatively short time window. 
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Chapter 3 Conceptual Framework  

The principal focus of this chapter is to provide specific context and 

formal definition of the problem addressed in this thesis and to present the 

underlying concepts for the solution approaches. The particular dynamic 

truckload pickup-and-delivery problem that motivates this study is one in which 

customers with time-sensitive load requests call the trucking company on a 

continuous basis, and expect a response regarding acceptance or rejection of the 

request within a short time. The carrier with a fleet of trucks should serve the 

accepted demands by picking up the demands at their origins and delivering them 

to the destinations within their specified time-windows. In order to manage the 

dynamically requested demands, a dispatcher or decision maker needs to decide 

whether to accept or reject a demand upon arrival of the request, and make 

demand-truck assignment decisions for the accepted demands, i.e. when and 

which trucks serve the accepted demands within specified time-windows. The 

objective of the dispatcher is to maximize the overall profit while managing the 

service quality; the revenue earned from an accepted demand is proportional to 

the haul-length, and the primary operating cost is proportional to the distance 

traveled by a truck to serve it. To solve this problem, locally oriented hybrid 

operational decision policies combining fast heuristic rules with optimization-

based approaches are proposed. 
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3.1 PROBLEM STATEMENT  

3.1.1 Problem Context 

The specific set of problems studied here corresponds to dynamic 

truckload pickup-and-delivery situations as a special form of dynamic multi-

vehicle routing problems with time-windows. In these problems, once a truck is 

loaded at the origin of a demand, it travels to the destination and delivers the 

demand before picking up another demand. In this type of problem, the possibility 

of en-route load swap, in which two or more trucks meet at some point on the way 

to the destination and exchange their loads, is precluded. The dispatcher receives 

demand requests over a bounded geographical region dynamically. Information 

concerning the occurrence demands, as well as their attributes such as origin, 

destination and time-window (as well as demand type), is not known to the 

dispatcher in advance, but instead is revealed on a continuous basis as the 

scheduled routes and/or the solution procedures are executed. Furthermore, the 

dispatcher does not know beforehand the timing of when the information is 

updated upon being triggered by a newly requested demand. This in turn requires 

dynamic operation of the trucking fleet to provide highly responsive service. 

Based on the insight of Regan (1997) and Powell (1996), additional 

assumptions are made to provide a robust definition of the dynamic fleet 

management problems studied in this thesis. In these problems, a trucking 

company with a fixed number of trucks is considered. All the trucks are empty 

and idle at a depot at the beginning of the day, and work on a daily basis. The 

dispatcher has the authority and responsibility to control all activities of the 
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vehicles in real-time regardless of whether the fleet is composed of company-

owned vehicles, owner-operator drivers, or a mixture. Real-time information, 

including current location and state of the vehicles (idle, moving empty, moving 

loaded), is known to the dispatcher via location and telecommunication 

technologies. In addition, two-way communication makes it possible for the 

dispatcher to control the fleet in real-time.  

It is assumed that the requested demands are homogeneous in the sense 

that they are physically substitutable, which enables the fleet of trucks to swap 

scheduled demands that have not been picked up. In other words, the differences 

among trucks in the fleet such as having a tank for petroleum, refrigerated units 

for food, or special equipment for hazardous material are ignored. Additionally, it 

is assumed that a tractor will be paired with a trailer (empty or loaded) at all 

times.  Furthermore, it is assumed that all pick-ups and deliveries are made 

instantaneously. 

Vehicles are assumed to travel at a constant speed according to the 

Euclidean travel metric. Furthermore, exogenous stochastic components including 

variability in truck travel time due to congestion or accidents, and in loading and 

unloading times spent at customer sites, are not explicitly included in the problem 

context. However, real-time information on the fleet of vehicles may enable the 

decision maker to react to this variability.  

Detailed driver work regulations, specified by Federal law or local rules 

which limit the number of hours a driver can work at any one time are ignored. 



 36

Furthermore, the problem excludes issues such as returning drivers to their 

homes, suitability of the driver, required deriver skill and equipment for a load. 

For this class of problem, arrival rates ranging from a moderate demand 

situation in which most of the demands can be served, to an over-saturated 

demand situation, are investigated. In the latter case, the carrier cannot serve all 

the requested demands. Not only does this situation force the dispatcher to reject 

part of the demands but it also provides the opportunity to select highly profitable 

demands. In addition, in a future problem specification, the customers are 

classified into two groups, time sensitive vs. price sensitive. 

Note that the problems stated here simplify the real-world trucking 

problem by ignoring certain features, as stated above, but solution of these 

idealized problems can provide useful insights for the corresponding real-world 

fleet management problems. 

 

3.1.2 Objectives and Criteria 

In general static and deterministic routing and scheduling problems, in 

which all data are known in advance and will not change, the criterion for 

evaluating the quality of a solution (typically in the form of routing schedule) is 

relatively obvious. If all demands can be served, the standard objective is to 

minimize cost subject to the constraints of serving all the demands. Alternatively, 

some models capture the rejection costs as well as the effect of poor service in the 

objective function while relaxing the constraints of accepting all demands. In a 

dynamic environment, however, the objective of a dynamic fleet management 
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model depends on the particular application (Powell et al, 1995). Minimizing cost 

over the time horizon of interest is still one of the standard measures for many 

applications. However, for applications where serving all demands all the time is 

not guaranteed, maximizing profit capturing the rejection cost is a more realistic 

objective. Other objectives may include maximizing throughput and minimizing 

the average time in the queue of the dispatching system. Several studies have 

focused on the average time a demand spends in the system. For example, Gans 

and Van Ryzin (1999) introduce a dynamic routing and consolidation model, in 

which a finite number of load types arrive randomly over time to a distribution 

center and wait for delivery service. A vehicle with limited capacity dynamically 

selects a route characterized by the number of each type of load as well as by the 

time required to complete the route. This problem, characterized by variability of 

load arrivals over time as well as variability of the times required to deliver loads, 

tends to exhibit inevitable queuing delays. For a shipper, these delays introduce 

inventories waiting for service, and may cause an increase in inventory facility 

space. For a carrier, increasing capacity to reduce delay increases the risk of 

underutilizing its transportation assets. Hence, minimizing the average time the 

demands spend in the system is a valid objective of a dynamic problem.  

In this thesis, the primary objective for fleet operation is to maximize 

‘profitability’ while managing ‘service quality’ within acceptable level. Profit is 

equivalent to earned revenue minus required cost. Since it is assumed that the 

revenue is proportional to the haul-length (as well as depending on the demand 

type in a particular problem specification), the revenue is managed through a 
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load-acceptance decision. The cost is composed of fixed and variable 

components. The cost associated with the vehicle is a fixed cost because it is 

assumed that the fleet size is fixed. This assumption stems from the fact that the 

fleet size is determined by a long-term plan and cannot be modified in the short 

run. The variable operating cost is incurred through the traveled distance, 

including loaded and empty movements. Once a demand is accepted, the 

associated loaded distance is fixed. On the other hand, the empty movement 

required to serve an accepted demand is still variable until the demand is picked 

up because the dispatcher can modify the routing schedule. Therefore, one of the 

main responsibilities of the dispatcher is to minimize the variable costs 

particularly the empty movements by appropriate assignment (routing schedule) 

decisions. Note that, the assignment decisions have significant impact on the fleet 

capability of accepting demands.  

The service quality, another main issue addressed in this research, is 

measured by ‘response time’. The response time represents the time elapsed from 

the demand arrival time to the time when the customer receives the 

acceptance/rejection decision. If this time is too long compared to a customer’s 

expectation, the dispatcher may lose the customer, particularly in this dynamic 

environment since it is assumed that most of the customers use telephone or 

Internet. Hence, the decision maker should respond to a customer within tolerable 

time. Furthermore, in the setting of this thesis, “waiting time” represents the time 

elapsed between the arrival of a demand and its eventual pickup time, i.e. the 

amount of time the demand spends in the queue of the dispatching system. The 
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proposed dynamic operational decision policies in Chapter 4 and 5 discuss the 

concept of “waiting time” in detail. The Dynamic Adaptive Dispatching (DAD) 

system proposed in Chapter 6 explicitly analyzes the response time. Furthermore, 

Chapter 7 introduces an advanced time-window structure, which captures the 

effect of delay. 

  

3.1.3 Time-Windows 

This section discusses the time-window constraint that represents the time 

sensitivity of the demand and limits the fleet capacity to accept requested 

demands. The time-window constraint associated with a demand represents the 

time interval in which the demand should be served. It can be classified into two 

types: hard time-windows and soft-time windows. A hard time-window constraint 

means that the time interval should be strictly respected. That is, the constraint 

should not be violated under any circumstance. In contrast, soft time-windows 

allow some violation, i.e., not all demands must be served within their time-

windows, but when the demand is not served within its specified time-window a 

penalty is typically incurred. This is formulated by introducing the corresponding 

constraints into the objective function. The time-window in truckload problems 

consists of four components: earliest pickup time, latest pick time, earliest 

delivery time, and latest delivery time. In this thesis, since it is assumed that the 

vehicles move with a constant speed, once a pickup time is specified, the delivery 

time is consequently specified. Therefore, only two components (earliest and 

latest pickup times) are considered. Furthermore, it is assumed that the earliest 
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pickup time of a demand is identical to the arrival time of the demand request. 

Thus, it is impossible to pick up a demand before its earliest pickup time. 

Many variations on the time-window structure exist, depending on the 

shippers’ requirements. Figure 3.1 shows two examples, in which the solid line 

represents the penalty incurred, and τ- and τ+ denote the earliest and latest pickup 

times of a demand, respectively.  

 

Figure 3.1 Time-Window configurations 

Types I and II in the figure show the hard time-window configuration, in 

which the demand must be picked up within the specified time-windows [τ-, τ+]. 

Otherwise, an infinite penalty is charged to preclude serving the demand out of its 

specified time-window. Type I shows the case where no penalty is charged if a 

demand is picked up at any time within the specified time interval. In contrast, 

Type II introduces one more component, τcr, denoting a “critical” time such that 

no penalty is incurred if the demand is picked up in (τ-, τcr). Otherwise, if the 

demand is picked up after the “critical time”, a penalty proportional to the amount 
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of “over time” (from τcr to the actual pickup time) is assessed. In this way, Type II 

favors earlier delivery after the “critical time”. In this thesis, those two types of 

time-windows are employed, implemented, and discussed. Furthermore, it is 

assumed that the width of these time-windows is relatively wide compared to the 

average haul-length, so that it is possible to construct a routing schedule with 

multiple legs. 

The time-window has a significant impact on the fleet’s ability to accept a 

demand. A demand with a wide time-window has more flexibility to be assigned 

to a vehicle than a narrow time-window demand. In addition, a dispatcher can 

hold more demands for a longer time in the queue of the dispatching system as the 

average width of time-windows associated with the demands in the queue 

increases. Therefore, under a certain demand intensity situation, as the average 

time-window width increases, the ability of the system to accept demands 

increases. 

Furthermore, the time-window feature plays an important role in 

identifying a policy to make a delivery schedule in a fleet management problem. 

For example, suppose that time-windows of the requested demands are tight (the 

latest pickup time is close to the arrival time), the dispatcher cannot hold the 

demands in the queue for a long time. In other words, when a demand is 

requested, immediate assignment of the demand to a feasible vehicle (currently 

available or to be available in a short time, and close enough to the requested 

demand’s origin) is required to satisfy the tight time-window constraints. In this 

case, a local snapshot problem consisting of the vehicles in the fleet and the 
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demands that are accepted but not-yet-picked up can be formulated as a pure 

assignment problem. Note that, in this formulation, the number of available 

vehicles should be greater than or equal to the number of demands and each 

vehicle can be assigned to at most one demand. This is not a NP- hard problem. 

In the extreme, the ‘first come first serve’ (FCFS) priority structure in conjunction 

with a greedy assignment strategy (a requested demand is assigned to the closest 

available vehicle) might be the appropriate approach to construct a feasible 

schedule. Furthermore, if the demand arrival rate is low, a repositioning policy of 

moving idle vehicles to high potential regions in anticipation of future demands 

might be necessary in order to reduce the risk of underutilizing the fleet of 

vehicles.  

Conversely, wide time-windows, compared to the average haul-length of 

demands, provide a dispatcher with the opportunity to construct a routing 

schedule with multiple legs. In this case, a demand could be assigned to a vehicle 

that is not currently available. More specifically, the demand may be put in the 

service queue of the vehicle. Furthermore, a demand assigned to one vehicle 

could be reassigned to another vehicle or the order to serve the demand can be re-

sequenced until it is eventually picked up. This reassignment opportunity can 

significantly improve the system efficiency although constructing the optimal 

routing schedule is a NP-hard problem even under static conditions, in which all 

data are known before the route is constructed and do not change afterward. Thus, 

constructing a routing schedule, with possible job queue for each vehicle, is taken 
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as the basic approach to solve this wide time-window demand problem in this 

thesis. 

 

3.2 FORMAL PROBLEM DEFINITION 

This section describes the notation and theoretical concepts required to 

describe the dynamic fleet management problem explored in this thesis.  First, 

the notation to describe a demand is discussed, followed by a discussion of 

vehicle dynamics. Then, the objective function of the dynamic fleet management 

problem is presented.  

At time t=0, all K vehicles of a truck company are empty and idle at a 

central depot. Transportation service (truckload pickup-and-delivery) requests 

dynamically arrive at a dispatcher or a decision maker of the company during a 
finite time horizon, [0, T] over a bounded region. At arrival instants, TA,ii i

}A{ <  

= }ˆ,...,1,{ NiAi = , the demand information arrives into the system, in which Ai 

denotes the arrival time of the i th request. Thus, N̂ represents the total number of 
requested demands during the finite time horizon [0, T], i.e. iN

TAi <
= maxˆ . Since it 

is assumed that the earliest pick-up time of a demand is the arrival time, a load i is 

completely defined by the location (X and Y coordinates) of the origin (oi), 

destination (di), and specified pickup time-windows (earliest and latest pickup 

times: +−
ii ττ , ), which is denoted by a vector, ),,,()( +−≡Λ iii ττii do . The 

corresponding haul-length of load i, the distance between oi and di, is denoted as 

li.  
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When the carrier provides multiple levels of service, additional attributes 

of a demand are required. For example, the demands may be classified into two 

types, ‘priority’ and ‘regular’ demands, where the ‘priority’ demand represents a 

highly time-sensitive demand so that relatively short Type I time-windows are 

applied. In contrast, the other customers would be less sensitive to time and more 

sensitive to price, so ‘regular’, low price, service is requested. This class of 

demand employs relatively wide (as compared to the width of Type I) Type II 

time-windows, for which pickup is still allowed to occur after a critical time 

( cr
iτ ). However, a penalty is then charged depending on the excess time 

( cr
ii τδ − )+ and haul-length li, where iδ  denotes the actual pickup time of 

demand i. Therefore, the vector of demand attributes is now extended to 

),,,,,()( i
cr
iiii ξτττ +−≡Λ′ ii do , which includes the demand type (ξi), and the 

critical time ( cr
iτ ) associated with a ‘regular’ demand, as shown in Figure 3.1 

(Type II).  

As these requests arrive, a dispatcher needs to make a series of decisions, 

including acceptance/rejection upon arrival of a demand and assignment of 

vehicles to the accepted demands. How to make these decisions along with how to 

apply the outcomes of these decisions to the dynamic operation of the fleet, are 

called a policy or strategy hereafter.  

Vehicle status, location and associated schedule at time t depend on the 

operation policy applied. Thus, under a certain policy π, a fleet of K vehicles in a 

specified region at time t can be described as follows. Each vehicle has a set of 

attributes denoted by a vector (Γπ(k, t)) representing current location (ok,π(t)) and 
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status (sk,π(t)) of vehicle k at time t under policy π, where (sk,π(t)) can take three 

values: 1 for moving loaded. 2 for moving empty (towards the next demand pick 

up), 3 for idle status of vehicle k. The routing schedule of truck k at time t under 

the last updated routing schedule determined by policy π is represented as 
follows: Let )(, tq k

j
π  denote the jth scheduled load in vehicle k’s job queue under 

policy π at time t. Then the vehicle’s queue is described by a vector )(, tq k π  = 

})(....,),(),({ ,
j

,
2

,
1 tqtqtq kkk πππ , and | )(, tq k π | denotes the queue length of vehicle k 

and φπ =)(, tq k  represents that the vehicle k is idle. Furthermore, the overall 

routing schedule of the fleet at time t is denoted by π
tQ  = }...,,1),({ , Kktq k =π . 

πΓ t ={(Γπ(k, t)), k=1, …, K} and π
tQ  fully describe the current (at time t) 

dynamics of the operational system under policy π. 

The objective is to find a policy π, which maximizes the total profit over 

demands requested during the time horizon [0, T]. The policies under 

consideration are limited to utilize only known and certain information. The 

proposed policies, however, are analyzed and evaluated with probabilistic 

assumptions about the demands. The attributes of a demand, such as locations of 

origin and destination, time-windows (and demand types) follow certain 

probability distributions. For example, in most of the numerical experiment 

conducted in this study, the origin location specified in terms of X and Y 

coordinates, is assumed to follow a uniform distribution over the specified region. 

The actual locations of specified loads only become known to the dispatcher at 

the corresponding arrival instants. The arrival instants }ˆ,...,1,{ NiAi =  follow a 

Poisson process with arrival rate λ.  
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The objective function is defined as follows. Three variables are defined to 

record the outcomes of decisions under a certain policy π. First, for the 

acceptance/rejection decision, let π
iD  denote the decision of whether to accept 

or reject the requested demand i when a certain policy π is applied as follows: 

 





≡
rejectedisrequestif0
acceptedisrequestif1

i
i

Di
π  

 

Second, let πϕ i  denote the transportation cost required to serve load i. This value 

is based on the empty traveled distance to pick up the load. Note that, when en-

route diversion is allowed, πϕ i  should be carefully recorded to consider the 

redirected cases. Finally, πδ i  represents the pickup time of demand i. The last 

two variables, πϕ i  and πδ i  are obtained from the routing schedule that a fleet of 

vehicles actually follow under policy π. In addition, two parameters Ri and β are 

defined; Ri denotes the reward from load i, which is proportional to the loaded 

distance (li) and price rate (r) such that Ri = r * li. Let β denote the transportation 

cost per unit distance. Then, the total profit obtained under policy π is defined as  

  

∑
<

+−=
TA

i
iiii

i

))l(R(DV πππ ϕβ  

πV  captures the fleet’s total revenue and transportation cost including 

traveled empty distance and loaded distance under policy π. Therefore, the overall 

objective is to find the optimal policy π*, if such a policy exists, that generates 

maximum total profit V*, where Π represents a set of all possible policies under 

consideration. 
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∑
<

∈

+−=
TA

i
iiii

*
i

))l(R(DV max ππ

Ππ
ϕβ  

 

Under situations, in which most of the requested demands can be served, 

assignment decisions may dominate the overall profit. Thus, applying a simple 

acceptance decision policy, in which all feasible demands would be accepted, 

along with the optimal assignment decision policy may produce similar results to 

the optimal policy. In other words, the number of accepted demands under the 

optimal policy would be near equal to the total number of requested demands 

( N̂D
TA

i
i

i *

≈∑
<

π ), where N̂  denotes the total number of requested demands during 

the time horizon [0, T]. In this case, the objective can be simplified to find the 

minimum cost policy as follows.  

 

∑
<

∈

≈′
TA

i
i

*
i

minV π

Ππ
ϕ  

 

When two classes of service are considered, the reward from a load (Ri) 

also depends on the type of the demand (ξi =1 regular demand, ξi =0 priority 

demand). In other words, different price rates per unit-loaded distance are applied 

(r0 >> r1). In addition, another cost is introduced, the lateness penalty, which 

depends on ( cr
ii τδ π − )+ and the haul-length (li) of demand i. Therefore, the 

optimal total profit is presented as follows. 
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∑
<

+

∈

−−+−=
TA

i

cr
iiiiiiii

*''
i

))(l)l(R(DV max τδξγϕβ πππ

Ππ
 

where γ denotes a scaling factor to determine the penalty contribution to the 

objective function. 

 

3.3 SOLUTION APPROACHES 

This section discusses the nature of decisions required of the dispatcher, 

including the load acceptance decision and the assignment decision (of a load to a 

vehicle’s service queue). This leads to a discussion of solution approaches 

including local snapshot problem formulations, and the concept of various 

dynamic operation policies using these formulations.  

The acceptance/rejection decision is made upon arrival of the demand, or 

within a short time. This decision is permanent, and cannot be reversed. Once a 

load is rejected, it cannot be recalled in the system. As a result, the 

acceptance/rejection decision governs the revenue of the carrier. On the other 

hand, the assignment decision of a load to a vehicle is made in the manner of a 

routing schedule associated with the vehicle. The routing schedule can be 

modified in response to updated information and/or reassignment decisions. A 

load assigned to a vehicle can be reassigned to another vehicle, and order of 

service can be re-sequenced repeatedly until the load is eventually picked up. 

Furthermore, it is not necessary to inform the driver of this decision until he/she is 

ready to travel to pick up the assigned demand. Typically, when a driver arrives at 

an unloading site, the next job is assigned by the dispatcher. In this way, a driver 
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need not be aware of these frequent modifications. However, in some cases, a 

driver on the way to pick up a scheduled demand may be diverted by the 

dispatcher to pick-up another demand. Such en-route diversion refers to 

redirecting of a moving, empty vehicle to another load (Regan et al., 1995, Ichoua 

et al., 2000). The routing schedule determines the movement of vehicles, 

particularly the empty movement. Thus, it is in this way that the routing schedule 

governs the operating cost of the fleet.  

The basic scheme to solve the dynamic fleet management problem is to 

solve successive deterministic local snapshot problems repeatedly, as close to 

optimality as possible whenever new input occurs. Note that, although the optimal 

solution for a local problem may obtained, such optimality is only local (myopic), 

as there is no guarantee that a succession of locally optimal solution would be 

optimal in a global sense (hind sight), over the entire sequence of demands 

unfolding over the period of interest. Powell, Towns and Marar (2000) show that 

a sub-optimal solution for a particular local problem instance could even 

outperform the local optimal solution over time in a wide range of conditions, 

particularly in the presence of a large amount of uncertainty. However, they use a 

simple load-vehicle matching model for the local problems. In contrast, due to the 

short-haul property of the demands and sufficient width of the time-windows 

along with high enough arrival rate, it is possible to construct a routing schedule 

of multiple legs in this problem. Although these local vehicle routing problems 

are known to be NP-Hard problems, constructing a routing schedule for each 

vehicle rather than matching a vehicle to a demand may lead to better 
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performance in the global sense. Therefore, all the policies in this thesis seek the 

optimal solution for each (local) snapshot problem.  

All the policies considered in this thesis are locally oriented with respect 

to temporal and algorithmic considerations. The time frame to be considered is 

local in the sense that a decision (particularly assignment decision) of a policy at 

time t governs the vehicle movements until the next decision is made.  

Furthermore, the policies are restricted to utilize only current and past, rather than 

forecasted information, making few or no assumptions about future demand (for 

acceptance/rejection decisions, it is assumed that the average demand intensity is 

known to the dispatcher in advance; furthermore, revenue management policies in 

chapter 7 consider probabilistic assumptions about demand location). The 

proposed policies pursue local myopic optimal routing schedule assuming no 

future demands rather than explicitly seek a global optimal routing schedule.   

 The process of updating the routing schedule is triggered by new load 

arrivals and reassignments of loads. Note that vehicles continue along the 

previously established schedule until the completion of a decision process. A new 

routing schedule does not become available instantaneously upon arrival of a new 

load or initiation of the reassignment process. The time to obtain a solution must 

be recognized as an integral element of the dynamic solution process. This issue is 

discussed in detail in Section 3.3.2 and in Chapter 6  

A local snapshot problem defined with the entire fleet of available trucks 

and the entire set of known accepted and unserved demands may be too large to 

solve optimally in a sufficiently short time, notwithstanding continuing rapid 
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developments in both computing power and algorithmic software efficiency. 

Therefore, the following sub-sections present Mixed Integer Programming (MIP) 

formulations for the local problems, and dynamic operation policies determining 

how to set up the local problems and how to apply the solutions of the local 

problems to the dispatching system in a dynamic context. In addition, the policies 

regarding the acceptance/rejection decision of the dynamically requested demands 

are presented. 

 

3.3.1 Local Snapshot Problem Formulations 

In the dynamic decision process considered in this problem context, the 

objective of the local problem is to serve all known accepted demands with a 

given set of vehicles, at least cost without consideration of any future demand. 

However, the formulations presented here are more general, in that they also 

allow acceptance/rejection of load requests. Special cases of theses formulations 

are then implemented to reflect specific operational policy assumptions and 

dynamic decision strategies. Two Mixed Integer Programming (MIP) 

formulations are presented. The first considers homogenous demands, while the 

second considers two classes, regular and priority demands. 

The first MIP model is based on Yang, Jaillet and Mahmassani’s 

formulation (Yang et al. 1999, 2002). Since it is assumed that the vehicles move 

with a constant speed, time and distance are used interchangeably in this 

formulation. There are K vehicles (1, …, K) and N demands at time t in a local 

problem, where K and N may be less than the fleet size and total number of 
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demands in the system depending on the dynamic operation policy being applied. 

Some policies define a local problem with subsets of vehicles and demands. For 

notational simplicity, however, K is used to represent the number of vehicles in a 

local problem. Note that the demands that have already been served or are 

currently being served, at the given decision epoch, are not considered.  

 
MIP Formulation I: Homogeneous demands 

This formulation corresponds to a routing and scheduling problem with 

time-window constraints. The objective function is to find the least-cost set of 

cycles that involve all the nodes of (1, …, K, K+1, …, K+N) where node k (k = 1, 

…, K) represents vehicle k and node K+i (i = 1, …, N) corresponds to demand i. 

The binary decision variable uvx  (u, v = 1, …, K+N) indicates whether arc (u, v) 
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is selected in one of the cycles; iKkx +,  (k = 1, …, K; i = 1, …, N ) indicates 

whether vehicle k serves demand i first, jKiKx ++ ,  (k = 1, …, K; i,j  = 1, …, N ) 

indicates if demand j is served immediately after demand i, ii,KKx ++ =1 (k = 1, …, 

K) means that demand i is rejected, and 1, =kkx represents that vehicle k will be 

idle. Furthermore, the continuous variable iδ  represents the pickup time of 

demand i. 

The input parameters are extracted from the information collected at 

decision epoch t. The time that vehicle k will become available is denoted by νk, 

given the vehicle’s status at a decision epoch. A similar updating procedure is 

applied to k
id0 , which denotes the distance from vehicle k’s updated location to 

demand i’s origin. These updating procedure must also take into account the 

computation time required to solve the local snapshot problem. This issue is 

discussed in detail in Section 3.3.2.2. The parameters +−
ii ττ ,  represent the 

earliest and latest pickup times of demand i, respectively; ijd  represents the 

distance from demand i’s destination (di) to demand j’s origin (oj), and li 

represents the loaded distance of demand i. In addition, M is a constant large 

enough to let constraint (5) be nonrestrictive when xK+i,K+j = 0. 

The acceptance/rejection decision in this formulation depends on the 

parameter ρ. If a demand i is rejected (xK+i,K+i =1), a penalty proportional to the 

haul-length (ρ * li) is incurred. In a dynamic environment, it may not be 

acceptable to reject demands that were accepted in previous decision epochs. To 

preclude this occurrence, xK+i,K+i is pre-specified as 0 for all existing demands 

other than the newly arrived demand. Alternatively, if the local problem is defined 
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for situations where all the demands must be served (for example, as part of 

reassignment procedure) ρ could be specified as a large constant to preclude any 

rejection.  
 

Figure 3.2 Example of a solution of MIP 

The solution of this MIP formulation produces cycles, which include at 

least one vehicle node due to the constraints (4) and (5), except for the isolated 

(rejected) demands, for which xK+i,K+i =1. A cycle is translated into vehicle 

schedules that serve the demands. For example, in Figure 3.2, a cycle consisting 

of 1, K+1, K+3, 2, K+2, K+4,1 is interpreted such that vehicle 1 serves demands 

1 and 3 sequentially, and vehicle 2 serves demands 2 and 4. A cycle with one 

vehicle node (3) indicates that this vehicle will be idle, and a cycle with one 

demand node (K+5) indicates that the demand is rejected. As the objective 

function does not involve the pick up time of demand i, iδ  can take any value 

K+1

1 

K+3

2
K+2

K+4

3
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within the boundary of the constraints. Thus, when constructing a routing 

schedule iδ  is specified as the earliest possible pickup time following the order 

of service. 

  
MIP Formulation II: Two demand classes 

 

The second MIP formulation considers two classes of demand. In this 

formulation, B is also specified as a constant large enough to release constraint (5) 

when demand i is a priority demand (ξi = 0). A new variable ωi is introduced to 

represent the overtime, the elapsed time from the critical time ( cr
iτ ) to the pickup 

time (δi). Due to constraints (5) and (6) as well as the objective function, ωi takes 
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a positive value only if a regular demand i (ξi = 1) is served after the 

corresponding critical time ( cr
ii τδ ≥ ). Otherwise, the value of ωi is zero. The 

penalty is proportional to the overtime ωi as well as haul length of demand i. γ 

denotes a scaling factor to determine the penalty charged to the objective 

function. 

3.3.2 Dynamic Operation Policies  

3.3.2.1 Hybrid Dynamic Decision policy 

The MIP formulations presented in Section 3.3.1 construct a routing 

schedule by solving a local problem. Even though the schedule from the optimal 

solution of a local problem does not necessarily achieve global (hindsight, after 

the fact) optimality, it can produce a local optimal schedule at each decision 

moment. However, the computation time to solve the MIP model is a major 

impediment to direct implementation of the model. The dispatcher must respond 

to the customer within a short time, at least with regard to acceptance or rejection 

of the load, which is typically ensured by a feasible assignment. Therefore, time 

limitation is a primary consideration and significant hurdle for the execution of 

optimization procedures, especially with regard to acceptance decisions. 

However, once a load is accepted, the manner in which it is served, namely the 

routing and scheduling of a truck to serve it, can be modified by reassignment as 

warranted by unfolding conditions, so long as the associated time-windows are 

respected. Nonetheless, it is still difficult to solve the local problem optimally 

(particularly when it involves a large size fleet of trucks) due to the complexity of 

the problem and unknown timing of the next demand arrival. Therefore, various 
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algorithms, such as those discussed in Section 3.3.2.3 and Section 3.3.2.4 are 

developed to solve the local problem as close to optimality as possible. 

An alternative heuristic approach to solve the local problem, based on 

Regan, Mahmassani and Jaillet’s work (1996a), is to find the minimum cost 

sequence of demands for each truck including the newly requested demand 

whenever a request is received, then compare these costs across the available fleet 

to identify the feasible vehicle-load assignment with the minimum additional cost. 

For this procedure, the MIP formulations presented in the above section can be 

applied to a single vehicle and its associated demands. Alternatively, it is possible 

to investigate all possible job-sequences for each vehicle with an enumeration 

method. If there is no feasible vehicle in the fleet, the demand is rejected outright. 

These heuristic approaches can find ‘good’ solutions in relatively short computing 

time, but with no guarantee of obtaining the local optimal solution. In other 

words, there remains an opportunity to obtain a better solution at each decision 

instance by solving the associated local problem with the MIP model. 

In a dynamic environment, the above two approaches have pros and cons. 

The basic idea of combining the above two approaches is as follows: the efficient 

and quick heuristic rules are used for a feasibility check and to construct an initial 

routing schedule upon demand arrival, while the optimization-based procedures 

implementing the MIP models over the entire fleet (or a subset) of vehicles are 

used for improving the system efficiency before the next demand comes in. The 

specific procedures and detailed logic of this hybrid approach are discussed in the 

following chapters. Note that one of the advantages of this combined hybrid 
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approach is that the schedule resulting from the fast heuristic procedure provides 

an upper bound for the objective value and an initial feasible solution for the 

optimization-based approach. 

 

3.3.2.2 Local Problem Setting  

When a local snapshot problem is set for the proposed algorithm, the 

computation time to solve the local problem needs to be taken into consideration 

due to the vehicle movement that will occur before completion of the routing 

decision process execution. When a local snapshot problem is set on the basis of 

the current state of the vehicles and the known but not served demands, it is 

important to avoid conflicts between the routing schedule obtained in the solution 

and the updated locations and status of the vehicles. 

For example, suppose that a vehicle is scheduled to serve load A and load 

B sequentially, as illustrated in Figure 3.3, where the dotted lines represent empty 

movements and solid lines represent loaded movements. When the computation 

finishes at t+∆t, the solution of this assignment may direct the vehicle to pick up 

load B first instead of load A, even though the vehicle has already picked up load 

A. To avoid this type of conflict, the local snapshot problem at time t must be 

carefully defined to exclude load A from the local problem. Therefore, only a 

subset of demands, rather than the entire set of demands in a vehicle’s queue, is 

typically selected as candidate demands for the local problem. Not only is it 

possible to choose a subset of demands, but a reassignment procedure aimed at 

improving system efficiency may take into account a subset of vehicles and their 
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associated demands - particularly in problems with a large fleet size, due to the 

complexity of the problem. Note that, ∆t in Figure 3.3 is not predictable in 

advance.  

Figure 3.3: Relationship between assignment execution time and vehicle 
movement 

When a local problem is defined, it uses updated vehicle locations and 

status information instead of the current information. For instance, Figure 3.4 

represents various situations of a vehicle and its schedule. The computation starts 

at time t, and must be completed within ∆t’, the predefined maximum allowable 

computation time. The solid lines represent the loaded movements and the dotted 

lines represent empty movements to pickup a load. 

Figure 3.4 shows updated locations in various situations. If the status of a 

vehicle at t+∆t’ is loaded, the location of the vehicle should be updated to the 

destination of the load, which is the updated location at the time indicated as ⊗ 

(cases I and IV). If the status at t+∆t’, is empty, the input location for a local 

problem is the updated location at t+∆t’ as in cases II and III.  If a vehicle is 

idle, its current location will be used in specifying the local problem. In addition, 

the time at which a vehicle will become available should be modified according to 

the updated information. The value of the allowed computation time will typically 

Schedule of 
a vehicle 

load A load B 

∆t
t t+∆t 
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be set to reflect the characteristics of the problem at hand, the available hardware 

and computational resources, as well as tolerable customer response times. 

 

Figure 3.4 Computation time and local problem setting 

 

3.3.2.3 Partitioning Strategy 

Problem size, defined by the number of vehicles and the number of 

demands, is an important factor that critically affects the computation time for the 

optimization-based solution approach. The required computation effort increases 

exponentially with the problem size. Therefore, a local problem instance at a 

given decision epoch may be too large to solve optimally within an acceptable 

time frame. In order to overcome this obstacle, various partitioning strategies are 

developed based on the ‘divide and conquer’ technique. 

Case I 

Case II 

Case III 

Case IV 

⊗: Updated location of a vehicle 
∆t’: Predefined maximum computation time  

 t    t+∆t’ 

⊗
⊗

⊗
⊗
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The partitioning strategies are designed to select high-potential candidate 

vehicles and their associated demands to set a local snapshot sub-problem. This 

sub-problem is solved optimally. Typically, these partitioning strategies are 

employed for the reassignment stage of the hybrid solution approach. 

Furthermore, the partitioning strategies modify the part of the given schedule 

determined at the previous decision epoch rather than regenerating the optimal 

routing schedule. Detailed discussion is provided in Chapter 5.  

 

3.3.2.4 Dynamic Adaptive Dispatching (DAD)  

Another source of difficulty for the dynamic fleet management problem 

with respect to the proposed local optimization approaches is the unexpected 

inter-arrival time between consecutive demand arrivals. Typically, the solution for 

a local problem needs to be obtained before the next demand arrives. One way to 

satisfy this dynamic operational condition is to restrict the allowable computation 

time for solving a local problem despite problem complexity. However, imposing 

an arbitrary pre-determined computation time for a local problem may waste the 

computational resources of the system. Furthermore, when multiple customers 

call the delivery service almost simultaneously, it may be practically impossible 

to solve the local problems within the gap between successive demand arrivals.  

A dynamic adaptive dispatching strategy is developed to better utilize the 

available computation resources and to satisfy the requirements of this dynamic 

operational environment. This strategy is a variation of the hybrid solution 

approach, in that various assignment decision strategies are adaptively applied 
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depending on the system state. A load arrival triggers a quick heuristic solution 

procedure to make the acceptance decision and the initial schedule. Then, various 

reassignment procedures are implemented repeatedly (along with a partitioning 

strategy and a process to control local snapshot problem size) until the next 

demand arrival. The strategy takes into account the tolerable response time 

concept. Chapter 6 presents a detailed discussion of this strategy.  

   

3.3.2.5 Acceptance/Rejection Decision 

The criteria for a load acceptance/rejection decision, which should be 

made in near real-time or at least in a very short time in order to respond to the 

customer, should take into account various system features. Under a low to 

moderate demand arrival situation, when a carrier can accept and serve most of 

the requested demands, the dispatcher typically tries to accept as many demands 

as possible in order to maximize the overall revenue and to avoid the risk of 

underutilizing the transportation resources. In this case, a possible criterion for the 

acceptance decision is the feasibility of the requested demand, which is assured 

by constructing a feasible routing schedule for the fleet. The hybrid policy 

presented in Section 3.3.2.1 provides a feasible routing schedule in a relatively 

short time with the fast heuristic rules. However, this feasibility check process is 

not based on full assessment, which should explore all possible routing schedules 

of the fleet. 

Under over-saturated demand situations, i.e. when the demand for service 

exceeds the system’s average capacity, the dispatcher cannot accept all requested 
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demands due to the time-window constraints of the demands. In other words, the 

number of demands the dispatcher can accept and hold in the queue of the system 

is limited. This limitation is called ‘holding capacity’, hereafter defined as the 

maximum number of demands waiting for service in the system. On the other 

hand, this situation provides the opportunity to select highly profitable demands 

without the risk of underutilizing transportation assets. Furthermore, it is not 

necessary to hold as many demands as possible in the queue of the system in 

order to avoid the risk. In other words, rejecting some feasible demands does not 

directly result in underutilizing the transportation resources. In conjunction with 

this condition, the number of demands in the system at a decision instant has 

significant impact on the efficiency of the reassignment process. When the 

‘holding capacity’ of the system is completely filled up with the accepted 

demands, it is difficult to find reassignment opportunities to improve system 

efficiency because there is not enough room for the swapping and re-sequencing 

of existing demands. Therefore, an acceptance decision policy that controls the 

total number of demands in the system is proposed. Furthermore, the fast local 

heuristic rule used in the first phase of the hybrid approach can provide a good 

measure to characterize the potential of a demand in a short time. Thus, an 

acceptance decision policy considering these features is proposed. Such strategies 

are discussed in detail in Chapter 6.   

The addition of priority/regular demand types introduces another level of 

complexity to the study of acceptance decision policies. Even under an identical 

system state, the feasibility of a regular demand is significantly different from the 
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feasibility of a priority demand; this is mainly due to the difference in time-

window widths. In other words, the system at a given state in which a regular 

demand is feasible, cannot accept a priority demand. Of course, the feasibility of a 

demand also depends on other various features of the system. The basic idea of 

the acceptance decision in this scenario is to control the acceptance decision of 

the regular demands while accepting as many priority demands as possible since 

the priority demands generate greater revenue than the regular demands. In 

addition, accepting a regular demand may preclude the system from accepting a 

more profitable future priority demand. Hence, while a requested regular demand 

may be feasible, the acceptance decision seeks to maintain the ability of the 

system to accept future priority demands. Detailed discussion of the acceptance 

decision policy for priority and regular demands is provided in Chapter 7 along 

with experimental results. 

 

3.4 EVALUATION METHODOLOGIES  

The methodology by which to evaluate the solution quality of a proposed 

dynamic decision policy is a fundamental question in dynamic fleet management 

problems. For a problem, which is static and has a single well-defined objective 

function in spite of the difficulty of obtaining the optimal solution, comparing the 

objective function values of proposed solution strategies provides a fair evaluation 

(Powell et al., 1995). In the dynamic fleet management problem, however, the 

demands are typically requested under probabilistic assumptions. Thus, it is 

difficult to directly compare proposed strategies. Furthermore, even for a fixed 
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given demand stream, comparison with the global optimal solution (hindsight 

solution) may not be applicable since it is computationally extremely difficult to 

obtain the hindsight optimal solution for a reasonably sized dynamic problem. 

Possible methods for evaluating the strategies include deriving upper and lower 

bounds for the solution, testing the strategies in the worst possible scenario, and 

simulation experiments. This study recommends the use of a simulation 

framework (test bed) for the evaluation of proposed policies in comparison with 

benchmark policies. 

 

3.4.1 Simulation Framework 

Important features of the simulation framework required to evaluate 

dynamic decision policies are presented in this section. In general, a discrete-

event simulation framework is employed to evaluate the performance of the 

proposed algorithms in this study. The fundamental events include demand 

arrival, pick up, and delivery as well as the end of the simulation. Corresponding 

to these events, the simulation defines the system state at each point. In other 

words, the current state of the system is updated and the current value of the 

simulated time (simulation clock) advances from the previous event to the next-

event until the end of the simulation. Since inactive period times are skipped, the 

result of the system can be obtained in a relatively short time compared to real 

time (wall-clock time). In addition to these basic events, some policies explicitly 

take into account the end of the real (wall-clock) computation time of a solution 

procedure as one of the simulation events that update the system state. Hence, the 
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simulation time cannot “get ahead” of the real-world time. In other words, in 

order to simulate the system performance for a certain time, the simulation should 

be run for almost the same amount of time. 

 

3.4.2 Benchmark  

The evaluation of a proposed solution algorithm for static vehicle routing 

problems is relatively simple. For example, applying a solution algorithm with the 

benchmark problems, such as Solomon’s VRPTW (Vehicle Routing Problems 

with Time-Windows, http://w.cba.neu.edu/~msolomon/problems.htm), for which 

the optimal solutions or the best-known solutions are published, demonstrates the 

efficiency of the algorithm. Regarding dynamic routing and scheduling problems, 

however, there is no benchmark problem that has been agreed upon. Furthermore, 

detailed specifications of the problem have a significant impact on the 

performance of a policy. In other words, it is difficult to develop a robust 

algorithm, in which the designed algorithm performs well under various 

conditions and demand patterns. Therefore, two recently published algorithms, 

which are implemented in similar problem settings, are selected.  

The simple heuristic approach (Regan et al., 1996a) presented in Section 

3.3.2.1 is the first benchmark algorithm. This algorithm is implemented to various 

problem settings. Furthermore, Powell, Snow, & Cheung (2000) published 

algorithms for the truckload routing and scheduling problem. One of them is the 

RAPID-SL (Resource Allocation procedure for the Integrated Dynamic 
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Assignment Problem-Single Label). This algorithm is implemented for dynamic 

fleet problems specified in Chapter 5 and the comparative results are reported. 

  

3.5 SUMMARY 

This chapter presented the conceptual and theoretical framework to define, 

solve and evaluate the dynamic fleet management problem. The problem is 

formally defined. The basic scheme to solve the problem and a brief description 

of the proposed policies are presented. Finally, the evaluation methodology is 

discussed.  

The following chapters provide detailed discussion of the decision policies 

(strategies) and numerical results corresponding to the proposed problem 

specifications. First, a small problem with 10 trucks is introduced in Chapter 4. 

This assumes a demand situation in which most of the requested demands can be 

served with the proposed policies. The hybrid strategy presented in section 3.3.2.1 

is applied and its performance is reported with numerical results. The relation 

between local problem size (number of demands involved with the local problem) 

and computation time to solve the local problem is analyzed as well as the policy 

to control the local problem size. Chapter 5 analyzes a large fleet problem with 

low to moderate demand arrival rates. In this chapter, partitioning strategies, 

which select high potential vehicles as candidate vehicles for the reassignment 

stage, are discussed. Chapter 6 assumes over-saturated demand situations, for 

which an intelligent acceptance decision policy rather than simply accepting all 

feasible demands is required. Furthermore, due to the short inter-arrival times 
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between consecutive requests, the local problem is carefully defined to avoid the 

conflict discussed in Section 3.3.2.2. Therefore, the DAD strategy is introduced 

and applied. In addition, a filtering strategy, controlling the total number of 

demands in the system, is presented. Finally, Chapter 7 introduces two types of 

demands and presents revenue management policies through an acceptance 

decision. 
 

 



 69

Chapter 4 Analysis on Small Fleet Problem 

4.1 INTRODUCTION 

Chapter 4 introduces an idealized problem setting with small fleet (10 

trucks), under moderate demand arrival, in which most of the requested demands 

can be served with the available fleet with the proposed dispatching algorithms. 

With respect to a vehicle, the average inter-arrival time between calls for service 

is about 150% of the average haul-length (travel time). Because serving a load 

also entails empty moves by the vehicle, the resulting congestion level in this 

system is quite high, but it is still possible to serve most of the requested demands 

considering the associated time-windows of the demands and the geographical 

area where they are generated. In order to provide enough flexibility to construct 

routing schedules with multiple legs, the type I time-window in Section 3.1.3 is 

applied with an average width that is about 4 times the average haul-length. 

The objective of this stylized problem is to find the policy, which 

minimize the overall operating cost (empty movements) while accepting all 

demands requested during the time horizon (T) as discussed in Section 3.2.  
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Furthermore, the time horizon (T) is specified as a long enough value 

rather than modeling daily-based operation, in order to obtain the steady state 

performance measure. Therefore, average empty distance required to serve a 



 70

demand, ∑
<TA

i

i
i

N̂

πϕ  where N̂  represents the total number of requested demands 

during the finite time horizon [0, T], is a main measure to evaluate the proposed 

policies.  

The two-phases hybrid dynamic decision policies presented in Chapter 3 

are applied to solve the problem, which involves two operational procedures 

controlling the local snapshot problem size in order to control the computing time 

of the optimization-based reassignment procedure. In this small fleet problem, the 

number of vehicles evolved with a local snapshot problem in the reassignment 

phase is fixed (10 vehicles), so only the number of candidate demands for each 

local snapshot problem is controlled. Simulation experiments are conducted to 

evaluate the performance of these strategies under alternative specifications and 

parameter values. The simulation results highlight the tradeoff between 

computation effort and solution quality.  

 

4.2 DYNAMIC OPERATION POLICIES 

4.2.1 Hybrid Dynamic Decision Policy 

The logic for combining the local heuristic and the optimization-based 

approach, articulated in the previous chapter, arises naturally in light of the 

dynamic decision problem context requirements, and the respective features and 

characteristics of the two approaches. The basic mechanism for effectively 

combining the approaches is through the reassignment process, after a load has 

been accepted and assigned to a vehicle by the heuristic approach, and before a 
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new load is received. Therefore, the assignment of loads to vehicles can be 

viewed in two phases.  

In the first phase, called initial assignment, the incoming load is assigned 

to a vehicle using the heuristic rule, as described in Chapter 3 if it is feasible. The 

acceptance criterion in this problem is feasibility of the demand. In other words, 

all feasible demands in the initial assignment phase are accepted. The initial 

assignment procedure examines feasibility and additional cost due to the new 

demand. The vehicle with the least additional cost is selected, and a new schedule 

for that vehicle is made. This additional cost can be a negative value as shown in 

Figure 4.1, where solid lines represent the loaded movements and dotted lines 

show empty movements. As can be seen, as a new demand is inserted, the total 

empty distance to serve demands diminishes.  

 

Figure 4.1 Example of a negative additional cost 

As mentioned in Chapter 3, there are two methods to implement the 

heuristic rule. In the first, the MIP formulation in Section 3.3.1 can be applied 

repeatedly such that a local snapshot problem involves one truck and its 

New load 
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associated demands and the newly requested demand. This procedure is applied to 

the entire fleet of vehicles. The other method investigates all possible job-

sequences ((m+1)!) for each truck, where m represents the number of demands 

not picked up yet in the queue of a vehicle and the additional one corresponds to 

the new demand. In the problem setting here with 10 vehicles with moderate 

demand, the latter method is applied, due to the simplicity of the method. The 

computing time of this method, however, increases dramatically with the queue 

length of each vehicle. Therefore, the former method might be preferable when 

the queue of the waiting jobs for a given truck is long. This initial assignment 

requires relatively short computation time to execute, which is necessary because 

the operator should respond to the customer’s demand in a short time. To improve 

the performance of the strategy, en-route diversion is allowed in the initial 

assignment stage, whereby trucks on the way to pick-up some demand could 

divert to pick up the other demand if profitable. Since the en-route diversion 

decision should be made in a short time to avoid the conflict illustrated in Figure 

3.3, only the initial assignment allows en-route diversion.  

After initial assignment, the operator may have enough time to reconsider 

the vehicles’ routes and schedules before another new load request comes in, 

though it is not guaranteed with probability one due to the nature of Poisson 

arrival process. This constitutes the second phase, during which reassignment is 

carried out using the MIP formulation I presented in Chapter 3 involving the 

entire fleet of vehicles and selected candidate demands. Note that to avoid the 
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conflict shown in Figure 3.3, the local problem for the reassignment phase does 

not include the first scheduled demand of each vehicle in the fleet. 

Nonetheless, it is still important to control the execution time of the 

optimization solution procedure in the second phase, in ways that do not disrupt 

the system’s operation, while improving overall operations by generating 

optimized solutions before the next decision instance. Two techniques are 

proposed and tested for this purpose, as described in the next sections. 

 

4.2.1 Dynamic Control of the Local Problem Size 

Dynamic control of the local problem size in terms of the number of 

candidate demands is proposed. The number of decision variables in the MIP 

formulation greatly affects the computation time to find an optimal solution. In 

this problem setting, the number of loads that are candidate for reassignment is 

controlled to a manageable level (itself dependent on the fleet size, available 

computation resources, and the frequency of load requests, among other 

considerations). The number of demands that are candidate for reassignment is 

controlled by a ‘time cut’ criterion. Given a current set of loads assigned and 

scheduled for each vehicle, the first demand in each vehicle’s schedule will not be 

a candidate for reassignment. Only loads whose future scheduled pickup times are 

later than the predefined time cut criterion, are selected as candidates for 

reassignment. For example, consider the situation depicted in Figure 4.2, in which 

there are three vehicles and 10 demands at the given decision point. Seven of 

those are candidates for reassignment under the time criterion shown in the figure. 
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It is expected that the greater the number of candidates considered for 

reassignment, the better the resulting truck routing schedule. However, computing 

time is not linearly proportional to the number of candidates, but increases 

exponentially with that number as shown in the following simulation experiment. 

Hence the maximum number of re-assignment candidates (max_cand) is limited. 

In identifying the set of candidates for a given local snapshot problem, the cut-off 

time criterion is increased gradually from the current time until the number of 

candidate demands decreases to the predefined value of max_cand. When the 

total number of demands is less than max_cand, all demands except for the first 

demand in the vehicle queues are considered for reassignment.  

 

Figure 4.2 Selection of candidates for reassignment by time criterion 

The rationale supporting the ‘time cut’ procedure, which may remove the 

earlier loads in the queue, is that these demands tend to have less freedom to be 

reassigned. That is, these demands’ latest pickup times ( +
iτ ) are likely to be 

Veh 1 

Veh 2 

Veh 3 

Loaded  Empty  
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tighter than those of the loads at the end of a queue. In addition, this proedure 

helps to avoid the conflict illustrated in Figure 3.3. 

 

4.2.2 Merge Close Demands  

In an effort to further reduce the number of decision variables in the 

optimization stage, this procedure seeks to take advantage of the initial schedule 

of trucks determined as a result of applying the heuristic rules in the first phase. If 

two consecutively scheduled loads to be served by the same vehicle are very close 

spatially, as a result of the initial assignment, this order would not be likely to 

change in the second phase. Therefore, the gap between two consecutive demands 

(distance from the destination of )(, tq k
i
π to the origin of the )(,

1 tq k
i
π

+ ) is examined 

after a new requested load is assigned. If the gap is smaller than a pre-defined 

threshold, the two demands are merged and represented as one demand. After 

reassignment, the merged demands are converted back to the original two 

demands. 

This procedure must be applied with particular caution. First, the loaded 

moving distance of the merged demand includes the empty distance between the 

two loads in addition to the two loaded distances. Secondly, the time window of 

the merged demand should similarly be re-calculated, taking into consideration 

the time windows of the two demands and the empty distance between them. 

The combined approach, with the above size-reduction procedure, is tested 

using simulation experiments, presented in the next section. 
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4.3 SIMULATION FRAMEWORK 

Truckload carrier operations are considered over a given 1 by 1 square 

unit geographical area. Calls for truckload pickup-and-delivery arise over this 

area and over time. A truck travels to the origin of a load, picks up the load, 

moves it to the destination, and then goes to the origin of the next load in the 

queue with constant speed 1 unit distance per unit time. 

Requests are randomly generated according to a time Poisson process. It is 

assumed that the earliest pickup time is the calling time of the customer, and the 

latest pick up time is two time units thereafter. Origins and destinations of 

demands are uniformly distributed over the region, so the average loaded distance 

for a request is around 0.52 units because vehicle movement follows the 

Euclidean travel metric. This value limits the maximum arrival rate of demands so 

as not to result in an infinite queue. 

All the simulation programs throughout this thesis are developed using the 

C computer language and the MIP models are solved using the commercial solver 

CPLEX 7.1. In addition, all the simulation experiments are performed on a 

Windows NT workstation, 300MHz CPU.  

The primary performance measure used to evaluate the various policies in 

this chapter is the average traveled empty distance to serve a load ( ∑
<TA

i

i
i

N̂

πϕ ). 

This distance is the primary determinant of the cost to serve a particular demand. 

An additional implicit measure is the waiting time, taken here as the time elapsed 

between the customer’s call for service to the time that the truck actually picks up 

the load ( ii A−πδ ). Furthermore, the computational time is also examined.  
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In this chapter, the performance of various solution approaches is 

evaluated at steady state of the system rather than assuming daily-based operation 

of the fleet. In order to obtain statistically meaningful results at steady state, the 

time horizon (T) and the number of experiments (iterations) should be 

determined. The first step is to check the point at which the system approaches a 

steady state. Figure 4.3 depicts the cumulative average of the respective 

performance measures as a function of the number of generated demands; each 

line in this figure corresponds to a stream of demands generated from a given 

random number seed. It appears from the figure that T generating 2000 loads 

( N̂ = 2000) is sufficient to ensure that the system reaches steady state. The second 

convergence criterion is used to determine the point at which sufficient number of 

iterations (each with a different seed) have been run to ensure that the 

performance measures aggregated over a certain number of iterations have 

converged to an acceptable range. In this case, 20 iterations are sufficient for this 

purpose. 
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Figure 4.3 Average waiting time and empty distance vs. number of demands  

Average Waiting Time for Service per Demand

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Demands 

Av
er

ag
e 

W
ai

tin
g 

Ti
m

e 

Average Empty Distance per Demand

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of  Demands

Av
er

ag
e 

Em
pt

y 
Di

st
an

ce



 79

4.4 ANALYSIS OF EXPERIMENTAL RESULTS  

As explained previously, the basic motivation to control the number of 

candidates for reassignment is the premise that computation time increases 

exponentially with the number of candidate demands. To verify this assumption, 

the computation times to solve local problems of the reassignment stage 

(optimization-based solution method) of varying sizes are shown in table 4.1. For 

each case (number of candidates), 1000 problem instances are generated and 

solved. As seen in Table 4.1 and Figure 4.4, the computation time increases 

exponentially with the number of candidate demands. Reducing the number of 

demands causes not only a decrease in the number of variables, but also reduces 

the number of constraints in the mathematical formulation, such as flow 

conservation constraints, and time window constraints. Referring to the first MIP 

formulation in Section 3.3.1, the number of variables is (K+N)2 + N, where K 

represents the fleet size and N represents the number of candidate demands 

involved with a local problem. The number of constraints is N2+4N+2K except 

for the binary variable assumption in constraint (3) of the MIP formulation. 

Turning next to one iteration of the dynamic decision problem, with a 

sequence of 2000 load requests, the number of cases (reassignment optimization 

problem instances) that have more than 16 candidates for reassignment is 223 

cases, out of a total of 2000 optimizations. However, these 223 optimizations 

consume 6582 seconds out of the total 7656 seconds of computation time for the 

entire sequence, in spite of the 500 sec maximum computation time limit. Note 

that, in order to avoid the extreme case, if an optimization procedure consumes 
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more than 500 sec, the best solution so far is taken and the procedure is forcibly 

stopped.  This means that only 11% of the optimization instances, those with a 

relatively large number of variables, consume 86% of the computation time. 

Therefore, if the number of variables for each local problem can be controlled, the 

computation time can be controlled. Of course, the question that arises then is 

how much degradation in performance results from limiting the number of 

candidates. This is addressed next by moving the cut-off time described in the 

previous section. 

 

        Table 4.1 Computation time vs. number of candidates 

# of Demands Computation 
Time (sec) Std. Dev. 

3 0.042 0.136 
4 0.054 0.162 
5 0.068 0.193 
6 0.079 0.219 
7 0.099 0.255 
8 0.149 0.340 
9 0.216 0.448 

10 0.303 0.750 
11 0.493 1.251 
12 0.873 2.013 
13 1.663 6.833 
14 3.018 10.025 
15 5.523 16.647 
16 11.791 32.406 
17 23.453 57.495 
18 37.462 72.576 
19 72.522 103.349 
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Figure 4.4 Logarithm of computation time vs. number of demands 
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4.4.1 Performance of the Dynamic Control of the Local Problem Size 

Table 4.2 shows the performance of the dynamic control of the local 

problem size procedure. The number of max_cand for reassignment increases, the 

performance of the dispatching system improves in terms of empty distance and 

waiting time. If the number of candidates is not limited, the average number of 

demands in the system is 19.77, and an average of 11.33 demands are candidates 

for reassignment at each reassignment stage because the first demand in a 

vehicle’s queue cannot be a candidate. Figure 4.5 illustrates the performance, 

which is represented in simulation time units, as the max_cand is increased from 

no reassignment (only implementing the first phase), to 3 and on to 10 candidates, 

with the full reassignment case also shown as a benchmark. In these results, when 

only maximum 3 demands are allowed for swapping and resequencing by optimal 

reassignment, it could reduce the empty distance 15% and waiting time 13%. 

However, when the candidate pool is relaxed from a maximum of 10 to allow full 

reassignment, only a small additional gain is observed in the performance 

measures, whereas the computation time to serve 2000 demands increases 

dramatically, from 446.65 seconds to 13381.50 seconds in spite of the 500 second 

maximum computation time limit. The exponential increase in total computation 

time as the max_cand increases is depicted in figure 4.6. 
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                Table 4.2 Performance of moving time criterion cut procedure  

max_cand Empty 
Distance Std. Dev. Waiting 

time Std. Dev. # of Loads 
Accepted # of Cand. Comp. Time Std. Dev. 

no reassign 0.244 0.006 1.359 0.041 1927.8 0.000 13.90 1.48 
3 0.207 0.006 1.183 0.054 1961.5 2.7144 104.40 3.14 
4 0.199 0.005 1.146 0.045 1967.7 3.6645 119.95 3.27 
5 0.192 0.006 1.114 0.054 1973.3 4.6111 138.85 4.16 
6 0.188 0.005 1.095 0.047 1976.0 5.5474 167.10 5.52 
7 0.185 0.005 1.080 0.048 1977.2 6.4478 202.15 7.76 
8 0.180 0.004 1.065 0.041 1979.7 7.2991 255.65 13.82 
9 0.177 0.006 1.055 0.046 1981.8 8.0632 337.00 18.60 

10 0.175 0.005 1.051 0.041 1983.0 8.7674 446.65 32.01 
Full 0.169 0.004 1.030 0.047 1985.8 11.330 13381.50 5949.69 
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Figure 4.5 Performance of moving time criterion cut strategy 
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Figure 4.6 Computation time of moving time criterion cut strategy 
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Table 4.3 provides further insight into the role and effectiveness of the 

reassignment process, as the cut-off time is moved to reduce the number of 

candidates. For each maximum number of candidates, the number of reassignment 

problem instances is reported (note that the number is a little under 40,000, 

reflecting 20 iterations of 2000 loads each, some of which may have been rejected 

as non-feasible and some local problems do not have enough demands to be 

reassigned, hence the difference from 40,000). Also reported is the number of the 

optimization problem instances for which an improvement was attained over the 

initial solution obtained at the end of the first stage, and the corresponding 

percentage. Therefore, while with 3 candidate loads in the reassignment 26.43% 

of the instances result in some improvement, this percentage goes up to 52.86% 

when full reassignment is allowed; when the maximum is limited to 10 loads, 

about 49.43% of the cases result in improvement. It is notable that the first phase 

heuristic assignment results in a locally optimal solution in 47.16% of the cases. 

The average improvement in empty distance (conditional upon the improvement 

being positive) is 6.51% under full reassignment, dropping to 6.17% for the 10-

candidate case, and 4.88% when only 3 loads are candidates for reassignment. 

Nonetheless, it is notable that the average improvement per local reassignment of 

4.88%, which is only realized in 26.43% of the cases, translates into a global 

improvement (over the stream of demands) of about 15%. These results indicate 

that, even though the amount and frequency of improvement resulting from 

reassignment may be small with respect to the local problem, the global 

performance is improved significantly.
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       Table 4.3 Frequency of improvement 

Maximum # of 
Candidates 

# of 
reassignment 

problems 

# of Cases with 
Improvement 

Improvement 
Cases (%) 

Average % of Improvement in Empty 
Distance per Reassignment (with 

Positive) 
3 39230 10368 26.43 4.88 
4 39354 12565 31.93 5.26 
5 39468 14394 36.47 5.48 
6 39522 16021 40.54 5.67 
7 39545 17441 44.10 5.78 
8 39595 18112 45.74 5.95 
9 39637 18815 47.47 6.09 

10 39662 19604 49.43 6.17 
Full 38959 20594 52.86 6.51 
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4.4.2 Performance of the Merging Close Demands Strategy  

In order to test the merging of closely spaced demands into single 

candidates for the reassignment optimization problem, two values of the threshold 

gap are specified: 0.05 and 0.03 (simulation units). This experiment is performed 

in conjunction with the previous strategy in order to evaluate the improvement for 

various sizes of the problem. As explained previously, consecutive demands in a 

vehicle’s queue (after initial assignment), for which the empty distance is smaller 

than the threshold gap, are merged. Tables 4 and 5 summarize the results for gaps 

of 0.05 and 0.03, respectively. Note that the maximum number of candidates (first 

column) here refers to the merged loads treated as single units in the optimization 

program. For this reason, the actual number of elemental loads is greater on 

average (column 8). 
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Table 4.4 Performance results for gap threshold of 0.05 

max_cand Empty 
Dist. Std. Dev. Waiting 

time Std. Dev. # of 
Accept. # of Cand Actual # 

of Cand Comp. Time Std. Dev. 

no reassign  0.244 0.006 1.359 0.041 1927.8 0.000 0.000 13.90 1.476 
3  0.206 0.006 1.181 0.052 1961.8 2.714 2.749 98.70 3.028 
4  0.199 0.005 1.144 0.045 1969.3 3.677 3.748 116.00 4.267 
5  0.192 0.006 1.113 0.054 1972.4 4.616 4.729 138.15 3.360 
6  0.186 0.006 1.090 0.053 1975.3 5.516 5.677 167.70 5.777 
7  0.182 0.006 1.075 0.050 1977.9 6.374 6.585 204.85 6.098 
8  0.179 0.005 1.067 0.047 1980.6 7.157 7.426 263.60 10.738 
9  0.176 0.005 1.057 0.044 1982.2 7.833 8.159 345.50 23.180 

10  0.175 0.005 1.054 0.049 1984.5 8.382 8.743 464.05 56.163 
Full  0.170 0.004 1.029 0.034 1980.5 9.997 11.096 8078.10 3756.639 
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Table 4.5 Performance results for gap threshold of 0.03 

max_cand Empty 
Dist. Std. Dev. Waiting 

time Std. Dev. # of 
Accept. # of Cand Actual # 

of Cand 
Comp. 
Time Std. Dev. 

no reassign 0.244 0.006 1.359 0.041 1927.8 0.000 0.000 13.90 1.476 
3 0.207 0.006 1.191 0.050 1960.5 2.7125 2.730 98.60 3.218 
4 0.198 0.006 1.146 0.046 1969.0 3.6626 3.692 115.25 3.508 
5 0.192 0.005 1.113 0.039 1973.3 4.6133 4.662 138.55 3.677 
6 0.186 0.005 1.086 0.039 1976.9 5.5381 5.610 168.80 5.116 
7 0.183 0.005 1.077 0.050 1978.3 6.4291 6.520 204.05 6.533 
8 0.179 0.005 1.062 0.048 1982.0 7.2378 7.356 259.70 11.779 
9 0.177 0.004 1.051 0.033 1982.7 7.9676 8.102 344.40 19.586 

10 0.175 0.005 1.051 0.049 1983.0 8.6178 8.776 455.35 38.516 
Full 0.168 0.004 1.024 0.035 1986.1 10.704 11.135 9963.10 4186.461 
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Compared to the unmerged results of table 4.2, tables 4.4 and 4.5 reveal a 

slight improvement in performance for the same maximum number of candidates, 

and essentially similar computation time for the cases between 3 and 10 

maximum candidates. The improvement in performance is due to the greater 

number of actual elemental candidates. Moreover, the results of the full 

optimization cases reveal that the merging strategy reduces the average number of 

candidates for reassignment from 11.330 to 9.997 and 10.704, respectively 

depending on the gap size. This reduction in the number of candidates reduces the 

computation time from 13381.5 seconds to 8078.1 and 9963.1, respectively, for 

about 40% and 26% improvement in computing time. As the threshold gap is 

increased, more demands are merged resulting in less computation time. 

However, this increase restricts the freedom of swapping of loads among the 

trucks, and should be traded-off accordingly. 

 

4.5 SUMMARY  

The MIP formulation of the local snapshot problem results in an NP-hard 

problem that cannot be solved in polynomial time for large problems. However, in 

order to use real-time information efficiently to make decisions about incoming 

requests – acceptance, assignment, scheduling –, these decisions should be made 

in a relatively short time. A hybrid dynamic decision approach, which consists of 

local heuristic rules for initial assignment and acceptance decision, coupled with 

formal optimization-based procedures for subsequent load reassignment 

decisions, is suggested and investigated in this chapter. In the first phase, the 
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acceptance decision and initial schedule of trucks are determined so as to respond 

to the customer. Then, some time is allowed to improve the schedule of trucks by 

swapping and re-sequencing the assigned loads using local optimization at the 

reassignment stage. In the second phase, however, computation time increases 

exponentially with the increase in problem size, hence motivating strategies to 

control this computation time. Two strategies are suggested for this purpose. 

Controlling the problem size using the moving time criterion cut and the merging 

of close demands strategy reduce meaningfully the computation time of a 

reassignment. 

Extensive simulation experiments with these strategies highlight the 

tradeoff between computation effort and solution quality. The marginal increase 

of computing effort per unit increase of solution quality rises very rapidly when 

the local problem size is greater than a critical point, particularly in this problem 

setting, when a local optimum is required at every decision instance (full 

reassignment case). However, this critical point depends on the fleet size, demand 

arrival rate, and the time-window width of the requested demands. Therefore, a 

reasonable limit on the maximum number of candidates for reassignment can 

improve the initial schedule significantly within acceptable computation time. The 

merging of close demands further reduces the computing time in relatively large 

problems. 
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Chapter 5 Large Fleet Problems: Partitioning Strategies 

5.1. INTRODUCTION 

Chapter 5 introduces a problem setting managing a large fleet of vehicles 

in low to moderate demand arrival rate situations. The size of the fleet 

significantly affects the dispatching system in terms of the complexity of the local 

problem. The complexity of the local problem is a significant obstacle to the 

operation of fleet in the dynamic environment because the proposed policies are 

restricted to make a decision upon demand arrival before the next demand comes 

in. Furthermore, even with moderate demand arrival rate per vehicle, the large 

size fleet may cause the average inter-arrival time between consecutively 

requested demands to be too short to solve the local problems optimally before 

the next demand comes in. Therefore, the proposed dynamic operation policies 

are to solve the local problem as close to optimality as possible within the given 

time limitation that corresponds to the next demand arrival. Various procedures to 

managing a difficulty caused by the large size fleet are developed and tested such 

as partitioning strategies and local a problem control procedure.  to reduce the 

local problem size. 

Questions may arise on what to do if the solution of a given local problem 

has not been obtained yet (i.e., the solution procedure is still running) and the 

arrival of a new demand requires an immediate acceptance/rejection response, a 

decision that would typically depend on the result of the previous local problem 

being solved. Note that, under a given stochastic demand arrival process, one 
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cannot guarantee that local solution procedures will always be within this 

(random) time limit with probability one. The percentage of the cases (called 

‘violations’), for which the decision procedure computation triggered by a 

demand arrival cannot be completed prior to the next demand arrival, is reported 

in the simulation experiments conducted in this chapter. A policy to tackle this 

issue is explicitly discussed in Chapter 6 along with the response time concept. 

The objective of the fleet management for the problem setting of this 

chapter is to find a policy minimizing the overall cost, ∑
<

Π∈

≈
TA

i
i

i

V π

π
ϕmin , and 

the main measurement is the average empty distance to serve a demand 

∑
<TA

i

i
i

N̂

πϕ . In a low to moderate demand situation considering the ability of the 

fleet to serve the dynamically requested demand, assignment decisions may 

dominate the overall profit because all feasible demands can be served as 

addressed in Chapter 3.  

The heuristic approach (Regan et al., 1996a) presented in Section 3.3.2.1 

is employed as a benchmark policy, though only the initial assignment procedure 

is applied upon demand arrival. As an additional benchmark policy, the RAPID-

SL algorithm (Powell, Snow, and Cheung (2000)) is applied to the same problem 

specification with various demand arrival rates. The details of this algorithm 

along with the simulation results are presented in Section 5.5. 
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5.2 DYNAMIC OPERATION POLICIES  

The basic scheme to solve this large fleet problem follows the logic 

presented in Section 4.2.1. The initial assignment stage employs the first of the 

two methods, discussed in Section 4.2.1. A MIP formulation consisting of one 

vehicle and its demands, including the newly requested demand, is solved for 

each vehicle repeatedly over the entire fleet of vehicles, to identify the vehicle 

that could serve the new demand with least additional cost. The optimization-

based reassignment procedure may require impractical heavy computing time to 

solve the large fleet problem. Thus, various partitioning strategies are introduced 

to select a manageable subset of high-potential vehicles with their associated 

demands for the reassignment procedure. This sub-problem is then solved 

optimally. Even though the resulting schedule is not the optimal solution for the 

entire fleet of vehicles, the reassignment procedure is intended to provide a good 

performance over the long run. 

In a dynamic environment, even though a new instance of the local 

problem is obtained upon the arrival of a new demand, it is generally not 

necessary to regenerate the schedule of all the vehicles to obtain a near-optimal 

solution (assuming the existing schedule was near ‘close-to-optimal solution for 

the given loads). This is particularly the case in large fleet problems because the 

updated local problem differs only in a minor way from the previous local 

problem instance: only a few trucks may have served their scheduled jobs, and 

only one new demand is added to the system during the inter-arrival interval 

separating the two problem instances.  
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5.3 PARTITIONING STRATEGIES 

Several partitioning strategies are introduced in this section. These 

strategies are designed to select high-potential candidate vehicles for the 

reassignment procedure while keeping the computation time below a certain limit. 

The strategies are divided into two categories: ‘fixed partitioning’ and ‘variable 

partitioning’. Within each category, several strategies are developed. The 

advantages and disadvantages of these categories and strategies are discussed. In 

addition, the approach presented in Section 4.2.1 to limit the number of candidate 

demands is applied to control the computation time.  

 

5.3.1 Fixed Partitioning Strategies 

In this category, the set of vehicles is partitioned a priori into mutually 

exclusive and collectively exhaustive groups that remain unchanged over the 

operational horizon. These subsets may be managed by dispatchers as though they 

are independent fleets. Two strategies for operating the fleet under a given fixed 

partition are introduced: ‘round robin partitioning’ and ‘best group partitioning’. 

These strategies support relatively easy management of all trucks, as each 

dispatcher would keep close contact with the drivers in a group. A demand 

assigned to a group, however, cannot be reassigned to another group. This 

restriction limits opportunities to improve the schedule. 

The ‘round robin strategy’ is the simplest operational strategy for use in 

conjunction with a fixed partitioning. The fleet is divided into fixed groups. A 

new demand is assigned to a vehicle in the first group, and the next demand to a 
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vehicle in the second group, and so on sequentially. The initial assignment and 

reassignment procedures are applied only to vehicles (and their respective 

assigned loads) within the group to which the demand has been assigned. Thus, it 

is expected that the computation time required in the initial assignment stage will 

be short compared to other policies because the dispatcher considers only one 

subset of vehicles at each decision instant.  

 
Round robin partitioning 

Step 0 The vehicles are divided into G fixed groups, variable i =1 

Step 1 When a new load comes in, assign the new load to group i 

Step 2 Conduct initial assignment procedure within group i 

Step 3 Conduct reassignment procedure within group i 

Step 4 if the new load is the last demand during the time horizon then stop 

       o.w. if   i =G, i =0  

Step 5 i=i+1 go to step1 

 

The ‘best group strategy’ allows more flexibility in the selection of a 

group. Whenever a new demand comes in, the initial assignment procedure 

examines vehicles sequentially in the entire fleet. This procedure identifies a 

vehicle that requires the least additional empty movement to serve the new 

demand. Note that, the initial assignment procedure explores all vehicles in the 

fleet. For the remaining strategies including all the variable strategies employs 

this initial assignment procedure. Reassignment, however, is applied within the 

pre-determined group of vehicles to which the new demand is assigned. A load 

may not be assigned to a vehicle that belongs to another group. 
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Best group partitioning  

Step 0  The vehicles are divided into fixed groups 

Step 1  when a new load comes in, conduct initial assignment over the 

full fleet of vehicles 

Step 2  the candidate vehicles for the reassignment are the pre-

determined group of vehicles for which the new demand is assigned 

Step 3  if the new load is the last demand in the time horizon then stop 

Step 5  go to step1 

 

5.3.2 Variable Partitioning Strategies 

The other category of strategies consists of variable partitioning strategies. 

The main difference from the above category is that the candidate vehicles are 

selected at every decision epoch repeatedly, instead of using fixed groups. Thus, it 

is possible to reassign demands to vehicles drawn potentially from the entire fleet. 

Under variable partitioning strategies, the dispatcher needs to manage the entire 

fleet. 

The first strategy considered is ‘random partitioning.’ After the initial 

assignment, the reassignment procedure is applied with randomly selected 

candidate vehicles and the vehicle to which the new demand has been assigned at 

the initial assignment stage ( ‘initial vehicle’). In other words, a total of groupsize 

Kgroupsize ≤≤0( , predetermined parameter) vehicles are selected to define a 

local snapshot problem for the reassignment stage at every decision epoch. It is 

expected that the larger groupsize is, the better the solution obtained; however, it 

requires more computational effort.  
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Random partitioning 

Stpe 0 groupsize: predetermined parameter; the number of candidate 

vehicles  

Step 1  whenever a new load comes in, apply  initial assignment 

procedure over the entire fleet of vehicles 

Step 2 Select the initial vehicle and (groupsize-1) vehicles randomly for 

the candidate of the reassignment  

Step 3  Conduct reassignment with the selected vehicles and their 

associated assigned demands 

Step 4  if the new load is the last demand in the time horizon then stop 

Step 5  go to step1 

The second one is the ‘geographic partitioning’ strategy. The subset of 

vehicles selected to solve the MIP snapshot is determined on the basis of 

geographic proximity, as an indicator of likely potential as candidates for 

improved operation. 

To illustrate the geographic proximity concept used here, consider two 

vehicles with the delivery schedule shown in Figure 5.1, demand C has been 

assigned to vehicle 1 as a result of initial assignment. In the figure, solid lines 

represent loaded movements and dotted lines show empty movements. Swapping 

the two demands B and C between vehicles reduces the total empty distance. This 

reduction is obtained by pairing two ‘close’ demands, C and D by connecting 

destination of one demand and origin of the other demand. Even though this 

possibility depends on the respective locations of the other demands and 

associated time-windows, selecting ‘close’ vehicles to the initial vehicle as 
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candidates for reassignment is expected to have high potential for reducing total 

empty distance. 

 

(a) Before reassignment          (b) After reassignment 

Figure 5.1 An example of the close two vehicles 

The precise ‘proximity’ between the initial vehicle and another vehicle is 

defined as follows. Distances between all possible parings among the demands 

associated with two vehicles are examined except for the pairings involving the 

first demand as the later demand of the pair (origin of the first demand in a 

vehicle queue to the destination of other). In addition, if a vehicle is idle, the 

distances between the current position of this vehicle and the origins of the 

demands in the other vehicle’s queue are measured. Out of those distances, the 

minimum value will be taken as the proximity measure between the two vehicles. 

Because some pairings may be infeasible due to time-window restrictions, a 

simple time-window checking step is added such that the latest pickup time of the 

later demand of the pair should be greater than the earliest possible scheduled 
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pick-up time. The precise specific calculation of the ‘proximity’ between two 

vehicles are as follows. 

 
Proximity (vehicle 1, vehicle2) 

Step 0: definition 

Vehicle #1: initial vehicle 

Vehicle #2: target vehicle 

t = current time 

)( k
iqo  = origin of the i th demand in vehicle k 

)( k
iqd  = destination of the i th demand in vehicle k 

ko     = current location of vehicle k 

st(d(i)) = scheduled time when the vehicle reaches at the destination of load i 

τ+(i)  = the latest pickup time of demand i 
|qk|    = queue length of vehicle k  
D(d(i), o(j)) = distance between origin of load j and destination of load i 

 

Step 1: Calculate ),( 21
yx qqF  for each pairing 

),( 21
yx qqF :  If |q2| ≥ 1, ),( 21

yx qqF ={ ))(),(( 21
yx qqD do } 

 for all x = { 2, 3, …,| q1|},  y = {1, 2, …, |q2|}  
      If |q2| = 0,  ),( 21

yx qqF = { )),(( 21 oo xqD }  
 for all x={ 2, 3, …, |q1|}  

 

Step 2: Feasibility check: ),( 21
yx qqF  takes Big value if the following 

conditions are not satisfied 

If | q2|=0  t + )),(( 21 oo xqD ≤ τ+ ( 1
xq )  for all x = { 2, 3, …, |q1|} 

o.w. if  y=1, st( d( 2
yq ))+ ))(),(( 21

yx qqD do ≤ τ+( 1
xq ) 
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      if y ≠ 1, t + ))(),(( 22
yy qqD do  + ))(),(( 21

yx qqD do  ≤ τ+( 1
xq ) 

for all x = { 2, 3, …,| q1|},  y = {1, 2, …, |q2|}  
 

Step 3: Calculate ),( 21
yx qqG  for each pairing 

),( 21
yx qqG = { ))(),(( 21

yx qqD od } for all x = { 1,2, …,| q1|},  y = { 2,3, …, |q2|} 

 

Step 4: Feasibility check: ),( 21
yx qqG  takes Big value if the following 

conditions are not satisfied 

If y =1    st(d( 1
xq )) + ))(),(( 21

yx qqD od ≤ τ+( 2
yq )   

o.w.   t + ))(),(( 11
xx qqD do  + ))(),(( 21

yx qqD od  ≤ τ+ ( 2
yq ) 

for all x = { 1,2, …,| q1|},  y = { 2,3, …, |q2|} 

 

Step 5: Proximity(vehicle 1, vehicle 2)= min( ),( 21
yx qqF , ),( 21

yx qqG ) for 

all x,y 

 

The ‘geographic partitioning’ strategy selects the initial vehicle and 

remaining (groupsize –1) vehicles in ascending order of this proximity measure.  
 

Geographic partitioning 

Step 0  groupsize: the number of candidate vehicles  

Step 1  whenever a new load comes in, initial assignment procedure  is 

applied over the entire fleet of vehicles 

Step 2  Calculate the proximity between the initial vehicle and vehicle k(k 

=1,…,K except for the initial vehicle) 

Step 3  Select the initial vehicle and (groupsize-1) vehicles according to 

the proximity measure (ascending order) for the candidate vehicles 
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Step 3  Reassignment procedure is applied with the selected vehicles and 

their associated assigned demands 

Step 4  if the new load is the last demand in the time horizon then stop 

Step 5  go to step1 

To enhance the potential of the vehicles (and loads) included in the 

solution subset, and to compensate for the possible unbalanced vehicle selection 

over time (using solely geographic criterion), a ‘hybrid partitioning’ strategy is 

introduced to select a certain fraction of the candidates randomly. The ‘proximity’ 

of a vehicle (target vehicle) to the initial vehicle tends to improve as the number 

of demands in the target vehicle’s queue increases, because the number of 

possible points for the ‘proximity’ calculation procedure increases with queue 

length. Therefore, the geographic partitioning strategy tends to select vehicles 

with long task queues, causing an unbalanced selection situation. In other words, 

vehicles with long queues tend to be selected repeatedly as reassignment 

candidates over time. In addition, the size of the local problems arising from 

geographic partitioning tend to increase compared to the ‘random partitioning’ 

strategy, potentially causing computational problems. The ‘hybrid partitioning’ 

strategy compensates for this problem by selecting some of the vehicles 

randomly, while the others are selected according to the ‘geographic partitioning’ 

strategy. 

 
Hybrid partitioning 

Step 0 definition 

groupsize: the number of candidate vehicles   

r: the number of candidate vehicles to be randomly selected  
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Step 1  whenever a new load comes in, conduct initial assignment over 

the entire fleet of vehicles 

Step 2  Calculate the proximity of vehicle k (to the initial vehicle) where 

k =1,…,K except for the initial vehicle 

Step 3  Select r vehicles randomly including the initial vehicle, and the 

remaining vehicles are selected according to the proximity measure 

(ascending order)  

Step 3  Reassignment procedure is applied with the selected candidate 

vehicles and their associated assigned demands 

Step 4  if the new load is the last demand in the time horizon then stop 

Step 5  go to step1 

  

In addition to the partitioning approach, the procedure presented in 

Section 4.2.1 to control the local problem size is applied and tested along with the 

best partitioning policy identified in the simulation experiments. 

 

5.4 SIMULATION EXPERIMENTS  

5.4.1 Simulation Framework 

To evaluate the performance of the strategies developed in the preceding 

sections, a set of simulation experiments is designed. This chapter employs real 

scale units instead of the simulation unit used in Chapter 4. The geographical area 

for this simulation experiment is a 100 miles by 100 miles square region (which is 

same as 2 by 2 simulation units). The average loaded distance of a demand is then 

approximately 52 miles. It is assumed that the trucks have a constant speed of 50 
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mph. The mean inter-arrival time between consecutive demands per vehicle (1/λ) 

is specified as 90 minutes. With a fleet of 100 trucks, the dispatcher receives 

demand calls every 0.9 min (54 seconds) on average, and a truck would serve on 

average 10 demands per day.  

The length of the time-windows of a demand ( −+ − ii ττ ) is distributed 

uniformly between 2 and 4 hrs. This provides enough flexibility to construct 

routing schedule with multiple legs since the longest haul length is 141.4 mile, 

which can be served within 3 hours. In order to obtain a statistically significant 

result, fleet operations are simulated for 10 days. For this purpose, ten random 

seeds generate ten different demand streams. Each demand stream, which consists 

of about 1000 demands, represents the delivery requests in a day. 
 

 5.4.2 Numerical Results of the Partitioning Strategies 

The evaluation measures are presented in the form average values to serve 

a load. For example, in Table 5.1, the ‘initial assignment only (IO)’ policy results 

in an average of 11.78 miles of empty distance to pickup a load, with a standard 

deviation of 0.42 miles. The customer waits for the service (waiting time: 

( ii A−δ )) for 117.7 minutes with 2.70 minutes standard deviation. These 

standard deviations are calculated over 10 average values, while the standard 

deviations of the computation times are calculated on the N (≈1000) instances for 

each iteration, and averaged over 10 iterations.  
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The measure in which the standard deviations of the computation times 

are calculated reflect the concerns that the computation times for each decision 

epoch meet the problem’s dynamic operational requirement. In other words, the 

decision procedure computation triggered by a demand arrival should be 

completed prior to the next demand arrival. The last column of the table, 

“violations”, denotes the percentage of the cases where the requirement is 

violated. 

The numerical results begin with Table 5.1, which presents the 

performance of one of the benchmark policies, the ‘Initial assignment Only (IO)’ 

policy. The violation percentage of the IO policy is 3.43%, indicating that 3.43% 

of the demands arrive during the execution of the decision procedure triggered by 

the previous demand, which takes 2.06 seconds on average raging from 1.16 

seconds to 4.4 seconds. 
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The next category consists of the fixed partitioning strategies. The ‘Round 

robin’ (RR) strategy requires very short computation time in the initial 

assignment stage since the initial assignment procedure considers only a group of 

vehicles. However, even after reassignment, the RR10 strategy, ‘Round Robin’ 

partitioning with 10 groupsize (a group consists of 10 vehicles) requires a much 

longer average empty distance to serve a load (20.2 miles) than the IO strategy 

(11.75 miles).  In addition, the RR10 strategy shows a rejection rate of 0.84%. 

Hence, considering the entire fleet of vehicles at the first stage provides 

considerable advantage to the carrier. The reassignment computation time in the 

sixth column increases dramatically as the groupsize increases from 10 to 20 in 

the ‘Best group’ strategies (BR10, BR20). The average computation time spent at 

a decision epoch including initial assignment and reassignment procedures under 

the BR20 strategy is even longer than the average inter-arrival time of the 

demands, resulting in a violation rate of 25.3%. It is notable that the initial 

assignment computing effort is linearly proportional to the number of vehicles 

considered. 

Table 5.3 presents the performance results of the variable partitioning 

strategies. In the table, the naming rules of the proposed strategies are as follows. 

RP10 represents the ‘Random partitioning’ strategy with groupsize 10, in which 

10 trucks are selected for the reassignment procedure. Furthermore, H20-10 

represents the ‘Hybrid partitioning’ strategy with 10 groupsize and the percentage 

of vehicles that are randomly selected is 20 %.  
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The initial assignment computation times in the fourth column, show 

relatively very small standard deviation compared to those of the reassignment 

computation times over all the proposed strategies. For example, RP20 spends on 

average 3.11 seconds during the reassignment stage, which is not much longer 

than the initial assignment computing time (average 1.93 seconds). However, the 

standard deviation of the reassignment procedures over about 1000 applications 

triggered by demand arrivals and averaged over 10 iterations is 18.59 seconds. 

The latter indicates that the reassignment procedure consumes a very long time at 

some decision epochs. In contrast, the required computing efforts for the initial 

assignment procedures are stable, reflected in the 0.22 seconds standard deviation. 

That is, the dispatcher can guarantee a quick response to a customer with regard 

to an acceptance decision using the initial assignment. 

Regarding the ‘Random partitioning’ (RP) strategies, the increase of the 

groupsize parameter (from 10, 15 to 20) improves performance in terms of the 

average empty distance. This increase, however, also requires much longer 

computing time to solve the reassignment MIP models involving the groupsize of 

candidate vehicles and results in a large number of violations. Thus, it is not 

desirable to increase the groupsize over 20. Among the random partitioning 

strategies, the RP20 is chosen as the best strategy because it shows minimum 

empty distance with an acceptable computation time and violation rate. 

The ‘geographic partitioning’ (GP) strategies outperform the RP strategies 

with respect to empty distance. However, for the same groupsize, the GP 

strategies tend to consider a larger number of candidate demands for a given 
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reassignment problem instance (column 6) than that of RP strategies. Thus, GP 

strategies require much longer computation time than the RP strategies, because 

GP strategies are inclined to select vehicles with long task queues, causing an 

unbalanced selection problem.  

The ‘Hybrid partitioning’ strategies dominate the GP strategies in terms of 

empty distance and computation time. Furthermore, they outperform RP 

strategies with respect to the empty distance. The performance of a partitioning 

strategy in a local sense can be measured by the summation of the improvements 

in terms of empty distance during each reassignment procedure. The local 

improvements for the reassignment procedures indicate that the GP strategies 

perform best without considering the computation time. For example, the RP15, 

H50-15 and GP15 strategies show that the total empty distance reductions for the 

reassignment procedures are 2887.8 miles, 3988.8 miles, and 4542.0 miles, 

respectively. However, these values are based on the scheduled empty distance 

measured at each decision epoch. The actual traveled empty distance of the 

vehicles (correct measure of the performance) shows that the ‘hybrid partitioning’ 

strategies perform best in spite of the better local performance of the GP 

strategies. This result can be explained by the unbalanced selection tendency of 

the GP strategy.  
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     Table 5.1 Performance results of IO policy  

Strategy Empty distance 
(mile)      a 

Waiting time 
(min)     b

Initial Assignment 
Computation time 
(sec)          c 

Reassignment 
computation time 

(sec)       d 

Violations 
(%) 

Initial assignment only (IO) 11.75 0.42 117.7 2.70 2.06 0.25 0.00 0.00 3.43 

 

Table 5.2 Performance results of the fixed partitioning strategies  

Strategy groupsize Empty distance
(mile)  a 

Waiting time 
(min)   b 

Initial Assignment 
Computation time
(sec)         c

Reassignment 
computation time 

(sec)     d 

Violations
(%) 

RR10 10 20.20 0.58 96.5 3.01 0.21 0.04 0.24 0.74 0.67 Round Robin 
Partitioning RR20 20 14.55 0.42 91.8 3.13 0.38 0.05 3.66 18.72 4.62 

BR10 10 11.18 0.42 116.9 3.61 1.98 0.23 2.10 16.12 5.15 Best group 
Partitioning  BR20 20 10.62 0.43 115.3 2.87 1.97 0.23 66.56 152.3 25.30 

 
a,b : Standard deviation over iterations 
c,d : Average standard deviation over N demands 
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 Table 5.3 Performance results of the variable partitioning strategies 

Strategy 
            

Empty distance
(mile)    a 

Waiting time
(min)     b

Initial Assignment 
Computation time 
(sec)        c 

Reassignment 
computation time 

(sec)     d 

# of 
candidate 
demands

Violations 
(%) 

RP10 9.75 0.49 108.5 3.13 1.95 0.21 0.17 0.28 11.07 3.63 

RP15 9.05 0.42 106.6 4.12 1.95 0.22 0.75 3.37 15.93 4.52 Random  
Partitioning 

RP20* 8.70 0.44 104.4 2.51 1.93 0.22 3.11 18.59 20.62 6.82 

GP10 9.20 0.37 113.2 4.44 2.02 0.26 9.48 41.03 19.48 8.91 Geographic 
Partitioning  GP15  8.91 0.42 112.8 4.17 2.00 0.24 64.47 140.22 28.65 28.42 
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  Table 5.3 Continued 

Strategy Empty distance 
(mile)    a 

Waiting 
time 

(min)   b 

Initial Assignment 
Computation time 
(sec)        c 

Reassignment 
computation time 

(sec)   d 

# of 
candidate 
demands

Violations 
(%) 

H10-10 8.81 0.42 109.9 2.54 1.96 0.24 2.07 12.87 18.38 5.98 

H10-15 8.38 0.42 106.0 2.96 1.94 0.23 19.22 66.29 26.12 16.00 

H20-10 8.64 0.41 107.7 2.41 1.93 0.22 1.13 6.56 17.28 4.98 

H20-15 8.34 0.37 105.4 2.84 1.93 0.24 12.76 78.67 25.19 12.96 

H30-10 8.74 0.43 106.2 2.95 1.94 0.22 0.72 2.39 16.23 4.49 

H30-15 8.33 0.37 104.7 2.93 1.94 0.25 6.29 29.55 23.39 9.42 

H40-10 8.85 0.43 106.6 2.66 1.95 0.24 0.59 2.52 15.45 4.27 

H40-15 8.39 0.38 103.9 2.72 1.94 0.23 4.74 24.80 22.42 8.55 

H50-10 8.81 0.39 106.5 3.09 1.94 0.21 0.46 2.28 14.51 3.96 

H50-15* 8.46 0.35 104.2 3.64 1.91 0.21 2.39 11.01 20.76 6.63 

H70-10  9.05 0.36 106.6 2.45 1.94 0.22 0.25 0.39 12.72 3.74 

Hybrid 
Partitioning 

H70-15* 8.57 0.44 104.1 3.48 1.93 0.21 1.11 5.45 18.21 5.09 
 
  a,b : Standard deviation over iteration 
  c,d : Ave. standard deviation over N demands  



 113

Figure 5.2 depicts the frequency that each vehicle is selected as a 

candidate for the reassignment procedure during a day. If all vehicles were 

selected evenly, each truck would be selected 150 times, because every MIP 

model during the reassignment stage involves 15 candidate vehicles out of 100 

vehicles about 1000 times. As can be seen, vehicles are selected almost evenly 

when the RP strategy is applied (the last graph). The first graph indicates that the 

selection procedure of the GP strategy is biased. This biased selection procedure 

misses the opportunity of reassigning demands to diverse vehicles. The ‘Hybrid 

partitioning’ strategy compensates for the unbalanced selection problem, and 

exhibits the best performance. 

Among various parameter settings, H50-15, which requires 8.46 miles of 

average empty distance to serve a load and average of 4.2 seconds (1.91 for initial 

assignment + 2.39 for reassignment) of computing time for an assignment 

decision procedure, and H70-15 (8.57 empty moving miles, 3.04 computation 

time) dominate the RP20 strategy with respect to both the computation time and 

the empty distance.  

 

 



 114

Figure 5.2 Selection Frequency of each vehicle for the reassignment procedure 
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The results of the dynamic problem size control procedure applied along 

with the ‘Hybrid partitioning’ strategies are presented in Table 5.4. Since this 

procedure is expected to reduce the computation time, it is applied to the 

strategies that show better performance with somewhat longer computation time. 

Thus, the groupsize is specified as 15 vehicles. Furthermore, the max_cand 

parameters are specified as the mean of the number of candidates, and the mean 

plus one standard deviation observed in the ‘Hybrid partitioning’ strategies. 

Table 5.4 shows that controlling local problem size by the time cut 

criterion reduces the computation effort significantly for the reassignment stage. 

For example, D40-22, in which 40% of candidate vehicles are selected randomly 

and the max_cand is specified as 22, spends an average 1.54 seconds during the 

reassignment procedure. This result is competitive with the 4.74 seconds 

reassignment time of the H40-15 strategy, which shows similar average empty 

distances (8.43 miles and 8.39 miles). Furthermore, D40-22 dominates H50-15. In 

addition, D50-20 dominates H70-15 in terms of empty distance and computation 

time.  

Compared with the benchmark (IO) strategy, in which only the initial 

assignment is applied, the D40-22 strategy shows significant reduction of average 

empty distance from 11.75 miles to 8.43miles while the violation rate increase 

only 2.45% (from 3.43% to 5.88%). However, even with the best strategy in this 

chapter, violations are inevitable because some demands arrive almost 

simultaneously.  
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    Table 5.4 Performance results of ‘dynamic problem size control’ applied to the ‘hybrid partitioning’strategy 

Strategy Empty distance 
(mile)   a 

Waiting time 
(min)    b 

Initial Assignment 
Computation time

(sec)     c 

Reassignment 
computation time 

(sec)    d 

# of 
candidate 
demands 

Violations 
(%) 

D30-23 8.44 0.38 104.37 2.70 2.02 0.24 2.26 11.03 21.27 6.61 

D30-28 8.40 0.45 105.13 3.16 1.95 0.23 4.57 22.05 23.13 8.69 

D40-22*   8.43 0.40 104.95 2.33 1.93 0.21 1.54 7.02 20.39 5.88 

D40-25 8.41 0.36 104.88 3.86 1.94 0.21 2.64 12.60 21.72 7.00 

D50-20*   8.56 0.38 104.55 3.21 1.95 0.22 0.91 2.10 18.48 4.99 

D50-25 8.45 0.42 103.19 3.12 1.95 0.21 1.71 7.28 20.33 5.91 

    a,b : Standard deviation over iteration 
    c,d : Average standard deviation over N demands  
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The number of cases that reassignment procedure reduces the scheduled 

total empty distance of the fleet is an average of 503.9 times out of 1000 

applications of the D40-22 strategy (the average is taken over the 10 replications 

performed), and each reassignment procedure reduces on average 2.76% of empty 

distance compared to the initial schedule obtained in the first phase (the average is 

taken over 1000 applications). Global performance, however, shows 28.26% 

reduction compared to the IO strategy. This indicates that the initial schedules 

obtained during the initial assignment in D40-22 are competitive (close-to-

optimal) schedules. When a new demand arrives, the given schedule determined 

at the previous decision epoch is close-to-optimal so that a simple heuristic (initial 

assignment), which changes only one vehicle’s schedule, can achieve a high 

quality solution. Therefore, in this dynamic environment, it is preferable to use 

the schedule of the previous decision epoch as an initial solution rather than to 

totally re-optimize the schedule. Note that this approach is particularly useful for 

large fleet size problems, where total re-optimization is near impossible due to the 

computational complexity. 

 

5.5 COMPARISON WITH RAPID-SL 

For the same class of problems, Powell, Snow, and Cheung (2000) 

proposed two optimization-based heuristic algorithms, RAPID-SL (Resource 

Allocation procedure for the Integrated Dynamic Assignment Problem-Single 

Label) and RAPID-ML (Multi-Label). Since the authors recommend the RAPID-

SL algorithm in low to moderate demand arrival situations, the latter is 
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implemented for the problem of interest here in order to evaluate relative 

performance. A brief description of the RAPID-SL algorithm is first presented; 

additional detail is available in the cited reference.  

A (single) label representing the attributes of a driver (or vehicle) 

following the completion of a task is iteratively updated in the algorithm. A new 

mathematical formulation is developed, which is relatively simple and able to 

handle a high degree of operational detail of the fleet management problem. 

However, the formulation contains a large number of subtour constraints and 

highly nonlinear constraints. The presence of those constraints is the main hurdle 

to solve the formulation. The RAPID-SL algorithm eliminates the nonlinear 

constraints by iterative updates of the label, and relaxes the subtour constraints. 

As a result, the problem becomes a pure network problem. This network problem 

was solved repeatedly to eliminate subtours by penalizing the arcs in the subtours 

using dual variables. This procedure iteratively updates the driver attributes by 

adjusting label and cost until no assignments have changed from the last iteration 

or pre-specified number of iterations. Nonetheless, there is no guarantee that all 

subtours will be eliminated in the RAPID-SL algorithm. 

This algorithm is coded and implemented for the same dynamic problem 

with various demand request scenarios. Since RAPID-SL algorithm provides the 

solution approach for the local snapshot problem rather than the dynamic problem 

itself, two dynamic operational implementation strategies are developed in this 

thesis. The first strategy (strategy I) rejects the demands in the subtours regardless 

of the acceptance decision at the demand arrival instant, while the other strategy 
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(strategy II) holds the demands in the subtours, which are then include in the next 

local snapshot problem (triggered by the next demand arrival) as long as their 

time-windows remain feasible. However, the latter strategy still cannot guarantee 

that all accepted demands are served. 

 

  Table 5.5 Performance Summary of RAPID-SL algorithm in comparison with 
D40-22 strategy 

Inter arrival time/veh 
 = 90min 

Inter arrival time/ veh  
= 60 min 

RAPID-SL RAPID-SL 
 

D40-22
I II 

D40-22 
I II 

Total Empty Time 159.3 139.8 151.0 184.6 134.8 144.6 

Total Loaded Time 1033.5 957.1 986.9 960.7 907.4 935.5 

Total Idle Time 488.5 551.2 506.4 186.0 194.6 160.1 

Total Empty Distance 7965 6990 7548 9232 6740 7231 

Total Loaded Distance 51676 47855 49346 48034 45372 46776 

# of served demands 1000 895 952 935 836 897 

Profit $28,016 $26,164 $26,786 $24,999 $24,743 $25,347 

 

Table 5.5 presents the performance results of the RAPID-SL algorithm in 

comparison with the D40-22 strategy presented in the previous section. The 

computation time of these dynamic operational strategies is not examined because 

the author of this thesis coded the algorithm. Nonetheless, the quality of the 

solution is comparable. The number of served demands indicates that the RAPID-

SL algorithm rejects a fraction of demands under given demand arrival rates. 

Thus, a monetary measure, in which $1.2/mile for loaded distance (revenue) and 
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unit cost, $.57/mile for traveled distance (empty +loaded) are defined for fair and 

precise comparison. As seen in the table, D40-22 is competitive with the RAPID-

SL particularly in the less congested demand arrival situation. Note that, since the 

RAPID-SL implementation does not enforce that all the accepted demands are 

included in the current schedule, some demands accepted at previous decision 

epochs may be rejected when the scheduled is updated.   

 

5.6 SUMMARY 

In this chapter, hybrid dynamic decision policies along with various 

partitioning strategies are developed to solve large fleet dynamic routing and 

scheduling problems. The findings are as follows: The performance of the 

dispatching system is significantly improved as the number of trucks included in 

the initial assignment increases. Moreover, the initial assignment computation 

time increases almost linearly with the fleet size. Thus, it is recommended to 

included the entire fleet of vehicles in the initial assignment stage. This initial 

assignment changes only one vehicle’s schedule compared with the schedule of 

the previous decision epoch, which is a close-to-optimal schedule. Thus, when 

selecting candidate vehicles during the reassignment stage, a proximity measure 

was developed in order to find high potential vehicles where the selected vehicles 

are ‘close’ to the vehicle to which the new demand has been assigned during the 

initial assignment. This selection process performs well particularly in a local 

sense. However, the ‘Geographic partitioning’ strategy using this measure failed 

to reassign demands to diverse vehicles in a global sense. Thus, this partitioning 
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strategy results in biased candidate vehicle selection and tends to increase the size 

of the local problems. To circumvent this problem, a ‘hybrid partitioning’ strategy 

combining ‘geographic partitioning’ with ‘random partitioning’ is developed. 

This strategy performs well with respect to computation time and overall solution 

quality. During the reassignment procedure, the ‘dynamic problem size control’ 

strategy described in Chapter 4 is applied, helping to reduce the average 

computation time and its variance, which maintaining solution quality. 

In this chapter, the following dynamic operational restriction on solving 

the local problem has been imposed: computation at each decision epoch should 

be completed before the next demand arrival. However, it is difficult to predict 

and control the required computation effort for the multi-vehicle off-line MIP 

problem. Moreover, if demand requests arrive at the dispatcher in very rapid 

succession, it is impossible to always satisfy this dynamic operational restriction. 

Therefore, some violation cases (when the next demand arrives during execution 

of the decision process triggered by the current demand) were reported in the 

simulation experiments. Furthermore, as the arrival rate increases or a much 

larger size fleet is considered, violation cases would be more frequently observed. 

This has motivated the development of a dynamic decision policy that does not 

impose this restriction while satisfying various dynamic operational requirements, 

as discussed in the next chapter.  
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Chapter 6 Dynamic Adaptive Dispatching Strategies in Over-
saturated Demand Situations 

6.1 INTRODUCTION 

This chapter focuses on the dynamic fleet management problems in over-

saturated demand situations, i.e. when the demand for service exceeds the 

system’s average capacity to provide delivery service within specified time-

windows of the requested demands. In these problem settings, an appropriate 

measure to evaluate performance of the proposed policies is overall profit rather 

than average cost to serve a load because it is impossible to accept and serve all 

the demand requests. Thus, the overall objective is to find the optimal policy π, if 

such a policy exists, that maximizes total profit. 
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Where Vπ represents the total profit obtained when policy π is applied, in which 

the revenue is earned through the total loaded distance, Ri denotes the reward 

from the accepted load i, which is proportional to the haul-length of load i (li) 

such that Ri = r * li., where r represents the unit revenue per loaded mile. The cost 

is incurred on the total moving distance including both the empty and loaded 

movements. The unit transportation cost per traveled mile is denoted by β. Hence, 

the profit increases as the fleet serves more longer haul-length demands with less 

empty distance.  
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Another measure to evaluate policy performance is response time to a 

customer. This time is measured from the demand request time (Ai) to the time 

that a shipper receives an acceptance/rejection decision from the dispatcher. 

In this problem, the relationship between solution algorithm execution 

time for a local snapshot problem and solution quality, measured by response 

time, is explicitly discussed. A dynamic operation policy adaptively implementing 

various assignment procedures is described, with the aim of fully utilizing 

computational resources without wasting any time that may be available between 

successive demand requests. In addition, application of intelligent acceptance 

decision and demand filtering procedures that consider system status and demand 

characteristics result in significant operational benefits. 

 

6.2 ASSIGNMENT TECHNIQUES 

The three load-truck assignment techniques introduced in Chapter 5, are 

applied to this problem. All the assignment techniques use the Mixed Integer 

Programming (MIP) model presented in chapter 3. The first assignment technique 

(Assign I) is the initial assignment procedure. The second assignment procedure 

(Assign II) reassigns existing loads in the system using the ‘Hybrid partitioning’ 

strategy, developed in Chapter 5. This strategy judiciously selects a subset of the 

vehicles in the fleet, with their associated assigned demands. The last assignment 

technique (Assign III) reassigns existing demands in the system using the 

‘Random partitioning’ strategy that randomly selects the candidate vehicles for 

reassignment. The manner in which theses three assignment techniques are 
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applied in an online operational setting, and the events that trigger each respective 

application, are described in the next section. 

 

6.3. DYNAMIC DISPATCHING STRATEGY 

In typical adaptation of static algorithms to a dynamic operational setting, 

the arrival of a new demand triggers the solution procedure of the static snapshot 

problem generated from information on the current state of the system, such as the 

respective locations and status of the vehicles, as well as the respective locations 

and associated time-windows of the known demands. The solution resulting from 

this procedure provides a schedule for the vehicles in the fleet. The vehicles 

follow this schedule until the next schedule is generated from the solution of the 

next snapshot problem triggered by the arrival of a new demand.  

Since the next demand arrival time is not known in advance, researchers 

have focused on minimizing the computation time (for the snapshot problem) in 

order to meet the dynamic operational condition that a decision process be 

completed before the next demand arrival. However, imposing an arbitrary pre-

determined short computation time may waste computation capability between 

demand arrivals. The main motivation for limiting solution time is that a 

dispatcher should almost immediately inform the customer of the acceptance 

decision for a newly requested demand. However, in order to obtain a quality 

solution for this combinatorial problem, it is practically impossible to reduce the 

computation time to a second, and it is not necessary to do so. In this chapter, a 

maximum tolerable response time is specified to provide a customer with an 
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acceptance decision. This is the amount of time a customer is willing to wait 

before receiving an acceptance or rejection decision.  

In order to satisfy this restriction and maximize computation capability 

within a given time, a Dynamic Adaptive Dispatching (DAD) strategy is 

developed. This strategy utilizes computation capability fully without wasting 

available time. Load arrival triggers the initial assignment procedure (Assign I). If 

no new demands arrive during the execution time of Assign I, and the new load is 

accepted, Assign II (which includes this new demand) is applied repeatedly until 

the next demand arrives. If the new load is rejected, Assign III is applied 

repeatedly to the existing loads in the system until the next demand arrives. The 

purpose of repeated application of Assign III is to allow consideration of new 

randomly selected vehicles in each application, in an effort to uncover additional 

improvement opportunities through local assignment and swapping across 

vehicles. 

The maximum computation times of Assign II and III are pre-specified 

and an appropriate snapshot problem size (the number of candidate vehicles and 

demands) is defined according to this threshold, along the lines described in 

chapters 4 and 5.  
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Figure 6.1 Implementation of DAD strategy for a dynamic problem 
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Figure 6.2 Example of worst-case response time 

Figure 6.1 illustrates the implementation of the DAD strategy. As can be 

seen, the response time to a customer is generally the sum of Assign I execution 

time and part of the Assign II (or Assign III) execution time, depending to the next 

demand arrival instant. The worst case arises when several demands are requested 

almost simultaneously just after Assign II (or Assign III) starts. Figure 6.2 

illustrates an example of such worst case, in which the fourth customer needs to 

wait for a period of η4 in order to receive an acceptance decision. 

Another computation time issue is the relationship between vehicle 

movement and assignment execution time. When a local snapshot problem is 

generated on the basis of the current state of the vehicles and the known but not 

served demands, it is important to avoid the conflict discussed in Section 3.3.2.2. 

Thus, for the assignment procedures, the maximum computation time for a single 
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application should be predefined, and taken into consideration when specifying 

the associated local problem. Thus, the assignment process uses updated vehicle 

locations and status information instead of current information, as discussed in 

Section 3.3.2.2.  

The value of the allowed computation time of an assignment procedure is 

approximately a function of problem size. Therefore, the maximum allowable 

computation time parameter is defined as follows. In case of Assign I, the 

computation time parameter is specified as the maximum possible computation 

time based on data obtained from simulation experiments. The computation time 

of Assign I depends on the number of demands in the system. Hence, the 

parameter is adaptively modified depending on this value. Generally, the 

computation time of Assign I is relatively short, whereas Assign II and III 

procedures require relatively long computation times. Therefore, the computation 

time parameter is predefined, taking into consideration the tolerable response time 

to a customer. According to this value, the problem size of a local problem is 

defined. However, controlling problem size does not determine the computation 

time exactly. Thus, if the Assign II or III processes cannot obtain an optimal 

solution for the local problem within the maximum allowable time, the best 

solution found within the given time will be used.  

  

6.4 FILTERING 

Due to the time-windows associated with the demands, the number of 

demands in the queue of the system is limited. The ‘holding capacity’ is defined 
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as the maximum number of demands waiting for service in the system. High 

arrival rates (corresponding to highly congested conditions) cause the system to 

operate continually at this ‘holding capacity’. When the number of accepted 

demands approach the ‘holding capacity’, it becomes difficult to find 

reassignment opportunities to reduce the empty distance because there is not 

enough room for swapping and re-sequencing existing demands, and most 

demands end up being served near the upper bound of their respective time-

windows. 

The filtering process aims to control the total number of demands in the 

dispatching system. Whenever a new demand arrives, the number of demands in 

the system (the accepted demands that have not been picked up yet) is considered. 

When the number of demands in the system is at or above a predefined threshold, 

all arriving demands are rejected out right. Only if the number of demands is 

below the threshold is the Assign I procedure applied. Otherwise, the demand is 

rejected outright. This filtering process will not be applied towards the end of the 

operation horizon because the dispatcher wants to serve as many demands as 

possible within a working horizon. Hence, after a certain time near the end of the 

horizon (to be determined on the basis of the service time and characteristics of 

the particular operation), all the feasible demands are accepted. Note that the 

‘holding capacity’ does not represent the service capacity. The filtering process 

only limits the number of demands in the queue, not the number of served 

demands in a day. In fact, in some cases, the filtering process may allow a greater 

number of loads to be served over the horizon of interest. 
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In addition, an intelligent filtering decision process (AddCost) is 

developed.  The Assign I initial assignment procedure provides a good measure 

for characterizing the potential of a new demand, namely the additional cost 

resulting from assigning the demand to a vehicle. The new demand will be 

accepted only if the additional cost is less than a certain level and the total number 

of demands in the system is less than the filtering threshold. 
 

6.5 EXPERIMENTAL DESIGN 

A simulation framework similar to the one presented in chapter 5 is 

employed to evaluate the performance of the algorithms. In this chapter, it is 

assumed that a company receives demands for 10 hours a day (T = 10 hours) and 

operates until the fleet completes delivery service for all accepted demands. Thus, 

the company works for about 15 hours a day to complete its delivery service for 

the jobs in the system. A single run (simulation of the performance of the fleet for 

one a day) takes almost the same time as real world time, namely 10 hours, as 

explained in Section 3.4.1. Thus, five iterations of the simulation experiments are 

conducted, simulating one week of operation.  

The simulation experiments in this chapter assume a demand rate that 

produces an over saturated system. Therefore, the demand arrival rate is specified 

so that about half of the demands are rejected even with an efficient dispatching 

algorithm. This requires in an average inter-arrival time of successive demands of 

around 18 seconds. The maximum allowable computation time for Assign II and 

Assign III is specified as 10 seconds. 
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6.6 NUMERICAL RESULTS 

First, in order to evaluate the DAD algorithm implementation process, the 

dynamic decision policy developed in Chapter 5 (named TPD two phase 

dispatching policy) is applied to the same demand stream. In this process, every 

new demand arrival triggers Assign I and Assign II sequentially. If a new demand 

arrives during the execution of an assignment procedure, Assign I for the new 

demand is applied after completing the current procedure (i.e. either when 

optimality is reached or a preset maximum execution time is reached, whichever 

comes first). Table 6.1 summarizes the comparison of the two alternative process 

implementations.  

As shown in table 6.1, DAD generates more profit as a result of longer 

total loaded distance and a greater number of accepted demands served with less 

total empty distance. Thus, DAD improves average profit by 3.91% compared to 

the TPD benchmark. With regards to the response time, DAD exhibits a slightly 

longer average response time. However, the worst case (maximum value row) 

shows that TPD may require a much longer response time for some customers. 
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Table 6.1 Performance comparison of TPD and DAD 

(a) Performance 

 Iteration Total Empty 
Distance [mile] 

Total Loaded 
Distance [mile] 

# of served 
demands 

Waiting 
time [min] Profit 

TPD 1 11236.1 53724.8 1090 161.4  $18,442.1 
 2 11520.0 53699.0 1062 161.0  $18,264.0 
 3 11430.3 54034.7 1092 162.4  $18,526.6 
 4 11628.6 52700.6 1047 160.8  $17,573.1 
 5 11099.6 53609.6 1074 161.0  $18,447.3 

average   11382.9 53553.8 1073.0 161.3  $18,250.6 
DAD 1 10734.3 54346.8 1083 161.4  $19,119.9 

  2 10896.5 54141.9 1067 161.5  $18,898.4 
  3 10793.4 54597.3 1093 160.4  $19,244.1 
  4 10849.0 53525.2 1055 160.0  $18,536.9 
  5 10686.6 54146.5 1081 160.3  $19,021.0 

average   10791.9 54151.5 1075.8 160.7  $18,964.1 
 
(b) Response time [sec] 

 TPD DAD 
Mean 5.44 6.62 

Standard Deviation 4.15 2.99 
Minimum 1.25 1.25 
Maximum 39.51 22.65 
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The evolution of the total number of demands in the system over time 

within a day is shown in Figure 6.3, first without application of the filtering 

process in Figure 6.3(a), then with filtering in Figure 6.3(b). The different lines 

correspond to five iterations (5 days with different demand stream realizations). 

The ‘holding capacity’ of this system is around 360 demands and the system 

reaches this level by the second hour of operation (Figure 6.3 (a)).  After the 10th 

hour, the company does not accept any new demands, and focuses on serving 

already accepted demands. Figure 6.3 (b) shows the effect of the filtering process 

with a threshold of 270 loads, so that all demands received when the system is at 

this level are rejected outright. If the number of demands in the system is below 

the 270 threshold, acceptance/rejection is determined in the basis of the Assign I 

procedure. This filtering process was applied until the 9th hour. Limiting the 

number of loads in the system at any given time provides room for swapping and 

re-sequencing to improve a schedule. Examination of when loads are actually 

served without filtering reveals that a majority of the loads are served near the end 

of their respective pick up windows, as reported in Table 6.1 (Waiting time). 

When these constraints are binding for most loads, little slack exists to improve 

operation through swapping and rescheduling. The filtering process retains some 

flexibility without allowing vehicles to go idle, resulting in higher profit, as 

illustrated in the next set of results. 
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Figure 6.3 Effect of filtering process 
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To identify the “optimal” filtering threshold, various filtering thresholds 

are implemented and the results are shown in Figure 6.4. In the figure, a dot 

represents the total profit for the particular iteration (day). Five iterations are 

presented for each algorithm, respectively. The line connects the average values 

obtained for each threshold. As can be seen, F270 shows the best performance. 

This level, which is 25% less than the ‘holding capacity’ provides room for 

reassignment, and appears to be the most effective filtering threshold considered 

in this search. 

 

Figure 6.4 Performance results with various filtering thresholds 
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Figure 6.5 and table 6.2 summarize the performance of the intelligent 

filtering approach (AddCost), which utilizes additional cost information resulting 

from the initial assignment (Assign I). The performance of this process is 

contrasted to the performance of DAD without filtering and of the simple filtering 

approach with fixed F270 threshold. The table reports average values and 

standard deviations for each performance measure. In this experiment, the 

acceptance decision is specified as 18 miles. In order to be accepted, a new 

demand must satisfy two conditions. First, when the demand arrives, the system 

has fewer demands than 270 and second, the additional cost estimated by Assign I 

for serving this demand should be less than 18 miles.  
 

Figure 6.5 Performance results of various algorithms 
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Table 6.2 Performance results of various algorithms 

  
Profit # of served 

demands 
Waiting time 

[min] 
Response 

time 

Worst case 
response 
time [sec] 

DAD $18,964.06 270.50 1075.80 14.87 160.72 0.69 6.62 2.99 22.7 
Filter 270 $20,077.76 475.62 1051.80 21.78 125.89 0.92 2.97 2.88 16.18 
AddCost $20,981.28 436.89 1087.20 18.73 121.20 2.01 3.04 2.76 18.36 

 

The figure and table show that the additional cost filtering procedure 

(AddCost) increases the profit by 4.5% over simple filtering and 10.6% over no-

filtering DAD algorithm. Furthermore, the response time and the waiting time are 

improved significantly, because the number of demands in the system affects the 

computation time of an assignment and the job queue length of the vehicles. 

 

6.7 SUMMARY  

This chapter presented the dynamic adaptive dispatching (DAD) policy for 

over-saturated demand condition. It applies various assignment techniques 

adaptively depending on the state of the system. This algorithm provides 

opportunities to improve a schedule by re-optimizing existing routes while 

keeping the response time within a tolerable range. A filtering process designed to 

control the number of waiting jobs in the system below ‘holding capacity’ was 

also presented. This process provides room for effective reassignment (swapping 

and re-sequencing), resulting in improvement in overall system efficiency. 

Additional improvement can be attained by combining this filtering process with 
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a simple intelligent acceptance decision rule, which utilizes the information 

obtained from Assign I. 

Simulation experiments were conducted to assess the relative performance 

of the dynamic dispatching procedures and associated filtering algorithms. Results 

show that the DAD algorithm implementation process significantly improves 

profit and reduces the worst response time relative to the previously established 

benchmark though a slight increase in the average response time is observed. The 

filtering process also produces significant improvement in both profit and 

response time. These results indicate that keeping the number of waiting jobs in 

the queue below the ‘holding’ capacity (at about 75% of the ‘holding’ capacity in 

this case) is more beneficial than accepting and holding as many demands as 

possible when operating in an over-saturated demand environment. The intelligent 

filtering procedure (AddCost), improves the dispatching system efficiency further.  
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Chapter 7 Load Acceptance Decisions with Priority Demand  

7.1 INTRODUCTION 

This Chapter presents load acceptance decision policies when the carrier 

provides two classes of service, corresponding to various customer requirements 

in terms of time sensitivity vs. price sensitivity. Other problem settings are similar 

to those of Chapter 6. In particular, over-saturated demand situations are assumed: 

the demand exceeds the system’s average capacity. Therefore, the dispatcher has 

the opportunity to select more profitable demands over less profitable ones. For 

these problems, the vehicle assignment (routing and scheduling) decisions follow 

the dynamic operating policy, DAD presented in Chapter 6. However, the second 

MIP formulation (for two demand classes) presented in Section 3.3.1 is applied to 

solve the local snapshot problems.  

As noted, the carrier provides two types of delivery service The 

customers’ choice between these two types of service, denoted by demand type 

(ξi), is also revealed dynamically as the routes are executed, along with other 

demand information including origin, destination locations, and time-window. A 

fraction of customers requires time sensitive ‘priority’ or express and on-time 

delivery service. In other words, they are willing to pay a premium for on-time 

and earlier delivery. Thus, the time-window width for this type is relatively 

narrow compared to that of the ‘regular’ type demand. Type I time-windows, 

defined in Section 3.1.3, are employed to represent the priority demands. The 

other customers are more sensitive to price, and request the ‘regular’ low-price 
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service. This class of demands has wider and flexible time-windows, represented 

using Type II windows. These allow pick up of a regular demand i (ξi = 1) after 

its critical time ( cr
iτ ). However, a penalty is charged depending on the amount of 

over time ( cr
ii τδ − )+ and haul-length, li of the demand. The demand, however, 

must be picked up before the latest pickup time ( +
iτ ).  

When demands are classified into two types, the objective of the fleet 

management is to find a policy to maximize profit over the demands requested 

during the time horizon [0, T] as follows.  
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where the reward earned from a load (Ri) depends on the type of the demand (ξi), 

in a way that different unit prices per unit-loaded distance are applied (ro >> r1). 

All other terms are defined previously in Section 3.2 

  

7.2 ACCEPTANCE DECISION POLICY 

7.2.1 Conceptual Framework 

A general optimal acceptance rule in a dynamic and stochastic knapsack 

problem (Papastavrou et al., 1996) and distribution problem (Kleywegt & 

Papastavrou, 1998) can provide good insight into the acceptance decision for 

dynamic fleet management problems. This concept can be applied to this problem 

as follows. Suppose that, upon arrival of demand j, the current (at time t=Aj) 

locations and status of the vehicles under a certain policy π are represented by 
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}K...,,k),t,k(t 1={= ππ ΓΓ  with the vehicle routing schedule of the fleet, 
π
tQ = }K...,,k),t(q{ ,k 1=π . When the demand j is accepted, let π

tQ  represent the 

updated routing schedule including demand j under policy π at time t. Note that 

the locations and status of vehicles do not change. In other words, it is assumed 

that the solution execution time is ignored. With these notations, the optimal 

acceptance rule is defined as follows: 

 

 

If load j is accepted, then expected total profit is defined as follows. The expected 

profit is estimated over the demands that will be requested during the time 
horizon )T,A( j  not counting load j, given state of the system represented by 

vehicles’ status and locations as well as the updated routing schedule including 

demand j: 
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Otherwise, if the load is rejected, in this case the state of the system is identical to 

the state just before the demand comes in, and the expected total profit is:   
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Hence, the expected marginal total profit (EMP) by rejecting the load j is: 
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The EMP(j) represents the expected marginal profit that the capacity of the 

system, which is held by rejecting demand j, would produce by serving future 

demands. In other words, the carrier may lose the expected profit by accepting 

load j, because accepting demand j may preclude the system from accepting 

future demands that would generate more profit. If the system has a few loads in 

the queue so that the system has enough room for accepting future demands, the 

expected marginal profit by rejecting demand j is negligible. In contrast, as the 

system is saturated with the demands that have been accepted but not-yet-picked 
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up, the expected marginal profit by rejecting demand j tends to increase. 

Therefore, the proper acceptance decision criteria for demand j is as follows: At 

first, the load j should be feasible. In addition, the revenue earned from accepting 

the load j should be greater than the expected marginal profit by rejecting demand 

j.  

This acceptance decision rule makes intuitive sense. However, it is 

extremely difficult to estimate the expected total profit over the future 

(unrealized) demands at a given system state (which is described by locations and 

status of vehicles, along with associated scheduled demands). Furthermore, even 

if it were possible to estimate the expected profit, the computation time of the 

estimation process would be restricted under this dynamic operating environment 

since the acceptance decision should be communicated to the customer in a short 

time after the request is made. Therefore, the acceptance decision policy for this 

dynamic fleet management problem should be able to reach a decision in a short 

time, and should take into account the system state upon arrival of a load. 

In the problem of interest, customers can choose the service type out of 

two mutually exclusive alternatives. The priority service is more expensive than 

the regular service in a way that the price rate (unit price per unit distance) of a 

priority demand (ro) is much higher than the regular demand’s unit price (r1). 

Thus, the dispatcher favors priority demands. Furthermore, although a long-haul 

regular demand could generate the same revenue as a short-haul priority demand, 

the priority load is more valuable to the carrier because it consumes less of the 

fleet’s resources. Short haul-length corresponds to less operating cost, and the 
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short service (delivery) time provides opportunity for the driver to serve 

additional demands.  

Therefore, the basic approach to maximize the overall profit is to accept as 

many priority demands as possible while controlling the acceptance decision of 

the regular demands. This control process aims to manage the state of the system, 

under which the carrier can accept future priority demands without the risk of 

underutilizing the transportation resources. In addition, this acceptance decision 

policy, as reported in Chapter 6, may improve the efficiency of the reassignment 

procedure by keeping the total number of demands in the system below the 

‘holding capacity’.  

The ability to serve a given demand depends on the demand’s time-

window as well as its relative location vis a vis the locations of the fleet of 

vehicles in the system. Both of these characteristics are not typically known a 

priori, therefore it is difficult to guarantee that a future (unrealized) priority 

demand will be served, even if a present regular demand is rejected. For this 

reason, the system ability to accept a (unrealized) priority demand is expressed in 

probabilistic terms rather than a number of discrete slots.  

 

7.2.2 Feasibility Index  

This section presents the ‘Feasibility Index’ (FI), which represents a 

system state upon arrival of a regular demand in terms of the approximate 

expected number of vehicles that can serve an unrealized (future) priority 

demand. Due to the complexity of the probability estimation (the probability that 
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the system can accept a future priority demand), the approximation algorithm is 

developed based on several assumptions. 

First, it is assumed that the time-window width of a priority demand is 

known in advance. This assumption is applicable because the service provider 

(carrier) can pre-specify the delivery service characteristics.  

Second, the arrival time of a future priority demand is assumed to be the 

same as the time that FI is estimated. This would correspond to a priority demand 

being requested immediately after arrival of a regular demand. The justification 

for this assumption is that until the next demand comes in, the ability of the 

system to accept a future priority demand improves gradually in the course of 

time, since the vehicles are serving the accepted demands on a continuous basis. 

Thus, FI provides a lower bound for the expected number of vehicles that can 

accept a future priority demand.  

Third, the estimation process of the probability employs an insertion 

heuristic method when searching feasible routing schedules for a future demand. 

Note that the feasibility of a demand should be assured by a feasible routing 

schedule including the demand. Even though this method cannot explore all 

possible routing schedules for a future demand, it is guaranteed that once a 

feasible schedule could be constructed with this method, the initial assignment 

procedure would be able to accept the demand and construct a feasible routing 

schedule. 

 Finally, the FI estimation process involves probabilistic information 

about haul-length of a priority demand and the required empty distance to serve it. 
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The probability density function of the haul-length can be obtained from the 

historical data. Furthermore, a threshold (β) is pre-specified representing the 

maximum allowable empty distance required to serve a demand. The empty 

distance value is essential when estimating FI using the insertion heuristic 

method. The longest possible empty distance, in this problem setting 141.4 miles, 

can be applied to provide a lower bound. This value, however, corresponds to an 

extremely rare case, in which all vehicles are located at one corner of the 

geographic region under consideration and the new demand’s origin location is 

the opposite corner. The likelihood of this event is negligible. Furthermore, the FI 

value estimated using the largest value significantly underestimates the expected 

number of vehicles that can serve a future priority demand. Therefore, the average 

plus one standard deviation of the empty distance required to serve a demand 

(obtained from the historical data) would be used as the threshold (β).  

The estimation process based on the assumptions stated above is as follows.  

 

FI(k) = ))t(q),t,k(|k(FI ,k ππΓ  

= 
















=

−=

=

−=

=

+

+

)k(FI
)idle(sif

))q,k(FI},I,...,ifor)),q,q(,k(FI{),q,k(FImax(
)empty(sif

))q,k(FI},I,...,ifor)),q,q(,k(FImax({
)loaded(sif

,k

,k
I

,k
i

,k
i

,k

,k

,k
I

,k
i

,k
i

,k

3

11
2

11
1

11

1

π

ππππ

π

πππ

π

 



 147

where I represents queue length (I =|qk,π(t)|), and for notational simplicity 

current time t is omitted and FI(k,( ππ ,k
i

,k
i q,q 1+ )) = FIT(k, ( ππ ,k

i
,k

i q,q 1+ ))* FIL(k, 

( ππ ,k
i

,k
i q,q 1+ )) 
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The first step is to estimate, FI(k), the probability that single vehicle k can 

accept a future priority demand, in which the current location, status ( )t,k(πΓ ) 

of vehicle k and associated scheduled demands ( )t(q ,k π ) are known to the 

dispatcher. This process is based on the given system state. There are two main 

features of the system that affect the FI(k). The first feature is the updated 

location of vehicle k considering the vehicle status. The other feature is the set of 
times, {( +

iτ - t), i = { )(, tq k π }}, where t represents the decision epoch. This set of 

times is obtained from the latest pickup times ( +
iτ ) of the demands, which are 

scheduled in vehicle k’s queue (i = { )(, tq k π }). Considering those features, FI(k) 

estimation process begins with the location-based Feasibility Index of vehicle k 

(FIL(k)). 

Suppose that an idle vehicle locates in a square region, and the time-

window width of a priority demand is known in advance as τ )( −+ − ii ττ . In this 

case, the vehicle can serve a requested demand only if the vehicle can reach the 

origin of the requested demand within τ. In addition, a pre-specified threshold β is 

applied to limit the maximum empty movement of the vehicle to serve the 

demand. Thus, τ′=min(τ, β) is a updated threshold. In other words, when vehicle k 

is idle the FIL(k) is the probability that origin of a priority demand is generated in 

the area specified by τ′. For example, if an idle vehicle is located as shown in the 
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Figure 7.1, the vehicle can serve a future demand only if a future demand is 

requested the origin of a future demand is in the overlapped shaded are. If it is 

assumed that origin location of a demand is randomly distributed over the square 

region, the location-based Feasibility Index of vehicle k, FIL(k) is represented by 

the size of the shaded area over the size of the rectangular area. 

Figure 7.1 FIL(k) for an idle vehicle 

If a vehicle is not idle, the location and FIL(k) of the vehicle should be 

updated considering the routing schedule of the vehicle. For example, when a 

vehicle (with only one demand in its queue) is loaded status, namely on the way 

to the destination of a load, the vehicle will be available at the destination of the 

current load. Therefore updated τ′ should be reduced taking into account available 

time of the vehicle and FIL(k) should also accommodate the update location of 

vehicle k.  

 

 

τ’ 

Vehicle
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Figure 7.2 Update process of τ′ to τ¨ when vehicle k is loaded status with one 
demand, load a, in it’s queue 

Figure 7.2 depicts the reduction of τ, where solid line represents the 

loaded movement. Of course, the threshold β is also considered. Note that, 

calculation of the FIL(k) assumes that a new priority demand with time-window 

width τ comes into the system immediately after current decision process. This 

value provides the lower bound of τ′, since as the next demand arrival time is late, 

the value of the τ′ increases. 

If a vehicle has more than two demands in its schedule (or one demand 

and empty status), the probability that a priority demand can be inserted into 

existing service schedule should be taken into consideration along with the 

location based estimation process. In this case, the time-windows (particularly the 
latest times) of the existing demands in the queue ( +

iτ , i = { )(, tq k π }) are 

important factors that affect the Feasibility Index. This type of FI is called time-

window based Feasibility Index (FIT(k)). For example, a vehicle has scheduled 

three loads (a, b, c) sequentially as shown in Figure 7.3. The possible insertion 

Schedule 
of truck k 

τ' 

τ¨ 

Time 

load a 
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slots for a new demand are (a, b), (b, c) and end of the queue, where (a, b) 

denotes the slot between demands a and b. 

Figure 7.3 Maximum allowable time-space between loads a and b 

The maximum time-space room between loads a and b can be obtained by 

shifting the scheduled pick up times of load b and c up to the points that their 

time-windows allow. Let S (a,b) be the maximum allowable time-space between 

demand a and b. 

 

S (a,b) = TO(b) - TD(a) + min{( +
bτ - TO(b)), ( +

cτ -TO(c))} 
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TO(j): scheduled time at the origin of load j 

TD(j): scheduled time at the destination of load j 

 

In order to insert a demand between demand a and b, the maximum time-

space S(a,b) should be greater than the haul-length of the (future, unrealized) 

demand plus required empty distance to serve it. For the haul-length, a random 

variable (η) is defined following a probability density function (pdf) obtained 

from the historical data. With respect to the required empty distance to serve the 

demand, average plus one standard deviation value from the historical data would 

be used as the maximum allowable empty distance (β).  

 

FIT(k, (a,b))= Pr{S(a,b) >η + β } 

 

Where FIT(k, (a,b)) denotes the probability that a priority demand can 

assigned between demands a and b. In addition to this time-window related 

probability, the previously presented location based probability FIL(k, (a,b)) is 

also taken into account with updated τ considering updated vehicle location (in 

this case, at the destination of the load a). 

  

FI(k, (a,b)) = FIT(k, (a,b))* FIL(k, (a,b)) 

 

This procedure is applied into every available slot including the case of 

appending the new demand at the end of the queue, FIL(k, c) such that the 



 152

vehicle’s updated location is the destination of demand c. Calculation process of 

FIL(k, c) regards the demands a, b and the empty movement between the two 

demands as a single long demand and consider updated location of the vehicle. 

Thus, the feasibility index of vehicle k, FI(k) is as follows.  

 

FI(k) = max { FI(k, (a,b)), FI(k, (b, c)), FI(k, c)} 

 

This estimation procedure explores all available slots of vehicle k, to 

which a new demand can be inserted depending on the vehicle status. Note that if 

a vehicle is empty moving status, the slot between the vehicle and the first 

demand should be considered. This slot represents the en-route diversion case. 

Finally, feasibility index of the system is the sum of FI(k)’s for all vehicles 

in the fleet, which represents the expected number of vehicles that can accept a 

future priority demand with empty movements less than β. 

 

7.2.3 FI Based Acceptance Decision Policy 

Whenever a demand arrives, the feasibility check process, Assign I 

presented in Chapter 6, is applied. If the demand is feasible and is a priority 

demand, it is accepted outright. Otherwise, if the demand is a regular demand, 

initial routing schedule involving the new load is constructed. Then, FI is 

estimated based on this updated state of the system. Only if the )Q,Γ|t(FI t
π
t

π is 

greater than specified threshold (FI*), the requested demand is accepted. 
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Otherwise, if the )Q,Γ|t(FI t
π
t

π  is less than FI*, the load is rejected in order to 

increase FI.  
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7.3 NUMERICAL RESULTS  

The simulation experiment designed in this chapter is similar to the 

simulation framework of the Chapter 6. The only difference is the newly 

introduced time-window types. The type I time-windows are employed for the 

priority demands with fixed 1.5 hour length ),( ii
+− ττ  to characterize the express 

and on-time delivery service. The regular demand employs the Type II time-

window with total 4 hours duration ),( ii
+− ττ , of which one hour is reserved for 

over time ),( i
cr
i

+ττ . If the pick up of regular demand i occurs after its critical 

time (δi > cr
iτ ), then a penalty in proportion to (δi - cr

iτ ) and the haul-length (li) is 

charged. The maximum penalty is charged when the demand is picked up at the 

latest pickup time of the demand, += ii τδ . In this case, 20% of the revenue earned 
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from demand i is the maximum penalty, which is specified by the scaling 

parameter, γ.  

Two scenarios are tested with different distribution ratios between two 

demand types. In the first scenario, 6.25% of the requested demands are the 

priority demands. On the other hand, the second scenario evaluates the case that 

25% of the requested demands are the priority demands. The experiments 

simulate 5 days operating of the fleet where 1265.3 (±14.2) demands including 

both types are requested in a day, and 77.3(±4.8) and 310.3 (±11.2) demands are 

priority demands, respectively.  

Two benchmark policies are tested to evaluate the performance of the FI 

acceptance decision policy. The first benchmark policy accepts as many demands 

as possible, regardless of the demand type i.e., feasibility-based-acceptance rule. 

The second benchmark is the simple filtering process presented in Chapter 6.  

To find the optimal FI* threshold value, calibration process with various 

FI* values are conducted as like in Chapter 6. Figure 7.4 illustrates the results 

with various FI* values in both scenarios. The optimal threshold values showing 

best performance are 7 and 6 for 25% and 6.25% of priority demand portions, 

respectively.  
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Figure 7.4 Performance with various FI* thresholds 

Table 7.1 shows the numerical results with FI* values for the two 

scenarios. As seen in the table, in terms of the total profit (column 5), the 

performance of the dispatching system significantly improves with the proposed 

Profit vs. FI* for 25% of priority demand

$35,000

$36,000

$37,000

$38,000

$39,000

$40,000

4 5 6 7 8 9 10

FI*

Pr
of

it

Profit vs. FI* for 6.25% of priority demand

$24,000

$25,000

$26,000

$27,000

$28,000

$29,000

4 5 6 7 8 9 10

FI*

Pr
of

it



 156

FI acceptance decision policy compared to both of the benchmarks in both 

scenarios. The sixth and the last columns present the total number of served 

demands and served priority demands respectively along with the acceptance 

ratios. In spite of the similar acceptance ratio with respect to the total number of 

accepted demands, the more accepted priority demands improves the total profit 

significantly. For example, in the 25% priority demand scenario, although the FI-

based acceptance decision policy accepts less total number of demands (850.6, 

67.2%) compared to feasibility-based acceptance decision policy (900.2, 71.1%), 

the high acceptance ratio of the priority demand (86.1%) produces much greater 

overall profit ($38,438) than the feasibility-based acceptance decision policy case 

($23,307). Furthermore, it is notable that the over time cost (column 3) is 

successfully reduced by controlling the number of demands in the system with 

filtering process and FI based acceptance decision policy.
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Table 7.1 Numerical results of the FI based acceptance decision policy 

(a) 6.25% of demands are priority demand      

Acceptance decision  
policy 

Total Revenue 
(std.) 

Total Cost 
(std.) 

Over Time 
Cost (std.) 

Total Profit 
(std.) 

Total # of Served 
Demands (std.) 

# of served Priority 
demands (std.) 

$56,663 $32,312 $5,340 $19,011 896.8 (70.9%) 25.8 (33.4%) Feasibility based 
acceptance (618) (229) (363) (549) (13.2) (3) 

$57,295 $31,937 $1,249 $24,109 920.8 (72.8%) 35.2 (45.6%) 
Simple Filtering 

(412) (449) (205) (484) (10.1) (5) 
$59,879 $31,820 $979.2 $27,080 897.2 (70.9%) 66.3 (85.6%) 

FI 
(460) (184) (168) (453) (11.2) (7) 

 
(b) 25% of demands are Priority demands 

     

Acceptance decision  
policy 

Total Revenue 
(std.) 

Total Cost 
(std.) 

Over Time 
Cost (std.) 

Total Profit 
(std.) 

Total # of Served 
Demands (std.) 

# of served Priority 
demands (std.) 

$60,712 $32,485 $4,920 $23,307 900.2 (71.1%) 102.8 (33.1%) Feasibility based 
acceptance (572) (223) (232) (492) (6.3) (4.5) 

$61,622 $31,483 $1,267 $28,872 903.8 (71.4%) 139.8 (45.1%) 
Simple Filtering 

(910)  (655) (302) (335) (16.5)  (7.7) 
$68,829 $30,038 $352 $38,438 850.6 (67.2%) 267.2 (86.1%) 

FI 
(1090) (535) (98) (804) (13.2) (11.2) 
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  The evolution of the total number of demands in the system over time 

within a day is shown in Figure 7.5. For the presentational simplicity, only one 

day’s performance of the high portion of priority demands (25%) scenario is 

presented, the shaded line represents the total number of demands in the system 

over time with the feasibility-based-acceptance policy, the solid line with the 

simple filtering, then bolded line with the FI-based acceptance policy. After the 

8th hour, the company does not accept any new demands, and focuses on serving 

the demands that has been accepted. The solid line shows the effect of the 

filtering process with a threshold of 250 demands, so that all demands received 

when the system is at this level are rejected outright until 6.5th hour. With respect 

to the FI-based acceptance decision policy, as the portion of priority demands out 

of the total demands in the system increase, FI value at time t decreases due to the 

decrease of the average time-window width over the demands in the system. 

Therefore, in order to maintain the FI(t) value at a certain level, the total number 

of demands in the system decreases by rejecting regular demands. Note that, these 

acceptance decision policies were applied until the 6.5th hour in order to hold as 

many demands as possible at the 8th hour.  
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Figure 7.5 Total number of demands in the system with various acceptance 
decision policies 

 

7.4 SUMMARY  

In this chapter, two classes of service are introduced corresponding to 

various customer requirements. For these two types of demand, the Feasibility 

Index based dynamic acceptance decision policy is proposed. The FI represents 

the approximation of the expected number of vehicles being able to serve future 

(still unrealized) priority demand based on the current system state, in which the 

maximum required empty distance parameter (β) is pre-specified. Simulation 

experiment results show that the FI acceptance decision policy significantly 

improves the total profit, particularly increase the portion of accepted priority 
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demand. Furthermore, this policy significantly reduces the delay cost with respect 

to the regular demand service. 
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Chapter 8 Conclusion 

This Chapter reviews the objectives of the thesis outlined in Section 1.4, 

and presents related conclusions. Furthermore, the main contribution of this 

research is addressed along with the recommended future work. The first 

objective was achieved by providing a formal definition of the dynamic fleet 

management problem taking advantage of real-time information on vehicle 

locations and states, as well as by discussions about various problem features. 

Secondly, two MIP formulations are developed based on Yang, Jaillet, and 

Mahmassani (2000, 2002)’s formulation for the local snapshot problems 

(deterministic and static truckload multi-vehicle routing problems for pickup-and-

delivery service with time-windows) depending on demand characteristics. The 

first formulation deals with homogeneous demands, while the second formulation 

models the problem with two types of demand corresponding various customer 

requirements. These MIP models are applied in the proposed dynamic hybrid 

decision policies as needed. As stated in the third objective, variations of the 

hybrid dynamic decision policies are developed according to the problem settings. 

Those policies successfully satisfy the dynamic operational requirements: quick 

(with small variance) response to a customer with respect to the acceptance 

decision and full utilization of the computational resources without wasting 

available time between successive demand requests. In addition, developed 

partitioning strategies provide a solution approaches to a problem managing a 

large fleet of vehicles. Regarding to the real-time acceptance/ rejection decision 
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stated in the fourth objective, various decision policies are developed 

corresponding to a range of demand situations. Major findings include that 

controlling the number of demands in the system under the ‘holding capacity’ 

improves overall system efficiency. In addition, a policy for the acceptance 

decision on two types of demands is developed and evaluated. The final objective 

was accomplished by developing simulation frameworks to evaluate the 

effectiveness of policies developed. Furthermore, a simple local heuristic 

approach (Regan, Mahmassani & Jaillet, 1996a) and RAPID-SL (Powell, Snow, & 

Cheung, 2000) algorithm are coded and implemented in this simulation 

framework as benchmark policies and then the comparative results are reported. 

The main contribution of this research is to provide solution algorithms for 

local snapshot version of the dynamic fleet management problems and dynamic 

operational policies using those algorithms. The nature of these problems 

incorporate large amount of uncertainties mainly due to the dynamically requested 

demands, and the algorithm execution time to solve the problems is one of the 

main obstacles to direct application of the solution algorithms due to the 

complexity of the problem as well as the dynamic operational restrictions. 

Various efficient solution algorithms are developed for the static and deterministic 

version of the problems (local snapshot problems) with the aim of solving the 

problems as close to optimality as possible with minimum computing time. With 

adaptive application of these algorithms, a variety of dynamic policies are then 

developed to provide methodological approaches fully utilizing the available 

hardware and computational resources while keeping the service quality, as well 
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as to explicitly recognize their computational characteristics for implementation 

in a dynamic operational setting. The insight from this work can be expanded to 

wide range of dynamic and stochastic fleet management problems. 

The recommended future research would consider multiple pickups and 

deliveries for less-than truckload delivery service considering the truck capacity 

constraints. Moreover, explicit consideration of variable travel time of the 

vehicles due to unpredictable events such as network congestion and/or accidents, 

are also recommended for future study. Particularly in urban area, travel time 

between two points varies significantly and affects the system performance. 

Nevertheless, most of the routing and scheduling algorithms utilize distance rather 

than actual travel time. Therefore, combining dynamic fleet management system 

with the system being able to provide more reliable forecasted (when the 

scheduled vehicle movements are actually realized) travel time such as ‘Dynamic 

Traffic Assignment’ system would be recommended.  
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