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ABSTRACT

This paper proposes an asymptotically optimal hybrid beamforming solution for large antenna

arrays by exploiting the properties of the singular vectors of the channel matrix. It is shown that

the elements of the channel matrix with Rayleigh fading follow a normal distribution when large

antenna arrays are employed. The proposed beamforming algorithm is effective in both sparse and

rich propagation environments, and is applicable for both point-to-point and multiuser scenarios.

In addition, a closed-form expression and a lower-bound for the achievable rates are derived when

analog and digital phase shifters are employed. It is shown that the performance of the hybrid

beamformers using phase shifters with more than 2-bits resolution is comparable with analog

phase shifting. A novel phase shifter selection scheme that reduces the power consumption at

the phase shifter network is proposed when the wireless channel is modeled by Rayleigh fading.

Using this selection scheme, the spectral efficiency can be increased as the power consumption

in the phase shifter network reduces. Compared to the scenario that all of the phase shifters are

in operation, the simulation results indicate that the spectral efficiency increases when up to 50%

of phase shifters are turned off.

Index Terms

Hybrid beamforming, large MIMO systems, phase shifter selection.
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I. INTRODUCTION

Multiple-input-multiple-output (MIMO) techniques such as beamforming, precoding and com-

bining can significantly improve the reliability of the transmission and increase the achievable

data rates in wireless communication systems. As the number of the antenna elements at the

transmitter/receiver increases, higher diversity and multiplexing gains are observed and the

channel matrix tends to have favorable conditions [1]. Hence, MIMO systems with large number

of antennas have attracted a lot of attention.

Depending on the structure of the antenna array, analog, digital or hybrid beamformers can

be implemented. The analog approach cannot provide multiplexing gains as the antenna array is

connected to the transceiver by only a single RF chain [2]. On the other hand, digital beamformers

with a dedicated RF chain per antenna element can use all the degrees of freedom of the

channel to transmit multiple symbols simultaneously. However, digital beamforming for large

antenna arrays is not suitable for practical applications due to the system complexity, cost and

power consumption [3]. In order to provide a tradeoff between performance and cost, hybrid

beamformers have been proposed where a small number of RF chains are connected to a large

number of antennas through a network of phase shifters [4]–[15]. This type of beamformers show

a promising performance even with limited channel state information (CSI) [4]–[7]. In order to

design hybrid beamformers, however, it is required to solve a complex nonconvex optimization

problem due to the constant modulus constraint imposed by the phase shifters [3]. In addition,

the phase shifters in practical systems have discrete resolution which converts the optimization

to a computationally expensive combinatorial problem [8], [9].

In the hybrid beamforming approach, it has been shown that the baseband precoder and the

RF beamformer can be designed either jointly [8]–[10] or in two stages [11]–[15]. For a point-

to-point system, a joint design approach based on matching pursuit was proposed when the

channel is sparse [8], [9]. In this method, firstly the singular vectors of the channel should

be calculated, and then the hybrid beamformer is derived by solving an optimization problem

to minimize the Euclidean distance between the matrices containing the singular vectors and

the weights of the hybrid beamformer. Considering that the calculation of the singular vectors

is computationally expensive, the second round of computations can cause sever delays in

practical systems. In addition, the achievable spectral efficiency based on [8], [9] significantly
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depends on the number of RF chains in the system and multipath components in the channel. A

close to optimal performance for both rich and sparse scattering channels was proposed based

on approximating the nonconvex optimization with a convex problem and using an iterative

algorithm [10]. The problem associated with such iterative algorithms is that the convergence

time depends on the initial conditions. Hence, the processing time to calculate the parameters

of the hybrid beamformer can become a prohibitive factor in real-time systems. In the two

stage design approach, the RF beamformer is calculated based on the channel matrix. Then, the

baseband precoder takes the impact of the channel matrix and the RF beamformer into account.

The optimal hybrid beamformer for a single stream transmission was proposed in [11]. Then,

based on the simulation results it was shown that hybrid and digital beamformers can achieve a

similar spectral efficiency when multiple symbols are transmitted. In this case, the optimality of

the hybrid beamformer and its performance closed-form expressions were not derived. Another

two stage algorithm that can achieve a close to optimal performance was reported in [13]–[15]

where the RF beamformer was iteratively calculated. In [8]–[15], it is not possible to derive the

closed-form expression of the performance as computer simulations are necessary to evaluate

the performance. Furthermore, due to the computational delays associated with the derivation

of the hybrid beamforming weights, the algorithms may not be suitable for practical systems

depending on the application. In addition, the power consumption in the RF beamformer will be

significantly high as each phase shifter requires some power to operate and hybrid beamformers

employ a massive number of these components.

In order to address the aforementioned challenges and facilitate the implementation of hybrid

beamformers, two main objectives are followed in this paper. Firstly, an asymptotically, also

called virtually, optimal hybrid beamforming scheme and the closed-form expressions of the

spectral efficiency for both point-to-point and multiuser scenarios in rich and sparse scattering

channels are derived. Secondly, a novel phase shifter selection scheme is proposed to simulta-

neously increase the spectral efficiency and reduce the power consumption in the phase shifter

network when rich scattering channels are considered. It is assumed that the rich and sparse

scattering channels follow Rayleigh fading and geometry based models, perfect CSI is available

at the transmitter and the number of the antennas are large. All the proposed schemes and the

closed-form expressions in this paper are derived based on the properties of the singular vectors

of the channel matrix. Using the basic characteristics of such vectors, an alternative approach
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to the solution in [11] is presented. It is shown that the performance of the digital beamformers

is achievable when the number of the RF chains is two times larger than the number of the

transmitted symbols. In order to calculate the hybrid beamformer for the Rayleigh fading scenario

when the number of the RF chains and symbols are equal, the distribution of the elements of

the singular vectors of the large channel matrix are derived which, to the best knowledge of

the authors, has not been previously reported. Based on this distribution, the virtually optimal

hybrid beamforming schemes for both the point-to-point and multiuser scenarios are derived.

Additionally, the closed-form expressions of the spectral efficiencies achieved by the proposed

hybrid beamformers are calculated. It is shown that in the solution with optimum performance,

the phase shifters in the RF beamformer should be set according to the phase of the elements

of the singular vectors of the channel matrix when the number of the antennas are large. The

advantages of the proposed approach over the stat-of-the-art is its simplicity, low computational

delays and asymptotically optimal behavior. When digital phase shifters are used, a simple but

effective hybrid beamforming scheme is proposed and its performance lower-bound is derived.

Analytical and simulation results demonstrate that the performance of the proposed scheme with

phase shifters with more than 2-bits of resolution is similar to the hybrid beamformer with analog

phase shifters. Finally, a novel phase shifter selection scheme and the closed-form expression

of its performance bound are presented when the channel matrix follows Rayleigh fading. The

advantages of this method are two fold as the power consumption in the RF beamformer network

can be reduced and the spectral efficiency can be improved at the same time. Simulation results

indicate that the spectral efficiency will increase when up to 50% of the phase shifters are

switched off.

This paper is organized as following, the system model and problem statement of the point-to-

point system are described in sections II and III. In section IV, the hybrid beamforming scheme

with analog and digital phase shifters are proposed and analyzed. The multiuser scenario and

phase shifter selection are investigated in sections V and VI. Finally, the simulation results,

conclusion and future works are presented in sections VII and VIII.

Notations: The following notation is used throughout this paper: R and C are the field of

real and complex numbers. A represents a matrix, a and a∗ are a vector and its conjugate,

respectively. am is the mth column of A and A1:m is a matrix containing the first m columns

of A. Amn and |Amn| denote the (m,n) element of A and its magnitude. diag(A1, A2, ..., AK)
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Fig. 1. The block diagram of a hybrid beamformer for a point-to-point scenario.

is a diagonal matrix with A1, A2, ..., AK on its diagonal. A−1, det(A), ‖A‖, AT, AH, trace(A)

denote inverse, determinant, Frobenius norm, transpose, Hermitian and trace of A, respectively.

RN (a,A) and CN (a,A) present a random vector of real and complex Gaussian distributed

elements with expected value a and covariance matrix A. Finally, 0m×1, 1m×1 and Im are a

vector of m zeros, m ones and an m×m identity matrix, respectively.

II. SYSTEM MODEL

In a point-to-point MIMO communication system, the transmitter and the receiver are equipped

with Nt and Nr antennas, respectively. The transmitter sends a vector s ∈ CK×1 of K symbols to

the receiver where E[ssH] = IK . The transmit signal vector becomes x =

√
Pt

Γt
FP1/2s, where Pt

is the total transmit power, P ∈ RK×K is a diagonal power allocation matrix with
∑K

k=1 Pkk ≤ 1,

F ∈ CNt×K is the precoder matrix and Γt = trace(FHF)/K is a normalization factor such that

‖1/
√

ΓtF‖2 = K. Let H ∈ CNr×Nt and y ∈ CNr×1 denote the normalized channel matrix and the

received signal vector. Assuming the noise vector at the receiver antennas z ∼ CN (0Nr×1, σ
2
zINr)

has independent and identically distributed (i.i.d.) elements with variance σ2
z , the channel input-

output relationship is expressed as y = Hx + z. Applying the combiner matrix W ∈ CNr×K at

the receiver, the input ŝ ∈ CK×1 to the detector is

ŝ =

√
Pt

ΓtΓr
WHHFP1/2s +

√
1

Γr
WHz, (1)

where Γr = trace(WHW)/K is a normalization factor such that ‖1/
√

ΓrW‖2 = K.
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The block diagram of a point-to-point communication system with a hybrid beamformer is

shown in Fig. 1. A hybrid beamformer consists of a baseband precoder FB ∈ CM×K connected

through M RF chains to the RF beamformer FRF ∈ CNt×M such that F = FRFFB. The elements

of the RF beamformer are either analog or digital B-bit resolution phase shifters as

FRF =


ejθ11 ejθ12 · · · ejθ1M

ejθ21 ejθ22 · · · ejθ2M
...

... . . . ...

ejθNt1 ejθNt2 · · · ejθNtM

 , ∀ θntm ∈ Θ, nt ∈ {1, ..., Nt}, m ∈ {1, ..., M}, (2)

where Θ = [0, 2π] for analog phase shifters and Θ = {0, 2π/2B, ..., (2B − 1)2π/2B} for digital

phase shifters. For the sake of the notation simplicity, throughout the paper it is assumed that

nt ∈ {1, ..., Nt}, m ∈ {1, ..., M} and k ∈ {1, ..., K} and the number of the RF chains at the

transmitter and receiver are equal to M . Similar notation is used for the hybrid beamformer at

the receiver as W = WRFWB where WRF ∈ CNr×M and WB ∈ CM×K . Finally, the system model

(1) for the hybrid scenario becomes

ŝ =

√
Pt

ΓtΓr
WH

BWH
RFHFRFFBP1/2s +

√
1

Γr
WH

BWH
RFz. (3)

In this paper, we derive an asymptotically optimal hybrid beamformer for a narrowband system

under rich and sparse scattering channels under the assumption that E[‖H‖2] = NrNt. Rayleigh

fading with i.i.d. elements Hnrnt ∼ CN (0, 1) is employed to model the rich scattering channel.

A geometry based model with L � min(Nt, Nr) multipath components is applied for the

sparse scattering scenario. In this case, the channel matrix is expressed as [16]

H =

√
NtNr

L

L∑
l=1

βlar(φrl)aH
t (φtl), (4)

where βl ∼ CN (0, 1) is the multipath coefficient, φtl and φrl are angle-of-departure and angle-of-

arrival of the lth multipath. Without loss of generality, it is assumed that |β1| ≥ |β2| ≥ ... ≥ |βL|.

The steering vector au(φul), ∀u ∈ {t, r}, for linear arrays is expressed as

au(φul) =
1√
Nu

(1, e
j2πdu
λ

cos(φul) ..., e
j2πdu
λ

(Nu−1) cos(φul))T (5)

where φul ∈ [0, π], λ is the wavelength and du is the antenna spacing [16]. In the rest of this

paper, it is assumed that the transmitter and the receiver are equipped with linear arrays with

du = λ/2.
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III. PROBLEM STATEMENT AND MOTIVATION

The optimal beamforming and power allocation for a fully digital point-to-point system is

achieved by singular value decomposition (SVD) and waterfilling. The SVD factorizes the

channel matrix as H = UΣVH where the columns of V ∈ CNt×Nt and U ∈ CNr×Nr are the

right and left singular vectors of H, and the diagonal elements of Σ ∈ RNr×Nt are the singular

values of H. For a full-ranked H, the capacity of the MIMO channel at high SNR grows linearly

with min(Nt, Nr) when K = min(Nt, Nr) streams are transmitted over the channel [17]. When

K ≤ min(Nt, Nr), the maximum achievable rates are derived by setting the combining and

precoding matrices based on thin-SVD as Wd = U1:K and Fd = V1:K [11]. In this case,

Γt = Γr = 1 and the capacity of a point-to-point system with K streams over H with Gaussian

entries sk is [11]

C = max I(s; ŝ) = max
trace(P)≤1

log2 det
(

IK +
Pt

σ2
z

R−1
n WH

d HFdPFH
d HHWd

)
(6)

= max∑K
k=1 Pkk≤1

K∑
k=1

log2(1 + PtPkkσ
2
kk/σ

2
z)

where I(s; ŝ) is the mutual information between s and ŝ, Rn = 1
Γr

WHW = 1
Γr

WH
d Wd = IK , σ2

kk

are the ordered eigenvalues of HHH and the optimal Pkk is derived by waterfilling. In this case,

the capacity growth at high SNR is proportional to K. It should be noted that if the channel

is rank-deficient it is not possible to transmit more than rank(H) symbols. When the hybrid

beamformers are used, the achievable rate is expressed as [17]

R = I(s; ŝ) = log2 det
(

IK +
ρ

ΓtΓr
R−1

n WH
BWH

RFHFRFFBPFH
BFH

RFHHWRFWB

)
, (7)

where ρ = Pt
σ2
z

is a measure of link signal-to-noise ratio (SNR).

One of the main challenges of designing hybrid beamformers is the joint design of the RF

beamformers and baseband precoders/combiners considering the constant modulus constraint on

the phase shifters. Designing FB, FRF, WB and WRF to maximize (7) is a nonconvex problem and

in general it is difficult to solve [8]. Due to the similarity between the hybrid beamformer matrices

at the transmitter and the receiver, same design algorithms are applicable to both sides. Hence,

the discussions and derivations during this paper are mostly focused on the hybrid beamformer

at the transmitter. In this case, it is desired to maximize the mutual information I(s; y) as

(Fopt
B ,Fopt

RF) = arg max
FB,FRF

I(s; y) = arg max
FB,FRF

log2 det
(

INr +
ρ

Γt
HFRFFBPFH

BFH
RFHH

)
, (8)
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subject to (s.t.) |FRF,ntm| = 1, where Fopt
B and Fopt

RF are the optimal baseband precoding and RF

beamforming matrices. It has been shown that based on some approximations, the optimization

in (8) can be reformulated as [8]

(Fopt
B ,Fopt

RF) = arg min
FB,FRF

‖Fd −
√

1

Γt
FRFFB‖, s.t. |FRF,ntm| = 1. (9)

A suboptimal joint baseband and RF design based on matching pursuit was proposed to solve (9)

for a sparse scattering channel [8]. For a more general channel, including Rayleigh fading, this

optimization problem can be approximated as a convex problem and a joint iterative suboptimal

solution was proposed in [10]. Another approach to design the hybrid beamformer is to calculate

Fopt
RF at the first step, and then derive the Fopt

B for the effective channel He = HFRF. Letting

xB = FBP1/2s, data-processing inequality indicates that [18]

I(s; y)
(a)

≤ I(xB; y) ≤ C. (10)

where inequality (a) turns into equality when FB = Ve as He = HFRF = UeΣeVH
e , and P is

derived by waterfilling. It could be concluded that max I(s; y) only depends on the design of

FRF. In this case,

Fopt
RF = arg max

FRF

I(s; y) = arg max
FRF

log2 det
(

INr +
ρ

Γt
HFRFVePVH

e FH
RFHH

)
, s.t. |FRF,ntm| = 1,

(11)

where Γt = trace(FRFVeVH
e FH

RF)/K = trace(FRFFH
RF)/K = Nt. The two-stage design of FB

and FRF has been previously studied in [13]-[15]. However, the spectral efficiency based on

these works depends on numerical calculations and it is not possible to derive the closed-form

expression of the performance. Based on the two-stage approach, a virtually optimal hybrid

beamforming and the closed-form expression of the spectral efficiency for a point-to-point system

with large number of antennas under two specific channel scenarios are presented in the next

section.

IV. HYBRID BEAMFORMING FOR THE POINT-TO-POINT SCENARIO

In this section, an asymptotically optimal hybrid beamformer that maximizes the achievable

rate in (8) is presented. Initially, based on some basic properties of the elements of the singular

vectors, it will be shown that analog phase shifters with K = M/2 can achieve the performance of

digital beamformers. It is notable that the analysis presented for this scenario is a modification of
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the approach in [11]. Under this assumption the system is underperforming as the multiplexing

gain is limited to M/2. In order to develop a hybrid beamforming algorithm that efficiently

employs all the RF chains to transmit K = M streams, some of the properties the singular

vectors of H are investigated. Then, the hybrid beamforming solution for large antenna array

systems with analog phase shifters are presented. For the case of K < M < 2K, a combination

of the methods for M = K and M = 2K, and its performance is discussed. When digital

phase shifters are employed, a simple heuristic suboptimal solution and its performance lower-

bound is presented. Finally, a discussion on the proposed method and a comparison with the

state-of-the-art are provided at the end of the section.

Since V is a unitary matrix, vH
k vk =

∑Nt
nt=1 |Vntk|2 = 1 and |Vntk| ≤ 1. Thus |Vntk| is in the

domain of the inverse cosine function. Hence,

|Vntk|ej∠Vntk = ej∠Vntk cos
(

cos−1(|Vntk|)
)

=
ej∠Vntk

2
ej cos−1(|Vntk|) +

ej∠Vntk

2
e−j cos−1(|Vntk|) (12)

=
1

2
ej∠Vntk+j cos−1(|Vntk|) +

1

2
ej∠Vntk−j cos−1(|Vntk|).

This means that two phase shifters and an adder at the RF are sufficient to produce Vntk when

M = K RF chains and 2MNt phase shifters are available. Alternative approach to the adders

is employing M = 2K RF chains and 2MNt phase shifters. In this case, 1/
√

ΓtFopt
RFFopt

B = Fd is

achieved by setting

F opt
RF,ntk′

=

 ej∠Vntk+j cos−1(|Vntk|) for k′ = 2k − 1

ej∠Vntk−j cos−1(|Vntk|) for k′ = 2k,
(13)

and Fopt
B = 1

2
diag(12×1, ..., 12×1) and Γt = 1. Hence, the maximum rate in (6) can be achieved

with this design. In order to derive Fopt
B and Fopt

RF for M = K scenario, further properties of the

singular vectors are investigated in the following subsection.

A. Properties of the Channel Singular Vectors

The behaviors of the channel singular vectors for Rayleigh and geometry based models are

presented in Theorem 1 and Lemma 1 in the following.

Theorem 1: If Hnrnt ∼ CN (0, 1) and Nt → ∞, Nr → ∞, then the elements of the singular

vectors of H are i.i.d and follow
√
NtVntn′t ,

√
NrUnrn′r ∼ CN (0, 1), ∀ nt, n

′
t ∈ {1, ..., Nt} and

∀ nr, n
′
r ∈ {1, ..., Nr}.
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, simulation results for the PDF of
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Nt|Vntk| for a Rayleigh fading channel over 1000 realizations with

Nt = Nr = 16 and Nt = Nr = 64.

Proof : It is known that the left and right singular vectors of H = UΣVH are uniformly

distributed on a complex Nt-hypersphere and a Nr-hypersphere with radius 1 [19]. As a result,
√
Ntvnt and

√
Nrunr are uniformly distributed on the surface of a Nt and Nr dimensional

hyperspheres with radius
√
Nt and

√
Nr. Moreover, the coordinates of a randomly chosen point

according to a uniform distribution on an N -hypersphere of radius
√
N are i.i.d. with CN (0, 1)

when N →∞ [20]. Hence, the elements of
√
Ntvnt and

√
Nrunr are i.i.d. with CN (0, 1). �

Remark: As far as the authors are aware, the distribution of the elements of the singular vectors

of matrix H, when Hnrnt ∼ CN (0, 1) for Nt →∞ and Nr →∞, has not been previously reported

in the literature, although the pieces of the proof have been available for a long time and they

have been studied by different researcher such as Love and Spruill [19], [20].

The real and imaginary parts of random variables with CN (0, 1) are distributed as RN (0, 1
2
)

[16]. Hence,
√
Nt|Vntk| has a Rayleigh distribution with parameter σR = 1√

2
and its expected value

is σR
√

π
2

[21]. Fig. 2 shows that the Rayleigh distribution can provide a good approximation

even for a finite Nt ∈ {16, 64}. The properties of the sparse scattering channels are described

in the following lemma.
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Lemma 1 [22]: For a geometry based channel model with Nt → ∞ and Nr → ∞, the

relationship between the singular and steering vectors is expressed as vl = at(φtl) and ul =

ar(φrl), ∀ l ∈ {1, ..., L}.

B. Hybrid Beamforming for M = K Scenario

The proposed hybrid beamformer when M = K is presented in the following lemma.

Lemma 2: The asymptotically optimal solution Fopt
RF and Wopt

RF to the optimizations in (7), (8)

and (11) for large Nt and Nr with M = K and analog phase shifters is F opt
RF,ntk

= ej∠Vntk ,

W opt
RF,nrk

= ej∠Unrk . In this case, the baseband precoder and combiner matrices become FB =

WB = IK .

Proof: Refer to Appendix A. �

It was previously shown that for the geometry based channel models, (8) could be ap-

proximated by (9) which is equivalent to minimizing the Euclidean distance between Fd and

1/
√
NtFRFFB [8]. In Appendix B, it is proved that the proposed RF beamformer of Lemma 2

can be alternatively derived by

minimize
FRF

‖
√

1

Nt
FRF − Fd‖2, s.t. |FRF,ntk| = 1. (14)

In order to implement the hybrid beamformer of Lemma 2, the first K singular vectors and

values of H should be initially calculated. Then, each phase shifter at the transmitter and the

receiver is directly set to the phase of the corresponding element in the right and left singular

vectors, respectively. Considering the impact of the RF beamformers, the baseband precoder

and combiner matrices are equal to an identity matrix. Finally, the optimal allocated power to

each symbol is derived by waterfillining. The performance of the proposed hybrid beamformer

compared to C in (6) for M = K and Rayleigh fading channel is expressed in the following

lemma.

Lemma 3: For large Nt and Nr and at high SNR regime, the difference between the maximum

rate C form (6) and the rate RC achieved by the beamforming scheme of Lemma 2 for a Rayleigh

channel is expressed as

C −RC = −2K log2(
π

4
). (15)

Proof : Refer to Appendix C. �
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Lemma 3 indicates that the spectral efficiency achieved by the digital beamformers is 0.7K

bits/Hz/s more than the performance of the hybrid beamformers when the number of antennas

are large and the channel is modeled by Rayleigh fading.

When K < M < 2K, two RF chains are used per symbol to transmit in the direction of the

singular vectors corresponding to the first M −K singular values of the channel. In this case,

the hybrid beamformer of M = 2K is used. For the remaining 2K −M symbols, the hybrid

beamformer of Lemma 2 is used. That is 2(M − K) RF chains are used to transmit M − K

symbols and each of the remaining 2K −M symbols are transmitted on one of the remaining

RF chains. For example, assuming that K = 3 and M = 5, the baseband precoder becomes

Fopt
B = diag(1

2
12×1,

1
2
12×1, 1). Then, (13) is used to design the the RF beamforming vectors

fRF,1, fRF,2 according to v1, and fRF,3, fRF,4 based on v2. Finally, fRF,5 is adjusted based on v3

and Lemma 2. Similar approach can be also applied at the receiver side. In a general scenario

that K ≤M ≤ 2K, by following the results of Appendix A and C, it can be easily verified that

(15) becomes

C −RC = −2(2K −M) log2(
π

4
). (16)

For example, letting K = 3 and M = 5, then C − RC = −2 log2(π
4
). It should be noted that

adding an extra RF chain at each side can increase the spectral efficiency by − log2(π
4
). However,

this improvement will also increase the system cost, complexity and power consumption.

For a geometry based channel, the singular vectors and the steering vectors become equal and

the proposed algorithm will be translated into steering the beams towards the channel multipath

components as proposed in [22]. Following a similar approach as in Appendix C, it can be easily

shown that 1/
√
Ntat(φt,k)

HfRF = 1 and C − RC = 0. Hence, extra RF chains M −K > 0 will

not improve the performance in such channels.

C. Digital Phase Shifters

Another challenge for designing hybrid beamformers is the discrete resolution of the phase

shifters. When B-bit resolution phase shifters are employed, the search space for the optimum set

of phases becomes 2BMNt which can be very large for large Nt. As an example, when there are

Nt = 64, M = 4 and 2-bit resolution phase shifters, there are 2512 possible phase combination

which is computationally expensive to search in the real-time applications. One way out is the



13

use a predefined set of phases known as RF codebooks [8], [9]. The disadvantage of the RF

codebooks is that they are usually designed for a fixed type of channel such as sparse channels.

The alternative approach to design the RF beamformer with discrete resolution phase shifters is

rounding the phases as

θd
ntk = arg min

θntk
|∠Fd,ntk − θntk|, s.t. θntk ∈ {0, ..., (2B − 1)2π/2B}, (17)

where θd
nt,k

is the phase of FRF,n,k. The lower-bound on the rate loss with this design is provided

in the following lemma.

Lemma 4: The gap between RC and the achievable rate RD by the hybrid beamformer based

on (17) with B-bit resolution digital phase shifters is bounded as

RC −RD ≤ −K log2

(
cos4(

2π

2B+1
)
)
. (18)

Proof : Refer to Appendix D. �

Lemma 4 indicates that hybrid beamformers with analog phase shifters can achieve maximum

0.45K bits/Hz/s higher spectral efficiency compared to the scenario that digital phase shifters

with B = 3 are employed. As hybrid beamformers target the transmission of a small number of

symbols, the gains achieved by using analog phase shifters are negligible at high SNR regime.

In addition, the low cost and computational complexity of the proposed scheme in (17) makes

it an effective approach for practical applications.

D. Discussion and Comparison with the State-of-the-Art

In this paper, the analytical discussions are focused on asymptotically large antenna arrays.

This is in contrast to the works in [8]–[10], [10], [13], [15] where the analysis are presented

for limited number of antennas. The advantages of considering asymptotically large arrays are

two-fold. Firstly, it facilitates the analysis to derive the virtually optimal hybrid beamformer and

the closed-forms for the achievable spectral efficiency. Secondly, as it will be shown in section

VII, the simulation results indicate that the analysis for the asymptoticly large array scenario

provides a reliable estimate of achievable performance for scenarios with limited number of

antennas.

One of the common approaches in the literature is to decompose the unconstrained thin-

SVD based beamformer matrix into RF beamformer and baseband precoder matrices, [8]–[10].
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The computational complexity of the rank-M thin-SVD of H is O(NtNrM) for M �
√
NtNr

[23]. The state-of-the-art hybrid beamformers that require a second round of computations

to decompose Fd into Fopt
B and Fopt

RF can cause high computational delay and complexity [8],

[9]. An iterative algorithm can be used to solve the optimization problem in (8), however, the

iterative algorithm renders a high computational cost and delay [10], [13], [15]. For example,

the complexity of the hybrid beamformer in [14] is O(max(Nt, Nr)
2 min(Nt, Nr)).

Compared to the state-of-the-art, the proposed hybrid beamformer of lemma 2 is faster and it

is virtually the optimal scheme for the systems with large Nt, Nr operating in Rayleigh and sparse

channels. The computational complexity of the proposed scheme is equal to the complexity of

rank-M thin-SVD as O(NtNrM). In addition, the closed-form expressions of the achievable

rates are derived which to best of the authors’ knowledge was not previously reported.

V. MULTIUSER SCENARIO

In the downlink scenario, the base station with Nt antennas transmits K symbols s ∈ CK×1

to K single antenna mobile stations where E[ssH] = 1/KIK . In this scenario, it is assumed that

the base station has perfect CSI and the users cannot collaborate. The total transmit power and

the wireless channel matrix are denoted as Pt and H ∈ CK×Nt , respectively. The transmit vector

is expressed as x =
√
Pt/ΓtFs where F is the precoding matrix and

Γt = E
[
trace(FssHFH)

]
= trace

(
FE[ssH]FH

)
= trace(FFH)/K (19)

is a power normalization factor. The channel output vector is y = (y1, ..., yK)T where yk

is the received signal at kth mobile station. The system input-output relation is expressed as

y =
√

Pt
Γt

HFs + z, where z = (z1, ..., zK)T, E[zzH] = σ2
zIK contains the receiver noise. The

optimal sum-rate capacity of H is derived by [24]

Csum(Pt,H) = max
trace(P)≤1

log2 det
(

IK +
Pt

σ2
z

PHHH
)
, (20)

where P is the power allocation matrix. In general, the capacity of the broadcast channels

is derived by dirty paper coding which is difficult to implement [17]. Hence, in practice the

suboptimal linear precoding algorithms with low complexity such as zero-forcing (ZF) are

preferred. It has been shown that the performance of ZF converges to optimal sum-capacity

for the Rayleigh channel when Nt goes large [1]. For the hybrid structure, the vector of the
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received signals becomes y =
√

Pt
Γt

HFRFFBs+z. In the following lemma, we present the virtually

optimal hybrid beamformer and its performance, achievable sum-rate with respect to the sum-rate

capacity of H, for multiuser MIMO scenario when the channel is modeled by Rayleigh fading.

Lemma 5: The asymptotically optimal hybrid beamformer for the multiuser scenario with

Rayleigh channel and in the high SNR regime consists of Fopt
RF from Lemma 2, and Fopt

B =

(HFopt
RF)−1. In this case, the difference between the sum-capacity Csum and the maximum achiev-

able sum-rate Rsum at high SNR is

Csum(Pt,H)−Rsum(Pt,
1√
Γt

HFopt
RFFopt

B ) = −K log2(π/4). (21)

Proof : Refer to Appendix E. �

The difference between right hand side of (15) and (21) is a scalar number 2. This factor comes

from the fact that the transmitter and the receiver in the point-to-point system are equipped with

hybrid beamformer, and the losses imposed by the RF beamformer should be counted at both

sides.

For the case of the geometry based channels, the proposed RF beamformer in Lemma 2 is still

asymptotically the optimal beamformer as it is shown in Appendix E. In order to achieve the

maximum achievable rate, nonlinear precoding schemes should be used at the baseband precoder.

The performance of ZF baseband precoder for sparse channels and the multiantenna multiuser

scenario considering the impact of imperfect CSI on the system performance is investigated in

[12]. Under the assumption of single antenna users, sparse channel, a base station with a linear

array and ZF baseband precoder, the beamformer of Lemma 5 and the algorithm in [12] will

result in the same performance. However, the hybrid beamformer in [12] is not applicable to

Rayleigh channels due to employing a special RF codebook. The RF beamformer of Lemma 5,

however, is applicable to both rich and sparse channels, and it is adaptable to different scenarios.

VI. HYBRID BEAMFORMING WITH PHASE SHIFTER SELECTION FOR RAYLEIGH CHANNEL

In the previous sections, it was shown that the spectral efficiency achieved by the hybrid

beamformers with MNt phase shifters is comparable to the performance of the digital beam-

formers. However, the power consumption in the phase shifter network can be significant when

large number of antennas are employed. Additionally, it is expected that the elements of FRF

corresponding to the elements of Fd with smaller amplitudes have less impact on the performance
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of the beamformer. In this case, there are phase shifters with insignificant contribution to spectral

efficiency although they consume the same amount of power. For this reason, a novel phase shifter

selection scheme that turns off those shifters according to a predefined threshold is proposed in

this section. The advantages of such an approach are twofold. Firstly it can improve the spectral

efficiency as more power will be transmitted through the phase shifters with more contribution.

Secondly, it can reduce the power consumption of the phase shifter network. In general, switches

consume less power compared to phase shifters. The power consumption of each of the phase

shifters PPS and switches PS at 2.4 GHz are reported as 28.8 ≤ PS ≤ 152 mW [25] and

0 < PS ≤ 15 mW [26]. By switching off β% of the phase shifters, the total consumed power

in the RF beamformer becomes PPSN = MNt((1− β/100)PPS +PS). For example, if PPS = 111

mW, PS = 1 mW, M = 4 and Nt = 64, the consumed power in the RF beamformer with all the

phase shifters in operation (without switches) and the scenario that β = 50 are MNtPPS = 28.4

W and PPSN = 14.4 W, respectively. That is close to 50% power saving in the phase shifter

network. In this case, FRF can be set as

FRF,ntk =

0,
√
Nt|Vntk| ≤ α,

ej∠Vntk , α <
√
Nt|Vntk|,

(22)

where α is the threshold level. In Appendix F, it is shown that the relationship between α and β

of is expressed as α =
√
−ln(1− β/100). In addition, when the RF beamformer is set according

to (22) the baseband precoder and combiner matrices become FB = WB = IK . In the following

lemma, the closed-form expression for the performance of the proposed phase shifter selection

algorithm is presented.

Lemma 6: In a Rayleigh channel and at high SNR and for large Nt, Nr, the spectral efficiency

Rβ achieved by the proposed phase shifter selection scheme, when β% of the phase shifters are

switched off, compared to C is obtained from

C −Rβ = 2K log2(1− β/100)− 4K log
(√π

2
+ αe−α

2 −
√
π

2
erf(α)

)
, (23)

where α =
√
−ln(1− β/100).

Proof: Refer to Appendix F.

The closed-form (15) in Lemma 3 is a special case of (23) when β = 0. As a consequence of

switching off the phase shifters that have smaller impact on the spectral efficiency, more power
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can be allocated to the elements with higher impact. As a result, the choice of β can lead to

a higher spectral efficiency as the power consumption in the RF beamformer is reduced. The

relationship between β and Rβ is studied in more detail by computer simulations in the next

section.

VII. SIMULATION RESULTS

In this section, the performance of the proposed hybrid beamforming schemes for the point-

to-point and the multiuser scenarios operating in rich and sparse scattering channels is evaluated

by Monte-Carlo simulations. The performance metric is average spectral efficiency over 1000

independent channel realizations and it is assumed that M = K = 4. In this paper, all the

closed-form expressions were derived for the scenario that Nt, Nr →∞. To obtain the appropriate

assumption on the number of the antenna elements for the simulations, the behavior of the hybrid

beamformer with respect to Nt and Nr is first analyzed. In the following, the superscript "A"is

used to distinguish the analytical results of the Lemmas 3, 4, 5 and 6 from the performance

of the proposed schemes derived by the Monte-Carlo simulations. For example, the analytical

spectral efficiency by the hybrid beamformer in Lemma 2 is expressed as RA
C = C −∆C where

∆C = limNt,Nr→∞C − RC. The performance of the hybrid beamformer of Lemma 2 with the

closed-form expression of Lemma 3 are investigated with respect to the number of antennas,

where it is assumed that Nt = Nr and then Nr = 8 for Nt ∈ {8, 16, 32, 64, 128, 256, 512}.

Figure 3 shows this performance RA
C compared to the simulation result, RC, for the Rayleigh

fading channel whereas Fig. 4 presents these for the geometry based model. It is observed that

RA
C and RC converge for both channels when Nt = Nr is large. For the Rayleigh fading channel,

RA
C predicts slightly lower spectral efficiency compared to the results from simulations RC when

Nr = 8 as shown in Fig. 3. On the other hand, it is observed from Fig. 4 that RA
C is always

larger than RC for the geometry based model as for this channel C = RA
C .

Figure 5 shows the performance of the hybrid beamformer with digital phase shifters, denoted

as RD, for a point-to-point system operating in rich scattering channel. It is observed that RC−RD

for B = 2 and B = 3 is 3.5 and 0.7 bits/s/Hz which is negligible compared to the high

spectral efficiency achieved by large antenna arrays at high SNR. Hence, a simple rounding

technique to set the discrete phases of the phase shifters with B ≥ 3 can significantly simplify

the calculations, and achieve a similar performance as analog phase shifters are employed. In
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Fig. 3. C, RC, R
A
C when the number of the antennas varies,

ρ = 34 dB and Rayleigh channel.
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Fig. 4. C, RC, R
A
C when the number of the antennas varies,

ρ = 34 dB and geometry based channel with L = 5.
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Fig. 5. Spectral efficiency achieved the hybrid beamformer

with digital phase shifters based on (17) RD, compared to

the bound based on Lemma 4 RA
D, RC and C for Rayleigh

channel.
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Fig. 6. Spectral efficiency achieved the hybrid beamformer

with digital phase shifters based on (17) RD, compared to the

bound based on Lemma 4 RA
D, RC and C for geometry based

channel with L = 5.

addition, the lower-bound of the spectral efficiency based on Lemma 4, denoted as RA
D, provides

a good approximation when B ≥ 3. For example, when B = 3, RD − RA
D is 1.2 bits/s/Hz.

Figure 6 presents a similar result for the sparse scattering channel. Figure 7 and Fig. 8 show

the performance of the proposed algorithm in Lemma 2 compared to the state-of-the-art [8],

[10], [14] for Rayleigh and geometry based channels. It is observed that the algorithm of [8] is

not applicable to the Rayleigh fading channel, although it has a very good performance for the
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Fig. 7. Spectral efficiency achieved by the proposed algorithm

compared to the state-of-the-art [8], [10], [14] when the

wireless channel follows Rayleigh fading.
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Fig. 8. Spectral efficiency achieved by the proposed algorithm

compared to the state-of-the-art [8], [10], [14] when the

wireless channel follows geometry based model with L = 5.
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Fig. 9. Sum-rate achieved by ZF (digital beamforming) Csum,

the proposed hybrid beamformer for the multiuser scenario

Rsum and the bound based on Lemma 5 RA
sum for Rayleigh

fading channel.

sparse scattering channel. The performance of the iterative algorithms of [10] and [14] is similar

to the proposed scheme for both channels.

For the downlink multiuser scenario with large number of antennas at the base station, ZF

has been shown as the asymptotically optimal beamforming scheme in Rayleigh channels. Fig.

9 shows the achievable sum-rates by ZF with a digital beamformer and the proposed hybrid
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β ,

Nt = Nr, ρ = 34 dB.

−20 −10 0 10 20 30
0

10

20

30

40

50

60

70

ρ (dB)

S
pe

ct
ra

l E
ffi

ci
en

cy
(b

its
/H

z/
s)

 

 

C
R

C

Rβ , β=25

20 21 22
47
48
49
50
51

 

 

Fig. 11. Comparison of C, RC and the spectral efficiency

achieved by the proposed phase shifter selection with β = 25.

beamformer, denoted as Csum as Rsum, when Nt = 64 and K = 4. It is observed that the digital

beamformer achieves 1.4 bit/s/Hz higher spectral efficiency than the hybrid beamformer as in

Lemma 5.

Figure 10 shows the spectral efficiency achieved by the phase shifter selection scheme Rβ

compared to the closed-form based on Lemma 6, denoted as RA
β , for Rayleigh fading channel

and different values of β and Nt. It is observed that there is a good match between (23) and

simulations. Compared to the scenario that all the phase shifters are in operation, the spectral

efficiency can be improved when the phase shifter selection is applied with 0 < β < 50. In

addition, the maximum performance is achieved when β is around 25%. Finally, Fig. 11 presents

the performance of the phase shifter selection scheme for β = 25 compared to RC and C. It is

observed that C−Rβ=25 is around 33% smaller than C−RC. In addition, the spectral efficiency

when all the phase shifters are in operation is almost equal to the case that β% = 50% of them

are turned off which results in 50% reduction in power consumption.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we derived the asymptotically optimal hybrid beamforming schemes to maximize

the spectral efficiency for the point-to-point and multiuser systems with large antenna arrays,

operating in rich and sparse scattering channels. The optimality of the solution was proved based
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on the properties of the singular vectors of the channel matrix. The elements of these vectors have

a complex Gaussian distribution for Rayleigh fading model, and the singular vectors are equal to

the steering vectors of the channel matrix for the geometry based model. In addition, we derived

the closed-form expressions for the spectral efficiency when the proposed hybrid beamformer

is used. It was shown that the performance of the hybrid beamformer, employing phase shifters

with resolution more than 2-bits, can approach the performance of a similar system with analog

phase shifters. In order to reduce the power consumption in the RF beamformer, a novel phase

shifter selection scheme was proposed. This approach can increase the spectral efficiency and

reduce the power consumption when channel follows Rayleigh fading model. Simulation results

indicate that spectral efficiency improves when up to 50% of the phase shifters are turned off.

The hybrid beamformer investigated in this work was developed and evaluated under certain

assumptions such as perfect CSI, narrowband systems, no RF impairments, ideal phase shifters

and switches. However, in order to integrate hybrid beamformers into practical systems, the

impact of these parameters should be investigated.

APPENDIX A

PROOF OF LEMMA 2

Defining the positive semidefinite matrices Q, Q̃ ∈ CNt×Nt as Q = 1
Nt

FRFFBPFH
BFH

RF and

Q̃ = VHQV, the mutual information I(s, y) is expressed as

I(s, y) = log2 det
(

INr + ρHQHH
)

= log2 det
(

INr + ρUΣVHQV ΣHUH
)

(24)

= log2 det
(

INr + ρΣQ̃ΣH
)

= log2 det
(

INt + ρΣHΣQ̃
)

(b)

≤ log2

( Nt∏
nt=1

(1 + ρσ̄2
ntnt
Q̃ntnt)

)
,

where σ̄2
ntnt

are the diagonal elements of ΣHΣ, and the inequality (b) comes from linear algebra

as for any positive semidefinite matrix A ∈ CNt×Nt , det(A) ≤
∏

nt
Antnt . If Q̃ is a diagonal

matrix, then (b) in (24) turns into equality. Hence, the objective is to design FRF and FB such

that they can diagonalize Q̃. In order to analyze Q̃, we investigate the behavior of the elements of

G ∈ CNt×K , defiend as G = 1/
√
NtVHFRF, when 1√

Nt
vH
nt

fRF,k = 0 and 1√
Nt

vH
nt

fRF,k 6= 0, ∀nt 6= k.

In the first case that 1√
Nt

vH
nt

fRF,k = 0 ∀ nt 6= k′, it could be easily shown that all of the elements
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of G except the Gkk become zero. Then, the last term in (24) can be written as

log2

( Nt∏
nt=1

(1 + ρσ2
ntnt
Q̃ntnt)

)
= log2(

K∏
k=1

(1 + ρσ2
kkQ̃kk)

)
. (25)

On the other hand, if FB is a diagonal matrix, then FBPFH
B will have the same property. As a

result, Q̃ = GFBPFH
BGH will also become a diagonal matrix since off-diagonal elements of G

are zero. In addition, in (11), it was discussed that FB should be a unitary matrix to maximize

the spectral efficiency. As FB is a diagonal and a unitary matrix, it could be concluded that

|FB,kk|2 = 1. In this case, Q̃kk becomes

Pkk|Gkk|2 =
Pkk
Nt
|vH
k fRF,k|2 =

Pkk
Nt
|
Nt∑
nt=1

V ∗ntkejθntk |2
(c)

≤ Pkk
Nt

∣∣∣ Nt∑
nt=1

|Vntk|
∣∣∣2, (26)

where the left hand side of (c) is maximized when all the elements of vk are added constructively.

In other words, (c) in (26) turns into equality if FRF = Fopt1
RF as

F opt1
RF,ntk

= ej∠Vntk . (27)

In the following, we analyze the impact of setting FRF = Fopt1
RF on the off-diagonal elements of

G for rich and sparse scattering channels. For the Rayleigh channel, Theorem 1 expresses that

the elements of singular vectors of the channel matrix are zero-mean i.i.d. random variables and

their phases are uniformly distributed over [0, 2π]. As a consequence of law of large numbers

lim
Nt→∞

1√
Nt

vH
nt

fRF,k = lim
Nt→∞

1

Nt

Nt∑
n′t =1

√
NtV

∗
n′tnt

ej∠Vn′tk = E[
√
NtVntk] = 0, (28)

for nt 6= k. For the geometry based model, Lemma 1 states that the RF precoder in (27) becomes

fRF,k =
√
Ntvk, hence 1/

√
NtvH

nt
fRF,k = vH

nt
vk = 0, ∀ nt 6= k. As a result, it could be concluded

that all of the elements of G except the diagonal elements become zero for both channels, when

FRF = Fopt1
RF . As a result, the choice of FRF = Fopt1

RF and a diagonal FB, with |FB,kk|2 = 1, imposes

(b) in (24) to turn into equality. Finally, I(s, y) is maximized when the diagonal matrix P is

calculated based on waterfilling.

It could be easily shown that when the hybrid beamformer at the receiver is also considered, by

applying a similar RF beamformer at the receiver,
√

1
NtNr

WoptH
RF HFopt

RF becomes a diagonal matrix

for both channels. In addition, WB will have a similar structure to FB. Hence, FB = WB = IK ,

Γt = Nt, Γr = Nr is the capacity achieving hybrid beamformer for both channels. �
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APPENDIX B

ALTERNATIVE DERIVATION OF THE RF BEAMFORMER IN LEMMA 2

Since V is a unitary matrix, ‖
√

1
Nt

FRF − Fd‖2 = ‖
√

1
Nt

VHFRF − VHFd‖2. It could be easily

verified that

‖
√

1

Nt
VHFRF − VHFd‖2 ≥ ‖

√
1

Nt
FH

d FRF − IK‖2, s.t. |FRF,ntk|2 = 1. (29)

The right hand side of the inequality can be reformulated as

minimize
FRF

K∑
k=1

∣∣∣√ 1

Nt
fH
d,kfRF,k − 1

∣∣∣2 +
K∑
k′=1

K∑
k=1
k 6=k′

∣∣∣√ 1

Nt
fH
d,kfRF,k′

∣∣∣2, s.t. |FRF,ntk|2 = 1. (30)

The cost function can be lower-bounded as

min
( K∑
k=1

∣∣∣√ 1

Nt
fH
d,kfRF,k − 1

∣∣∣2 +
K∑
k′=1

K∑
k=1
k 6=k′

∣∣∣√ 1

Nt
fH
d,kfRF,k′

∣∣∣2) (31)

= min
( K∑
k=1

∣∣∣√ 1

Nt
fH
d,kfRF,k − 1

∣∣∣2)+ min
( K∑
k′=1

K∑
k=1
k 6=k′

∣∣∣√ 1

Nt
fH
d,kfRF,k′

∣∣∣2)
(d)

≥ min

(
K∑
k=1

(∣∣∣√ 1

Nt
fH
d,kfRF,k

∣∣∣− 1
)2
)

+ min
( K∑
k′=1

K∑
k=1
k 6=k′

∣∣∣√ 1

Nt
fH
d,kfRF,k′

∣∣∣2)
(e)

≥
K∑
k=1

min
(∣∣∣√ 1

Nt
fH
d,kfRF,k

∣∣∣− 1
)2 (f)

=
K∑
k=1

(
max

(∣∣∣√ 1

Nt
fH
d,kfRF,k

∣∣∣)− 1

)2

,

where (f) comes from the fact that
∣∣∣√ 1

Nt
fH
d,kfRF,k

∣∣∣ ≤ 1. Hence, the last term in (31) is minimized

if

maximize
fRF,k

∣∣∣√ 1

Nt
fH
d,kfRF,k

∣∣∣, s.t. |FRF,ntk|2 = 1, (32)

which is similar to (26) in Appendix (A). It was shown that |
√

1
Nt

fH
d,kfRF,k′| = 0, ∀k 6= k′ and√

1
Nt

fH
d,kfRF,k becomes a real and positive number when F opt

RF,ntk
= ej∠Fd,ntk . Hence, (e) and (d)

turn into equality, and the cost function in (30) is minimized. Finally, (29) turns into equality

and ‖
√

1
Nt

FRF − Fd‖2 is minimized. �
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APPENDIX C

PROOF OF OF LEMMA 3

As a result of Theorem 1, E[
√
Nt|Vntk|] =E[

√
Nr|Unrk|] =

√
π

2
, and hence,

lim
Nt→∞

1√
Nt
|vH

k fopt
RF,k| = lim

Nr→∞

1√
Nr
|uH

k wopt
RF,k| = lim

Nt→∞

1

Nt

∣∣∣ Nt∑
nt=1

|
√
NtVntk|

∣∣∣ =

√
π

2
. (33)

Referring to the matrix G = 1/
√
NtVHFRF in Appendix A, Gkk =

√
π/2 and Gntk = 0, ∀nt 6= k.

Applying a similar RF beamformer at the receiver side, it could be easily verified that Rn =

1/NrWH
RFWRF = IK . The spectral efficiency in (7) at high SNR becomes

RC = lim
Nt→∞

lim
Nr→∞

log2 det
( ρ

NtNr
R−1

n WH
BWH

RFHFRFFBPFH
BFH

RFHHWRFWB

)
(34)

= lim
Nt→∞

lim
Nr→∞

log2 det
( ρ

NtNr
WH

RFUΣVHFRFPFH
RFVΣUHWRF

)
= log2 det

((π
4

)2

ρΣ′2P

)
=

K∑
k=1

log2(
π2

42
ρPkkσ

2
kk)

=
K∑
k=1

log2(ρPkkσ
2
kk) + 2K log2(

π

4
),

where Σ′ =diag(σ2
1, ..., σ

2
K). Considering that the first term in the last line is C in (6), the

lemma is proved. �

APPENDIX D

PROOF OF OF LEMMA 4

In Appendix A, it was shown that the achievable rate depends on 1√
Nt
|vH
k fRF,k|. Letting δntk =

θd
ntk
− ∠Fd,ntk where −2π

2B+1 ≤ δntk ≤ 2π
2B+1 ,

1√
Nt
|vH
k fRF,k| =

1√
Nt

∣∣∣ Nt∑
nt=1

|Vntk|e−j∠Vntkejθ
∗
ntk

∣∣∣ =
1√
Nt

∣∣∣ Nt∑
nt=1

|Vntk|ejδntk

∣∣∣ (35)

=
1√
Nt

∣∣∣∣∣
Nt∑
nt=1

|Vntk|
(

cos(δntk) + j sin(δntk)
)∣∣∣∣∣ ≥ 1√

Nt

∣∣∣ Nt∑
nt=1

|Vntk| cos(δntk)
∣∣∣

≥ 1√
Nt

cos(
2π

2B+1
)

Nt∑
nt=1

|Vntk|.

It could be easily shown that 1/
√
Nt|vH

k fk′ | = 0∀k 6= k′ holds for both channel models. Following

a similar approach as in Appendix C, the rest of the proof is straight forward. �
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APPENDIX E

PROOF OF LEMMA 5

Letting H = UΣVH and Fd = V1:K , the sum-rate capacity of a multiuser broadcast channel

can be expressed as [24]

Csum(Pt,H) = max
trace(P)≤1

log2 det
(

IK +
Pt

σ2
z

PHHH
)

= max
trace(P)≤1

log2 det
(

IK +
Pt

σ2
z

PUΣVHVΣHUH
)

(36)

= max
trace(P)≤1

log2 det
(

IK +
Pt

σ2
z

PUΣ2
1:KUH

)
= Csum(Pt,HFd),

where the last two equalities comes from the fact that Σ has only K nonzero elements and

Σ2
1:K = ΣVHVΣH = ΣVHFdFH

d VΣH. As the singular vectors of the channel are in the direction

of the channel steering vectors, it can be easily concluded that the RF beamformer of Lemma 2

is virtually the optimal scheme for the sparse channel model.

For the Rayleigh channel employing Fd as the RF beamformer is equivalent to relaxing the

constant modulus constraint of the phase shifters. When Nt → ∞, the performance of ZF

beamformer with FZF = HH(HHH)−1 converges to the sum-capacity and the channel input-

output relationship becomes

y =
1√
Γt

HHH(HHH)−1s + z =
1√
Γt

s + z. (37)

In this case, ΓZF in (19) is

Γt =
1

K
trace(FZFFH

ZF) =
1

K
trace

(
HH(HHH)−1

(
(HHH)−1)HH

)
(38)

=
1

K
trace

(
HHH(HHH)−1

(
(HHH)−1)H

)
=

1

K
trace

(
(HHH)−1

)
.

The spectral efficiency achieved by ZF is expressed as

Csum(Pt,H) = Csum(Pt,
√

ΓtHFZF) = K log2(1 + ρ) (39)

= K log2(1 +
PtE[|sk|2]

Γtσ2
z

) = K log2(1 +
Pt

KΓtσ2
z

),

where ρ is the received SNR at the user side and E[ssH] = 1/KIK , respectively.

In addition, by applying ZF to the effective channel He = HFd = UΣ1:K , the precoder matrix

becomes FZFe = H−1
e = Σ−1

1:KUH. It should be noted that FH
d Fd = IK , and the rank of H ∈ CK×Nt
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is K and hence ΣΣH has only K nonzero elements. Then, the normalization factor Γt can be

calculated as

Γt =
1

K
trace(FdFZFeFH

ZFeF
H
d ) =

1

K
trace(FZFeFH

ZFe) =
1

K
trace(Σ−1

1:KUHUΣ−1
1:K) (40)

=
1

K
trace(Σ−2

1:K) =
1

K
trace

(
(ΣΣH)−1

)
=

1

K
trace

(
(ΣVHVΣH)−1UHU

)
=

1

K
trace

(
(
Nt

Nt
UΣVHVΣHUH)−1

)
=

1

K
trace

(
(HHH)−1

)
.

As a consequence, 1/
√

ΓtHFZF = 1/
√
NtHFdFZFe and

Csum(Pt,H) = Csum(Pt,
1√
Γt

HeFZFe). (41)

Hence, the asymptotically optimal hybrid beamforming scheme is derived when the constant

modulus constraint at the RF beamformer is relaxed.

Since K is fixed and Nt →∞, the array gain, and consequently, the received SNR also grows

large. For MIMO channels with high SNR, in Theorem 3 of [27] and Theorem 2 of [28], it was

shown that

lim
ρ→∞

[
C(Pt,H)− Csum(Pt,H)

]
= 0, (42)

where C(Pt,H) is the capacity of the point-to-point system. Considering C(Pt,H) = C(Pt,UHH),

it could be concluded that

Csum(Pt,UHH) = C(Pt,UHH) = C(Pt,H) = Csum(Pt,H). (43)

Let Rsum(Pt,
1√
Nt

HFRF) denote the achievable sum-rate of multiuser scenario when the constant

modulus is taken into account. Similar to (43), it could be easily verified that

Rsum(Pt,
1√
Nt

HFRF) = Rsum(Pt,
1√
Nt

UHHFRF) (44)

= max
trace(P)≤1

log2 det
(

IK +
Pt

Ntσ2
z

PΣVHFRFFH
RFVΣH

)
.

Now, the RF beamformer that maximizes Rsum(Pt,
1√
Nt

HFRF) is obtained by

Fopt
RF = arg max

FRF

Rsum(Pt,
1√
Nt

UHHFRF), s.t. |FRF,ntk| = 1. (45)

Similar to Appendix A, Fopt
RF of Lemma 2 that can diagonalize PΣVHFRFFH

RFVΣH will also

maximize Rsum(Pt,
1√
Nt

UHHFRF) in (44). On the other hand, in Appendix C it is shown that
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1√
Nt

HFopt
RF =

√
π

2
UΣVHFd =

√
π

2
He. Additionally, in (41) it was discussed that FZFe is asymptoti-

cally optimal for He, as a result

Rsum(Pt,
1√
Nt

UHHFopt
RF) = max

trace(P)≤1
log2 det

(
IK +

Pt

Ntσ2
z

PΣVHFopt
RFFoptH

RF VΣH
)

(46)

= max
trace(P)≤1

log2 det
(

IK +
Pt

σ2
z

π

4
PΣVHFdFH

d VΣH
)

= Csum(
π

4
Pt,UHHFd) = Csum(

π

4
Pt,

1√
Γt

HeFZFe)

= Rsum(Pt,
1√
Γt

HFopt
RFFZFe) = K log2(1 +

πPt

4KΓtσ2
z

).

Hence, by letting the baseband precoder for the hybrid beamformer with constant modulus

constraint as Fopt
B = FZFe combined with Fopt

RF of Lemma 2, the asymptotically optimal hybrid

beamformer is achieved. Finally, it could be easily verified that

Csum(Pt,H)−Rsum(Pt,
1√
Nt

HFopt
RFFopt

B ) = lim
Nt→∞

K log2

1 + Pt
KΓtσ2

z

1 + πPt
4KΓtσ2

z

= −K log2(π/4) (47)

APPENDIX F

PROOF OF LEMMA 6

According to Appendix A, the spectral efficiency achieved by the hybrid beamformer depends

on 1√
Nt

vH
k fRF,k. When the RF beamformer is set based on (22),

lim
Nt→∞

1√
Nt

vH
k fRF,k = lim

Nt→∞

1√
Nt

Nt∑
nt=1

V ∗ntkFRF,ntk = lim
Nt→∞

1

Nt

Nt∑
nt=1

√
NtV

∗
ntkFRF,ntk = E[Ṽntk], (48)

where Ṽntk is defined as

Ṽntk =

0,
√
Nt|Vntk| ≤ α,

√
Nt|Vntk|, α <

√
Nt|Vntk|.

(49)

Theorem 1 states that
√
Nt|Vntk| follows a Rayleigh distribution with parameter σR. As a result,

the PDF of Ṽntk is expressed as

Pr(Ṽ ) =

Pr(
√
Nt|V | ≤ α)δ(0), Ṽ ≤ α,

Ṽ
σ2

R
e−Ṽ 2/2σ2

R , α < Ṽ .
(50)

The expected value of Ṽ is calculated as

E[Ṽ (α)] =

∫ +∞

−∞
Ṽ Pr(Ṽ )dṼ =

∫ +∞

α

Ṽ 2

σ2
R

e−Ṽ
2/2σ2

RdṼ (51)
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=

∫ +∞

0

Ṽ 2

σ2
R

e−Ṽ
2/2σ2

RdṼ −
∫ α

0

Ṽ 2

σ2
R

e−Ṽ
2/2σ2

RdṼ
(g)
= σR

√
π

2
−
∫ α

0

Ṽ 2

σ2
R

e−Ṽ
2/2σ2

RdṼ

(h)
= σR

√
π

2
−
√

2σR

(√π
2

erf(
α√
2σR

)− α√
2σR

e−α
2/2σ2

R

)
=

√
π

2
+ αe−α

2 −
√
π

2
erf(α),

where (g) and (h) are derived from [29]. Moreover, the cumulative distribution function (CDF) of
√
Nt|V | ≤ α is expressed as Pr(|Vntk| ≤ α) = β/100 = 1−e−α2/2σ2

R , hence α =
√
−ln(1− β/100)

where β is the percentage of the phase shifters that are turned off. It could be easily shown that
1√
Nt
|vH
k fRF,k′| = 0, ∀k 6= k′ and 1√

Nt
FH

d FRF becomes a diagonal matrix with equal diagonal

elements. Hence, the baseband precoder matrix becomes FB = IK . Applying the same phase

shifter selection scheme at the receiver side, it can be easily verified that Γt = (1 − β/100)Nt,

Γr = (1− β/100)Nr, Rn = 1/ΓrWH
BWH

RFWRFWB = IK and 1/
√
NtFH

d FRF = E[Ṽ (α)]IK . Similar

to Appendix C, the spectral efficiency is expressed as

Rβ = lim
Nt→∞

lim
Nr→∞

log2 det
( ρ

(1− β)2NtNr
R−1

n WH
BWH

RFHFRFFBPFH
BFH

RFHHWRFWB

)
(52)

= lim
Nt→∞

lim
Nr→∞

log2 det
( ρ

(1− β)2NtNr
WH

RFUΣVHFRFPFH
RFVΣUHWRF

)
=

K∑
k=1

log2

(
ρPkkσ

2
kk

(1− β)2

(
E[Ṽ (α)]

)4
)

(i)
=

K∑
k=1

log2(ρPkkσ
2
kk) + 4K log2

(
E[Ṽ (α)]

)
− 2K log2(1− β),

as the first term after (i) is equal to C at high SNR. �
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