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In this article, non-invasive hybrid brain–computer interface (hBCI) technologies 

for improving classification accuracy and increasing the number of commands are 

reviewed. Hybridization combining more than two modalities is a new trend in brain 

imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and 

fast temporal resolution, is most widely utilized in combination with other brain/non-brain 

signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), 

electromyography (EMG), electrooculography (EOG), and eye tracker. Three main 

purposes of hybridization are to increase the number of control commands, improve 

classification accuracy and reduce the signal detection time. Currently, such combina-

tions of EEG +  fNIRS and EEG + EOG are most commonly employed. Four principal 

components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy 

improvement are discussed. In the case of brain signals, motor imagination/movement 

tasks are combined with cognitive tasks to increase active brain–computer interface 

(BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination 

with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In 

the case of reactive tasks, SSVEP is most widely combined with P300 to increase the 

number of commands. Passive BCIs, however, are rare. After discussing the hardware 

and strategies involved in the development of hBCI, the second part examines the 

approaches used to increase the number of control commands and to enhance classifi-

cation accuracy. The future prospects and the extension of hBCI in real-time applications 

for daily life scenarios are provided.

Keywords: hybrid brain–computer interface, functional near infrared spectroscopy, electroencephalography, 

electrooculography, electromyography, classification accuracy

iNTRODUCTiON

Electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) endow brain–
computer interfaces (BCIs) with their essential and indispensable attributes of non-invasiveness, low 
cost, and portability. EEG- and fNIRS-based BCIs have enabled paralyzed patients to communicate 
and control external devices with their own brain functions. Unfortunately, classification accuracy 
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in these modalities diminishes as the number of BCI commands 
increases. As a mean of overcoming the problem of the reduction 
of classification accuracy upon an increase in the number of con-
trol commands, the concept of hybrid brain–computer interface 
(hBCI) was introduced (Allison et al., 2010; Muller-Putz et al., 
2015; Banville and Falk, 2016).

The hBCI pursues the following three main objectives:  
(i) enhanced BCI classification accuracy, (ii) increased number 
of brain commands for control application, and (iii) shortened 
brain-command detection time. These benefits provide hBCI a 
clear advantage over any single brain signal acquisition modality. 
In this article, hBCI is meant to combine either (i) more than 
two modalities (of which at least one is a brain signal acquisi-
tion device) or (ii) more than two brain activities with a single 
modality, for example, the combination of P300 and steady-state 
visual evoked potential (SSVEP) with EEG (Allison et al., 2010; 
Pfurtscheller et  al., 2010; Kreilinger et  al., 2012; Muller-Putz 
et al., 2015).

First, classification accuracy can be improved by combin-
ing multiple signal features from different modalities/devices 
for the same brain activity. For example, EEG and fNIRS have 
been combined for the detection of finger tapping (Fazli et al., 
2012) and hand/arm movement (Buccino et al., 2016). In these 
specific cases, the feature of EEG (i.e., signal band power) was 
combined with oxy- and deoxy hemoglobin (HbO and HbR) 
features of fNIRS to increase the accuracy of the system. Second, 
classification accuracy can be improved by utilizing one device’s 
signal in the artifact removal in another device’s brain signal. For 
instance, the peak value of electrooculography (EOG) caused by 
an eye blink (i.e., a motion artifact) can be subtracted from EEG’s 
data, in which the eye blink (or muscular movement) induces 
a false-positive value (McFarland and Wolpaw, 2011; Daly et al., 
2015). The most common artifact removal means from brain 
signals are EOG (Bashashati et al., 2007; Jiang et al., 2014) and 
electromyography (EMG) (Fatourechi et al., 2007).

For proper operation of a BCI system, a certain number 
of control commands are required (Lafleur et al., 2013; Ramli 
et al., 2015). However, an increase in the number of commands 
in a BCI system will naturally diminish the classification accu-
racy (Vuckovic and Sepulveda, 2012; Naseer and Hong, 2015a). 
Hence, hBCI should have an advantage over a single modal-
ity in increasing the number of control commands without 
negatively impacting the accuracy. This is achieved by decoding 

multiple activities from different brain regions using different 
modalities. For instance, mental arithmetic (MA) tasks using 
fNIRS and motor-related tasks using EEG have been combined 
into an hBCI paradigm resulting in an improved classification 
accuracy (Khan et al., 2014). Researchers also tried to look for 
multiple brain regions to increase the number of commands. 
For example, SSVEPs were combined with event-related poten-
tials (ERPs) to create a hybrid paradigm for EEG. A typical 
example is the combination of SSVEP with P300 signals for 
hBCI (Panicker et  al., 2011; Li et  al., 2013; Xu et  al., 2013). 
Motor imagery (MI) also has been combined with SSVEP (Lim 
et al., 2015; Yu et al., 2015).

The detected brain signals can be categorized into three 
types (i.e., active, reactive, and passive) according to whether 
they were made intentionally, or reactively upon external 
stimulation, or unintentionally (Zander and Kothe, 2011). 
In the case of active BCI, an intentional brain task is used to 
generate the brain activity, for example, finger tapping, MA, 
MI, mental counting, and music imagery. In these tasks, a brain 
activity is generated objectively by the person without any 
external stimuli and hBCI can be made using the brain signals 
in association with the performed mental tasks (Power et al., 
2010). In the case of reactive BCI, external stimuli are provided 
to cause a brain activity. In this paradigm, the stimuli can be 
given in various forms, for instance, audio (Santosa et al., 2014; 
Hong and Santosa, 2016), video (Li et al., 2013; Zhang et al., 
2013, 2014), interrogative (Hu et al., 2012; Bhutta et al., 2015), 
and pain (Hong and Nguyen, 2014). The hBCI combining 
SSVEP and P300 in EEG is considered reactive. In the case of 
passive BCI, an arbitrary brain signal generated by the subject 
with no intention—for instance, a signal related to drowsiness, 
vigilance, and fatigue—can be used (Khan and Hong, 2015). 
With regard to drowsiness, EEG and EOG are simultaneously 
checked to create an hBCI paradigm for accident avoidance 
(Picot et al., 2012).

Herein, we present a review of the various hBCI technologies. 
The schemes of non-invasive methodology in enhancing the 
BCI accuracy are discussed first. Note, however, that the studies 
combining only features and algorithms to decode activities for 
a single modality are excluded. Also, the hybrid systems that are 
not specifically used for BCI are excluded.

Figure  1 breakdowns the contents of the entire paper. The 
first part of this article introduces the concept of hybrid system, 
which utilizes a combination of different hardware to enhance 
BCI accuracy and to increase the number commands. Section 
“Hardware Combination” describes different combinations 
of hardware appeared in the literature. Section “Combination 
of Brain Signals” evaluates the combination of brain signals 
decoded by a single brain signal acquisition modality. Section 
“Advantages of hBCI” discusses the applications of hBCI systems 
for healthy people as well as patients. Section “Applications” 
explains the advantages of hybrid systems over single-modality 
versions. This section also provides detailed tables on hBCIs 
in terms of active, reactive, and passive tasks. The last part of 
this article discusses the future prospects for, and the research 
directions of, hybrid systems in control and rehabilitation 
applications.

Abbreviations: BCI, brain–computer interface; CCA, canonical correlation analy-

sis; CP, cerebral palsy; EEG, electroencephalography; EOG, electrooculography; 

EMG, electromyography; ERD, event-related desynchronization; ERP, event-

related potentials; FDA, Fisher discriminant analysis; FLDA, Fisher LDA; FES, 

functional electrical stimulation; fMRI, functional magnetic resonance imaging; 

fNIRS, functional near infrared spectroscopy; GA, genetic algorithm; GUI, graphi-

cal user interface; hBCI, hybrid brain–computer interface; HbO, oxyhemoglobin; 

HbR, deoxyhemoglobin; HMM, Hidden Markov model; ICA, independent 

component analysis; LDA, linear discriminant analysis; LIS, locked-in syndrome; 

MA, mental arithmetic; MCS, minimally conscious state; MI, motor imagery; 

PSO, particle swarm optimization; SCI, spinal cord injury; SM, signal mean; SMR, 

sensory motor rhythm; SS, signal slope; SSSEP, steady-state somatosensory evoked 

potentials; SSVEP, steady-state evoked visual potentials; SVM, support vector 

machine; VS, vegetative state; SW-LDA, step-wise LDA; tDCS, transcranial direct 

current stimulation; rTMS, repetitive transcranial magnetic stimulation.
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HYBRiD CONCePT

Pfurtscheller et  al. (2010) explained that an hBCI system is 
similar to a simple BCI but that it needs additionally to fulfill the 
following four criteria: (i) the activity should be directly acquired 
from the brain; (ii) at least one of multiple brain signal acquisition 
modalities should be employed in acquiring such activity, which 
can be in electrical potential, magnetic field, or hemodynamic 
change form; (iii) the signals must be processed in real time/
online to establish communication between the brain and a 
computer for generation of control commands; and (iv) feedback 
describing the outcomes of the brain activity for communication 
and control must be provided.

Recent hBCIs based on these criteria have focused on improv-
ing the accuracy of activity detection and increasing the number 
of control commands to achieve better communication and 
control for healthy subjects as well as patients. This is especially 
true considering the fact that an hBCI consists of at least two 
modalities (one of which is a brain-based signal) working in 
concert with each other to produce better BCI functionality.

Six aspects (hardware, signal processing, brain activity, feature 
extraction, classification, and feedback) need to be considered in 
developing an hBCI: (i) the hardware should consist of at least one 
brain signal acquisition modality; (ii) the hybrid system should 
detect and process different physiological signals simultaneously; 
(iii) the paradigm should be able to acquire multiple brain activi-
ties simultaneously using multiple modalities; (iv) a number of 
features for classification should be acquired in real time/online 
for both accuracy enhancement and additional control-command 
generation; (v) the classified output should have a potential for 
interfacing with external devices (e.g., wheelchairs and robots); 
and (vi) it should also provide feedback to the user for rehabilita-
tion and control purposes (Nicolas-Alonso and Gomez-Gil, 2012; 
Ramadan and Vasilakos, 2017).

Figure 2 provides an example of an hBCI scheme. It indicates 
the following two things: (i) multiple activities are required for 
hBCI and (ii) a combination of brain and non-brain signal acqui-
sition modalities is overviewed. After detection, the activities are 
processed simultaneously for feature extraction and classifica-
tion; then, the classified results are used as feedback for the user’s 
rehabilitation and control applications.

HARDwARe COMBiNATiON

Hybrid brain–computer interface hardware can be configured 
in the following two ways: (i) combination of a brain signal 
acquisition modality with a non-brain signal acquisition modal-
ity (Fatourechi et al., 2007; Li et al., 2015; Yang et al., 2015) and  
(ii) combination of a brain signal acquisition modality with 
another brain signal acquisition modality (Kaiser et  al., 2014; 
Putze et  al., 2014). Brain and non-brain signal acquisition 
modalities are combined either to remove motion artifacts or to 
increase the number of commands in a BCI system. Two brain 
signal acquisition modalities are combined and positioned over 
the same brain region in order to enhance the classification 
accuracy, or, they are positioned in different regions to increase 
the number of control commands. In the case of portable devices, 
the following signals are used.

Neuronal Signals
These are measured as a difference in voltage between two dif-
ferent cerebral locations over time. The signal is recorded by 
EEG electrodes positioned on the scalp. The recorded potential 
difference is reflected as the postsynaptic potential in the cell 
membranes of cortical neurons (Olejniczak, 2006; Nguyen and 
Hong, 2013). These signals are most effective for BCI, as they are 
detected immediately (e.g., P300 signals are detected 300 ms after 
stimuli are given). These signals also contribute in the detection 
of brain drowsiness state (Qian et al., 2016, 2017).

Hemodynamic Signals
The hemodynamic response is a process in which the blood 
releases glucose to active neurons at a greater rate than inactive 
ones. The glucose with oxygen delivered through the blood stream 
results in a surplus of HbO in the veins of the active area as well as 
a distinguishable change of the ratio of local HbO to HbR. These 
changes are detected by functional magnetic resonance imaging 
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TABle 1 | Combinations of devices.

Modality combination Sensor placement Signal combination Possible outcome

Electroencephalography 

(EEG) + electrooculography (EOG)

Brain and eyes Electrophysiological + eye movement Increase in control commands/increase in 

accuracy

EEG + electromyography (EMG) Brain and muscles Electrophysiological + electromyography Increase in accuracy

EEG + functional near infrared spectroscopy 

(fNIRS)

Brain Electrophysiological + hemodynamic Increase in classification accuracy/increase in 

control commands

FigURe 2 | Purposes of hybrid brain–computer interface: (i) increase the number of control commands by combining electroencephalography (EEG) with functional 

near infrared spectroscopy (fNIRS) [further electrooculography (EOG)] and (ii) improve the classification accuracy by removing motion artifacts.
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(fMRI) and fNIRS (Boas et al., 1994, 2001, 2014; Huppert et al., 
2009, 2013; Nicolas-Alonso and Gomez-Gil, 2012). These signals 
have an inherent delay in hemodynamic response generation. 
However, the most recent discovery on initial dips makes the 
HbO signals a viable candidate for BCI (Hong and Naseer, 2016; 
Zafar and Hong, 2017).

eye Blink/eye Movement Signals
The eye can be modeled as a dipole, with its positive pole at the 
cornea and its negative pole at the retina. Assuming a stable 
corneo-retinal potential difference, the eye is the origin of a steady 
electric potential field. The electrical signals generated from this 
field are measured by EOG (Bulling et  al., 2011). Sometimes 
an eye tracker also is used for the detection of eye movements. 
Mostly, these signals are used for the investigation of vigilance 
and drowsiness activities.

eMg Signals
These signals are an indication of muscles’ electrical activity, 
which arises whenever there exists a voluntary or involuntary 

contraction (Chowdhury et  al., 2013; Patil and Patil, 2014; Xie 
et  al., 2014). These signals are recorded by EMG electrodes, 
which are most widely used in neuro-prostheses (Ravindra and 
Castellini, 2014; Chadwell et al., 2016; Chen et al., 2016). Table 1 
summarizes possible combinations that can be used in the devel-
opment of hBCI hardware.

eeg + eOg
EOG-based BCIs are useful for people who have control over 
their eye movements, as by this means, multiple commands can 
simultaneously be generated. Combinations of eye movement 
signals (blink, wink, frown, etc.) with neuronal signals usually 
are utilized for hybrid EEG–EOG-based BCIs (Ma et al., 2015). 
In this section, we also include hybrid studies that have used 
eye-tracking with EEG to develop hybrid systems for BCI. We 
discuss EOG and eye tracker-based studies together, as both use 
eye movements for classification. For command generation, sig-
nals are decoded simultaneously, and for control of a BCI system, 
they are fused using a combined classifier (Jiang et  al., 2014). 
Although EOG is used to remove ocular artifacts from EEG data 
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FigURe 3 | Electroencephalography (EEG)–electrooculography (EOG)-based brain–computer interface: the blink signals are used for switching between EEG- and 

EOG-based command generation, in which EEG and EOG generate P300-based commands and frown–wink–gaze-based commands, respectively.
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(Li et al., 2015), drowsiness detection (Khushaba et al., 2011) and 
wheelchair control (Ramli et al., 2015) are also among the most 
common applications of EEG–EOG-based systems. Figure  3 
shows the method used to acquire simultaneous EEG and EOG 
data for analysis.

Artifact Removal
Eye blink signals influence brain signals by inducing artifacts in 
the data. Due to such ocular artifacts, false-positive signals appear 
in EEG data, which leads to misclassification and false-command 
generation (Trejo et al., 2006).

A pioneering study in Bashashati et  al. (2007) tested the 
performance of EEG-based self-paced BCI by investigating 
the effects of eye blink signals on data. The results showed that  
the removal of eye blink signals improves BCI performance. 
Another study (Fatourechi et al., 2007) reviewed ocular artifacts 
in EEG data and proposed that the EEG–EOG combination might 
result in better output than an individual modality. Hsu et  al. 
(2012) performed a single-trial classification to evaluate accuracy 
differences between artifact-removed and non-artifact-removed 
data. Linear discriminant analysis (LDA) and support vector 
machine (SVM) have been used to classify the data obtained 
from the motor cortex region. The results showed that the average 
classification accuracy obtained by removing EOG artifacts was 
higher than that from non-artifact removal data. Using artifact-
removed features, the obtained accuracies were 84.4% for both 
LDA and SVM, whereas using the non-artifact-removed features, 
only 80.9 and 77.7% accuracies were achieved. This study reveals 
that, with EEG data, EOG artifacts have a decremental effect on 
classification accuracy. In similar studies, an automatic artifact 
correction that combines a regression analysis has been success-
fully implemented for MI tasks (Wang et al., 2012). Also, entailing 
the removal of EOG signals (using eye tracking), thresholding has 
been reported to increase classification accuracy [usingstep-wise 
LDA (SW-LDA)] from 44.7 to 73.1% in hBCI (Yong et al., 2012). 

Independent component analysis (ICA), genetic algorithm (GA), 
and particle swarm optimization for EOG artifact detection and 
removal also have been reported in the literature (Hsu, 2013a,b; 
Daly et al., 2015; Li et al., 2015; Yang et al., 2015). Bai et al. (2016) 
has recently proposed an ICA-based method to reduce the 
muscular/blink artifacts appearing in the prefrontal cortex after 
brain stimulation. The eye movement and muscle artifacts were 
detected using EEG. Ensemble empirical mode decomposition 
was used to decompose signal into multi-components, and then, 
the components were separated with artifact reduced by blind 
source separation method.

Control Commands
The combination of EEG and EOG is important to the improve-
ment of the classification accuracy of BCI systems by artifact 
removal (Zhang et al., 2010). This combination can also be used 
to increase the number of control commands. For this type of 
hBCI, eye blink and eye movement signals are used for command 
generation (Roy et al., 2014; Belkacem et al., 2015b).

Among such applications, early studies have proposed the 
control of wheelchairs using EEG and EOG signals (Kim et al., 
2006). This initial work used the hidden Markov model (HMM) 
to obtain an accuracy of 97.2% for wheelchair control. Eye gaze 
signals were later used to implement wheelchair control using 
SVM as a classifier, in which case, an accuracy of above 80% 
was achieved (Lamti et al., 2013). In another work, eyeball and 
eyelid movements were detected using EEG for wheelchair 
control (Aziz et al., 2014) and the features were extracted using 
eye opening, eye closing, and eye gaze directionality, thus achiev-
ing a 98% accuracy using HMM as a classifier. MI, P300, and 
eye blinking have also been applied for control of a wheelchair 
in four directions using SVM-based classification (Wang et al., 
2014), thereby obtaining an average accuracy of above 85%. In 
a similar work on hBCI, eye gaze and EEG signals were trained 
and tested for wheelchair control using a finite-state machine and 
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neural-network-based classifier and six control commands were 
generated, achieving an accuracy of 97.8% (Ramli et al., 2015). 
Among other works on EEG–EOG-based BCI, 2D cursor control 
has been implemented, using kernel partial least square clas-
sification, with accuracies ranging between 80 and 100% (Trejo 
et al., 2006). EOG and EMG have also been combined with EEG 
to improve mental task classification using Fisher discriminant 
analysis (Zhang et al., 2010). Another study of Jiang et al. (2014) 
has shown that features selected based on different eye movement 
and gaze signals led to 89.3% accuracy using LDA as a classifier. 
Real-time video game control of Belkacem et  al. (2015a) and 
exoskeleton control of Witkowski et  al. (2014) have also been 
implemented in the form of hBCI using a thresholding scheme 
with the accuracies of 77.3 (for six commands) and 63.59% (for 
four commands), respectively. Additionally, robotic arm control 
(Hortal et al., 2015), mobile robot control (Ma et al., 2015), and 
quadcopter control (with eye tracking) (Kim et  al., 2014) have 
been developed using EEG–EOG-based hBCI. Most recently, a 
gaze-based game using intentional and spontaneous eye move-
ments with EEG as a marker to control was developed (Shishkin 
et al., 2016): classification of intentional VS spontaneous fixations 
was based on amplitude features from 13 EEG channels using 
300  ms moving window. A 300  ms EOG moving window was 
used to remove the eye movement-related artifacts from the data. 
For the first fixations in the fixation triplets required to make 
moves in the game, LDA-based classification was used to achieve 
90% accurate results. Another interesting study has demonstrated 
the movement control of a turtle using human brain signals (Kim 
et  al., 2016). In this case, SSVEP-based tasks were combined 
with an eye-tracking device to control the turtle in real time. 
The system consists of a glass involving two flickering signals 
for SSVEP generation and direction arrows for detection using 
eye tracking. The movement commands were generated using 
canonical correlation analysis (CCA) in a 2 s window. Four com-
mands were generated using the scheme in which two (turn left/
right movements) commands were generated using SSVEP and 
other two commands (reset and idle) using eye tracking based 
on eye opening and closing. The circuit implanted in the brain 
of the turtle controlled its motion using human brain signals via 
Wi-Fi communication. The event-related desynchronization and 
SSVEP accuracies achieved were 88.3 and 92.7%, respectively.

Drowsiness Detection
Several EEG and EOG studies have investigated the detection of 
drowsiness (Dorokhov, 2003; Duta et al., 2004; Papadelis et al., 
2007; Virkkala et al., 2007a,b). Different feature extraction algo-
rithms have shown the effectiveness of individual EEG system for 
drowsiness detection (Qian et al., 2016, 2017), and the combina-
tion of EEG and EOG seems to be more effective (Sinha, 2008; 
Gharagozlou et  al., 2015; Khemiri et  al., 2015). For combined 
EEG–EOG signals, various strategies have been adopted. Among 
the recent works since 2010, fuzzy mutual-information-based 
wavelet transform has been used for drowsiness detection to a 
high (95–97%) accuracy (Khushaba et al., 2011). EOG signals and 
visual information have been utilized in the generation of warn-
ings for drowsy drivers (Picot et al., 2012; Akerstedt et al., 2013). 
Maximum overlap wavelet transform has been implemented with 

an accuracy of 96.06% to detect various stages of sleep (Khalighi 
et  al., 2013). Fuzzy neighborhood-preserving analysis showed 
a 93% accuracy for drowsiness detection (Khushaba et  al., 
2013), and a neural-network-based extreme learning algorithm 
obtained 95.6% accurate results for alertness and drowsiness 
signals (Chen et  al., 2015). The most recent work on drowsi-
ness/vigilance estimation using real-time brain monitoring has 
achieved 80.4% accurate results by combining EEG and EOG 
(Cao et al., 2016), in which the EEG bands (α, β, θ, and Δ) were 
combined together with EOG using LDA-based classification to 
develop a real-time drowsiness detection system for drivers.

eeg + eMg
Electromyography signals are generated and detected as a result of 
muscular movement (Trejo et al., 2003; Foldes and Taylor, 2010; 
Cler and Stepp, 2015). These act as an artifact in EEG signals, 
resulting in the false detection of brain signals (Fatourechi et al., 
2007; Bhattacharyya et al., 2013). The purpose behind a hybrid 
EEG–EMG-based hBCI is to combine EEG and EMG signals 
in hBCI. This incorporation of EMG signals is user specific and 
depends on the activity or task performed by that user. The appli-
cations of hybrid approaches vary from a simple game control 
application for an able-bodied person through to a prosthetic 
arm control application for an amputee. Figure 4 shows a typical 
strategy used for incorporating EEG and EMG signals into an 
hBCI system.

The applications of EEG–EMG-based hBCI are found in 
the control area of assistive devices (Leeb et  al., 2011; Kiguchi 
et al., 2013). In the early work using EEG with EOG and EMG 
(Kennedy and Adams, 2003), the EMG signals were used to 
categorize different “locked-in” patient types. In their study, six 
types were defined, the first three of which were categorized using 
EMG as follows:

•	 Patients capable of movement (e.g., eye movement and finger 
movement).

•	 Patients incapable of movement but showing some detectable 
EMG activity due to partial muscle movements.

•	 Fully locked-in patients with no muscular activity detectable 
by EMG signals.

The remaining three types of patients were categorized using 
EOG and EEG signals. For EEG–EMG-based BCI, a neuro-
electric interface was developed for real-time applications (Trejo 
et al., 2003). In 2005, a BCI that removes EMG artifacts from EEG 
for mouse-cursor control was developed (McFarland et al., 2005). 
In 2007, a detailed survey on EMG artifacts in EEG signals was 
presented (Fatourechi et al., 2007). In 2010, a study by Brumberg 
et al. (2010) combined EEG and EMG for tetraplegic patients: 
their results showed that communication, however slow, can 
be achieved using EEG–EMG-based hBCI. In that same year, 
jaw muscle contraction and EEG signals were used to generate 
commands for an assistive neuro-prosthetic device (Foldes and 
Taylor, 2010). Also, the use of EMG with EEG was explored in a 
review article on the operation of robotic and prosthetic devices 
(McFarland and Wolpaw, 2010). In 2011, an investigation was 
conducted for the prediction of voluntary movements before 
their occurrence using hBCI (Bai et al., 2011). Vehicle steering 
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(Gomez-Gil et al., 2011) and determination of muscle fatigue levels 
(Leeb et al., 2011) using EEG–EMG-based BCI have also been 
reported in the literature. In 2012, simultaneous measurement of 
EEG–EMG signals led to the achievement of an assistive control 
of exoskeletons for locomotion (Cheron et  al., 2012), wherein 
a surface-tactile stimulation device was used for the training 
of brain signals, and dynamic recurrent neural network-based 
classifiers were used for training and testing of brain signals. 
Single-trial decoding of reaching movement also was conducted 
using EEG–EMG-based signals (Demandt et al., 2012). A similar 
study (Kiguchi et al., 2013) in 2013 proposed EEG–EMG-based 
control of an artificial arm for above-elbow amputees. An 
EEG–EMG-based motion estimation method was proposed 
for the control of the forearm and the supination/pronation 
motion of the artificial arm. In 2014, signals produced by jaw 
clenching were removed from EEG signals for two-dimensional 
cursor control on a computer screen (Costa et  al., 2014). This 
study was later extended to the control of a robotic arm in bi-
dimensional workspace. In 2015, EMG was used in rehabilitation 
applications for robot-assisted exercise tasks (Fels et al., 2015). In 
this case, neuro-feedback was used for intensive motor training 
and EEG–EMG was employed to predict the workload profiles 
for the experience of frustration. A review article by Rupp et al. 
(2015) also discussed the application of EMG for a hybrid neuro-
prosthesis, proposing the use of functional electrical stimulation 
(FES) for therapy. The scheme used EEG–EMG to record brain 
activity and to investigate, on that basis, recovery in muscles 
and the brain. Most recently, new work has been done, which 
combines SSVEP-based tasks with EMG for choice selection (Lin 
et al., 2016). A 60-target hybrid BCI speller was built in this study. 
A single trial was divided into the following two stages: a stimula-
tion stage and an output-selection stage. In the stimulation stage, 
SSVEP and EMG were used together. Every stimulus flickered 
at its given frequency to elicit SSVEP. CCA and mean filtering 

were used to classify SSVEP and EMG, respectively. In the result, 
81% of accurate results were obtained by hybridizing EMG with 
SSVEP activities.

eeg + fNiRS
The research completed on hybrid EEG–fNIRS is still very limited. 
This technology is used mostly to improve classification accuracy 
(Fazli et al., 2012) or increase the number of control commands 
(Khan et al., 2014) in a BCI system. Although the research has 
shown good results for the combination of fNIRS with bio-signals 
(Zimmermann et  al., 2013), hybrid EEG–NIRS has shown the 
best results thus far for BCI. In this case, two brain signal acquisi-
tion modalities are combined using neuronal signals (recorded 
using EEG) and hemodynamic signals (recorded using NIRS). 
One important disadvantage of the use of hemodynamics (either 
fMRI or fNIRS), however, is the inherent delay in the response 
(Huppert et al., 2013), which renders the generation of commands 
slow in comparison to EEG. However, in the case of combined 
EEG–fNIRS, this kind of disadvantage can be removed. Also, the 
detection of initial dip (i.e., the phenomenon that HbO decreases 
and HbR increases with neural firing) instead of hemodynamics 
might lead to a better time window selection for the combined 
modalities. Figure  5 shows an approach used to combine the 
EEG–NIRS modalities for BCI.

The first study on hybrid EEG–NIRS for application to BCI 
appeared in 2012 (Fazli et al., 2012). It showed that the combi-
nation of fNIRS’s features (HbO and HbR) and EEG features 
increases the classification accuracy. In this case, a multi-class 
classifier that combined the NIRS and EEG features for classifica-
tion was used. The results showed that using EEG + HbR features, 
the average classification accuracy for motor execution tasks was 
improved from 90.8 to 93.2%. Similarly, for MI tasks, the average 
classification accuracy using EEG + HbO features was increased 
from 78.2 to 83.2%.
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In 2013, a study of Safaie et  al. (2013) analyzed the steps 
involved in the development of hardware for a hybrid EEG–NIRS 
system, among which was the design of a wireless wearable 
module for simultaneous decoding of brain activity. In 2014, an 
optimal time window for hybrid EEG–NIRS features selection 
was investigated using a SSVEP-based paradigm (Tomita et al., 
2014). The results showed that the optimal window for EEG and 
fNIRS is 10 s. Another study by Khan et al. (2014) showed that 
the number of control commands can be increased by simultane-
ously decoding the EEG and fNIRS activities from different brain 
locations, in which LDA was used as a classifier for both EEG 
and fNIRS, MA and mental-counting tasks were decoded using 
fNIRS, and left- and right-hand tapping were coded using EEG. 
An offline study on tetraplegia patients (Blokland et  al., 2014) 
showed that combined EEG–NIRS can be used to decode motor 
attempts and imagined movement with high accuracies up to 
87 and 79%, respectively. A logistic regression classifier based 
on the Bayesian theorem was used for classification, specifically 
by obtaining the EEG data in a 0–15  s window and the fNIRS 
data for classification in a 3–18  s window. The study showed 
that the highest accuracy for tetraplegia patients was obtained 
by combining EEG with HbR. Kaiser et  al. (2014) investigated 
the effect of training on cortical brain areas using EEG–NIRS 
with MI as a task. The study compared the subjects with high 
BCI performance (accuracy  >  70%) with those with low BCI 
performance (accuracy < 70%), employing LDA for acquisition 
of the classification accuracies. The results showed that training 
with MI-based BCI affects cortical activations, especially with 
those subjects showing a low BCI performance. In another work, 
hybrid EEG–NIRS showed higher classification accuracies in 
discriminating auditory and visual stimuli (Putze et  al., 2014). 
In this work, SVM was used as a classifier to discriminate the 
visual and audio cues and, thus, to develop an hBCI; the accuracy 
achieved was as high as 94.6%.

In 2015, a study used threshold-based discrimination for 
fNIRS signals and SVM-based classification for EEG signals to 
achieve 88% accurate results for self-paced MI tasks (Koo et al., 
2015). In another work, a sensory motor rhythm-based paradigm 

was used to investigate the superiority of multi-modality for idle 
state detection (Lee et  al., 2015). The LDA-based classification 
(achieving a 3.6% increase in the accuracy for MI tasks using the 
hybrid modality) showed that the NIRS signals contributed to the 
detection of the active/idle state as well as to the detection of active 
classes to confirm early activity detection. In two other similar 
studies, the MI of both the force and speed of hand clenching was 
decoded using hybrid EEG–NIRS (Yin et al., 2015b,c). In the first 
case, the extreme learning machine classifier was used to decode 
the responses associated with the force and speed imagery of the 
hand with an accuracy of 76.7%, whereas, for the second case (Yin 
et al., 2015c), the features of EEG and NIRS were combined and 
optimized using the joint mutual information selection criterion, 
again utilizing the extreme learning machines, in which case, the 
resulting average classification accuracy for the force and speed 
of hand clenching was 89%.

Several studies on the applications of hybrid EEG–NIRS have 
emerged in 2016, showing the trend of growing research in this 
area. The studies related to BCI applications were also discussed. 
In the case of active tasks, four motor tasks, namely right- and 
left-arm movement and right- and left-hand movement tasks, 
were decoded using the hybrid EEG–NIRS system (Buccino et al., 
2016). Employing the LDA-based classification, the features using 
common spatial patterns (CSP) were compared with the signal 
mean (SM) and signal slope (SS). In the rest-task classification, 
the SM–SS average accuracy was 94.2% and the CSP average 
accuracy was 86.2%. The SM and SS, meanwhile, also performed 
better for right–left classification. SM–SS achieved an average 
accuracy of 72.2%, whereas with CSP, only 67.1% was possible. In 
the case of arm-hand classification though, CSP showed a better 
performance (83.6% average accuracy) than SM–SS (79.9%). In 
the case of passive tasks, the neural and hemodynamic correlates 
were estimated to measure drivers’ mental fatigue levels (Ahn 
et al., 2016). An average accuracy of 75.9% was achieved using an 
LDA-based classifier combining EEG, fNIRS, and ECG modali-
ties. A new hybridization concept for combined EEG and fNIRS 
was introduced by Keles et al. (2016). In their study, different EEG 
bands (α, β, θ, and Δ) were estimated for the resting state. The 
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correlation of an EEG band was convoluted with the modeled 
hemodynamic response (generated using two gamma functions) 
to generate the expected response with the incorporated neuronal 
activity for the hemodynamic signal. Since this was a pioneer 
study, its BCI-related role is yet to be investigated.

The most recent work on hybrid EEG–NIRS-based BCI 
demonstrates decoding of eight commands from the prefrontal 
and frontal cortices (Khan and Hong, 2017). In this work, four 
commands were decoded using EEG, in which two commands 
were generated using an eye blinking-based tasks and two com-
mands were decoded using eye movement tasks. The interesting 
part of this study was the decoding of fNIRS commands in a 2 s 
window. For the selection of an optimal window size, the differ-
ence between the baseline and the first trial was used for channel 
selection. The signal mean and minimum values of HbO were 
used to detect the brain activity in that window. Four commands 
were generated using MA, mental counting, word formation, and 
mental rotation-based tasks, respectively. An average accuracy of 
86% for EEG and that of 75.6% for fNIRS were achieved using 
an LDA-based classifier. This study was tested for the control of 
a drone, whose results showed the feasibility of using prefrontal-
based commands for BCI.

COMBiNATiON OF BRAiN SigNAlS

The paradigm selection criterion for an hBCI system depends on 
the type of detected activities. As discussed earlier in the Section 
“Introduction,” BCI tasks are categorized into active, passive, and 
reactive types. The respective selection criteria for these tasks 
are based solely on the designed paradigm. In the case of multi-
modality, the paradigm usually consists of the decoding of a single 
activity from the same brain region. Some hBCIs are designed by 
decoding multiple tasks using a single modality. For this purpose, 
usually SSVEP is combined with MI- or P300-based tasks using 
EEG-based signal detection. A study by Zhang et al. (2012) has 
demonstrated a combination of ERP-, N170-, and vertex-positive 
potential signals for EEG-based BCI. ERP-based tasks and evoked 
potential tasks are reactive, as they require external stimulation 
to generate the brain activity (Zander and Kothe, 2011). The 
MI- and MA-based tasks are considered active, as brain activity is 
generated by the user with internal brain activities. In this article, 
we briefly include the cases in which multiple tasks are detected 
simultaneously using a single modality, although the “hybrid” 
term is not used. This has been done in recent studies on fNIRS, 
wherein MI and MA tasks have been combined for the generation 
of multiple BCI commands (Hong et al., 2015; Naseer and Hong, 
2015a). The various signals used in hBCI are discussed below.

Signals Based on Audio and visual 

Stimulation
These reactive signals are generated from either the occipital 
brain area or the temporal brain area by the provision of either 
visual stimuli (Liu and Hong, 2017) or auditory stimuli (Santosa 
et  al., 2014; Hong and Santosa, 2016). Although mostly such 
stimulations are intended for the generation of brain activity 
from the corresponding lobes (An et al., 2014; Tidoni et al., 2014; 

Wu et al., 2016; Xu et al., 2016), some audio/video stimuli are 
given to generate P300 signals (Rutkowski, 2016). For healthy 
individuals, these stimulations can be effective in generating 
multiple commands. However, they can also be beneficial for 
patients with no motor or eye movements.

SSveP Signals
These signals are detected mostly in the occipital brain region. 
They are generated by gazing at a stimulus, which causes an 
increase in neural activity in the brain. VEPs are elicited by sud-
den visual stimuli, the repetition of which leads to a stable voltage 
oscillation pattern in EEG that is known as SSVEP. The stimulus 
used for these signals is light flickering at different frequencies 
(sometimes in the “checker board” pattern with changing colors). 
Using SSVEP signals, multiple reactive commands can be gener-
ated. The drawback of this activity is the need for the continuous 
focus on flashing light, which might not be possible or an inef-
fective approach for some patients (Muller-Putz et al., 2005). The 
signal detection time for these signals has been reduced to less 
than 1 s using spatio-temporal features with a reduced number 
of channels (Zhang et al., 2013, 2014; Chang et al., 2016; Wang 
et al., 2016).

P300 Signals
This signal is detected mostly from the parietal brain region. They 
are the ERPs that indicate the responses to specific cognitive, or 
sensory, or motor events. The presentation of a stimulus in an 
oddball paradigm can produce a positive peak in EEG signals. 
This peak appears 300  ms after the onset of the stimulus. The 
stimulus can be visual, auditory, or somatosensory. This evoked 
response in EEG is the P300 component of ERP. These, most 
widely utilized in speller applications, also can generate multiple 
commands for BCI. However, being reactive, these signals are 
mostly used only for healthy subjects (Bayliss et al., 2004; Piccione 
et al., 2006; Turnip et al., 2011; Turnip and Hong, 2012).

Prefrontal Signals
These signals are detected from the prefrontal and dorsolateral 
prefrontal brain regions. They are a good choice for BCI, as 
they require less training effort. In the case of fNIRS, they are 
especially suitable in that they incur fewer motion artifacts and 
less signal attenuation due to detector slippage in hair. Also, given 
their non-utilization of motor activities, they are more effective 
on patients with severe motor disabilities. MA, mental counting, 
and other tasks can be detected as active-type brain signals for 
BCI (Kim et al., 2012; Naseer et al., 2014, 2016a,b). The passive 
activity of drowsiness also can be detected from this cortex (Khan 
and Hong, 2015). Another research has reported the detection of 
music imagery, picture imagery, word generation, etc., from the 
prefrontal cortex (Naseer and Hong, 2015b; Ma et al., 2017). The 
most common task used for BCI purposes is MA.

Motor Signals
These signals are detected mostly from the primary and central 
brain regions (mostly the motor cortex). They are most suitable 
for active BCI applications, as they are natural means of provid-
ing BCI control over external devices (Naseer and Hong, 2013). 
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These signals are also targeted for the investigation of motor 
recovery or neuro-rehabilitation. They have wide applications in 
both EEG- and fNIRS-based BCI systems. Two different types of 
brain signals detected from the motor cortex are motor execu-
tion and MI. Motor execution is performed by the movement of 
muscles (mostly in hands or feet). Also, some eye-movement-
related activities stimulate the motor region. Some BCIs use 
motor execution for the generation of commands, whereas in 
other cases, these signals are removed from EEG signals using 
EMG/EOG for better detection of MI. Motor imaging can be 
defined as a covert cognitive process of kinesthetic imagining 
of the movement of one’s own body without the involvement 
of muscular tension, contraction, or flexion (Naseer and Hong, 
2015b). The MI signal is weak relative to the motor execution 
task. Also, not all subjects can perform this activity for BCI. In 
fact, since this activity is generated by the imagining of hand or 
foot movements, it is best suited for active-type BCI. A list of the 
different activities that can be used with a hybrid paradigm is 
provided in Table 2.

SSveP and Mi
The simultaneous decoding of SSVEP and MI signals constitutes 
a hybrid system consisting of active (based on MI) and reactive 
(based on SSVEP) commands. Although only a few relevant 
studies have appeared, they have successfully demonstrated the 
significance of the hybrid paradigm for control (Horki et al., 2011; 
Cao et  al., 2014; Li et  al., 2014) and rehabilitation applications 
(Daly et al., 2013; Yu et al., 2015).

Control Applications
The early work in this area demonstrated the control of a 2-DoF 
artificial limb using combined MI- and SSVEP-based tasks (Horki 
et al., 2011). The objective of this study was to operate the elbow 
and grasp movements of the artificial limb using BCI for spinal 
cord injury (SCI) patients. In this case, MI was used to control 
the grasp movements, whereas SSVEP was used to operate the 
elbow movements. According to their data, 87% of accuracy 
was achieved for the MI-based tasks and 91% of accuracy was 
achieved for SSVEP using LDA classification.

The control of a wheelchair using MI and SSVEP has been pro-
posed in two studies (Cao et al., 2014; Li et al., 2014). In the first 
case (Cao et al., 2014), MI was used for the chair’s left and right 
turning and SSVEP was used for the speed control (three com-
mands). An SVM-based classifier resulted in 90.6% of accurate 
control using the hybrid protocol. In the second case (Li et al., 
2014), six commands were used to operate the wheelchair. Two 

commands were generated using MI (left and right rotations), 
and the remaining four commands (start, stop, forward, and 
backward movements) were generated using SSVEP.

In 2015, a study by Duan et al. (2015) demonstrated the control 
of a robot by combining SSVEP and MI tasks: SSVEP was used 
to generate three commands to make the robot move forward, 
turn left, and turn right, while MI was utilized to control the 
grasp motion of the robot. Meanwhile, CCA was used for SSVEP 
classification and power spectrum was employed to estimate the 
motor-imagery-related rhythms. The results suggested that the 
β-band was significant in MI. Overall, 80% accurate results were 
obtained for three subjects.

In terms of command generation, a study in 2016 proposed 
an improved tensor-based multi-class multi-modal scheme 
especially for EEG analysis in hybrid BCI (Ji et al., 2016). It com-
bined SSVEP- and MI-based tasks for command generation. As 
per their method, the data need not be divided into individual 
groups and fed into separate processing procedures; rather, SVM 
was extended to multi-class classification for hybrid tasks. 
Applications in three datasets suggest that the proposed scheme 
not only can identify the different changes in the dynamics of 
brain oscillations induced by different types of tasks but also can 
capture the interactive effects of simultaneous tasks.

Motor Training
In the case of motor training, an initial investigation of hybrid 
MI-SSVEP was performed with cerebral palsy (CP) patients 
(Daly et al., 2013). The goal was to investigate the use of MI and 
SSVEP for CP. Six patients among 14 were able to exercise con-
trol via MI-based tasks, and three patients were able to exercise 
control via the SSVEP-based paradigm. The results served to 
demonstrate the potentiality of MI–SSVEP-based tasks for CP 
patients.

A recent study reported on MI training using SSVEP-based 
tasks with continuous feedback for an hBCI (Yu et al., 2015). 
During the initial training sessions, the subjects focused on 
the flickering buttons to evoke SSVEPs as they performed MI 
tasks. As the training progressed, the subjects were allowed 
to decrease their visual attention on the flickering buttons, 
provided that the feedback remained effective. The feedback 
was based mainly on motor imagery-based tasks. The results 
demonstrated that the subjects could generate distinguishable 
brain patterns of hand MI after only five training sessions last-
ing approximately 1.5 h each. An average accuracy of 89.03% 
was obtained after training using the hybrid paradigm with the 
LDA-based classifier.
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SSveP and P300
The combination of SSVEP and P300 signals results in a reactive 
hBCI. These brain activities are simultaneously recorded from the 
occipital and parietal brain areas. This paradigm is used repeat-
edly in several control and rehabilitation applications.

Strategies for Signal Detection and Control
The initial step of hBCI can be established when multiple brain 
activities are simultaneously decoded for the detection of the 
patient’s intention (Panicker et al., 2011). In 2013, an hBCI was 
used for humanoid robot navigation using combined SSVEP 
and P300 signals (Choi and Jo, 2013). The data in this case were 
recorded from the motor, parietal, and visual cortices. The results 
of this experiment showed that a hybrid SSVEP–P300-based 
BCI can be used to navigate a robot with ease. In later works 
(Combaz and Van Hulle, 2015; Wang et al., 2015), simultaneous 
detection of SSVEP–P300 has been reported for oddball as well 
as shape- and color-changing paradigms. In 2014, the hybrid 
SSVEP–P300-based paradigm was used in the development of 
speed- and direction-based cursor control (Bi et al., 2014). In this 
case, the stimuli for P300 were distributed at the top and bottom 
edges of the screen, whereas the stimuli (accessed by turning 
control knobs clockwise or counter-clockwise) for detection of 
the SSVEP signals were shown on the left and right sides of the 
screen. Their SVM-based classification showed an accuracy of 
above 90% for hBCI.

Awareness of the patients with consciousness disorders has 
also been detected using the combined paradigm of SSVEP and 
P300 (Pan et al., 2014). In this case, two photos were presented to 
each patient: one was the patient’s own photo and the other was 
unfamiliar ones. The patients were instructed to focus either on 
their own or on the unfamiliar photo. The BCI system determined 
which photo the patient focused on by using both P300 and 
SSVEP features. Eight patients [four in a vegetative state (VS), 
three in a minimally conscious state (MCS), and one in a locked-
in syndrome (LIS) state] participated in the experiment. Using 
SVM-based classification, one of the four VS patients, one of the 
three MCS patients, and the LIS patient were able to selectively 
attend to their own or unfamiliar photos (classification accuracy, 
66–100%). Two additional patients (one VS and one MCS) failed 
to attend to unfamiliar photos (50–52%) but achieved significant 
accuracies for their own photos (64–68%). Finally, the other three 
patients failed to show any significant response to the commands 
(46–55%). These results strongly support the necessity to use 
an hBCI paradigm for patients. In another study (Allison et al., 
2014), a four-choice selection scheme was developed resulting in 
an improved accuracy using P300 and SSVEP. In order to gener-
ate P300 signals, the subjects had to focus on one of the four boxes 
that were displayed on the screen. The shown boxes change their 
color from red to white (one box at a time) for 100 ms with a 
25 ms delay for the next flash. A 4 s trial was used to record P300 
signals. To generate SSVEP, the boxes were flickered instead of 
being flashed for 4  s. The flickering frequency was 6, 8, 9, and 
10 Hz. The subjects were asked to focus on one box and count 
the number of flickers to simultaneously generate the hybrid 
signals. LDA was used for P300 signal classification, while CCA 
was used to classify SSVEP signals. When classified separately in 

their hybrid paradigm, the average accuracy for p300 was about 
99.9%; however, the accuracy for SSVEP was 67.2%.

The importance of the reactive task has been shown in a 
comparative study of telepresence-robot and humanoid robot 
control (Zhao et al., 2015). Four-class SSVEP and six-class P300 
achieved an average accuracy of 90.3 and 91.3%, respectively, 
using LDA as a classifier. For wheelchair control, the hybrid 
SSVEP–P300 study (Li et  al., 2013) used buttons flickering in 
a graphical user interface (GUI). The movement options were 
selected by focusing on the selected direction of the GUI. The 
SVM-based classification resulted in high accuracy (>  80%), 
thus demonstrating the importance of the hBCI paradigm for 
wheelchair control. In another work (Wang et al., 2014), blink 
signals (EOG) were also added as a part of hBCI for wheelchair 
control.

Most recently, a new scheme that uses the steady-state soma-
tosensory evoked potentials (SSSEPs) has emerged (Breitwieser 
et al., 2016; Pokorny et al., 2016). The hBCI in these cases combines 
SSSEPs and P300 potentials evoked by twitches randomly embed-
ded into the streams of tactile stimuli. The twitches are given 
in the form of stimulation to the left-/right-hand index finger. 
Both of the mentioned studies have used LDA for classification. 
Pokorny et al. (2016) showed that the accuracies of SSSEP and 
P300 were 48.6 and 50.7%, respectively. However, combining the 
features of SSSEP and P300 resulted in 55.5% average accuracy for 
the twitching task. Hybridization related to SSSEP-based tasks is 
relatively new, and its full potential is yet to be determined.

Hybrid Strategies for Spellers
A speller paradigm is based on a combination of rows and 
columns displayed and flickered for command generation. The 
first study on a hybrid SSVEP–P300-based speller paradigm 
(Xu et al., 2013) used the combination of SSVEP and P300 fea-
tures. Its aim was to distinguish the SSVEP and P300 activities 
in the brain by monitoring the data from the motor, parietal, 
and occipital brain regions. The results showed that during a 
non-target phase, SSVEP activity was evident, but after the 
target stimuli were given, it was replaced by P300 potentials. 
SSVEP-B (sub-signals in the absence of SSVEP) mostly appears 
in the occipital region (Oz), which can be compared with P300 
activity in the motor region (Cz). Another work (Yin et al., 2013) 
employed random flashing and periodic flickering to evoke 
P300 and SSVEP simultaneously. This was done to increase the 
differences between the row and column symbols. A SW-LDA 
was used to achieve an average accuracy of 93.85%. Another 
study of using such SW-LDA (Xu et al., 2014) achieved an aver-
age accuracy of 96.8% for P300 and 95.7% for SSVEP. In this 
case, the SSVEP–P300 activities were decoded in parallel. Four 
flashing patterns were used to detect the SSVEP, and the speller 
characters were divided into four blocks. A block was selected 
using SSVEP, and the characters were selected using P300.

A high accuracy (>90%) was obtained using SW-LDA in a 
speedy hBCI spelling approach (Yin et al., 2014). To evoke the 
P300 and SSVEP potentials simultaneously, this study used flash-
pattern mechanisms composed of random flashings and periodic 
flickering. The random flashings were created by highlighting 
items using orange crosses in a pseudorandom sequence, and 
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the periodic flickering was achieved using white rectangular 
objects alternately appearing on and disappearing from a black 
background. The use of the speller-based paradigm in the form 
of a hybrid SSVEP/P300 system for the selection of 64 options  
(64 control-command generations) in BCI has been reported  
(Yin et  al., 2015a). In this study, for SSVEP classification and 
SW-LDA for P300 signals, the canonical cross-correlation approach 
was used. Also, maximum probability estimation was utilized for 
data fusion, which resulted in a 95.18% average accuracy.

In an attempt to navigate a vehicle to its destination, the use 
of the SSVEP–P300-based speller paradigm above has been 
reported (Fan et al., 2015). Specifically, the speller was used for 
entering the destination location and flickering “checker board” 
stimuli (12  Hz and 13  Hz) were used for destination selection 
and deselection, in which LDA-based classification achieved an 
average accuracy of 98.09% for real-driving conditions.

Mi and P300
The MI- and P300-related tasks have been widely designed for 
applications in real-world environment (Li et al., 2010; Su et al., 
2011; Long et al., 2012a,b; Yu et al., 2012, 2013; Bhattacharyya 
et al., 2014; Naito et al., 2014; Kee et al., 2015; Zhang et al., 2016a). 
The corresponding signals are obtained by positioning electrodes 
around the motor and parietal brain regions. In the work of  
Li et al. (2010), MI and P300 were combined for the control of a 
cursor on the screen using SVM as a classifier (90.75% average 
accuracy). In the work of Long et al. (2012b), target selection or 
rejection (mouse-clicking) features were added resulting in the 
average accuracy of 92.8%.

Navigation and target selection in a virtual environment was 
demonstrated in Su et al. (2011) using the hybrid MI–P300-based 
paradigm. In their work, MI was used for navigation and P300 for 
target selection (three control buttons). Overall, five commands 
were generated using Fisher LDA- and SVM-based classification 
(84.5% for MI and 81.7% for P300).

In the work of Long et al. (2012a), the same hybrid paradigm 
was used to control the direction and the speed of a simulated and 
afterward a real wheelchair. The turning (left and right directions) 
controls were associated with left- and right-hand imageries. The 
wheelchair was decelerated using a foot-movement imagery. The 
acceleration was represented using P300 signals. In this case,  
the LDA-based classification resulted in 71.6% accuracy for MI and 
80.4% for P300. Another study of Yu et al. (2012) demonstrated 
the utility of hybrid MI–P300 for cursor-controlled on-screen 
feature selection-based Internet surfing. In that study, SVM- 
based classification resulted in an average accuracy of 93.2%.

In 2013, a real-time electronic mail communication system 
was implemented to enable clients/users to receive, write, and 
attach files to their email (Yu et  al., 2013). According to their 
hybrid MI–P300 paradigm, the SVM-based classifier yielded a 
high accuracy (average: >90%) for the system.

In 2014, robot arm movement control for rehabilitation was 
implemented using the hybrid method (Bhattacharyya et  al., 
2014). Arm movement was controlled by MI signals, while P300 
was used to detect the stopping intention. A 95% success rate 
was achieved in the SVM-based classification. The recent work 
on this paradigm has focused on optimal feature selection and 

simultaneous classification methods (Naito et al., 2014; Kee et al., 
2015). Also, the use of optimal feature selection for the enhance-
ment of output accuracy was another issue in Naito et al. (2014).

In 2015, GA-based strategy was proposed for the optimization 
of channel selection in the process of simultaneous recording of 
MI and P300 (Kee et al., 2015). A recent contribution of 2016 
proposed an autonomous wheelchair navigation system that 
acquires the destination and waypoint based on the existing 
environment (Zhang et al., 2016a). In this case, the BCI module 
selects and determines the destination using MI and P300, 
respectively.

Mental and Motor Tasks
For mental VS motor task purposes, paradigms are designed to 
obtain the brain activities from the prefrontal and motor corti-
ces. Both EEG and fNIRS have provided good results for these 
tasks. In these cases, mostly a working memory-related task 
is combined with a motor task to achieve the BCI system. For 
the localization of neuronal sources, EEG was applied using six 
cognitive tasks (arithmetic, navigation imagery, auditory recall, 
phone imagery, and MI of the left and right hands) and compared 
against the idle state to localize the brain location (Dyson et al., 
2010). The spatial areas suggested a clear discrimination between 
the arithmetic- and auditory-related tasks, while the MI-related 
tasks were discriminated according to the baseline.

As for fNIRS, MA has been combined with music imagery 
for simultaneous decoding of brain activity (Power et al., 2010, 
2011; Stangl et  al., 2013). In this case, however, the prefrontal 
channels were averaged and the activities were differentiated 
using an HMM-based classification method. MA and MI have 
also been reported to be combined in the case of fNIRS. Four 
commands have been generated by simultaneous decoding of 
mental counting-, arithmetic-, and imagery-related tasks (Hong 
et al., 2015; Naseer and Hong, 2015a). In these cases, LDA-based 
classification was used to decode the activities from the prefrontal 
and motor cortices.

In a multi-modality case, meanwhile, four commands were 
generated by decoding mental tasks (MA and mental counting) 
using fNIRS and motor tasks (left- and right-hand tapping) using 
EEG for hBCI (Khan et al., 2014). This work was later extended for 
the decoding of eight commands using eye movement and mental 
tasks (Khan and Hong, 2017). In this case, EEG was employed to 
decode two and three eye blinks and left- and right-eye move-
ments, whereas fNIRS was used to decode mental arithmetic-, 
mental counting-, word formation-, and mental rotation-based 
tasks. The decoded eight commands were used to operate a 
quadcopter in the 3D space.

Hybrid Audio–visual Tasks
In this category, there is not much hybrid research. In one work 
(Putze et al., 2014), hybrid EEG–NIRS was used to discriminate 
the auditory and visual stimuli. The details on this study can be 
found in the above “EEG + NIRS” section. Tidoni et al. (2014) 
used audio feedback to improve the performance of the BCI 
system. Six commands were generated using SSVEP-based tasks 
for a robot’s pick-up and placing tasks. It is found that audio–
visual synchrony between footstep sounds and actual humanoid 
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walking reduces the time required for steering the robot. This 
demonstrates the possibility of using auditory feedback congru-
ent with humanoid actions to improve the motor decisions of the 
BCI. An et al. (2014) used six auditory stimuli for the selection of 
36 visual symbols using EEG recording for a gaze-independent 
BCI. When a subject focuses on a sound, a selection screen con-
sisting of six symbols is shown. The subject can then choose one 
from the six visual symbols for choice selection. This paradigm 
increased mental fatigue, as the user has to focus on the audio 
cues. An LDA-based scheme was used, and 87.7% of accurate 
results were generated. In another work of Barbosa et al. (2016), 
in contrast to An et al. (2014), a P300-based BCI was used for 
combining visual and audio stimuli. In this case, the audio stimuli 
were natural spoken words, which reduced the mental work load. 
The average online accuracy for their hybrid approach was 85.3%, 
which represents an improvement of 32% relative to independent 
audio or visual stimuli.

ADvANTAgeS of hBCi

Although the combination of two modalities increases the sys-
tem cost, its efficiency is significantly improved. Since most BCI 
systems are designed for the purpose of rehabilitation or commu-
tation (of patients), hBCI is a better mean in achieving this goal. 
A complete BCI that can be used by patients is yet to be designed. 
However, the combination of the modalities can provide the first 
step toward the goal. Each hBCI has different advantages and 
applications. The use of EEG–EOG and EEG–EMG systems, 
for example, are viable for patients capable of minor eye and 
muscular movements, whereas a different approach is required 
for completely locked-in patients. In this regard, hybrid EEG–
fNIRS might provide better results. In other words, whereas the 
advantages of hBCI vary with the combination of modalities, the 
main goal remains the same.

Minimization of False Signal Detection
The BCI research has demonstrated the use of EEG in several 
communication and control applications. In most cases, MI was 
used to generate the commands for communication (Machado 
et  al., 2010; Bi et  al., 2013; Hwang et  al., 2013; Ahn and Jun, 
2015; Maria Alonso-Valerdi et al., 2015). However, it is difficult 
for patients to perform an MI activity. Also, the detection of MI 
signals requires extensive processing, and false detection can 
result in severe consequences in real environments. Long-term 
use of SSVEP and P300 can also increase visual fatigue of the 
subjects, thereby incurring a false detection of signals for BCI. 
Thus, proper measures are required to increase the accuracy 
of the system by minimizing the false detection rate. This can 
be achieved by combining multiple modalities. In such a case, 
simultaneous feature decoding results in a better system accuracy. 
The most common example is the hybrid EEG–fNIRS.

greater Suitability for BCi
The number of active commands used for system control is a 
central issue for BCIs. The main problem in EEG-based BCI sys-
tems is the loss of accuracy resulting from an increased number 
of (active) commands. Although the number of commands can 

be increased using reactive tasks, it is difficult to make the patient 
concentrate on reactive tasks for a long duration. Although strat-
egies are being designed to overcome this problem, the results 
have not yet been proved sufficiently effective for BCI adoption 
(Lesenfants et al., 2014). In this context, the hBCI plays an impor-
tant role in providing the potential for an increased number of 
commands without undo-influence on classification accuracy. 
The approach most widely employed in the brain signal-based 
control of wheelchairs is to increase the number of commands by 
decoding the features from two modalities separately.

Tables 3–5 list all of the important studies from 2010 to 2016 
that have combined two modalities to decrease false detection 
and enhance classification accuracy for BCI. The tables show 
the relevant hBCI studies for the enhancement of accuracy and 
increase in control commands. Ideas on increasing accuracy and 
the total number of commands can be deduced from them. We 
divided the tables into active, passive, and reactive BCI categories. 
This information can be helpful to the selection of brain signal 
acquisition modalities based on the types of activities. Also, we 
have incorporated the classifier and window size information 
in each table, which might be helpful to prospective researchers 
looking a method to enhance classification accuracy and increase 
the number of commands.

APPliCATiONS

In recent years, significant progress has been made in hBCI 
research. Although some studies have demonstrated a success 
in wheelchair (and other devices) controls, most of them have 
involved healthy subjects. The true potentials of those modes of 
control, then, cannot be considered to have been fully discovered. 
An hBCI increases the classification accuracy (e.g., EEG + fNIRS), 
but this results in slower command generation. In cases where the 
number of commands is increased (e.g., EEG + EOG), a uniform 
window for command generation is needed. These are additional 
drawbacks of hBCI that have yet to be addressed. Also, most 
hBCIs were tested in a controlled laboratory environment where 
the user can comfortably concentrate on mental tasks, whereas in 
real situations, a high performance of concentration-dependent 
mental tasks (e.g., MI and MA) is much more challenging.

Hybrid BCi for Patients
The ultimate goal of a BCI system is to provide assistance to 
patients (Kim et al., 2011). This assistance can be in the form of 
formulating a methodology that can be used to communicate 
with the environment. The patient should be able to express 
his/her thoughts through the use of the BCI system. Regarding 
rehabilitation, a BCI system has the capacity to distinguish 
improvement from non-improvement as a result of therapy and 
brain stimulation. Detection of seizures (Nguyen et  al., 2012, 
2013), epilepsy (Peng et al., 2014; Pouliot et al., 2014; Visani et al., 
2015), and estimation of improvement in motor functions after 
stroke (Das et  al., 2016) are such examples pursuing hBCI for 
patients. The current BCI system, however, lacks the potential 
to provide detailed functions. In fact, an hBCI can be a more 
powerful tool than a single-modality BCI, as it can provide more 
reliable information for control and rehabilitation applications 
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TABle 3 | Important active hybrid brain–computer interface studies with applications to increased accuracy and number of commands for brain–computer interface studies (BCI) (from 2010 to 2016).

Reference Brain area Activity Modality Application Analysis 

type

Classifier Commands Accuracy window size

Li  

et al. (2010)

Whole brain Motor imagery 

(MI) and P300

Electroencephalography 

(EEG) + electrooculography 

(EOG)

Cursor control in 2D Online Support 

vector 

machine 

(SVM)

4 92.8% 0–600 ms after 

button flashes on 

the screen for 8 s

Allison  

et al. (2010)

Motor and 

occipital 

regions

MI and 

steady-state 

visual evoked 

potential 

(SSVEP)

EEG Option selection from the 

screen

Offline Linear 

discriminant 

analysis 

(LDA)

4 74.8% for MI, 76.9% for SSVEP, 

and 81% for hybrid

3–5 s window

Zhang  

et al. (2010)

Motor, parietal, 

and occipital 

regions

Mental task EEG + EOG + electromyography 

(EMG)

Application to devices 

control

Offline Fisher 

discriminant 

analysis 

combined 

with 

Mahalanobis 

distance

4 75.3% average for two-class and 

54.1% for four-class

0–1 s

Su  

et al. (2011)

Whole brain MI and P300 EEG Virtual environment control Online SVM and 

fisher LDA

5 84.5% for MI and 81.7% for 

P300

0–2 s for MI and 

0.7 s for P300

Leeb  

et al. (2011)

Motor cortex Motor 

execution

EEG + EMG Application to patient 

motor training 

Online Bayesian 2 87% for individual and 91% for 

hybrid case

0.5 s for EEG and 

0.3 s for EMG

Long  

et al. (2012a)

Frontal, central, 

parietal, and 

occipital 

regions

P300 and MI EEG Direction and speed 

control for wheelchair

Online LDA 5 75.4% for hybrid task 1 s

Yong  

et al. (2012)

Motor cortex Hand and eye 

movement

EEG + EOG (eye tracker) Artifact removal for choice 

selection

Online SW-LDA 2 True positive rate increases from 

44.7 to 73.1% (in 1 s)

1 s

Fazli  

et al. (2012)

Frontal, motor, 

and parietal 

cortex

MI and Motor 

execution

EEG + functional near infrared 

spectroscopy (fNIRS)

Application to control Offline LDA 2 93.2% (motor execution) and 

83.2% (MI)

0.75 s for EEG, 6 s 

prior to stimulus 

onset and up to 15 s 

after stimulus onset 

using 1 s sliding 

window for fNIRS

Choi and Jo 

(2013)

Whole brain SSVEP, MI, and 

P300

EEG Humanoid robot 

navigation and recognition

Real time CCA 6 84.6% for P300 and 84.04%  

for SSVEP

2 s

Cao  

et al. (2014)

Frontal, central, 

parietal and 

occipital cortex

SSVEP and MI EEG Brain-actuated switch for 

wheelchair control

Online SVM 8 90.6% –

Wang  

et al. (2014)

Whole brain MI, P300 and 

eye blinking

EEG + EOG Asynchronous wheelchair 

control

Online SVM 7 91, 93, 89, and 92% for forward, 

backward, stop with special 

threshold, and stop with optimal 

threshold, respectively

4 s 

(Continued)
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Reference Brain area Activity Modality Application Analysis 

type

Classifier Commands Accuracy window size

Khan  

et al. (2014)

Prefrontal and 

motor cortex

Mental 

arithmetic, 

mental counting 

and motor 

execution

EEG + fNIRS Application to wheelchair 

control

Online LDA 4 94.7% for left and right 

movement commands (EEG) and 

80.2 and 83.6% for forward and 

backward using fNIRS

0–10 s for fNIRS and 

0–1 s for EEG

Kim  

et al. (2014)

Complete brain Eye movement EEG + Eye tracker Quadcopter control Real time SVM 8 91.67% 5 s 

Jiang  

et al. (2014)

Motor cortex MI and eye 

movement

EEG + EOG Application to BCI control Online LDA 4 90.4% for MI, 91.1% for relax, 

96.4% for gaze left, and 97.3% 

for gaze right

3 s

Kaiser  

et al. (2014)

Motor cortex MI EEG + fNIRS Application to brain 

monitoring

Online LDA 1 3.6% increase in accuracy by 

hybrid modality

3–7 s

Lorenz  

et al. (2014)

Whole brain ERP and MI EEG BCI driven 

neuro-prosthesis

Online LDA 6 Maximum selection accuracy 

of 98.46% and maximum 

confirmation accuracy of 96.26%

1 s

Blokland  

et al. (2014)

Motor cortex MI and motor 

execution

EEG + fNIRS Application to tetraplegia 

patients

Offline – 2 87% for motor attempt and 79% 

for MI in tetraplegia patients

3–15 s for fNIRS and 

0–15 s for EEG

Bai  

et al. (2015)

Whole brain MI and P300 EEG Opening, closing, 

selection of files on 

explorer

Online SVM 9 (can achieve 

50)

>90% 4 s window for MI 

and 600 m for P300

Hortal  

et al. (2015)

Motor and 

parietal cortex

Mental 

imagination

EEG + EOG Robotic arm control for 

pick and place task

Real time SVM 6 Task 1: 71.13% and Task 2: 

61.51%

0.5 s to synchronize 

output to BMI

Hong  

et al. (2015)

Prefrontal and 

motor cortex

Mental 

arithmetic and 

MI

fNIRS Applications to three 

choice selection

Offline LDA 3 75.6% 2–7 s

Naseer and 

Hong (2015a)

Prefrontal and 

motor cortex

Mental 

arithmetic, 

mental counting 

and MI

fNIRS Decoding answers to four-

choice questions

Offline LDA 4 RMI, LMI, MA, and MC were 

correctly classified as 72.9, 64.2, 

65.1, and 71.0%, respectively

2–7 s

Yin  

et al. (2015c)

Motor cortex MI task EEG + fNIRS Increase in accuracy for 

BCI

Online ELM 2 88% 0.5 s for EEG and 

0–12 s for fNIRS

Koo  

et al. (2015)

Motor cortex Self-paced MI EEG + fNIRS Application to device 

control

Online SVM 2 88% average accuracy 10 s for fNIRS 

and three 5 s time 

windows with step 

size of 2.5 s for EEG

Buccino  

et al. (2016)

Motor cortex Arm and hand 

movement 

EEG + fNIRS Hand movement 

discrimination

Online LDA 2 commands 

simultaneously

94.2% (for rest-task 

classification)

0~6 s hybrid

Shishkin  

et al. (2016)

Whole brain Eye gaze EEG + EOG Game control Offline LDA – 90% 0.3 s for EEG and 

0.2–0.5 s for EOG

Khan and Hong 

(2017)

Frontal Mental task and 

eye movement

NIRS + EEG Applications to 

quadcopter control

Online LDA 8 76.5% for NIRS and 86% for 

EEG 

1 s for EEG and 2 s 

for NIRS

TABle 3 | Continued
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TABle 4 | Important reactive hybrid brain–computer interface studies (from 2010 to 2016).

Reference Brain area Activity Modality Application Analysis 

type

Classifier Commands Accuracy window size

Yin  

et al. (2013)

Parietal and 

occipital cortex

P300 and steady-

state visual evoked 

potential (SSVEP)

 Electroencephalography 

(EEG)

Speller Online SW-LDA Up to 36 93.85% using 

hybrid paradigm

All rows and columns 

were flashed in 2.88 s

Zimmermann  

et al. (2013)

Motor cortex Isometric finger-

pinching task

fNIRS + bio-signals (ECG) Feasibility for BCI Offline Hidden 

Markov model 

(HMM)

1 88.5% 5–20 s

Li  

et al. (2013)

Whole brain SSVEP and P300 EEG Wheelchair control Online Support 

vector 

machine 

(SVM)

6 >80% 0–0.6 s after a button 

flash complete for P300 

and 3.2 s for SSVEP

Xu  

et al. (2013)

Whole brain SSVEP and P300 EEG BCI speller for target selection Online SW-LDA 9 93.3% for 

P300 + SSVEP-B

0–0.8 s after the onset

Bi  

et al. (2014)

Parietal and 

occipital cortex

P300 and SSVEP EEG Speed and direction for cursor 

control

Online SVM 4 >90 4 s

Aziz  

et al. (2014)

Frontal and 

occipital

Eye movements EEG + electrooculography 

(EOG)

Automated wheelchair navigation Online SVM, HMM 5 98% 0.5 s

Li  

et al. (2014)

Motor and 

occipital

Motor imagery and 

SSVEP

EEG Wheelchair control Real time SVM 6 − −

Witkowski  

et al. (2014)

Motor cortex Hand-grasping 

motion assisted with 

exoskeleton

EEG + EOG Assistive rehabilitation 

applications

Online Sensitivity 

index

4 Average accuracy 

62.28% for two 

conditions

5 s

Putze  

et al. (2014)

Auditory and 

visual cortex

Visual and auditory 

stimuli

EEG + functional near 

infrared spectroscopy 

(fNIRS)

Application to patient choice 

selection

Online Linear 

discriminant 

analysis (LDA), 

SVM

2 94.7% average Four window sizes 1, 2, 4, 

8, and 16 s

Tomita  

et al. (2014)

Visual cortex SSVEP-based task EEG + fNIRS Optimal window selection for 

hybrid EEG–NIRS

Offline − 1 85% average 

accuracy (in 10 sec 

optimal window)

0–10 s

Fan  

et al. (2015)

Parietal and 

occipital

SSVEP and P300 EEG Vehicle destination selection 

system

Online LDA 11 99% 0–0.51 sec from onset for 

P300 and 8 s for SSVEP

Ma  

et al. (2015)

Parietal and 

occipital

P300 and eye blink EEG + EOG Mobile robot control Real time LDA 9 87.3% for average 

of five trials

~1.6 s

Combaz and  

Van Hulle (2015)

Whole brain P300 and SSVEP EEG Applications to locked-in patients 

option selection

Online SVM 12 Maximum 

achieved > 95%

200 ms before stimulation 

to 800 ms after stimulation 

for experiment 1

Wang  

et al. (2015)

Whole brain P300 and SSVEP 

(shape changing and 

flickering-hybrid)

EEG Development of new paradigm 

with application to devices 

control

Online canonical 

correlation 

analysis 

(CCA), 

Bayesian LDA

4 Overall 20% 

increase in SSVEP 

classification, 100% 

for P300

Flash start to the flash end 

for SSVEP, single flashes 

lasting 0.8 s for P300

(Continued)
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for patients. Indeed, the recent hybrid combinations have shown 
successes. The hBCI can be more successful for patients in the 
following areas.

Neuro-Rehabilitation
Hybrid brain–computer interface systems can be used to restore 
some of the lost motor and/or cognitive functions for individuals 
with stroke and SCI. Neuro-feedback is required to train indi-
viduals to self-regulate the brain activity (Weyand et al., 2015). 
Although fNIRS has demonstrated the effectiveness for brain 
activity monitoring (Kassab et  al., 2015), the use of both EEG 
(Gruzelier, 2014) and fMRI (Laconte, 2011; Weiskopf, 2012) 
has been more widely reported. EEG is employed due its high 
temporal resolution, whereas fMRI is preferred due to its high 
spatial resolution. However, EEG suffers from the limitations 
of imprecise localization and the inaccessibility of subcortical 
areas, while fMRI is slower in the detection of hemodynamic 
activity. Hybrid EEG–NIRS-based hBCI, then, is most suited for 
these cases. Indeed, the spatial and temporal issues are resolved 
by the combination of the two modalities. Also, it provides the 
advantage of simultaneous monitoring of electrophysiological 
and hemodynamic signal monitoring. For neuro-rehabilitation 
purposes moreover, hybrid EEG–NIRS’s use of neuro-feedback in 
MI-based tasks has been successfully demonstrated (Kaiser et al., 
2014). Most recently, fNIRS–EEG study has shown its contribu-
tion for refractory epilepsy patients (Vannasing et al., 2016). This 
case study demonstrated the potential of NIRS to contribute 
favorably to the localization of language functions in children 
with epilepsy and cognitive or behavioral problems and showed, 
moreover, its potential advantages over fMRI in pre-surgical 
assessment.

Communication and Control
The major role of BCI is to serve as a mean of communication for 
patients with motor disorders (e.g., LIS and SCI). For this pur-
pose, different approaches have been demonstrated using hBCI. 
FES and EEG have been combined with brain signal acquisition 
systems for motor restoration (Rohm et al., 2013). In this case, the 
patients were trained using FES- and MI-based tasks. One year of 
training resulted in 70.5% accuracy of MI tasks for SCI patients. 
Lim et al. (2013) developed a system that allows users to express 
their binary intention without need to open their eyes. A pair 
of glasses with two light emitting diodes flickering at different 
frequencies was used to present visual stimuli to participants 
with their eyes closed. The binary commands were generated 
using SSVEP. This system showed 80% accurate results for ALS 
patients. An alternative use of EEG–fNIRS as a brain switch has 
also been reported for tetraplegia patients (see the “EEG + NIRS” 
section for details). Blokland et al. (2014) decoded two “yes/no” 
responses from tetraplegia patients. Although the command 
generation time was slow, this study showed the significance of 
using hybrid EEG–NIRS for patients. Hybrid SSVEP–P300-based 
paradigms for the investigation of consciousness disorder in 
patients have been reported (see the “SSVEP and P300” section 
for details). Also, gaze-independent hBCI using visual and audi-
tory stimuli with P300-based tasks has been proposed for LIS 
patients (Barbosa et al., 2016).
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TABle 5 | Important passive hybrid brain–computer interface studies for drowsiness detection (from 2010 to 2016).

Reference Brain area Modality Application Analysis 

type

Classifier Commands Accuracy 

(%)

window 

size (s)

Khushaba  

et al. (2011)

Frontal and 

occipital

Electroencephalography 

(EEG) + electrooculography 

(EOG) + ECG

Driver drowsiness 

detection

Online Linear discriminant analysis 

(LDA), support vector 

machine (SVM), K-nearest 

neighbor, and kernel SVM

1 95−97 10

Chen  

et al. (2015)

Frontal and 

occipital

EEG + EOG Automatic detection of 

drowsiness

Online ELM 2 (single 

command for 

drowsiness)

97.3 8

Ahn  

et al. (2016)

Whole brain EEG + NIRS Mental fatigue level 

estimation

Online LDA 1 75.9 60
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Motor Therapy and Recovery
The monitoring of the brain state during brain stimulation is an 
important application of hBCI systems. Transcranial magnetic 
stimulation and transcranial direct current stimulation (tDCS) 
are used to stimulate the brain for therapy. The electrical brain 
activity for motor recovery estimation was monitored using EEG 
(Zaghi et  al., 2010; Schestatsky et  al., 2013; Sale et  al., 2015). 
Also, the hemodynamic response was monitored using fNIRS 
(Faress and Chau, 2013; Khan et al., 2013; Ishikuro et al., 2014). 
Combined EEG–fNIRS provides an edge over the individual 
modalities in that electrical and hemodynamic responses can be 
monitored simultaneously (Dutta, 2015; Dutta et al., 2015; Jindal 
et  al., 2015). This application, certainly, can facilitate medical 
diagnoses for the purposes of motor therapy and recovery. A lot 
of research has been carried out in this area for stroke patients. 
The most recent work in this context has used EEG–NIRS joint 
imaging for the measurement of the brain recovery of stroke 
patients after tDCS stimulation (Das et al., 2016; Guhathakurta 
and Dutta, 2016; Sood et al., 2016).

Infants Brain Monitoring
The monitoring of brain development is essential for infants. It 
helps in avoiding several brain disorders in developing children. 
Although, a single brain imaging technique may help to monitor 
autism spectrum disorder, attention-deficit hyper-activity dis-
order, and speech and language impairments (Aslin et al., 2015; 
Sperdin and Schaer, 2016), hybrid systems may provide a better 
diagnosis for such disorders. Also, the brain development of 
neonates can be better understood by simultaneously measuring 
neuronal and hemodynamic brain activities.

Hybrid BCi for Healthy individuals
As per the above discussion, it seems that hBCI/BCI is more suited 
to patients; however, most studies have used healthy subjects for 
experimentation in a lab environment. This might be due to the 
fact that hBCI is still in its developmental phase. However, in our 
opinion, hBCI has several aspects that are most suited to healthy 
people. The following are the three major applications of hBCI.

Control Applications
The hBCI can be useful in environment control settings for 
healthy individuals. Environment control is very helpful for 
those who need to do multiple tasks utilizing several devices 

(e.g., remote control and light control). Using brain signals, a 
person can perform these tasks remotely, for which operations, 
high accuracy is required; thus, in such scenarios, hBCIs can be 
effective. Also, using hBCI schemes, a robot can be controlled 
remotely to perform several tasks. For amputees, an hBCI, 
relative to a single modality, can be a more effective and reliable 
communication tool for the control of prosthetic devices, as it 
can achieve higher accuracy. For example, Hwang et al. (2012) 
developed a mental spelling system based on SSVEP, adopting 
a QWERTY style layout keyboard with 30 LEDs flickering with 
different frequencies. The mental spelling system allows the users 
to spell one target character per each target selection. A total of 
87.58% accurate results were achieved by their study.

Entertainment
Recently, BCIs also have been employed for healthy individuals’ 
entertainment purposes (Ahn et al., 2014; Bai et al., 2015; Li et al., 
2016), though this is not the main priority of BCI research. In 
any case, the feasibility of brain-controlled video games has been 
demonstrated using EEG-BCI; however, no actual hBCI applica-
tion has been introduced to date yet. In any event, it should be 
emphasized that for training purposes, such games might be 
useful in generating desired brain activities that can be decoded 
using hBCI modalities.

Safety
Perhaps hBCI’s main application is safety. Indeed, first and 
foremost, it can be useful in monitoring the vigilance levels of 
pilots and drivers. For a pilot confronting an emergency landing, 
the monitoring of the exact mental status of the pilot can con-
tribute to a safe landing. Although commercial systems that can 
monitor brain activity and alert drowsy drivers do not yet exist, 
hBCI might nonetheless contribute to the development of such a 
commercial system. In the case of tele-operated robots, hBCI can 
be very effective in monitoring the anxiety levels of doctors. This 
could be a useful approach, especially for complicated surgeries.

Neuro-ergonomics
Neuro-ergonomics is the study of human brain in relation to per-
formance at work and everyday setting. EEG is most widely used 
in measuring the passive brain states (Qian et al., 2016, 2017). 
Most recently, fNIRS has also proven to be a viable candidate for 
passive brain activities detection (Ayaz et al., 2012, 2013; Khan and 
Hong, 2015). Hybrid BCI systems may give better information 
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FigURe 8 | Hybrid brain–computer interface paradigms combining different 

brain signals (2009–2016).

FigURe 7 | Hybrid brain–computer interface using electroencephalography 

(EEG) in combination with other modalities (2009–2016).

FigURe 6 | Trend in electroencephalography (EEG)/functional near infrared 

spectroscopy (fNIRS)-based hybrid brain–computer interface (BCI).
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about the physical fatigue, cognitive functions, mental workload, 
vigilance, and mental fatigue of a person. This can be helpful to 
the person to avoid extreme workloads and loss of vigilance.

FUTURe PeRSPeCTiveS

The research on hBCI has begun to increase in recent years. 
Although the hBCI scheme emerged before 2010, a major accel-
eration in the derivation of developmental strategies has been 
observed only in the previous 2 years. Most hybridization strate-
gies that have been introduced are applicable to EEG-based BCI; 
yet, further improvement of fNIRS-based BCI systems is needed. 
Figure 6 shows the recent trend in EEG- and fNIRS-based hBCIs.

The major hBCI emphasis is the EEG–EOG-based hBCI. Most 
of these studies have combined, or are combining, two modalities 
for eye movement artifact removal and additional BCI commands. 
EEG–EMG-based hBCIs have limited applications and are used 
only in muscular-artifact removal from brain data for enhanced 
classification accuracy. Meanwhile, only very limited research has 
been done on EEG–fNIRS-based BCI applications. Moreover, the 
works done have focused mostly on an improvement of classifica-
tion accuracy, with very little attention having been paid to the 
issue of command-number increase. A breakdown of the hBCI 
application approaches introduced from 2009 to 2016 is provided 
in Figure 7.

Most of the work on brain activity combination hBCIs has 
been based on SSVEP- and P300-based paradigms. Although 
both are reactive tasks, the most widely observed applications 
have been in the area of speller and wheelchair control. In relation 
to the combination of MI with P300 or SSVEP, the applications 
are widely used in neuro-rehabilitation and control settings. Only 
a very small portion of hBCI research has targeted prefrontal 
and motor-based hBCI. This strategy is useful in increasing 
the number of commands for both fNIRS alone and combined 
EEG–fNIRS. A breakdown of the paradigms employed between 
2009 and 2016 is shown in Figure 8.

The hBCI can enhance the classification accuracy and increase 
the number of commands of a BCI system without influencing 
either of those two factors. The trend in hBCI (see Figure  6) 
suggests the high potential of research in this field. Although 
the early BCI (i.e., single modality) problems were dealt with by 
combining modalities, there are still several research issues that 
remain untouched.

Although window smoothing techniques are available in 
literature (Qi et al., 2012), one of the most important questions in 
the development of hBCIs is the selection of window size. Several 
researchers have worked on the problem of an optimal window 
size for BCI; however, the literature still lacks any conclusive work 
on standardized window selection for simultaneous decoding of 
brain activates. In hybrid systems, different windows that were 
optimized for individual modalities are naturally used for feature 
extraction (Ma et al., 2015; Buccino et al., 2016; Khan and Hong, 
2017). This will result in a delay in making a final decision until 
the data from a bigger window are processed. Therefore, a new 
decision making scheme suitable for hybrid systems needs to be 
developed. To the best of the authors’ knowledge, an algorithm 
that can simultaneously extract/classify features even for simple 
EEG–fNIRS dual modalities applied to the same brain area has 
not been developed yet. Especially, in the case of combined EEG–
fNIRS, the reported optimal window size is 10 s (Tomita et al., 
2014), which might not be appropriate for the control of external 
devices. Further improvement should be achieved, for example, 
by using initial dip detection (Jasdzewski et  al., 2003; Yoshino 
and Kato, 2012; Hong and Naseer, 2016) instead of relying on the 
hemodynamic response of fNIRS together with EEG signals in 
the reduction of window size. For this particular purpose, a recent 
study has shown the feasibility of initial dip detection for applica-
tion to BCI (Hong and Naseer, 2016). In terms of classification, 
two studies (Khan and Hong, 2017; Zafar and Hong, 2017) have 
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FigURe 9 | The proposed hybrid electroencephalography (EEG)–NIRS using hemodynamic and initial dip features for simultaneous activity detection and 

classification.
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reported the classification of prefrontal fNIRS signals within a 2 s 
window. However, in those studies, the EEG and fNIRS signals 
were not simultaneously decoded for a single task but recorded 
from two different tasks. A significant amount of research is  
needed to decode EEG–fNIRS signals simultaneously for 
enhanced accuracy without influencing the EEG signal detection 
time. Developments in this area can produce fruitful results by 
which the hybrid window size can be reduced (less than 1 s). The 
use of a fast optical response (Hu et al., 2011), furthermore, also 
could help to reduce the window size. Perhaps the use of multi-
wavelength system (Bhutta et al., 2014) combined with adaptive 
signal processing algorithms (Hu et al., 2010, 2013; Santosa et al., 
2013; Ren et al., 2014; Zhang et al., 2016b; Zhou et al., 2016) will 
significantly contribute to the eventual reduction of the inherent 
delay in the hemodynamic response. Figure 9 shows the proposed 
hybrid EEG–fNIRS model for window reduction.

Another important aspect that requires a focus with respect 
to hBCI is the selection of active control commands. The reactive 
commands can be increased by changing the flickering stimuli 
for BCI. In fact, using reactive tasks, more than 50 commands 
can be achieved (see Table  4). A BCI using active commands 
is more desirable than one based on reactive commands. After, 
at most, three or four active commands, the accuracy severely 
drops, making it difficult to control an external device with a 
further increased number of commands. The current need is 
such strategies that can be used to achieve active control of BCI 
systems without impacting negatively on accuracy. In this regard, 
the hBCI can play an important role. Future research in this area 
will provide a solution to the problems related to the increase in 
the number of active commands.

Besides the issues of the number of commands, classification 
accuracy, and detection time, the following challenging issues 

need to be investigated: (i) how to predict the desired feature from 
a slow-modality signal in synchronizing the classification time to 
a fast-modality signal, (ii) development of a general meta-feature 
model covering the multiple modalities considered, (iii) devel-
opment of multiple interactive models switching based on their 
computed probabilities, (iv) optimization of a brain region for 
hybrid modalities, (v) optimization of the number of sensors (i.e., 
electrodes and optodes) needed for BCI, (vii) finding of the best 
combination of local brain regions for hybrid imaging, (viii) how 
to synchronize brain and non-brain signals if the hybridization is 
extended beyond the brain, (ix) how to fuse multiple information 
to single out one definitive decision, and (x) how to deliver the 
information obtained from one modality to others.

The current need is the development of a portable, wearable, 
and low-cost hBCI system that can be used for both healthy 
persons and patients. Furthermore, motion artifacts should 
be minimized, and there should be the capacity to enhance 
accuracy and increase the number of commands as needed. 
Moreover, the hBCI should be designed from the application 
point of view. Currently, however, no such hBCI systems are 
commercially available. If such system exists, its combination 
with a haptic device (Nam et al., 2014, 2015) may provide bet-
ter assistance to patients in movement and sensing. Whereas 
EMG/EOG combined with EEG can be used for control 
applications (e.g., wheelchair control), the most significant 
breakthrough in hBCI is the design of hybrid EEG–NIRS that 
can simultaneously decode electrical and hemodynamic brain 
activities. Considering the fact that fMRI has high spatial but 
low temporal resolution, further research in hybrid EEG–NIRS 
might be a more promising brain-diagnostic endeavor. In the 
near future, this can be made possible with a breakthrough by 
combining real-time EEG rhythmic cortical activity monitoring 
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(Im et  al., 2007) with fNIRS directional coupling estimation  
(Im et al., 2010) and bundled optodes based 3D imaging tech-
niques (Nguyen and Hong, 2016; Nguyen et  al., 2016). Such 
advances, enabling the utilization of non-invasive methods, will 
allow for a much better understanding of the brain.

CONClUSiON

In this article, we have reviewed the state-of-the-art research 
on hBCI technologies. We have discussed the hardware and 
methodologies adopted by researchers for the development of 
the pertinent hBCI systems. The most recent work related to the 
hardware combinations and strategies adopted for several brain 
signal acquisition modalities have been discussed as well.

The issue of hBCI hardware is addressed in light of the employed 
combinations of EEG with fNIRS, EOG, and EMG. EEG and 
fNIRS are combined to enhance classification accuracy and to 
increase the number of control commands for BCI systems. The 
brain activity features are combined and simultaneously decoded 
to improve the BCI performance. The combination of EEG with 
EOG has a similar end, EOG being used to increase the number 
of commands or to remove motion artifacts for an improved 
accuracy. EMG, meanwhile, is used to remove motion artifacts 
and, thereby, improve the classification accuracy.

Multi-modality improves classification accuracy and increases 
the number of control commands: the number of commands can 
be increased by simultaneously decoding the brain activities in 

hybrid paradigms. In this case, we have discussed the increase 
in the number of commands using steady-state visual evoked 
potentials (SSVEP) and ERP. Also, the combination of motor and 
prefrontal tasks for the development of hBCI paradigms has been 
discussed.

Although the hBCI issues span both the increase in the 
number of active commands and the improvement in classifica-
tion accuracy, some additional concerns remain: the selection 
of optimal features and windows for activity detection, for 
example, is still relatively neglected. In any case, it is clear that 
there is much room for future hBCI research, particularly, in its 
applications. The field is still young. For example, there is as yet 
no commercially available hBCI system, notwithstanding the 
several communication and control strategies that have already 
been introduced. Doubtless several control and rehabilitation 
application breakthroughs are at hand.
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