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Abstract

Millimeter-Wave (mmWave) massive multiple-input multiple-output (MIMO) seamlessly integrates two wireless

technologies, mmWave communications and massive MIMO, which provides spectrums with tens of GHz of total

bandwidth and supports aggressive space division multiple access using large-scale arrays, respectively. Though it is

a promising solution for next-generation systems, the realization of mmWave massive MIMO faces several practical

challenges. In particular, implementing massive MIMO in the digital domain requires hundreds to thousands

of radio frequency (RF) chains and analog-to-digital converters matching the number of antennas. Furthermore,

designing these components to operate at the mmWave frequencies is challenging and costly. These motivated the

recent development of the hybrid-beamforming architecture where MIMO signal processing is divided for separate

implementation in the analog and digital domains, called the analog and digital beamforming, respectively. Analog

beamforming using a phase array introduces uni-modulus constraints on the beamforming coefficients. They render

the conventional MIMO techniques unsuitable and call for new designs. In this paper, we present a systematic

design framework for hybrid beamforming for multi-cell multiuser massive MIMO systems over mmWave channels

characterized by sparse propagation paths. The framework relies on the decomposition of analog beamforming

vectors and path observation vectors into Kronecker products of factors being uni-modulus vectors. Exploiting

properties of Kronecker mixed products, different factors of the analog beamformer are designed for either nulling

interference paths or coherently combining data paths. Furthermore, a channel estimation scheme is designed

for enabling the proposed hybrid beamforming. The scheme estimates the angles-of-arrival (AoA) of data and

interference paths by analog beam scanning and data-path gains by analog beam steering. The performance of

the channel estimation scheme is analyzed. In particular, the AoA spectrum resulting from beam scanning, which

displays the magnitude distribution of paths over the AoA range, is derived in closed-form. It is shown that the

inter-cell interference level diminishes inversely with the array size, the square root of pilot sequence length and

the spatial separation between paths, suggesting different ways of tackling pilot contamination.

Index Terms

MmWave communications, massive MIMO, analog beamforming, channel estimation, interference cancellation.

G. Zhu and K. Huang are with the Dept. of EEE at The University of Hong Kong, Hong Kong (Email: huangkb@eee.hku.hk). V. K. N.

Lau is with the Dept. of ECE at The Hong Kong University of Science and Technology, Hong Kong (Email: eeknlau@ece.ust.hk). Bin Xia

is with the Dept. of EE at Shanghai Jiao Tong University, Shanghai, China (Email: bxia@sjtu.edu.cn). Xiaofan Li and Sha Zhang are with

Shenzhen Institute of Radio Testing & Tech., Shenzhen, China. (Email: lixiaofan@srtc.org.cn).

ar
X

iv
:1

70
4.

03
61

1v
1 

 [
cs

.I
T

] 
 1

2 
A

pr
 2

01
7



2

I. INTRODUCTION

Millimeter-wave (mmWave) communications and massive multiple-input multiple-output (MIMO) play

key roles in enabling gigabit wireless access in next generation communications systems [1]. The two

technologies can be seamlessly integrated, leading to an active research area called mmWave massive

MIMO. Besides dramatically expanding the available bandwidth, communication in the mmWave frequency

bands reduces the antenna spacing to the scale of millimeter and thereby allows a large number of antennas

to be packed in a small volume [2], [3], facilitating the implementation of massive MIMO. Provision base

stations (BSs) with large-scale arrays enables sharp beamforming for suppressing propagation loss and

spatial multiplexing for supporting massive numbers of simultaneous users, which are the main advantages

of massive MIMO [4].

Beamforming and other MIMO techniques are traditionally implemented in the digital domain [5], [6].

This requires the attachment of a radio frequency (RF) chain and an analog-to-digital converter (ADC)

to each antenna for digitalizing its observation. The design approach targeting small-scale MIMO is no

longer practical for massive MIMO as provisioning a BS with hundreds of RF chains and ADCs results

in overwhelming cost and power consumption [7]. The issue is exacerbated by implementation in the

mmWave frequency range. This motivated the development of an increasingly popular approach, called

hybrid beamforming, that implements part of MIMO beamforming in the analog domain using a phase

array, called analog beamforming [8], [9]. The analog beamforming is designed solving the said problem

by dramatic channel-dimension reduction by exploiting channel sparsity and clustering structure. The

phase-array implementation of analog beamforming introduces uni-modulus constraints on beamforming

coefficients, making the classic design techniques based on linear algebra not directly applicable. In this

paper, we present a systematic approach for designing analog beamforming for interference cancellation

and signal enhancement and the matching channel estimation algorithm based on the Kronecker-product

decomposition.

A. Prior Work

Recently, hybrid beamforming (or hybrid precoding) introduced in [10], [11] has attracted strong

interests from both academia and industry due to its potential for bridging the theory and practice for

mmWave massive MIMO. As the classic digital MIMO techniques (e.g., eigenmode and zero-forcing

beamforming) cannot be directly applied, active research has been conducted on finding new solutions

satisfying the analog-hardware constraints. For single-user massive MIMO systems, a simple approach is

proposed in [12], [13] for equivalent implementation of digital MIMO techniques in the analog domain

based on the idea of realizing a scaled version of an arbitrary complex vector as the addition of two

phase-shift vectors. The approach is extended to multiuser systems in [14]. Focusing on only equivalent

implementation, the approach fails to explore the sparsity structure of mmWave channels for complexity
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reduction and the resultant analog implementation may not be hardware efficient as it doubles the required

phase shifters. To address this issue, an alternative design approach for hybrid beamforming, which adapts

to channel sparsity, is proposed in [10]. Particularly, the hybrid beamforming design aims at approximating

the optimal digital design by using iterative orthogonal-matching-pursuit algorithm to minimize their

Euclidean distance. The approximation is enhanced in [15] by further incorporating manifold optimization.

However, the existence of approximation error is inevitable and as a result the resultant approximation

design is not capable of nulling interference. Other implementation aspects of hybrid beamforming have

also been reported in the existing literature. In particular, the beamspace channel representation introduced

in [16] is adopted in [17]–[19] to represent sparse mmWave massive MIMO channels and design beam-

scanning codebooks for limited feedback. In addition, practical issues such as finite-resolution phase-

shifters and the effects of partial CSI have been considered in [20] and [21] respectively for designing

hybrid precoders. Prior work has focused on hybrid beamforming/precoding design for point-to-point or

multiuser channels without considering inter-cell interference. Inter-cell interference in mmWave systems

may be less severe due to signal blockage by urban objects, and existing measurement results also suggest

that typical mmWave channels tends to be noise limited [22]. However, as next-generation networks are

expected to have ultra-dense small cells, the dramatic shortening of inter-cell distances will reduce the

blockage density in channels, resulting in sparse or even line-of-sight (LoS) interference channels [23].

This motivates the current work.

Channel estimation for hybrid beamforming is an area less explored but an important one with new

research challenges. The main challenge arises from the fact that the digital estimator behind the analog

beamformer has access only to an effective MIMO channel with reduced dimensionality. This limitation,

referred to as the channel subspace sampling limitation in [19], is first tackled in [11] by designing

channel-estimation algorithms based on compressed-sensing theory. Specifically, by exploiting the sparsity

in mmWave channels, the algorithmic design is formulated as a sparse-reconstruction problem by treating

the hybrid beamformer as a measurement matrix. By scanning the beamformer over a given codebook, sub-

space channel observations are obtained at the receiver, based on which the classic compressed-sensing

techniques can be used to recover the complete sparse channel matrix. The compressed-sensing based

channel-estimation algorithms have been customized for different types of mmWave systems including

single-user outdoor systems [24] and multiuser systems with equal-gain LoS links [25], and tested in

experiments using large-scale arrays with more than 1000 antennas [26]. Despite providing a promising

connection to the powerful tool of compressed-sensing, the existing designs may lead to high complex-

ity and are effective only under restrictive channel assumptions, limiting their practicality. According

to standard compressed-sensing theory, accurate estimation of sparse channels under the said channel

subspace sampling limitation is feasible only if the measurement matrix satisfied the so called restricted

isometry property. However, due to the uni-modulus constraints imposed on the analog beamforming

coefficients, finding a proper measurement matrix (hybrid beamforming matrix) having such a property is
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extremely challenging. Moreover, existing hybrid beamforming codebook designs based on, alternatively,

adaptive compressed-sensing such as the multi-resolution hierarchical codebooks proposed in [11] relied

on oversimplifying channel assumptions such as single-LoS links and may suffer from severe error

propagation in the estimation process for the multi-path channels as remarked in [11]. The drawbacks

motivate the design of practical channel estimation algorithms for hybrid beamforming accounting for

interference channels in the current work.

B. Contributions and Organization

We consider a typical cell in a multi-cell cellular uplink network where a base station (BS) equipped

with a large-scale linear antenna array serves multiple single-antenna users via a mmWave frequency band

in the presence of inter-cell interference. The BS receives from the users either data streams or pilot signals

in the communication and channel estimation phases, respectively, both of which are considered in the

paper. For hardware efficiency, the hybrid-beamforming architecture with a limited number of RF chains

and ADCs is used at the BS to implement different massive MIMO techniques including interference

cancellation, data detection and channel estimation. The typical model for a mmWave channel is adopted

that is characterized by finite paths specified by different angles-of-arrival (AoA) [23]. In the model, the

interference and signal are assumed to arrive at the BS from two non-overlapping sets of paths, which

can be justified by the fact that, due to the channel sparsity and the in general different physical locations

of the interfering users and the intended users, the probability that an interfering path and an intended

user path have exactly the same AoA is equal to zero. The same assumption is also adopted in [27].

In this paper, a hybrid-beamforming framework for mmWave massive MIMO uplink communication is

developed. The framework is based on the Kronecker-product representations of channels and beamforming

vectors, which were originally proposed in [28] for designing another type of system, namely the one

for simultaneous wireless information-and-power transfer. The key challenge for developing the said

framework lies in designing the analog-beamforming vector under the mentioned uni-modulus constraints

on the vector elements. The main contributions of the paper are summarized as follows.

• Consider a single user system. Given a single data stream, only one RF chain is needed in the

hybrid beamforming architecture for detecting the data stream, which reduces its design to that of

an analog beamformer. The design objective is to maximize the signal power under the constraint of

inter-cell interference nulling. Assume that the AoAs of the intended signal and inter-cell interference

are known. Let the observation of a particular signal/interference path be called a data/interference

path-vector. To achieve the objective, a systematic method for designing the analog beamformer,

called Kronecker analog beamforming, is proposed based on decomposing the beamforming vector

as well as the data and interference path-vectors into corresponding Kronecker products of phase-shift

factors, which are also vectors with uni-modulus elements. By exploiting the mixed-product property

of the Kronecker products between the decomposed beamforming vector and the path-vectors, the
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design principle is to allocate a set of factors of the beamforming vector each for nulling a single

interference path and the remaining factors for enabling coherent combining of the data paths for

enhancing the intended signal power. The design procedure enforces the uni-modulus constraints on

beamforming coefficients and thereby yields the desired analog beamformer.

• The design is extended to a multiuser system where the hybrid-beamforming architecture has multiple

RF chains for multiuser data stream detection. The resultant hybrid-beamforming design cascades

a high-dimension analog and a low-dimension digital beamformer. By generalizing the Kronecker-

decomposition method for the single-user system, the analog-beamforming matrix is designed for

inter-cell interference nulling and data signal enhancement. The digital counterpart follows the con-

ventional digital minimum-mean-square-error (MMSE) beamforming design to support spatial mul-

tiplexing by decoupling data streams from different intended users.

• Targeting the hybrid-beamforming architecture, a scheme for efficient channel estimation is proposed

to overcome the channel subspace sampling limitation and tackle the well-known problem of pilot

contamination. The scheme comprises two steps: the first is to scan the AoA range using an analog

beam for estimating the AoA of significant signal/interference paths, followed by path-gain estimation.

The path-AoA estimation involves peak detection of a AoA spectrum displaying the magnitudes

of different incident paths. The AoA spectrum is derived in closed-form that shows the inter-cell

interference (pilot contamination level) diminishes inversely with the increasing array size, the square

root of pilot sequence length or the minimum spatial separation between data and interference paths,

suggesting different ways of coping with pilot contamination. This is aligned with the main asymptotic

result in [27] but stronger and more elaborate.

• Next, given the estimated AoA, the gain estimation for the corresponding path essentially extracts a

path gain from the observed training signal by steering a corresponding analog beam based on either

coherent-combining (CC) the targeted data path or zero-forcing (ZF) the inter-path interference. The

path-gain estimation error is proved to diminish as the array size increases with the decay rate of

O( 1
N
) where N denotes the number of antennas at BS.

The remainder of the paper is organized as follows. Section II introduces the system model. Section

III presents the problem formulation for the hybrid beamforming design and the channel estimation. The

proposed framework of Kronecker analog beamforming and the supporting channel-estimation scheme

are presented in Section IV and Section V, respectively. Numerical results are provided in Section VI,

followed by potential extensions and concluding remarks in Section VII and VIII respectively.

II. SYSTEM MODEL

Consider a typical cell in a mmWave massive MIMO cellular system as shown in Fig. 1. A BS equipped

with a large-scale uniform-linear antenna array of N antennas communicates simultaneously with K single-

antenna users. We focus on the uplink but the proposed beamforming design can be straightforwardly
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Fig. 1. A mmWave massive MIMO system where uplink communication in the considered cell (shaded in gray) is exposed to inter-cell

interference from the uplink users in nearby cells.

extended to the downlink by exploiting the uplink-downlink duality. Due to the dense-BS deployment and

aggressive frequency reuse, the considered BS is exposed to inter-cell interference from M uplink users

in nearby cells. Hence, the received signal at the BS can be written as follows

y = Gx+Hs+ n. (1)

The matrix G = [g1,g2, · · · ,gK ] represents the data-channel with gk ∈ C
N×1 corresponding to the

link between the k-th user and BS. Moreover, the interference-channel matrix is denoted as H =

[h1,h2, · · · ,hM ] where hn ∈ C
N×1 is the vector channel between the n-th interferer and the BS. Let the

symbol vectors transmitted by the intended and interfering users be represented by x = [x1, x2, · · · , xK ]T

and s = [s1, s2, · · · , sM ]T , respectively, and their elements satisfy E[xkx
∗
k] = Pk and E[sns

∗
n] = P ′

n where

Pk and P ′
n are correspondingly the transmission power of the k-th intended user and the n-th interferer.

The N × 1 vector n is the additive white Gaussian noise (AWGN) with E[nnH ] = N0I where N0 is the

noise variance and I is an identity matrix.

As mmWave signals can be blocked by objects even of small sizes, the channels are characterized

by sparse direct or reflected paths [23]. Therefore, we adopt the multi-path model for both the data and

interference channels. Specifically, the k-th data-channel vector comprises L paths and is given as [27]

gk =
L∑

ℓ=1

akℓv(Φkℓ), (2)

where the coefficients for the L paths, akℓ, are independent and identically distributed (i.i.d.) CN (0, δ2k)

random variables with δ2k representing the k-th data channel’s propagation attenuation. The N × 1 vector

v(Φkℓ) represents the phase response for the linear array at the BS:

v(Φkℓ) = [1, ejΦkℓ , · · · , ej(N−1)Φkℓ ]T , (3)

where Φkℓ =
2πd
λ

cosϕkℓ denotes the constant phase difference between the observations by two adjacent

antennas, ϕkℓ is the AoA, d is the antenna separation distance, and λ represents the carrier wavelength.
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To simplify analysis, each interference-channel is assumed to contain a single dominant path with other

paths omitted, which is justified by severe blockage for the interference-channel that has a relatively longer

propagation distance than a data-channel. To be specific,

hn = βnv(Θn) = βn[1, e
jΘn , · · · , ej(N−1)Θn ]T , (4)

where βn is the channel coefficient, the function v is given in (3), and Θn = 2πd
λ

cos θn is the inter-antenna

phase difference with θn being the AoA. Nevertheless, the proposed design framework is not limited to

this assumption and can be easily extended to the general case that the interference-channel consists of

multiple dominant paths.

In the data-transmission phase, beamforming is performed at the BS for nulling inter-cell interference,

enhancing SNRs for data streams and enabling spatial multiplexing. We consider the hybrid beamforming

architecture shown in Fig. 2, which cascades an N × NRF analog beamformer, denoted by FRF, a band

of NRF RF chains,1 and a NRF × K digital beamformer, denoted by FBB. The analog beamformer is

implemented using a phase array of continuously adjustable phase shifters which introduces uni-modulus

constraints to the elements of FRF.2 The function of the analog beamformer is to null inter-cell interference

and enhance receive signal-to-noise ratios (SNRs) for the data streams. The data streams will be further

decoupled using the digital beamforming (without the uni-modulus constraints on its coefficients) which

outputs K parallel multiuser data streams for detection. Given the received signal in (1), the post-

beamforming signal can be written as

ȳ = FH
BBF

H
RFGx+ FH

BBF
H
RFHs+ FH

BBF
H
RFn. (5)

In the channel-estimation phase, users transmit pilot sequences with length of Z symbols. Let the pilot

sequence for the k-th user be denoted as xk = [xk(1), xk(2), · · · , xk(Z)]T . Similarly, the n-th interfering

pilot sequence from nearby cells is denoted by sn = [sn(1), sn(2), · · · , sn(Z)]T . For tractability, several

assumptions are made. First, all pilot sequences are binary sequences. Second, the pilot sequences for the

users in the considered cell are orthogonal and those received from the interfering users in nearby cells are

approximated as randomly generated i.i.d. sequences to reflect the misalignment between the interfering

pilots and the intended pilots due to the asynchornization between different cells. A similar assumption

can also be found in [30]. As a result, the pilot sequences used in different cells lack orthogonality,

modelling pilot contamination. The observation at the BS can be represented as a N ×Z matrix Y given

as

Y =
K∑

k=1

gkx
T
k +

M∑

n=1

hns
T
n +N, (6)

1Each RF chain comprises components such as low-noise amplifier, analog filter, downconverter and ADC.
2It is worth pointing out that the additional RF circuit introduced by the implementation of analog beamforming may increase the chain

noise figure at the receiver and thereby distort the signal quality to some extent [29]. To mitigate the noise figure elevation effect, low noise

components should be used for analog beamforming implementation.
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Fig. 2. Hybrid beamforming architecture at the base station.

where gk and hn has been defined in (2) and (4) respectively, and N ∈ C
N×Z denotes the AWGN matrix.

III. PROBLEM FORMULATION

First, consider the joint design of analog beamformer with its digital counterpart. The objective is to

maximize the sum-rate under the constraints of nulling inter-cell interference as well as the hardware

limitation (i.e., the given number of RF chains and the phase-array implementation). Let the NRF × 1

vector fBB(k) denote the k-th column vector of the digital beamformer FBB. The achievable rate for user

k can be written as

Rk = log2

(

1 +
Pk|fHBB(k)FH

RFgk|2
∑

m 6=k Pm|fHBB(k)FH
RFgm|2 +

∑M

n=1 P
′
n|fHBB(k)FH

RFhn|2 +N0‖fHBB(k)FH
RF‖2

)

. (7)

The sum-rate is then given by Rsum =
∑K

k=1Rk. It follows that the sum-rate maximization problem can

be formulated as follows

(P1)

max
FRF,FBB

Rsum

s.t. |[FRF]p,q| = 1, ∀p, q,
‖FH

RFhn‖2 = 0, ∀n,

(8)

where the first (uni-modulus) constraint arises from analog beamforming and the second one corresponds

to interference nulling3. The uni-modulus constraints make the optimization problem non-convex and

challenging to solve. Mathematically, due to the constraints, the feasible set of P1, denoted as S, is no

longer the conventional Euclidean vector space but a Riemannian manifold4, rendering the conventional

3Nulling the inter-cell interference in the analog domain benefits the quantization section by reducing the quantization noise and also

alleviates the degrees of freedom requirement at the digital beamformer, thereby reduces the number of the required RF chains.
4Roughly speaking, Riemannian manifold is a kind of non-linear subspace with smooth surface (e.g, a spherical surface), in which the

vectors no longer satisfy the closure properties of addition and scalar multiplication as those in Euclidean space [31].
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optimization approach based on linear algebra inapplicable here. A solution framework based on the

proposed Kronecker decomposition technique will be presented in the following section for both the

single-user and multi-user systems. Instead of the full knowledge of the entire channel matrices, i.e., G

and H, the solution requires only partial CSI, namely both the channel coefficients and AoA of data

channels,
⋃K

k=1{akℓ,Φkℓ}Lℓ=1, and only the AoA of the interference channels, {Θn}Mn=1.5 The proposed

beamforming solution is built on the assumption that the said partial CSI is perfectly known at the BS.

Next, to acquire the required CSI, the channel-estimation problem is formulated targeting the hybrid-

beamforming architecture. In the channel training phase, all intended users transmit their pilot sequences

to the BS for estimating the multiuser uplink channels. The received training signal at the BS is corrupted

by not only noise but also inter-cell interference. This results in the so called pilot contamination problem,

which poses a main challenge for accurate channel estimation and has no trivial solution. Given the channel

models in (2) and (3), the channel estimation process is equivalent to inferring the corresponding path

parameters (the AoAs and the path gains) from the observation matrix, Y in (6), in the training duration:

Y =⇒





K⋃

k=1

{akℓ,Φkℓ}Lℓ=1
︸ ︷︷ ︸

Data Paths for User k



 ∪ {Θn}Mn=1
︸ ︷︷ ︸

Interference Paths

. (9)

As implied by (9), the estimation process also involves user identification of the paths by grouping them

for different users and tagging the rest as interference paths. The problem is solved in Section V by

designing a channel-estimation scheme matching the hybrid beamforming architecture.

IV. ANALOG BEAMFORMING DESIGN VIA KRONECKER DECOMPOSITION

In this section, we solve Problem P1 by developing a hybrid beamformer solution via Kronecker

decomposition of the analog beamforming and channel vectors. In particular, we focus on the resource-

limited scenario of NRF = K, which is the minimum number of RF chains required to support K

simultaneous users. First, the designs of analog beamformers for single-user and multi-user systems are

shown to be similar in the proposed solution. Thereby, for ease of notation and exposition, the Kronecker

analog beamforming framework is then presented targeting the single-user system. Finally, the extension

to the multiuser case as well as the implementation issues are discussed.

A. Similarity between the Single-user and Multiuser Cases

1) Single-user Case: For the single-user case with NRF = K = 1, the user’s signal is exposed to only

inter-cell interference but no intra-cell interference. The analog beamformer in Fig. 2 is a N × 1 vector,

represented by fRF, and the corresponding baseband beamformer is just a scalar which has no impact on

5The knowledge of the interference path gains {βn}
M
n=1 are not required by the proposed hybrid beamforming solution as presented in

the sequel.
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the combined signal-to-interference-plus-noise ratio (SINR). As a result, the beamformer design problem

in P1 reduces to the analog-beamformer design problem and can be rewritten as:

(P2)

max
fRF

log2

(

1 +
P |fHRFg|2

∑M

n=1 P
′
n‖fHRFhn‖2 +N0‖fHRF‖2

)

s.t. |fHRFhn|2 = 0, ∀n,
|[fRF]m| = 1, ∀m.

(10)

Under the interference nulling constraint and using the monotonically increasing property of the log-

arithmic function, Problem P2 can be further simplified as the following signal-strength maximization

problem:

(P3)

max
fRF

|fHRFg|2

s.t. |fHRFhn|2 = 0, ∀n,
|[fRF]m| = 1, ∀m.

(11)

Note that the objective function in P3 is a convex function with respect to fRF. Maximizing a convex

function plus the non-convex feasible set due to the uni-modulus constraints makes the problem non-

convex and challenging to solve.

2) Multiuser Case: In this case, different users’ uplink transmissions are exposed to both intra-cell

and inter-cell interference. The complex interference as well as the mentioned hardware constraints make

Problem P1 more difficult to solve. For tractability, based on the hybrid-beamforming architecture in

Fig. 2, Problem P1 is divided into sequential problems of designing the analog and digital beamformers

separately6. First, the analog beamformer is designed to cancel the inter-cell interference and also maximize

the signal powers. Then the low-dimension digital beamformer is designed to decouple multiuser data

streams by suppressing the intra-cell interference. Since inter-cell interference has been cancelled by the

analog beamformer, the remaining multiuser decoupling can be conducted by a K×K digital beamformer,

enabling the minimum RF chains implementation with NRF = K. Mathematically, the analog-beamforming

design problem is written as

(P4)

max
fRF(k)

|fHRF(k)gk|2, k = 1, 2, · · · , K,

s.t. |fHRF(k)hn|2 = 0, ∀n
|[fRF(k)]m| = 1, ∀m,

(12)

6Despite the sequential design approach yields sub-optimality as it relaxes the coupling between the analog and digital beamformers, it

makes the complex design problem tractable. Furthermore, it enables an elegant solution framework with low implementation complexity

by allowing a separate design of each column of the analog beamforming matrix.
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where fRF(k) denotes the k-th column of the analog-beamforming matrix FRF. The problem aims at

maximizing the k-th user’s signal strength under the inter-cell interference nulling and uni-modulus

constraints. Comparing Problems P3 and P4, we note that the design of each column of FRF for the

multiuser case and that of fRF for the single user case are observed to have the identical form.

Given the analog beamformer that solves Problem P4, denoted as F∗
RF = [f∗RF(1), f

∗
RF(2), · · · , f∗RF(K)],

its digital counterpart FBB can be designed to further enhance the SINR of each data stream (as expressed

in Problem P1) as follows

(P5) max
fBB(k)

Pk|fHBB(k)(F∗
RF)

Hgk|2
∑

m 6=k Pm|fHBB(k)(F∗
RF)

Hgm|2 +N0‖fHBB(k)(F∗
RF)

H‖2 , k = 1, 2, · · · , K, (13)

where fBB(k) denotes the k-th column of the digital beamforming matrix FBB. This is a classical uncon-

strained SINR maximization problem with colored noise, which can be solved by the following MMSE

beamforming7:

FBB = (G̃DG̃H +N0(F
∗
RF)

HF∗
RF)

−1G̃, (14)

where G̃ = (F∗
RF)

HG denotes the effective data-channel matrix observed by the digital baseband after

analog beamforming, D is a diagonal matrix with the diagonal elements collecting the transmit power of

the intended users, i.e., [D]k,k = Pk.

In summary, the proposed hybrid-beamforming design comprises the small-scale MMSE digital beam-

forming and the large-scale analog beamforming whose design is equivalent to that of the single-user

case. This equivalence allows the subsequent design of the analog-beamforming framework to focus on

the single-user case for notation simplification.

B. The Framework of Kronecker Analog Beamforming

The proposed framework of Kronecker analog beamforming that solves Problem P3 comprises three key

steps. First, the analog beamforming and interference/data path vectors are decomposed into Kronecker

products of phase-shift vectors. Based on the decomposition, in the following two steps, the analog

beamformer is designed to null inter-cell interference and then enhance data-signal strength. The design

procedure is summarized in Algorithm 1 with the three steps elaborated in the following.

1) Step 1: Kronecker Decomposition of Analog Beamforming and Path Vectors: The method of vector

Kronecker decomposition is described as follows. Let v be a N × 1 vector with uni-modulus elements

and having the Vandermonde structure: v = [1, ejΘ, ej2Θ, · · · , ej(N−1)Θ]T with Θ fixed.

Lemma 1 (Kronecker decomposition [28]). Given N = n1n2 · · ·nD with {nm}Dm=1 being positive integers,

the vector v can be decomposed as

v = v(1) ⊗ v(2) ⊗ · · · ⊗ v(D), (15)

7The generalization to the weighted sum rate maximization for ensuring fairness among users can be done by designing the digital

beamformer using the weighted MMSE solution proposed in [32] instead, while the design of the analog beamformer remains unchanged.
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where ⊗ represents the left Kronecker product [33] and the m-th factor having the length of nm is given

by

v(m) =
[
1, ejnm−1···n1n0Θ, ej2nm−1···n1n0Θ · · · , ej(nm−1)nm−1···n1n0Θ

]
,

with n0 = 1.

The key property of Kronecker decomposition is that the vector v and its factors are all phase-shift

vectors with uni-modulus elements. Using Lemma 1, the interference path vector v(Θn) in (4) can be

decomposed as

v(Θn) = v(1)
n ⊗ v(2)

n ⊗ · · · ⊗ v(D)
n , (16)

where the factors are called Kronecker factors,

v(m)
n =

[
1, ejnm−1···n1n0Θn , ej2nm−1···n1n0Θn · · · , ej(nm−1)nm−1···n1n0Θn

]
.

Furthermore, the analog beamforming vector fRF in Problem P3 is designed as the Kronecker product of

phase-shift factors as follows:

(Kronecker Analog Beamformer) fRF = f (1) ⊗ f (2) ⊗ · · · ⊗ f (D), (17)

where the m-th Kronecker factor is given by f (m) = [ejψm,1 , ejψm,2 , · · · , ejψm,nm ] with {ψm,n} being

beamformer variables. The Kronecker factors {f (m)} represent the degrees-of-freedom (DoF) in the analog

beamformer. The basic idea of this design is to exploit the mixed product property of Kronecker product

and adjust the beamformer variables for inter-cell interference cancellation and signal strength enhancement

as elaborated in the sequel. As an example, for the special case of N = 2D, given the prime factorization

of N as N = 2 × 2 × · · · × 2, the interference path vector v(Θn) and analog beamformer fRF can be

decomposed to D Kronecker factors as:

v(Θn) =
[
1, ejΘn

]
⊗
[
1, ej2Θn

]
⊗ · · · ⊗

[

1, ej2
D−1Θn

]

, (18)

fRF = [ejψ1,1 , ejψ1,2 ]⊗ [ejψ2,1 , ejψ2,2 ]⊗ · · · ⊗ [ejψD,1 , ejψD,2 ]. (19)

Last, it is worth mentioning that a similar technique was adopted in [28] to design an analog spatial

canceller for a wirelessly powered communications system targeting a different purpose of decoupling the

strong simultaneous wireless information and power transfer (SWIPT) signals over LoS channels and the

weak wireless communication signals over rich scattering channels.

Remark 1. Although the solution approaches in the current work and [28] both leverage the Kronecker

representations of channels and beamforming vectors, they differ in two main aspects. First, they solve

different problems. The current work aims at solving a sum-rate maximization problem, which involves

designing techniques for interference nulling and achieving both diversity and multiplexing gains. In con-

trast, a rank-maximization problem is tackled in [28] via the constructions of a set of linearly independent

vector bases. Next, substantial difference between the detailed designs in the current work and [28] arise



13

Algorithm 1 Summary of the Design Procedure for Kronecker Analog Beamforming

0) Decompose the array size N into a product of integers: N = n1n2 · · ·nD.

1) Perform Kronecker decomposition of the interference path vectors using (16) and represent the analog

beamforming vector fRF in a similar form using (17).

2) Design the first M Kronecker factors of fRF for inter-cell interference nulling using (23).

3) Design the remaining (D −M) Kronecker factors of fRF for data-signal enhancement using (32).

from the consideration of different systems and corresponding channel models, namely that one is a

multi-cell mmWave system and the other a system for wireless power transfer.

Remark 2 (Optimal Kronecker Decomposition). As indicated in Lemma 1, different factorizations of N

lead to different decompositions of the analog beamformer fRF. Among all, the prime factorization of N

(i.e., {nm} are prime numbers) yields the largest number of factors, maximizing the DoF in the resultant

analog beamformer. Thus the prime factorization of N should be used in the design.

2) Step 2: Analog Interference Cancellation: Based on the Kronecker decomposition expressions in

(16) and (17), the inter-cell interference nulling constraints in P3 can be rewritten using the mixed-product

property of Kronecker product as follows.

fHRFhn = 0 ⇐⇒ fHRFv(Θn) = 0

⇐⇒ (f (1))Hv(1)
n ⊗ (f (2))Hv(2)

n ⊗ · · · ⊗ (f (D))Hv(D)
n = 0, ∀n ∈ {1, 2, · · · ,M}. (20)

A key observation that motivates the proposed design is that a particular interfering path v(Θn) can be

cancelled by setting any factor in (20) to be zero, namely

(f (m))Hv(m)
n = 0. ∃m ∈ {1, 2, · · · , D}. (21)

In other words, cancelling interference from all M paths requires M out of total D factors (or DoF) of

the analog beamformer fRF.8 This requires that D is larger than M . The requirement can be satisified by

mmWave massive MIMO systems since the number of antennas is typically far larger than the number of

interference paths. Without loss of generality, the first M Kronecker factors of fRF are assigned for inter-

cell interference cancellation with the m-th factor targeting the m-th interfering path v(Θm). It follows

that the constraints in (21) can be rewritten as

(f (m))Hv(m)
m = 0, m ∈ {1, 2, · · · ,M}. (22)

Remark 3 (Selection of Kronecker Factors for Interference Nulling). It can be observed from (21)

that choosing arbitrary M beamformer Kronecker factors is sufficient for nulling M interference paths

regardless of the vector lengths of the chosen factors. Thus it is desirable to choose M shortest factors for

8Note that due to the uni-modulus constraints on the coefficients of f (m), and the prime number constraints on its length (see Remark 2),

f
(m) can be designed to be orthogonal to v

(m)
n for only one n value, leading to the said requirement.
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this purpose so as to maximize the number of remaining beamformer variables for signal enhancement

in Step 3 in the sequel. Without loss of generality, assume the factors of N are monotone increasing:

n1 ≤ n2 · · · ≤ nD. Then the first M factors having the shortest lengths are chosen for inter-cell interference

nulling and the remaining (D −M) factors are for data-signal enhancement.

There exist various methods for designing the phase-shift beamformer factors f (m) to satisfy the

interference-nulling constraints in (22) with one discussed as follows. By exploiting the row-orthogonality

and uni-modulus elements of a Fourier matrix, each of the beamformer factor can be designed to have

the following form:

f (m) = diag
(
v(m)
m

)
tm, m ∈ {1, 2, · · · ,M}, (23)

where diag
(

v
(m)
m

)

is a nm× nm diagonal matrix whose diagonal elements are taken from those of v
(m)
m ,

and tTm is a row vector arbitrarily selected from the rows of the nm × nm Fourier matrix except the first

one (an all-one vector). This design satisfies the constraints in (22) as shown below:

(f (m))Hv(m)
m = tHm1 = 0, m ∈ {1, 2, · · · ,M}, (24)

where 1 represents the all-one vector with length of nm. Note that the first equality arises from “match

filtering” the interference path v
(m)
m and the second one is due to the row orthogonality of the Fourier

matrix. For the case that nm is equal to 2 or a multiple of 4, tTm can be also selected from the rows

of a nm × nm Hadamard matrix which has only binary elements of 1 and −1, simplifying practical

implementation.

3) Step 3: Analog Signal Enhancement: Given the first M Kronecker factors of the analog beamformer

have been designed for interference cancellation in Step 2, in the current step, the remaining (D −M)

factors, f (M+1), · · · , f (D), are designed for maximizing the data-signal strength as follows. Instead of

designing these factors one by one, it is more convenient to directly design their Kronecker product,

denoted by f
(M+1)
eq and given as

f (M+1)
eq = f (M+1) ⊗ f (M+2) ⊗ · · · ⊗ f (D). (25)

As a result, the desired analog beamforming vector can be rewritten as

fRF = f (1) ⊗ f (2) ⊗ · · · ⊗ f (M) ⊗ f (M+1)
eq . (26)

To facilitate the design, the data path vectors {v(Φℓ)} are decomposed in the same form as in (26):

v(Φℓ) = u
(1)
ℓ ⊗ u

(2)
ℓ ⊗ · · · ⊗ u

(M+1)
ℓ , ℓ = 1, 2, · · · , L (27)

where the Kronecker factors match those in (26) in terms of vector lengths. By substituting (26) and

(27) into (11) and applying the mixed-product property of Kronecker product, the objective function of

Problem P3 is rewritten as

∣
∣fHRFg

∣
∣
2
=

∣
∣
∣
∣
∣

L∑

ℓ=1

aℓ(f
(M+1)
eq )Hu

(M+1)
ℓ

M∏

m=1

(f (m))Hu
(m)
ℓ

∣
∣
∣
∣
∣

2

. (28)
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Given the Kronecker factors f (1), · · · , f (M) fixed, to simplify notation, define

ãℓ = aℓ

M∏

m=1

(f (m))Hu
(m)
ℓ and g̃ =

L∑

ℓ=1

ãℓu
(M+1)
ℓ (29)

that respectively denote the ℓ-th effective data-path gain and the effective data-channel vector aggregating

L paths, conditioned on inter-cell interference nulling. Substituting (29) into (28), Problem P3 can be

transformed into the following equivalent form.

(P6)
max
f
(M+1)
eq

|(f (M+1)
eq )H g̃|2

s.t. |[f (M+1)
eq ]i| = 1, ∀i.

(30)

Since the elements of f
(M+1)
eq are all uni-modulus, it can be written as f

(M+1)
eq = [ejΩ1 , ejΩ2 , · · · , ejΩnM+1 ]T ,

where nM+1 is the length of f
(M+1)
eq . Moreover, expand g̃ as g̃ = [g̃1, g̃2, · · · , g̃nM+1

]. By the vector triangle

inequality, we have

|(f (M+1)
eq )H g̃|2 =

∣
∣
∣
∣
∣

nM+1∑

i=1

e−jΩi g̃i

∣
∣
∣
∣
∣

2

≤
∣
∣
∣
∣
∣

nM+1∑

i=1

|g̃i|
∣
∣
∣
∣
∣

2

, (31)

where the equality holds when Ωi is equal to the phase of g̃i. Therefore, the optimal solution of Problem

P6 is

f (M+1)
eq = [ej∠g̃1 , ej∠g̃2 , · · · , ej∠g̃nM+1 ]T . (32)

Substituting (32) into (26) completes the design of analog beamformer.

C. Discussion

Extension of the proposed design framework of Kronecker analog beamforming to the multiuser case

and various implementation issues are discussed as follows.

1) Extension to the Multiuser Case: For the current case, the analog beamformer FRF is a matrix with

uni-modulus elements, which can be written in terms of its column vectors as

FRF = [fRF(1), fRF(2), · · · , fRF(K)].

Each column vector targets a corresponding user and is designed to maximize the signal power by coher-

ently combining the corresponding set of data paths under the constraint of nulling inter-cell interference.

The design of a single column vector of FRF follows the proposed framework of designing fRF for the

single-user case as summarized in Algorithm 1. Next, substituting the resultant FRF into (14) gives the

corresponding digital beamformer FBB. Finally, combining FRF and FBB yields the Kronecker hybrid

beamformer for the multiuser case.
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2) CSI Requirement: As reflected in the proposed framework, the Kronecker analog beamforming

requires different levels of CSI for interference nulling (Step 2) and signal enhancement (Step 3). Specif-

ically, only the AoA of the interference paths are required in Step 2 but both AoA and gains of the data

paths are needed in Step 3. Channel estimation for acquiring the CSI is addressed in Section V.

3) Computation Complexity: It is worth pointing out that the proposed Kronecker analog beamforming

framework is featured by its low computation complexity compared with the conventional fully digital

MMSE beamforming design as elaborated in the following.

• Single-user case: Only the analog beamformer needs to be computed in this case. Only vector-wise

computation is performed in the three steps including the Fourier based construction in (23), the

signal enhancement in (32), and the final combination of Kronecker factors in (17). The resultant

computation complexity is O(N). In contrast, the conventional fully digital MMSE beamformer

requires the inversion of an N ×N matrix, which has the complexity of O(N3). Such complexity is

too high for massive MIMO systems as N can be as large as several hundred or even thousands.

• Multiuser case: For this case, the proposed hybrid beamforming consists of analog and digital

beamforming. Following the discussion for the single-user case, the complexity of computing the

multiuser analog beamformer is O(N × K). Due to dimension reduction by analog beamforming,

the subsequent digital beamformer requires the computation complexity of O(K3) only. As a result,

the total complexity of computing the Kronecker hybrid beamformer is O(N ×K) +O(K3), which

is much lower than that of the fully digital MMSE beamformer, namely O(N3), when N is large.

4) Adaptive Kronecker Factor Allocation: The proposed Kronecker analog beamforming solution can be

further enhanced by adaptively allocating the Kronecker factor according to the transmission environment.

Particularly, for the interference-limited scenario where there exist many interference paths, one can choose

to cancel only those significant interference such that more Kronecker factors can be saved for signal

power enhancement. For the noise-limited case, all the Kronecker factors can be allocated for signal

power improvement instead of being wasted on nulling those insignificant interference paths.

5) Antenna Selection: For the case that the number of BS antenna is a prime number, say 131 antennas, a

simple solution is antenna selection where the best 128 antennas are selected according to some selection

criterion (e.g., channel quality), and then the Kronecker analog beamforming is performed using the

selected 128 antennas. A diversity gain can be attained by antenna selection. Furthermore, it is worth

mentioning that the number of antennas of a base station is usually set to be a power of two in the

standards such as IEEE 802.11n and IEEE 802.11ac, fitting the proposed design.

V. CHANNEL ESTIMATION FOR HYBRID BEAMFORMING

In this section, the channel estimation problem formulated in Section III is solved by designing a two-

stage estimation scheme targeting the hybrid beamforming architecture in Fig. 2. First, the AoA of the
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data/interference paths are estimated by analog beam scanning using the phase array. Next, the data-path

gains are estimated using either the analog coherent-combining or analog ZF technique.

A. Path AoA Estimation

The key idea of the proposed scheme for path AoA estimation is to construct an AoA spectrum by

analog beam scanning, which displays power distribution over the AoA range. For ease of exposition, the

scheme is first discussed for the simple single-user case without inter-cell interference and then extended

to the general multiuser case with inter-cell interference.

1) Single-User Case without Inter-cell Interference: For the current case, leveraging the high spatial

resolution of the large-scale array, the observation in a single pilot symbol duration is sufficient for accurate

path AoA estimation. Consider the observation from the BS array in an arbitrary pilot symbol duration,

which follows from (6) as

y =
L∑

ℓ=1

aℓv(Φℓ)x+ n, (33)

where x now denotes the pilot symbol with unit power. The objective of AoA estimation is then to infer

the AoA, {Φℓ}, from y. To this end, define the AoA spectrum as the function F : RN → R+ given by

F(Ω) =
|v(Ω)Hy|

N
. (34)

It can be observed that F(Ω) measures the magnitude of the coefficient obtained by projecting y onto

the (beam) steering vector v(Ω) given in (3) corresponding to the direction specified by the angle Ω.

To derive a closed-form expression for the AoA spectrum, a useful property for the steering vector v is

provided as follows. Given two angles Ω,Φ ∈ [0, 2π], the normalized inner product between the steering

vectors v(Ω) and v(Φ) is denoted as J and defined as

J (Φ− Ω) =
|v(Ω)Hv(Φ)|

N
. (35)

Lemma 2. The normalized inner product between the steering vectors v(Ω) and v(Φ) is given as

J (Φ− Ω) =

∣
∣
∣
∣
∣

sinc
(
N
2
|Φ− Ω|

)

sinc
(
1
2
|Φ− Ω|

)

∣
∣
∣
∣
∣
. (36)

Given x≪ 1, as N → ∞,

J (x) ≤ 2

N |x| +O

(
1

N

)

. (37)

Proof: See Appendix A. �

The function J (x) as plotted in Fig. 3 is observed to have a peak at x = 0 with magnitude 1. Moreover,

the main lobe has the width of 2π
N

that becomes narrower as the array size N increases, and the side-lobe

diminishes approximately as O(1/N). Substituting the result in Lemma 2 to (34) gives the following

proposition.
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Fig. 3. The normalized inner product function J (x) given in Proposition 1.

Proposition 1 (AoA Spectrum without Interference). For the single-user case without inter-cell interfer-

ence, the AoA spectrum is given as

F(Ω) =

∣
∣
∣
∣
∣

L∑

ℓ=1

ãℓJ (Φℓ − Ω) + ñ

∣
∣
∣
∣
∣

(38)

where ãℓ = sgn

(
sin(N

2
(Φℓ−Ω))

sin( 1
2
(Φℓ−Ω))

)

aℓe
j
(N−1)(Φℓ−Ω)

2 denotes the ℓ-th effective path gain received by the steering

beam, sgn(x) is the sign function indicating the sign of x, J (Φℓ−Ω) is given in Lemma 2 and ñ = v(Ω)Hn

N

denotes the effective noise observation with zero mean and variance of E{ññ∗} = N0

N
.

Based on the mentioned property of the function J (x), the AoA spectrum given in Proposition 1

comprises L main lobes located at the path AoA {Φℓ} with magnitudes {|aℓ|}, leading to the proposed

procedure for path AoA estimation as follows.

Data-Path AoA Estimation: Essentially, the proposed scheme of path AoA estimation is to detect the

peaks in the AoA spectrum. The detailed process is illustrated in Fig. 4, where the current case without

inter-cell interference requires only the upper processing path corresponding to “strong peak detection”.

Remark 4 (Accuracy of the AoA Estimation). Due to their side lobes, the set of shifted functions

{J (Φℓ−Ω)} may interfere with each other and thereby cause inaccuracy in AoA estimation especially in

the presence of noise. As the array size N increases, the issue subsides as the side lobes of the functions

diminish and the main lobes become shaper as mentioned. This can be interpreted as that a large-scale

array has a high spatial resolution and is capable of resolving paths even with small AoA separations.

Furthermore, it can be observed from Proposition 1 that the variance of observed noise is reduced by the

factor of 1
N

, showing the noise suppression gain of large-scale array.

Remark 5 (Parallel Beam Scanning). As shown in Fig. 4, the implementation of the proposed scheme

requires beam scanning of the AoA spectrum over the angular range [0, 2π]. Hence, the implementation
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Fig. 4. The process of channel estimation for hybrid beamforming.

complexity is determined by the scanning resolution, defined by Rscan =
2π
Nsam

, where Nsam is the required

number of samples for constructing the AoA spectrum. The scanning process can be accelerated by

parallel beam scanning that generates parallel streams of spectrum samples. Specifically, given NRF RF

chains, the phase array, represented by the matrix FRF, can be divided into NRF subsets of phase shifters,

each of which corresponds to a single column of FRF and can be used to implement a single steering

vector with a given AoA (see Fig. 2). As a result, the RF chains generate NRF samples of the AoA

spectrum each time, reducing the scanning duration by the factor of 1
NRF

. Sampling the AoA spectrum

by beam scanning has the complexity of O(N), which is much lower than the conventional fully digital

MMSE channel estimation approach with the complexity of O(N3). In addition, thanks to the shortened

scanning duration and also the low complexity sampling process, a complete AoA range scanning can be

done within one pilot sequence duration, hence the resultant training duration equals to the length of the

pilot sequence which is relatively short.

Remark 6 (Comparison with the MUSIC Algorithm). Both the proposed scheme and the classic multiple

signal classification (MUSIC) algorithm [34] are based on the same principle of scanning over the AoA

range. However, it is difficult to directly implement the MUSIC algorithm, which targets fully digital

processing, using the hybrid beamforming architecture due to its hardware limitations. Specifically, the

algorithm requires the knowledge of the autocorrelation matrix of the full-dimension channel observation,

i.e., Ryy = E{yyH}, which is unavailable for hybrid beamforming due to the mentioned channel subspace

sampling limitation. Even if such knowledge is available, the key step of the MUSIC algorithm, namely

singular value decomposition (SVD) of the matrix Ryy with complexity of O(N3), is impractical for

massive MIMO systems since N is too large. In general, the strong capabilities of the large-scale array on

noise-and-interference suppression (see Remark 4) are sufficient for accurate AoA estimation and make
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the use of MUSIC algorithm less appealing for massive MIMO systems.

2) Multiuser Case with Inter-cell Interference: In the presence of multiple users and inter-cell inter-

ference, pilot sequences are considered for suppressing both intra-cell and inter-cell interference in the

estimation process. The sequences also serve the purpose of identifying the data paths for different users.

a) Data-Path AoA Estimation

Consider the AoA estimation for the k-th user, the observation matrix in (6) is multiplied by the corre-

sponding pilot sequence xk with normalization, yielding

ỹk =
Yxk

‖xk‖2
=

√
Zgk +

M∑

ℓ=1

γℓhℓ + ñ, (39)

where {γℓ} are i.i.d. random variables with zero mean and unit variance and the noise vector comprises of

i.i.d. CN (0, N0) elements. The intra-cell interference is eliminated in (39) due to the orthogonality of pilot

sequences used in the same cell. Note that the pilot sequence coherent combining is indeed performed in

the digital baseband after the analog beam scanning process. We switch the presentation order here as it

can simplify the expression without any violation of the mathematical consistency and also facilitate to

establish a clear link to the single-user case.

Next, following (34), define the AoA spectrum for the k-th user in the current case as

Fk(Ω) =
|v(Ω)H ỹk|

N
. (40)

The spectrum can be obtained using the same method of beam scanning as in the preceding single-user

case, yielding the following result.

Proposition 2 (AoA Spectrum with Inter-cell Interference). In the presence of inter-cell interference, the

AoA spectrum for the k-th user is given by

Fk(Ω) =

∣
∣
∣
∣
∣

L∑

ℓ=1

ãkℓJ (Φkℓ − Ω) +
1√
Z

M∑

n=1

γnβ̃nJ (Θn − Ω) + ñk

∣
∣
∣
∣
∣
, (41)

where ãkℓ = sgn

(
sin(N

2
(Φkℓ−Ω))

sin( 1
2
(Φkℓ−Ω))

)

akℓe
j
(N−1)(Φkℓ−Ω)

2 and β̃n = sgn

(
sin(N

2
(Θn−Ω))

sin( 1
2
(Θn−Ω))

)

βne
j
(N−1)(Θn−Ω)

2 are the

effective data and interference path gains respectively, ñk =
v(Ω)H

N
N xk

‖xk‖2
denotes the effective noise with

zero mean and variance of N0

ZN
.

In the AoA spectrum in (41), the second summation represents inter-cell interference for data-path AoA

estimation, which arises from pilot contamination. Note that the interference magnitude is suppressed by

the factor 1/
√
Z due to the use of pilot sequences as also illustrated in Fig. 5.

Data-Path AoA Estimation: The process is identical to the single-user counterpart, involving peak

detection of the AoA spectrum, where the spectrum for the current case refers to Fk(Ω) in Proposition 2.

Note that given sufficient long pilot sequences, Fk(Ω) comprises of strong and weak peaks (reduced by
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Fig. 5. The effect of the pilot sequence length Z on suppressing inter-cell interference in the AoA spectrum with N = 128, K = 1, M = 2

and L = 2.

the factor of 1/
√
Z) corresponding to data and interference paths, respectively. For detecting the data

paths, it is necessary to separate the strong peaks from the weak ones by e.g., applying a threshold.

Next, the dependence of pilot contamination on various system parameters are quantified as follows.

Define pilot-contamination level, denoted as η, as the maximum magnitude of interference in the AoA

spectrum Fk(Ω) (see Proposition 2) at the AoA of a data path:

η = max
ℓ

1√
Z

∣
∣
∣
∣
∣

M∑

n=1

γnβ̃nJ (Θn − Φℓ)

∣
∣
∣
∣
∣
.

≤
∑M

n=1 |γnβ̃n|√
Z

max
n,ℓ

J (Θn − Φℓ).

Using the result in Lemma 2, η can be bounded as follows.

Proposition 3 (Effect of Pilot Contamination). For data-path AoA estimation, the pilot-contamination

level can be bounded as

η ≤ a√
ZN min

n,ℓ
|Θn − Φℓ|

, N → ∞, (42)

where a is a constant.

The result shows the decay rate of η with increasing array size N , pilot-sequence length Z or the

minimum spatial separation between data and interference paths, min
n,ℓ

|Θn − Φℓ|. It was first observed

in [27] that the interference to channel estimation due to pilot contamination vanishes as N increases

provided that the interference and data paths are spatially separated, namely that min
n,ℓ

|Θn − Φℓ| > 0.

Align with this observation, the result in (42) is more elaborate and quantifies the scaling law of the

interference magnitude with the system parameters.
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b) Interference-Path AoA Estimation

Estimating the AoA of interference paths is to simply detect the weak peaks in one of the K AoA spectrums

in (41) where the weak peaks are farthest from the strong ones to reduce their interference. The process

corresponds to the lower processing path in Fig. 4. For the case with insufficient AoA separations between

data and interference paths, the side-lobes of strong data-path peaks in the AoA spectrum can cause severe

interference to detecting the weak interference-path peaks. To address this issue, the performance of the

estimation of the interference-path AoA can be improved by decision feedback following the estimation

of the AoA and gains of the data paths9. Specifically, those data path components can be removed from

their corresponding AoA spectrums in (41) by subtraction prior to estimating the interference-path AoA.

The potential issue of this method is error propagation due to inaccurate data-path estimation. The issue

can be mitigated by averaging the K AoA spectrums after the said subtraction to suppress the residual

data-path components as well as noise.

B. Estimation of Data-Path Gains

In this section, given the estimated data-path AoA {Φℓ}, the schemes for estimating the corresponding

path gains {aℓ} are discussed. To simplify the exposition, consider the single-user case with inter-cell

interference and the observation in an arbitrary pilot symbol duration can be reduced from (6) as

y =
L∑

ℓ=1

aℓv(Φℓ)x+
M∑

n=1

βnv(Θn)sn + n, (43)

where x and sn are the pilot symbols transmitted by the intended user and the n-th interfering user,

respectively. Without loss of generality, set x = 1. The extension to the multiuser case is similar to that

for path AoA estimation in Section V-A2.

The proposed scheme of estimating the gain of a particular data path is to steer the analog beamformer

such that its output is a scaled version of the gain. Let the analog beamformer for estimating the ℓ-th

path gain be denoted as fRF(ℓ). We propose two designs of the beamformer, called the analog coherent-

combining and analog zero-forcing (ZF) methods, such that the beamformer output is

ŷℓ = [fRF(ℓ)]
Hy ≈ cℓaℓ, (44)

where cℓ is a constant. By scaling in the digital domain, the estimated gain is obtained as âℓ = ŷℓ/cℓ.

1) Gain Estimation by Analog Coherent Combining: Consider gain estimation using the analog coherent-

combining beamformer. The design, fRF(ℓ) = v(Φℓ), coherently combines the outputs of all antennas due

to the signal from the ℓ-th data path. With cℓ = N , the estimated gain is

âccℓ = aℓ +
1

N

L∑

m 6=ℓ

amv(Φℓ)
H
v(Φm) +

1

N

M∑

n=1

βnv(Φℓ)
H
v(Θn)sn +

1√
N
n̂, (45)

9The gain estimation of the data paths can be conducted using the analog coherent-combining estimator as shown in the sequel.
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where the effective noise n̂ is a CN (0, N0) random variable.

Proposition 4. For data-path gain estimation using the coherent-combining method, the estimation error

|âccℓ − aℓ| can be bounded as

|âccℓ − aℓ| ≤
2αmax(L+M − 1)

ΨminN
+O

(
1

N

)

, (46)

where αmax is the maximum of the magnitudes of all path gains, namely the maximum element of the set

{|aℓ|, |βn|} for all ℓ and n, and Ψmin is the minimum AoA separation between any pair of paths, namely

the minimum element of the set {|Φℓ − Φm|, |Φℓ −Θn|} for all ℓ, m and n.

Proof: See Appendix B. �

The result shows that the path gain estimation is highly accurate for a large-scale array (N → ∞).

Moreover, the accuracy increases as the path spatial separations grow.

2) Gain Estimation by Analog ZF: Consider gain estimation using the analog ZF beamformer. The

design requires prior estimation of the AoA of all paths, namely {Φℓ} ∪ {Θn}. Given the AoA, the ZF

beamformer for estimating the path gain aℓ is designed to null all other path components in the observation

in (43) except for that corresponding to the ℓ-th data path. Assuming perfect nulling, the only resource

for estimation error is noise. To maximize the SNR, the problem of analog ZF beamformer design can

be formulated as follows:

(P7)

max
fZF(ℓ)

|fHZF(ℓ)v(Φℓ)|2

s.t. |fHZF(ℓ)v(Φm)|2 = 0, |fHZF(ℓ)v(Θn)|2 = 0, ∀m 6= ℓ, ∀n,
|[fZF(ℓ)]i| = 1, ∀i.

(47)

The problem can be solved using the proposed Kronecker analog beamforming framework as summarized

in Algorithm 1. Given the ZF beamformer fZF(ℓ), the estimated path gain is given as

âzfℓ = aℓ +
fHZF(ℓ)n

fHZF(ℓ)v(Φℓ)
. (48)

3) Estimator Comparison: The two proposed path-gain estimation schemes have their own pros and

cons. The scheme with coherent combining beamforming maximizes the SNR but fails to suppress

interference. In contrast, the other scheme with ZF beamforming nulls interference at the cost of a smaller

SNR. The insight into the relative performance of the two schemes can be obtained by considering the

simple case with single data and single interference paths (K = 1, L = 1, M = 1) and the array size N

being even. If the data and interference paths are poorly separated in space (i.e., |Φ−Θ| is small enough),

it can be shown that fHZFv(Φ) ≈ −j(Φ−Θ)
2

N and the noise in (48) has the variance approximately equal to

4N0

|Φ−Θ|2N
. Then the ratio between the expected estimation errors can be written as (see Appendix C)

E[|âccℓ − aℓ|]
E[|âzfℓ − aℓ|]

≈ ρ√
N

+
|Φ−Θ|

2
, (49)
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where ρ = β/
√
N0 denotes the ratio between the interference path gain and the noise power. The result

suggests that when ρ is large (strong inter-cell interference), the estimator based on analog ZF achieves

better performance than that based on analog coherent-combining as the gain of interference nulling

outweighs the the resultant loss of SNR. The result also indicates that the estimator based on analog ZF

becomes less appealing when the AoA separation between the interference and data paths is small. For

this case, nulling the interfering path may result in significant noise enhancement. Last, as N increases,

the performance gap between the two estimators diminishes as the estimation errors for both designs

converge to zero.

Remark 7. The proposed two-stage channel estimation scheme enjoys a significant practical interest due

to two main reasons. One is that it involves only simple beam scanning and scalar gain estimation with

a low computation complexity of O(N). On the other hand, in mmWave communications, interference

paths largely depend on static blockage objects in the environment (e.g., buildings). Thus, the channel

variation is slow, making the channel tracking easy.

VI. SIMULATION RESULTS

In this section, the performance of the proposed Kronecker analog/hybrid beamformer and the matching

channel estimation approach will be evaluated under various system parameter settings. The simulation

parameters are set as follows unless specified otherwise. The array size N = 128, the number of data

paths per user L = 2, the number of interference paths M = 2, the number of users K = 4. All path

gains, {akℓ, βn}, follow i.i.d. CN (0, 1) distributions. The transmit SNRs for intended users, denoted as

ρU , and interfering users, denoted as ρI , are set as 0 dB by default. The AoA of all paths follow i.i.d.

uniform distributions in the range of [0, 2π].

A. Kronecker Analog Beamforming for the Single-user Case

Consider the single-user case in the presence of inter-cell interference and only a single RF chain is

used in the hybrid-beamforming architecture. In Fig. 6, the spectral efficiency of the proposed Kronecker

analog beamformer is compared with those of the optimal fully digital MMSE beamformer and two

existing designs of analog beamformer. One is the well-known design of equal-gain combining where the

analog beamforming vector comprises the element phases of the array observation vector of the intended

user channel (see e.g., [35]). The other is called analog MMSE beamformer which approximates the fully

digital counterpart by taking only the phases of its coefficients [36]. In Fig. 6(a), the performances of

different beamforming designs are compared with a varying intended users’ transmit SNR. It is observed

that the proposed design achieves a lower spectral efficiency than the optimal fully digital MMSE design

due to the analog hardware constraints but outperforms other analog beamforming designs, where the

performance gaps are fixed at relatively high ρU regime given fixed ρI . In Fig. 6(b), the comparison is
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over a varying interfering users’ transmit SNR. In the weak interference regime, the proposed Kronecker

analog beamforming is outperformed by the analog MMSE design due to the noise enhancement effect

of the former. For other regimes, the proposed design surpasses the other analog designs. In particular, by

analog interference nulling, the spectral efficiency of the Kronecker analog beamforming is independent

with the interference level while those of other analog designs decrease as the interference power increases.

In Fig. 7, the computation time of the proposed Kronecker analog beamforming is compared with those

of other digital/analog designs considered in Fig. 6, which are obtained by MATLAB simulations. One

can see that the proposed design has a higher complexity than the simple equal-gain combining design

but lower complexity than the digital and analog MMSE beamforming. The complexities of the proposed

and equal-gain combining designs are both O(N) and thus less sensitive to the variation of the array size

N than those of the two MMSE designs which are both O(N3). The same observations also apply to the
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multiuser case.

B. Kronecker Hybrid Beamforming for Multiuser Case

Consider the multiuser case with the number of RF chains NRF = K = 4, the sum rate performance of

the proposed Kronecker hybrid beamformer is evaluated in Fig. 8 via comparison with several existing

hybrid beamforming designs. In particular, the iterative hybrid block diagonalization design proposed in

[37] attempts to minimize the Euclidean distance between the hybrid beamformer and a proposed digital

block diagonalization beamformer using a iterative matrix decomposition method. By only approximation,

this design is incapable of nulling intra-cell and inter-cell interference. Furthermore, the two-stage hybrid

beamforming design proposed in [18] consists of an analog beam steering followed by a small-scale digital

ZF beamformer. Due to the limited number of RF chains and the resultant issue of channel subspace

sampling limitation, the low-dimension digital ZF can suppress intra-cell interference but lacks additional

DoF for nulling inter-cell interference. Several observations can be made from Fig. 8. From Fig. 8(a), one

can see that the proposed Kronecker hybrid beamforming outperforms other hybrid beamforming designs

and achieves a sum rate about 80% of that achieved by the optimal fully digital MMSE beamforming

which has much higher complexity in both computation and hardware. Note that the sum rate of the

iterative hybrid block diagonalization saturates as the intended users’ SNR increases due to the existence

of intra-cell interference. Next, it can be observed from Fig. 8(b) that by analog interference cancellation,

the proposed Kronecker hybrid beamforming design is robust against the increase in inter-cell interference

power while it incurs increasing rate loss for other hybrid beamforming designs.

C. Channel Estimation

The performance of the proposed beam-scanning path AoA estimation plus beam-steering data-path gain

estimation with analog coherent combining (CC) or analog ZF is evaluated in Fig. 9. Fig. 9(a) shows the
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average estimation error with a varying array size N . The analog ZF scheme is observed to outperform the

analog CC scheme but their performances converge as N increases. The reason is that coherent combining

using a large-scale antenna array also suppresses interference thanks to the high spatial resolution. Next,

the comparison in Fig. 9(b) is for a varying transmit SNR of interfering users and different minimum

spatial separations between propagation paths. One can observe that in the weak interference regime,

enhancing the SNR is preferred and thus the CC scheme outperforms the ZF scheme. However, the

performance of the CC scheme degrades rapidly as the interference power increases. As a result, the

ZF scheme is preferred in the strong interference regime. Furthermore, it is found that increasing the

minimum path spatial separation improves both estimators’ performance significantly which aligns with

our previous analytical results.

VII. EXTENSIONS

In this section, several possible extensions of the proposed framework will be briefly discussed.

A. Extension to the Uniform Planar Array Case

Although the proposed Kronecker analog beamforming framework is presented assuming uniform linear

array (ULA) for simplicity as in many other papers, e.g., [12], [13], [27], we would like to point out

that the extension to the case of uniform planar array (UPA) is indeed straightforward by noting that

the phase response vector of a UPA can be represented as the Kronecker product of two ULA phase

response vectors containing the elevation and azimuth angle-of-arrival (see [10], [38] for details). The

basic design principle may even be applicable to other types of arrays, e.g., circular and spherical arrays

by decomposing their response vectors using appropriate basis functions, which might be Fourier series

and spherical harmonics, respectively.
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B. Extension to the Multi-antenna User Case

In this paper, the single antenna user assumption is made to simplify the exposition. Nevertheless, due

to the smaller antenna spacing required in the mmWave communications, multiple antennas can also be

packed at the user terminals to enable multiple data streams transmission per user. In this regard, we

would like to briefly discuss the extension of the proposed hybrid beamforming scheme to the multi-

antenna user case where multiple data streams per user are supported. The key idea is to integrate the

proposed Kronecker analog beamforming technique and the powerful block diagonalization technique

[37], [39] and also the eigenmode beamforming technique (also called SVD beamforming) to tackle the

inter-cell interference, inter-user interference (within the same cell) and inter-stream interference (within

the same user) in this scenario. Specifically, the Kronecker analog beamforming can be first designed

based on the original multi-path channel to cancel the inter-cell interference and enhance the data signal

paths as presented earlier. Next, block diagonalization can be designed according to the post-analog-

processed channel to decompose the effective multiuser MIMO channel after analog beamforming to a

set of parallel single-user MIMO channels, thereby eliminating the inter-user interference. Finally, a set

of eigenmode beamformers are designed separately each targeting the corresponding effective single-user

MIMO channel after block diagonalization to further divide the effective single-user MIMO into a set

of orthogonal SISO sub-channels for supporting parallel multiple data streams transmission. Note that

the block diagonalization and the eigenmode beamforming are performed in the digital domain while the

Kronecker analog beamforming is conducted in the analog domain. Combining all three layer processing

together yields the desired hybrid beamforming.

VIII. CONCLUSION

This paper addressed the channel estimation and hybrid beamforming design problems for a mmWave

massive MIMO system targeting the multi-cell and multiuser uplink transmission scenario, with the

emphasis on tackling both the intra-cell and inter-cell interference under the hardware constraints. The

main contribution of this work lies in the innovative systematic design of the analog beamformer based

on Kronecker decomposition, which enforces the uni-modulus constraints on the analog beamforming

coefficients and allows the inter-cell interference to be cancelled in analog domain. Thanks to this, the

subsequent small-scale baseband digital beamformer can focus on multiuser data streams decoupling

only, enabling the minimum RF chains implementation for the hybrid beamforming design. Moreover, the

proposed channel estimation scheme conquers the hybrid beamforming hardware limitation and achieves

significant complexity reduction by customized design that exploits the channel sparsity property, allowing

low-complexity implementation of the proposed hybrid beamforming design. Furthermore, the decay rate

of the estimation error of the proposed channel estimation approach was also characterized in closed-

form as a function of various key system parameters, yielding useful design guidelines for addressing the

pilot contamination in massive MIMO systems. This work opens up many interesting research directions.
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One of them is to consider the broadband transmission system, where the resultant frequency-selective

channel introduces additional challenges to inter-cell interference cancellation in analog domain and calls

for dedicated design. Another interesting direction is the extension of the Kronecker analog beamforming

to other antenna geometries such as circular or cylindrical arrays for developing a more general design

framework.
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APPENDIX A

PROOF OF LEMMA 2

According to the expression of steering vector v given in (3), we have

|v(Ω)Hv(Φ)|
N

=

∣
∣
∣
∣
∣

1

N

N∑

m=1

ej(m−1)(Φ−Ω)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

1

N

1− ejN(Φ−Ω)

1− ej(Φ−Ω)

∣
∣
∣
∣

(50)

=

∣
∣
∣
∣
∣

1

N

sin
(
N
2
(Φ− Ω)

)

sin
(
1
2
(Φ− Ω)

)

∣
∣
∣
∣
∣

(51)

=

∣
∣
∣
∣
∣

sin
(
N
2
(Φ− Ω)

)

N
2
(Φ− Ω)

1
2
(Φ− Ω)

sin
(
1
2
(Φ− Ω)

)

∣
∣
∣
∣
∣

(52)

=

∣
∣
∣
∣
∣

sinc
(
N
2
|Φ− Ω|

)

sinc
(
1
2
|Φ− Ω|

)

∣
∣
∣
∣
∣
, (53)

where the second equality in (50) is a direct result of the sum of a geometric series, (51) comes from the

Euler’s equation that sin x = ejx−e−jx

2j
, and (53) results from the definition of Sinc function sinc(x) = sinx

x
.

To further characterize the asymptotic behaviour of the profile of function J (x), we can start from the

result in (53). For |x| ≪ 1 and N → ∞, invoking the asymptotic expression of Sinc function [40], it

follows that,

J (x) =

∣
∣
∣
∣
∣
∣

sinc
(
N |x|
2

)

sinc
(

|x|
2

)

∣
∣
∣
∣
∣
∣

≤
2

N |x|

|1−O(x2)| =
2

N |x|
[
1 +O(x2)

]
. (54)

To this end, the proof is completed.

APPENDIX B

PROOF OF PROPOSITION 4

Starting from (45), it follows that

|âccℓ − aℓ| =
∣
∣
∣
∣
∣

1

N

L∑

m 6=ℓ

amv(Φℓ)
Hv(Φm) +

1

N

M∑

n=1

βnv(Φℓ)
Hv(Θn) + ñcc

∣
∣
∣
∣
∣
, (55)
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where ñcc denotes the effective noise following CN (0, N0

N
).

Next, leveraging the result in Lemma 2 and exploiting the well-known vector triangle inequality, the

expression in (55) can be bounded by

|âccℓ − aℓ| ≤
L∑

m 6=ℓ

|am|J (|Φℓ − Φm|) +
M∑

n=1

|βn|J (|Φℓ −Θn|) +O(
1

N
)

≤ 2

N

L∑

m 6=ℓ

|am|(|Φℓ − Φm|)−1 +
2

N

M∑

n=1

|βn|(|Φℓ −Θn|)−1 +O(
1

N
)

≤ 2(L+M − 1)

N
αmaxΨ

−1
min +O(

1

N
), (56)

where αmax and Ψmin follows the same definition as that in (46). To this end, the proof is completed.

APPENDIX C

PROOF OF (49)

Before deriving (49), it is essential to first derive the analog ZF beamformer fZF. Given the considered

simple case with K = 1, L = 1, M = 1 and N being even, it follows from the proposed Kronecker

analog beamforming framework that the interference and data paths can be decomposed as follows

v(Θ) = [1, ejΘ]⊗ [1, ej2Θ, ej4Θ, · · · , ej(N−2)Θ], (57)

v(Φ) = [1, ejΦ]⊗ [1, ej2Φ, ej4Φ, · · · , ej(N−2)Φ]. (58)

Accordingly, the analog ZF beamformer that solves problem P7 can be written as

fZF = [1,−ejΘ]⊗ [1, ej2Φ, ej4Φ, · · · , ej(N−2)Φ]. (59)

It then follows that fHZFv(Φ) =
1−ej(Φ−Θ)

2
N . Note that when |Φ−Θ| is small enough, we can easily obtain

the first order approximation fHZFv(Φ) ≈ −j(Φ−Θ)
2

N . As a result, the noise term in (48), i.e.,
fH
ZF

n

fH
ZF

v(Φ)
has

the variance approximately equal to 4N0

|Φ−Θ|2N
.

Next, following from (45), we have

E[|âccℓ − aℓ|] = E

[∣
∣
∣
∣
β
v(Φ)Hv(Θ)

N
+

1√
N
n̂

∣
∣
∣
∣

]

≤ E

[

β

∣
∣
∣
∣

v(Φ)Hv(Θ)

N

∣
∣
∣
∣
+

1√
N
|n̂|
]

≤ β
2

N |Φ−Θ| +
1√
N
E[|n̂|] ≤ β

2

N |Φ−Θ| +
1√
N

√

E[n̂2]

= β
2

N |Φ−Θ| +
√
N0√
N
, (60)

where the second inequality is due to the vector triangle inequality, the third inequality is followed from

Lemma 2, and the forth inequality results from the Jensen’s inequality that E[
√
x] ≤

√

E[x] for a non-

negative random variable x.
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Similarly, following from (48) and invoking the Jensen’s inequality we have

E[|âzfℓ − aℓ|] = E

[∣
∣
∣
∣

fHZFn

fHZFv(Φ)

∣
∣
∣
∣

]

≤ 2
√
N0

|Φ−Θ|
√
N

(61)

Finally, By approximating E[|âccℓ − aℓ|] and E[|âzfℓ − aℓ|] using their tight upper bounds derived in (60)

and (61) respectively, the desired result presented in (49) can be obtained after some simple algebra

manipulation.
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