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Abstract 

A hybrid automaton is a model of a system with inter- 
acting continuous and discrete dynamics. It has been 
successfully employed in emerging applications on the 
border between computer science and control theory. In 
this paper, hybrid automata are formally introduced. 
Some results on existence and uniqueness of executions 
for hybrid automata are obtained. Continuous depen- 
dence on initial states are shown for a class of hybrid 
automata. Zeno hybrid automata, i.e., hybrid automata 
that exhibit infinitely many discrete transitions in finite 
time, are also discussed. 

1 Introduction 

The importance of systems with interacting digital and 
analog computations is increasing dramatically. Areas 
such as aeronautics, automotive vehicles, bioengineer- 
ing, embedded software, process control, and trans- 
portation are growing tremendously [14, 2, 3, 7, 8, 161. 
There is a large number of new applications, where 
computers are coupled to physical environment. This 
has led to a need for better understanding of the be- 
havior of these hybrid systems with linked continuous- 
time and discrete-time dynamics, in order to guarantee 
design performance. 

Hybrid automata have proved to be an efficient way to 
model systems with both continuous and discrete dy- 
namics. Their rich structure allow them to accurately 
predict the behavior of quite complex systems. Based 
on computer science and control theory, tools are now 
evolving for analyzing and designing hybrid systems 
within the hybrid automata framework. The work pre- 
sented in the paper is part of this activity. 
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Cooperation in Research and Higher Education, Telefonaktiebo- 
laget LM Ericsson's Foundation, ONR under grant N00014-97- 
1-0946, and DARPA under contract F33615-984-3614. 

The main col1,ribution of the paper is to present some 
results on the fundamental properties of hybrid au- 
tomata. We investigate the existence and uniqueness 
of executions of hybrid automata. Although such re- 
sults form the foundation for analysis and design meth- 
ods, these problems have only recently been addressed 
[15, 91. Continuous dependence on initial conditions is 
another important issue in the analysis of hybrid au- 
tomata [4, 131. It is for instance often a desirable prop- 
erty in computer simulations. In the paper, we show a 
new result in this area. Zen0 hybrid systems are sys- 
tems that exhibit infinitely many discrete transitions 
in a finite time interval. This type of behavior does 
only occur in systems with interacting continuous and 
discrete dynamics. Physical systems are of course not 
Zeno, but a model of a physical system may however 
be Zen0 due to a too high level of abstraction. It is 
therefore important to characterize Zen0 hybrid au- 
tomata and in applicable cases modify the model to 
avoid Zenoness [5]. In the paper, we are able to com- 
pletely characterize the set of Zen0 states for a couple 
of quite broad classes of Zen0 hybrid automata. 

The outline of the paper is as follows. Section 2 intro- 
duces notation and the definitions of hybrid automata 
and executions. Some recent results on existence and 
uniqueness of executions for classes of hybrid automata 
are given in Section 3. A result on continuous depen- 
dence on initial conditions is presented in Section 4. Fi- 
nally, Zen0 hybrid automata are discussed in Section 5 
and some conclusions are given in Section 6 .  

2 Hybrid Automata and Executions 

The following definitions are based on [lo, 5, 181. For a 
finite collection V of variables, let V denote the set of 
valuations of these variables. We use lower case letter 
to denote both a variable and its valuation. We refer to 
variables whose set of valuations is finite or countable 
as discrete and to variables whose set of valuations is 
a subset of a Euclidean space as continuous. For a set 
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of continuous variables X with X = Rn for n 2 0, we 
assume that X is given the Euclidean metric topology, 
and o denote the Euclidean norm. For a set of 
disc bles Q, we assume that Q is given the dis- 
Crete topology (every subset is an open set), generated 

(q, 4') = 0 if q = q' and do(q, q') = 1 if 
e the valuations of the union Q U X by 

Q x X, which is given the product topology generated 
by the metric d( (q , x ) ,  (q' ,x'))  = do(q,q ' )  + 112 - ~ ' 1 1 .  
We assume that a subset U of a topological space is 
given the induced topology, and we use to denote its 
closure, U" its interior, dU = \ U" its boundary, U' 
its complement, IUI its cardinality, and P ( U )  the set of 
all subsets of U .  

Definition 1 (Hybrid Automaton) 
A hybrid automaton H is a collection H = (Q, X ,  Init, 
f, Dom, Reset), where 

Q is the finite collection of discrete variables with 
values in Q; 

X is the finite collection of continuous variables 
with values in X = Rn ; 
Init C_ Q x X is the set of initial states; 

f : Q x X + TX is the vector field; 

Dom C Q x X is the domain of H ;  

Reset : Q x X + P ( Q  x X) is the reset relation. 

We refer to (q,z) E Q x X as the state of H .  We 
make the standing assumption that IQ1 < CO and that 
f is Lipschitz continuous in its second argument. A 
hybrid automaton can be represented by a directed 
graph (Q, E ) ,  with vertices Q and edges E = { (q, q') E 
Q x Q : 3z,z' E X, ( q ' , d )  E Reset(q,z)}. With each 
vertex q E Q, we associate a set of continuous initial 
states Init(q) = {x E X : ( q , x )  E Init}, a vector field 
f ( q , - ) ,  and a set D(q)  = {z E X : ( q , x )  E Dom}. 
With each edge e = (q,q') E E ,  we associate a guard 
G(e) = {x E X : 32' E X , ( q ' , x ' )  E Reset(q,z)}, and 
a reset map R(e ,x )  = {x' E X : (q' ,x')  E Reset(q,z)}. 

Definition 2 (Hybrid Time Trajectory) 
A hybrid time trajectory T is a finite or infinite se- 
quence of intervals { I i } g o ,  such that 

Hybrid time trajectories can extend to infinity if T is 
an infinite sequence or if it is a finite sequence ending 
with an interval of the form [TN, CO). Since the hybrid 
automaton is time invariant, we assume that TO = 0. 

For a hybrid time trajectory T = { I i } ~ o ,  let ( T )  denote 
the set {0,1,. . . , N }  if N is finite and {0,1,. . . } if N 
is infinite. We use q and x to denote the time evolution 
of the discrete and continuous state, respectively (with 
a slight abuse of notation). Here q is a map from (7) to 
Q and z = {xi : i E ( T ) }  is a collection of C' maps. 
An execution is now defined as a triple x = ( r , q , x )  in 
the following way. 

Definition 3 (Execution) 
An execution of a hybrid automaton H is a collection 
x = ( T , Q , z )  with T being a hybrid time trajectory, 
q : ( T )  + Q a map, and x = {xi : i E ( T ) }  a collection 
of C' maps xi : Ii + D(q( i ) ) ,  such that 

0 (q(o),zo(o)) E Init, 

0 for all t E Ii, i * ( t )  = f (q( i ) ,x i ( t ) ) ,  

for all i E ( T ) ,  e = ( q ( i ) , q ( i  + 1)) E E ,  xi(.,') E 
G(e), and xi+' ( ~ i + l )  E R(e, ~ ~ ( 7 ; ) ) .  

We say a hybrid automaton accepts an execution x or 
not. The execution time 7 ( x )  is defined as 7 ( x )  = 
C:,(T; - T*) = ~ h ,  where N + 1 is the number 
of intervals in the hybrid time trajectory. The argu- 
ment x will sometimes be left out. An execution is 
finite if T is a finite sequence ending with a com- 
pact interval, it is called infinite if T is either an in- 
finite sequence or if 7 ( x )  = CO, and it is called Zeno 
if it is infinite but 7 ( x )  < CO. The execution time 
of a Zeno execution is called the Zeno time. We use 
& H ( q O , x o )  to denote the set of all executions of H 
with initial state (q0,zo) E Init, &E(qO,xo)  to de- 
note the set of all maximal executions (i.e., executions 
that are not strict prefix of any other executions [9]), 
and & g ( q o , x o )  to denote the set of all infinite exe- 
cutions. We define EH = U(qo,zo)EInit & H ( q o ,  E O )  and 

= u~,,,, EIni tEg(~o ,xO) .  TO simplify the nota- 
tion, we will drop the subscript H whenever the au- 
tomaton is clear from the context. 

3 Existence and Uniqueness 

The notation previously introduced gives a convenient 
way to  express existence and uniqueness of executions. 

Definition 4 (Non-Blocking) 
A hybrid automaton H is non-blocking if &p(qo ,  50) is 
non-empty for all (q0,xO) E Init. 

Definition 5 (Deterministic) 
A hybrid automaton H is deterministic if &E(qo ,  xo) 
contains a t  most one element for all (q0,xO) E Init. 
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Note that if a hybrid automaton is both non-blocking 
and deterministic, then it accepts a unique infinite ex- 
ecution for each initial state. In [9] conditions were es- 
tablished that determine whether an automaton is non- 
blocking and deterministic. These are reviewed next, 
but first we need to  introduce some more notation. 

The set of states reachable by H is defined as 

ReachH ={(i,i) E Q x X :  3x = ( ~ , q , z )  E EH, 

( q ( N ) , x N W )  = (4,?),N <..I. 
Note that ReachH 3 Init, since we may choose 7-h = 7 N  
and N = 0. Let 4(t, U) denote the conventional solution 
to the differential equation i = f ( q , z )  with z(0) = 
a. The set of continuous states from which continuous 
evolution is impossible when in discrete state q is then 
given by 

OUtH ={ ( i j ,  Z) E Q x X : V E  > 0, 3 t E [0, E ) ,  

( i j ,  4(t, 3)) 4- Dam), 

Note that if Dom is an open set, then Out is simply 
Dam'. If Dom is closed, then Out may also contain 
parts of the boundary of Dom. In [9] methods for com- 
puting Out were proposed, under appropriate smooth- 
ness assumptions on f and the boundary of Dom. As 
before, we will use OutH(q) to denote the projection of 
Out to discrete state q, and drop the subscript H when- 
ever the automaton is clear from the context. With 
these two pieces of notation one can show the following 
two results [9]. The first gives a condition that guaran- 
tees that there always exist infinite executions. 

Proposition 1 (Non-Blocking) 
A (deterministic) hybrid automaton is non-blocking 
if (and only if) for all (q,z) E Out n Reach, 
Reset(q,z) # 0. 

Note that the condition is necessary and sufficient if 
the hybrid automaton is deterministic. A condition for 
determinism is given next. 

Proposition 2 (Deterministic) 
A hybrid automaton is deterministic if and only if 
for all (q,z) E Reach, IReset(q,x)l 5 1 and, if 
Reset(q, z) # 0, then (q, z) E Out. 

4 Continuous Dependence on Initial States 

Continuity of solutions with respect to initial states 
is a desirable property of many dynamical systems. 
For a conventional continuous-time dynamical system, 
a Lipschitz condition on the vector field guarantees this 
property. For hybrid systems, however, it is not suffi- 
cient to  require that the vector field in each discrete 
state is Lipschitz continuous. In this section, we show 

what extra assumptions that may be needed to  guar- 
antee continuous dependence on initial states. Conti- 
nuity is interpreted in the metric d ( ( q , x ) ,  (q‘,z‘)) = 
dD(q,  q’) -k llz - x’ll- 

We study a particular class of hybrid automata, which 
we refer to as having transverse domain. A hybrid au- 
tomaton H is said to have transverse domain if there 
exists a function a : Q x X R continuously differen- 
tiable in its second argument, such that 

Dom = { (q ,z)  E Q x X: o(q,z) 2 0) 

and for all (q, x) with a(q, z) = 0, L f o ( q ,  z) # 0. Here 
L f a  : Q x X + R denotes the Lie derivative of a along 
f defined as Lfa(q ,  z) = aa/az(q, z) f ( q ,  z). In other 
words, an automaton has transverse domain if the set 
Dom is closed, its boundary is differentiable, and the 
vector field f is pointing either inside or outside of Dom 
along the boundary. A hybrid - automaton is called do- 
main preserving if Reach C Dom, i.e., if the states re- 
main in the closure of the domains along all executions. 
The following example show a hybrid automaton that 
has transverse domain and is domain preserving. 

Example 1 
Consider the hybrid automaton 

Q = {41,42} and X = It2; 

0 Init = (9.1) x R2 

0 f(*, *) E (1,O)T; 

0 Dom = ((q1,z) : 

0 

Reset(q, 2 1 , z 2  

It is easy to check (for example, by using Propositions 1 
and 2) that the hybrid automaton is deterministic and 
non-blocking, and has thus a unique infinite execution 
for every initial state. It shows, however, in general not 
continuous dependence on the initial state as illustrated 
next. Consider two executions x = ( ~ , q , z )  and 2 = 
(+,i,i) with initial states (ql,(O,O)) and ( q l , ( O , c ) ) ,  
respectively. For every E > 0, it holds that for (T )  = 
(r’) -= (0 ,  l}, Ilzi(t) - i?i(QIl = 1 for all t E 11 and 
t €  I l .  

The reason for the absence of continuous dependence 
in the example is of course due to the discontinuous 
reset relation. The following theorem gives sufficient 
conditions for continuous dependence on initial states 
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for a class of hybrid automata. The result is proved in 
[17]. Some other work on continuity in hybrid systems 
can be found in [4, 131. 

Theorem 1 
Consider a deterministic hybrid automaton H and as- 
sume 

0 H has transverse domain and is domain preserv- 
ing; 

0 for all q E Q, f(q ,  .) is C'; 

0 for all e E E ,  R(e,  .) is a continuous function; 

0 for all e = (q,q') E E,  G(e) n D(q)  is an open 
subset of aD(q) .  

Consider a finite execution x = ( ~ , q , z )  E EH(qo,zo) 
with T = { I i )go .  For every E > 0 there ex- 
ists 6 > 0 such that for all (&,ZO) E Init with 
d( (4o0 ,5o ) , (qo , z0 ) )  < 6, there exists T ( Z 0 )  > 0 such 
that the execution 2 = ( f , G , Z )  E f ~ ( & , Z o )  with 
7 = { f i } ~ v = o  and fh = T(Zo) satisfies 

Remark 1 
The result says that for a given execution x ,  any execu- 
tion 2 starting close enough to x will stay close at the 
end point with some appropriate execution time. Note 
that for a given initial state and execution time, the ex- 
ecution % is unique by assumption. Also note that it is 
in general not possible to guarantee the same execution 
time for 2 and x. 
Remark 2 
If there is only one discrete state and no reset relations, 
the hybrid automaton, of course, defines a continuous 
dynamical system. It is easy to see that all assumptions 
are satisfied for this case. By setting N = 0 and T(2) = 
T(x), we obtain the traditional result of continuous 
dependence on initial states. 

Note that Example 1 satisfies all conditions in Theo- 
rem 1 except for the requirement on continuous reset 
map. An example that violates the last assumption of 
the theorem is the following. 

Example 2 
Consider the hybrid automaton 

Here G(ql,q2) r l  D(q1) = {z E R2 : z1 = 0, z2 2 0}, 
which is hence not an open subset of dD(q1) = {x E 
R2 : z1 = 0}, so Theorem 1 is not applicable. To see 
that the hybrid automaton in general does not show 
continuous dependence on the initial state, consider ini- 
tial states in a neighborhood of (91, (0,O)). 

5 Zen0 Hybrid Automata 

Zen0 hybrid automata accept executions with infinitely 
many discrete transitions within a finite time interval. 
Such systems are hard to analyze and simulate in a 
way that gives constructive information about the be- 
havior of the real system. It is therefore important to 
be able to determine if a model is Zen0 and in applica- 
ble cases remove Zenoness. However, for models com- 
posed of several hybrid subsystems, this is in general a 
non-trivial task. These problems have been discussed 
in [5, 61. In this section, some further characteriza- 
tion of Zen0 executions is presented. First, we illustrate 
Zenoness by an example of Alur and Henzinger [l]. 

Example 3 
Consider the water tank system in Figure 1. Here z, 
denotes the volume of water in Tank i, and vi > 0 
denote the constant flow of water out of Tank i. Let 
w denote the constant flow of water into the system, 
directed exclusively to either Tank 1 or Tank 2 at 
each point in time. The objective is to keep the wa- 
ter volumes above TI and r2, respectively (assuming 
that zl(0) > T I  and ~ ( 0 )  > ~ 2 ) .  This is to be achieved 
by a switched control strategy that switches the inflow 
to Tank 1 whenever x1 5 r1 and to Tank 2 when- 
ever 5 2  < r2. A hybrid automaton modeling the de- 
scribed system is shown in Figure l. It is straightfor- 
ward to show that the unique infinite execution the hy- 
brid automaton accepts for each initial state is Zeno, 
if max{w1,w2} < w < wl + 212. The Zen0 time is 
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Figure 1: Water tank system and corresponding hybrid 
automat on. 

(xl(0) + x2(O) -TI  - r2)/(v1 + 212 - w). Of course, a 
real implementation of the water tank system cannot 
be Zeno, but instead one or both of the tanks will drain. 
The Zen0 model does not capture this. The actual sce- 
nario depends on the dynamics of the switch, which in 
the model was assumed to be instantaneous. 

For further discussions on this example, see [5]. 

Definition 6 (Zeno Hybrid Automaton) 
A hybrid automaton H is Zen0 i f  there exists (qo, XO) E 
Init such that all executions in EE(q0,  ZO) are Zeno. 

We make a straightforward generalization from dynam- 
ical systems and define the w limit point (4,2) E Q x X 
of an execution x = (7, q, x) E Eg as a point for which 
there exists a sequence {8,}r=o, 8, E Ini, ni E (T )  

such that as n + m,8, + T ( x )  and (q(ni),  xni(8,)) + 
(4, i). The set of w limit points is the w limit set. When 
the continuous part of the Zen0 execution is bounded, 
the Bolzano-Weierstrass Property implies that there 
exists at least an w limit point. We introduce the term 
Zen0 state for such a point. 

Definition 7 (Zeno State) 
Thew limit point o f a  Zen0 execution is called the Zeno 
state. 

We use 2, c Q x X to denote the set of Zen0 states, 
so that 2, is the w limit set of the Zen0 execution. 
We write Q, for the discrete part and X, for the 
continuous part of 2,. 

For a Zen0 execution, the Zen0 set can be empty, finite, 
countable, or even uncountable, see [19] for examples. 

Figure 2: Continuous part of a Zen0 execution for the 
water tank hybrid automaton. 

Figure 2 shows a Zen0 execution of the water tank hy- 
brid automaton, for which 2, = (q1,qz) x (0) .  Note 
that X, is a point for this example. This holds in gen- 
eral if the continuous part of the reset relation is the 
identity map. 

Proposition 3 
Consider a hybrid automaton such that (q',x') E 
Reset(q,x) implies x' = Z. Then, for every Zen0 ex- 
ecution x = (7, q,x), it holds that IX,I = 1. 

Note that Proposition 3 gives the structure of the 
Zen0 state for the large class of hybrid systems called 
switched systems [l l] ,  since these systems can be mod- 
eled as hybrid automata with identity reset relation. 

A reset relation Reset is contracting, if there exists 
6 E [0, 1) such that (q', 2') E Reset(q, x) and (q', y') E 
Reset(q, y) imply 112' - y'll 5 ally - 211. If the reset re- 
lation is contracting and (q', d) E Reset(q, 0) implies 
that x' is the origin, then the continuous part of the 
Zen0 state is also the origin. 

Proposition 4 
Consider a Zen0 hybrid automaton with contracting re- 
set relation and such that (q',x') E Reset(q,O) implies 
x' = 0. Then, for every Zen0 execution x = (T, q, x), it 
holds that X, = (0) .  

6 Conclusions 

In this paper we have highlighted hybrid automata as 
a tool for modeling heterogeneous systems. Important 
properties of these systems, such as well-posedness, are 
not immediate. In the paper, however, we reviewed 
ongoing activities on establishing a formal framework 
for analysis and design of hybrid systems modeled as 
hybrid automata. Local conditions for existence and 
uniqueness of executions were presented together with 
a new result about continuous dependence on initial 
states. We also illustrated some of the nature of Zen0 
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hybrid automata by characterizing Zeno executions for 
a couple of quite broad classes of hybrid systems. 

Ongoing work include the generalization of LaSalle’s 
principle to hybrid systems [HI, geometric theory for 
hybrid systems [12], and optimal control with applica- 
tions to real-time scheduling. 
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