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ABSTRACT2

Next-generation sequencing has enabled metagenomics, the study of the genomes of3

microorganisms sampled directly from the environment without cultivation. We previously4

developed a proof-of-concept, scalable metagenome clustering algorithm based on Apache5

Spark to cluster sequence reads according to their species of origin. To overcome its under-6

clustering problem on short-read sequences, in this study we developed a new, two-step Label7

Propagation Algorithm (LPA) that first forms clusters of long reads and then recruits short reads8

to these clusters. Compared to alternative label propagation strategies, this hybrid clustering9

algorithm (hybrid-LPA) yields significantly larger read clusters without compromising cluster purity.10

We show that adding an extra clustering step before assembly leads to improved metagenome11

assemblies, predicting more complete genomes or gene clusters from a synthetic metagenome12

dataset and a real-world metagenome dataset, respectively. These results suggest that hybrid-13

LPA is a good alternative to current metagenome assembly practice by providing benefits in both14

scalability and accuracy on large metagenome datasets.15

16

Availability and implementation:17

https://bitbucket.org/zhong_wang/hybridlpa/src/master/.18

Contact: zhongwang@lbl.gov19

Keywords: Next-generation sequencing, hybrid metagenome clustering, Label Propagation Algorithm, metagenome assembly, PacBio20

sequencing, Oxford Nanopore sequencing21
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1 INTRODUCTION

Metagenomics offers a fast track to directly study the microbial communities in their natural habitat without22

laboratory cultivation (Tyson et al., 2004; Hugenholtz and Tyson, 2008). Next-generation DNA sequencing23

(NGS) technologies have greatly expedited metagenomic discoveries, yielding deep insights into the24

composition, structure, and dynamics of complex microbial communities (Arumugam et al., 2011; Hess25

et al., 2011; Xu, 2006). Driven by the rapid development of NGS experimental technologies and modern,26

scalable metagenome assemblers, large numbers of individual microbial genomes can now be readily27

assembled from a single experiment or from meta-analyses constituting large cohorts of metagenomic28

datasets (Stewart et al., 2019; Parks et al., 2017; Nayfach et al., 2020). Currently, the Illumina Sequencing29

Platform is the predominant NGS platform for metagenome sequencing due to its high-throughput, low-30

cost, and high accuracy (average error rate <1%), despite that its short read length creates limitations on31

some downstream analysis tasks such as gene discovery (Wommack et al., 2008), read classification, or32

genome assembly (Breitwieser et al., 2019). To overcome these limitations, various strategies have been33

developed to either create synthetic long reads by assembly (Zimin et al., 2013) or experimentally (such34

as Moleculo, White et al. (2016)), but these methods bring additional experimental and/or computational35

costs.36

Single-molecule, long-read sequencing technologies developed by Pacific Biosciences (PacBio, Eid et al.37

(2009)) and Oxford Nanopore Technologies (ONT, Schneider and Dekker (2012)) have been successfully38

applied to single-genome sequencing projects, yielding very high-quality genome assemblies from microbes39

to human (Chin et al., 2013; Koren and Phillippy, 2015; Logsdon et al., 2020; Sevim et al., 2019). These40

long reads, up to 100kb in length, can effectively resolve large repeats or structural variations that41

pose challenges to short-read based assemblers. Long-read sequencing has not been widely adopted in42

metagenome sequencing, however, mainly because of two reasons. Firstly, PacBio and ONT long reads43

have error rates as high as 30% (Eid et al., 2009; Schneider and Dekker, 2012). These errors, predominantly44

small insertions and deletions (indels), make the assembly process difficult and error-prone if they are not45

corrected. Secondly, compared with short-read sequencing, these technologies, when applied to complex46

metagenome projects, incur higher costs and lower throughput.47

Recently, hybrid approaches have emerged to take advantage of the complementary characteristics of short48

and long-read sequencing technologies. Combining the high accuracy of short-read sequencing and the49

high read length of long-read sequencing, some genome assemblers such as Unicycler (Wick et al., 2017)50

and hybridSPAdes (Dmitry et al., 2016) showed promising results for single-genome assembly. However,51

most popular metagenome assemblers, including MEGAHIT (Li et al., 2015), MetaSPAdes (Nurk et al.,52

2017) and MetaHipmer (Hofmeyr et al., 2020), do not support hybrid assembly yet. The feasibility and53

potential benefits of a hybrid strategy in metagenome assembly were recently demonstrated by leveraging54

long reads for a second-round assembly of contigs from those metagenome assemblers (Bertrand et al.,55

2019).56

We previously developed a scalable metagenome clustering tool called SpaRC (Shi et al., 2018; Li et al.,57

2020) based on Apache Spark. SpaRC can form pure and complete clusters with long-read sequencing58

technologies. However, it tends to produce a large number of small clusters on short-read datasets (under-59

clustering) unless multiple samples from the same community are available. To illustrate this point, Table 160

shows the results of running SpaRC on two short-read datasets, each derived from a single sample of a61

synthetic microbial community: BMock12 (Sevim et al., 2019) and CAMI2 Simulated Toy Human Gut62

Metagenome (Sczyrba et al., 2017; Bremges and McHardy, 2018). In both experiments, SpaRC generated63

pure clusters but their completeness was very low.64
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Table 1. Clustering Performance on Single-sample, Short-read, Synthetic Metagenome Datasets
# reads # clusters Median Purity Median Completeness

BMock12 10,517,108 79,915 100 0.29
CAMI2 Simulated

Toy Human 296,027,232 1,347,826 100 11.62

Motivated by the success of the above mentioned hybrid assemblers, in this study we explored a hybrid65

approach for metagenome read clustering to overcome the under-clustering problem of SpaRC. As SpaRC’s66

core algorithm is based on the Label Propagation Algorithm (LPA), we first experimented three alternative67

label propagation strategies after long reads were added. Next, we explored the effect of using different68

proportions of long reads since long-read sequencing is relatively more costly. We also compared hybrid69

clustering performance of long-read datasets from both PacBio and ONT platforms. Finally, we evaluated70

the impact of hybrid clustering on downstream genome assembly and gene-cluster discovery performance,71

using a synthetic and a real-world metagenome dataset, respectively.72

2 MATERIALS AND METHODS

2.1 The Hybrid-LPA algorithm73

SpaRC uses Label Propagation Algorithm (LPA) originally proposed by Raghavan (Raghavan et al.,74

2007) to partition the read graph (Shi et al., 2018). Briefly, the algorithm begins by initializing each read75

with a unique label, followed by iteratively updating the label of each node to the label of the majority of76

its neighbors. After several iterations or until no further label propagation is possible, densely connected77

groups of reads are partitioned into clusters. LPA is capable of resolving genomes with shared reads and78

has near linear computational performance. SpaRC can be run at two different modes: ”local mode” only79

cluster reads based on their overlap, while ”global mode” further clusters the results from local mode based80

on multiple sample statistics (Li et al., 2020).81

Here we explored three strategies for hybrid clustering with both long- and short-reads (Figure 1A):82

• In the first ”additive” strategy (S1), cluster labels can only propagate among long reads or among short83

reads, respectively. No propagation is allowed between long and short reads. This was done by running84

SpaRC at local clustering mode separately on the short-read and long-read datasets, and then combine85

the clustering results.86

• In the second ”mixed” strategy (S2), labels are allowed to propagate among both long and short reads87

indiscriminately: labels can propagate from long to long, short to short, long to short or vice versa.88

This was done by first combining the short- and long-read datasets, followed by running SpaRC at89

local clustering mode.90

• In the third ”long-then-short” strategy (S3), initially labels are only allowed to propagate among long91

reads. After all long reads finish updating their labels, their labels are allowed to propagate to short92

reads. This new algorithm, hereafter referred as hybrid-LPA, was implemented in both MPI and UPC++93

in order to fit different HPC environments.94

2.2 Datasets and Data Preprocessing95

The BMock12 (Sevim et al., 2019) dataset was derived from a mock community that consists of 1296

bacterial strains with genome sizes ranging 3.2 to 7.2 Mbp. One of the bacterial species in the set, M.97

coxensis, has a negligible number of reads in the dataset, therefore, BMock12 effectively contains 1198

bacterial strains. The reads from BMock12 were downloaded from the NCBI Sequence Read Archive99
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Table 2. Sequencing data statistics
Dataset Statistics Illumina ONT PacBio

BMock12

#Reads 211,448,444 187,507 389,806
#Bases 63,384,840,109 3,737,495,058 2,583,337,248

Max Length 301 145,720 45,165
Min Length 301 120 50
Avg Length 301 19,932.6 6,627.2

Median Length 301 17,900 5,800
Std Dev / 11,225.3 4,283.2

Biocrust

#Reads 141,172,036 / 20,042,887
#Bases 37,368,694,112 / 111,977,437,956

Max Length 301 / 138,853
Min Length 35 / 50
Avg Length 264.7 / 5586.9

Median Length 301 / 5427
Std Dev 51.5 / 3,324.0

(SRA) using accessions SRX4901586 (ONT), SRX4901584 (PacBio set 1), SRX4901585 (PacBio set100

2), and SRX4901583 (Illumina). Table 2 lists the statistics of these datasets. The Illumina short-read101

dataset from this community was pair-end sequenced at 150bp. The two ends were concatenated by an ”N”102

(resulting a 301bp fragment) before being fed into SpaRC. In this paper, we took 5% of the reads from the103

original dataset to conduct the experiments.104

The Biocrust dataset was derived from a biological soil crust sample collected from Moab, UT, USA.105

Biocrusts are specialized microbial communities consisting of primary producers, such as cyanobacteria,106

mosses, and lichens, and associated heterotrophs. They are aggregated organosedimentary communities that107

colonize and stabilize the soil surfaces of arid environments, preventing soil erosion and promoting nutrient108

status by fixing both atmospheric carbon and nitrogen (Van Goethem et al., 2021). The two ends of a109

Illumina short-read pair are 151 and 150bp. The two ends were merged by BBMerge (Bushnell et al., 2017).110

The merged Illumina reads, as well as the PacBio reads, were masked for low-complexity sequences by111

BBDuk using default parameters (sourceforge.net/projects/bbmap/). The resulting fragments112

were used as input for SpaRC.113

114

2.3 Running SpaRC and Hybrid-LPA115

Small-scale experiments in this work were performed on the Amazon Web Services (AWS) Cloud.116

Apache Spark (ver 2.3.1) services and Hadoop (ver 2.8.4) are provided by the Elastic MapReduce (EMR)117

on AWS. Specifically, we first used SpaRC to generate read graphs (EMR, emr-5.17.0). Then we used one118

node (r4.16xlarge) with 64 CPU cores and 488GB memory to run hybrid-LPA. On the EMR cluster, one119

node is used as the master and all other nodes (r4.2xlarge) are used as workers. Depending on the size of120

the input datasets, various number of workers are used (20 workers for BMock12 and 200 for the Biocrust121

dataset).122

Large-scale experiments were performed on Berkeley Lab’s High-performance Computing system123

(Lawrencium, https://sites.google.com/a/lbl.gov/hpc/) and Department of Energy’s124

National Energy Research Scientific Computing Center (NERSC, https://www.nersc.gov/). In125

these environments, SpaRC jobs were run on standalone Spark clusters created on-demand. Specifically,126

600 Cori KNL nodes (each has 68 physical cores and 96 GB of memory) on NERSC were used for the127

Biocrust dataset.128
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2.4 Metagenome Assembly and Binning, Biosynthetic Gene Cluster Prediction129

For the BMock12 dataset, each cluster from the hybrid-LPA output was assembled by metaSPAdes (ver130

3.13.1) using default parameters (Nurk et al., 2017). Contigs from all clusters were combined for binning131

with MetaBAT 2 (Kang et al., 2019) using default parameters. In the assembly-only method, raw reads132

were assembled with metaSPAdes followed by binning with MetaBAT 2. MetaQuast (version 5.0.2) was133

used to evaluate assembly quality for both two methods (Mikheenko et al., 2016).134

From the assembled biocrust metagenomes (performed using metaSPAdes, Canu (Koren et al., 2017) and135

metaFlye (Kolmogorov et al., 2020), providing 3 assemblies) we deduplicated the contigs using BB-Dedup136

using default parameters(sourceforge.net/projects/bbmap/) to only include unique sequences137

by removing redundant contigs. All contigs longer than 5 kb were retained for secondary metabolite138

production using antiSMASH v5.2.0 under strict settings to preclude the detection of false-positives (Blin139

et al., 2019). Here, biosynthetic gene clusters (BGCs) were retained if they were longer than 5 kb after140

manual inspection of the domain architecture. Finally, we compared the quantity of unique BGCs detected141

when clustering-then-assembling to assembly-only (metaFlye assembly only, as it produced the largest142

number of BGCs).143

3 RESULTS

3.1 Long reads increase clustering performance144

To test whether or not combining long reads with short reads improved clustering performance, we145

designed three strategies (Materials and Methods) to include long reads in SpaRC’s LPA step (Figure 1A).146

We ran the three strategies on the synthetic BMock12 dataset (Materials and Methods) with 12 known147

genomes and used three metrics to measure read clustering performance: read cluster size (number of148

reads in a cluster), purity (percent of reads from the predominant genome in a cluster) and completeness149

(percent of reads from the predominant genome in a cluster). For these experiments, we used Illumina150

short reads and ONT long reads. Since we aimed at exploring how the long reads help with short reads151

clustering, these metrics were calculated based on short reads only. In addition, as we did not expect SpaRC152

to distinguish different strains of the same species, strain-level differences were ignored when clustering153

purity was calculated.154

Figure 1B illustrates the cluster size comparison between these different label propagation strategies. The155

additive strategy (S1) produces many small clusters. Clusters formed from the mixed strategy (S2) showed156

a bi-modal size distribution, characterized by the presence of many larger clusters and small clusters. In157

contrast, the long-then-short strategy (S3) only produces a small number of clusters, most of them are158

very large. These strategies resulted in similar numbers of short reads in clusters (Table 3). However, the159

number of clusters was reduced from 85,398 (S1) to 136 (S3), while the mean cluster size was increased160

from 125.3 (S1) to 75,749.1 (S3). Consequently, the median completeness was increased from 0.25% (S1)161

to 79.42% (S3). As shown in Figure 1C, this increase of genome completeness by S3 was reflected in that162

the majority of clusters having better completeness, a significant shift from the other two strategies. These163

improvements in cluster size and completeness did not come with a decreased clustering purity, with a164

median purity 100% and a mean purity 99.65% (Figure 1C). Clustering performance of the long-then-short165

strategy also outperforms the mixed strategy in terms of completeness, number of clusters, and cluster size.166

These results suggest that long reads can greatly improve metagenome read clustering performance and167

that the hybrid clustering strategy presented here is an effective way to solve the under-clustering problem168

with metagenomic short reads.169
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Figure 1. (A) Three alternative clustering strategies for hybrid-LPA. (S1) ”Additive” strategy: clustering
labels can only propagate among long reads or among short reads, respectively. No propagation was
allowed between long and short reads. (S2) ”Mixed” strategy: labels can be propagated among both long
and short reads indiscriminately. (S3) ”Long-then-short” strategy: in the first step, labels were only allowed
to propagate among long reads, then they were propagated to short reads. No propagation was allowed
among short reads. (B) A comparison of three label propagation strategies on cluster size improvement on
the BMock12 dataset. The number of clusters (Y-axis) at each cluster size in log10 (X-axis), from top to
bottom: S1, S2, S3. (C) A comparison of three label propagation strategies on the purity and completeness
of clusters on the BMock12 dataset. Violin plots of purity and completeness distributions are shown in
percentage (Y-axis).

Table 3. Clustering performance comparison between the three LPA strategies

#clusters #reads
% of reads
clustered

mean cluster
size

median
completeness

median
purity

mean
purity

S1 85,398 10,312,376 96.38 125.3 0.25 100 97.90
S2 15,145 10,312,376 96.38 706.5 4.13 100 94.62
S3 136 10,298,222 96.25 75,749.1 79.42 100 99.65

Although long reads greatly reduce the under-clustering problem in the above experiment, they did not170

solve the over-clustering problem, as some clusters contain reads from different genomes. Among the171

top 20 largest clusters, 17 of them are pure clusters at the species level (Table 4). The biggest cluster,172

consisting 2 million reads (20% of the clustered reads), mixed reads from two different closely-related173

species (Marinobacter sp.1 and Marinobacter sp.8) of the same genus (Marinobacter), owing to the fact174
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Table 4. Top 20 cluster size and composition

cluster # # reads in cluster
percentage of the total

clustered reads (%) cluster composition (species level)

1 2,053,694 19.54
Marinobacter sp.8: 76%,
Marinobacter sp.1: 24%

2 978,753 9.31

Cohaesibacter sp.: 38%,
Thioclava sp.: 30%,

Propionibact. b.: 12%,
M. echinofusca: 11%,

M. echinaurantiaca: 9%

3 583,575 5.55

Halomonas sp. : 67%,
Psychrobacter sp.6: 15%,
Marinobacter sp.8: 7%,

Muricauda sp.: 7%,
others: 4%

4 396,548 3.77 Halomonas sp. : 100%
5 350,579 3.34 Cohaesibacter sp.: 100%
6 310,604 2.95 Halomonas sp. : 100%
7 162,263 1.54 Psychrobacter sp.6: 100%
8 141,331 1.34 Halomonas sp. : 100%
9 127,583 1.21 Halomonas sp. : 100%

10 118,194 1.12 Halomonas sp. : 100%
11 101,535 0.97 Psychrobacter sp.6: 100%
12 96,011 0.91 Halomonas sp. : 100%
13 95,349 0.91 Halomonas sp. : 100%
14 89,545 0.85 Halomonas sp. : 100%
15 88,730 0.84 Halomonas sp. : 100%
16 84,861 0.81 Halomonas sp. : 100%
17 84,394 0.80 Psychrobacter sp.6: 100%
18 82,854 0.79 Halomonas sp. : 100%
19 82,168 0.78 Halomonas sp. : 100%
20 82,083 0.78 Halomonas sp. : 100%

others 4,401,089 41.87 /
total 10,511,743 100.00 /

that these species have an average nucleotide identity (ANI) of 78.1%, and they share 105,617 common175

31-mers, making them difficult to be distinguished (Supplemental Table S1). As expected, the clustering176

algorithm could not distinguish closely related strains of the same species, such as Halomonas sp. HL-4177

and Halomonas sp. HL-93, with 3,126,579 shared 31-mers and an ANI of 98.5%. This pair of genomes178

spread 14 of the top 20 clusters. Different species with a large number of shared k-mers could also get179

clustered together, as the second and third largest clusters each contain multiple genomes. Some of these180

genomes are related, but some are not clearly indicating an over-clustering problem.181

3.2 Small amounts of long-read data sufficiently improve clustering182

As long-read sequencing technologies have higher cost and lower throughput, we tested whether or not183

limited numbers of long reads can help short-read metagenome clustering. In the following experiments184

done on the BMock12 dataset, we gradually increased the amount of ONT reads added to Illumina reads185

and compared the hybrid clustering performance.186

As shown in Figure 2, adding just 1% ONT reads already produces a pronounced effect, increasing the187

mean cluster size to over 50,000 reads. Except for some variations when below 10% of the ONT reads were188

added, adding more ONT reads increases the mean cluster size, even though the increase gets smaller. The189
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Figure 2. The effect of different amounts of ONT reads added to Illumina short reads on cluster size: the
number of clusters (blue line), the number of reads being clustered in millions (M, grey line), and the
mean cluster size in thousands (K, orange line) vary as different percentages of ONT long reads are added
(X-axis)

total number of clusters first rises, then steadily falls after 5% ONT reads. The total number of clustered190

short reads remains largely unchanged. As we added more long reads (>10% of total), the number of reads191

clustered, the number of clusters formed, and the mean cluster size all become stable. These results suggest192

a small fraction of long reads can significantly improve short read clustering, and the hybrid clustering193

approach could be a cost-effective metagenome clustering method.194

195

3.3 Read length, not the sequencing platform, has a major impact on the cluster size196

In theory, longer read lengths should increase the clustering performance, as their ability to bridge197

short reads gets better with length. To test this hypothesis, we added shorter PacBio reads from the same198

BMock12 dataset and compared the results to the above obtained from ONT reads. The read length199

distribution of ONT and PacBio reads is shown in Figure 3A.200

As expected, ONT read hybrid clustering gave much better results than those from PacBio reads. The201

number of clusters from the ONT experiment is 136, while the PacBio produced 1,502 clusters (Figure 3B).202

The corresponding genome completeness metrics were measured at 79.42% and 7.09% for ONT and203

PacBio, respectively. The size of the clusters produced by adding ONT reads is much larger than that of204

PacBio reads (Figure 3C). To investigate whether this difference is caused by different platforms rather205

than by different read lengths, we trimmed the ONT reads so that they have the same length distribution as206

the PacBio reads (Figure 3A) and then repeated the experiment. The number of clusters became 1,149 by207

adding the trimmed ONT reads, which is very similar to the results obtained from the PacBio reads. And208

the genome completeness for trimmed ONT was reduced to 10.91%. The cluster size distribution is also209

comparable to the results of PacBio experiment. In all three experiments, the median purity metrics of the210

clusters are comparable, ranging from 97.73%-100%. These results confirmed that the read length, rather211

than the long-read sequencing platform, has a major impact on clustering performance.212
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3.4 Hybrid clustering improves downstream metagenome assembly and gene cluster213

discovery214

To investigate whether or not the improved clustering results produced by hybrid clustering can translate215

into better downstream applications, we used two common scenarios as examples. First, on the BMock12216

dataset where the set of genomes are known, we asked whether or not hybrid clustering produces better217

metagenome-assembled-genomes (MAGs). Second, we used a real-world Biocrust metagenome dataset218

without known references (Materials and Methods), and asked whether or not hybrid clustering could219

produce more predicted biosynthetic gene clusters (BGCs), locally clustered genes that together encode a220

biosynthetic pathway for the production of secondary metabolites (Medema et al., 2015). In both cases221

we wanted to compare the results to metagenome assembly with hybrid clustering (hereafter we refer as222

”SpaRC-hybrid”) and without (”Assembly”). The steps in this two methods are otherwise identical except223

in the SpaRC-hybrid the assembly was done on the clusters instead of on raw reads. A schematic view of224

the two methods is shown in Figure 4A.225
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For the BMock12 dataset, the quality of genome bins were evaluated using Quast (Gurevich et al., 2013).226

Quast produces many metrics, here we focused on two assembly-related ones: the percent of genome227

coverage that measures the extent that a genome bin covers a reference genome, and percent of correctly228

assembled that measures the percent of assemblies aligned to references without any mis-assemblies229

(Figure 4B). Using 80% genome fractions and 90% correctness as cut-offs, the SpaRC-hybrid method230

produces 8 good genomes while the Assembly method only produced 4, supporting the notion that hybrid231

clustering improves downstream genome assembly. The full Quast report is available in Supplemental232

Table S2. Other differences between these two methods we noticed include SpaRC-hybrid producing much233

smaller N50s, higher rates of mismatches and small indels. These observations suggest the under-clustering234

problem still exists to some extent, so that the assemblers do not have sufficient read coverage for correcting235

the errors in long reads, or producing good contiguity.236

For the Biocrust dataset, we used the ability to discover unique Biosynthetic Gene Clusters (BGCs) as237

a metric to test the benefit of hybrid-LPA over the Assembly method without prior clustering (Materials238

and Methods). Overall, the SpaRC-hybrid method predicted more BGCs than the Assembly method239

alone (Figure 4C). MetaFlye assembly derived from SpaRC-hybrid clusters gave 5,458 unique BGCs,240

considerably more than those from the Assembly approach (2,988 BGCs). In almost every category241

SpaRC-hybrid predicted more BGCs, with the most pronounced difference in Non-ribosomal peptides, a242

common and important class of secondary metabolites encoded by multidomain non-ribosomal peptide243

synthetases (NRPS). A complete list of the counts are available in Supplemental Table S3. The hybrid244

approach also predicted more complete gene clusters (i.e., it is not truncated on either of the contig edges)245

than the assembly-only approach, 1,100 vs 712 (Van Goethem et al., 2021). The longest NRPS is novel246

(based on sequence similarity to the entire NCBI nr database) and is a full-length gene cluster of 79,925 bp.247

We made similar observations when we assembled the clusters using CANU instead of MetaFlye248

(Supplemental Table S3), suggesting hybrid clustering by SpaRC-LPA can benefit downstream assemblers249

in general.250

4 DISCUSSION

In this work, we developed a new scalable algorithm, SpaRC-hybrid to incorporate long reads into251

metagenome read clustering. We showed that the hybrid clustering method can reduce the under-clustering252

problem in clustering experiments with only short reads. We also demonstrated that the read length, rather253

than the sequencing technologies, has a big impact on the clustering performance. Furthermore, improved254

clustering results can greatly augment downstream metagenome assembly or gene cluster discovery.255

While SpaRC-hybrid can effectively leverage long reads to reduce the under-clustering problem in256

short reads, it does not reduce over-clustering problems, where similar genomes, or genomes sharing257

large genetic elements (horizontally transferred genes, very closely-related homologs, mobile elements,258

etc.) are clustered together. Given that SpaRC-hybrid uses long reads to build the initial read graph, it259

should alleviate the problem to some extent at this stage. However, over-clustering can still happen at260

the short-read recruitment stage. Using stringent read overlapping criteria may reduce the problem, but261

this may come with a cost of under-clustering and loss in sensitivity. In complex real-world metagenome262

datasets, this is unlikely to be a major drawback, as the overall complexity within a cluster could be greatly263

reduced compared to the original dataset. We may not be able to completely deconvolute a large, complex264

metagenome into single genomes, but can effectively partition into many simpler metagenomes. With the265

decreasing cost and increasing throughput of long-read sequencing, ultimately we may have to use only266

long reads for metagenome clustering to overcome the over-clustering problem.267
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Figure 4. (A) A schematic view of metagenome hybrid assembly methods. Default ”Assembly” method
first assembles the raw reads (short and long) using an assembler (such as MetaSpades Nurk et al. (2017)),
and then bins the resulting contigs into metagenome bins by a binner (such as MetaBAT Kang et al. (2015)).
If reference genomes are available, the quality of the bins can be evaluated by Quast. The ”SpaRC-hybrid”
method first clusters the raw reads into clusters, then assembles the clusters into contigs, followed by the
same procedures as the Assembly approach. (B) A comparison of assembled genome quality between the
Assembly and SpaRC-hybrid approach on the BMock12 dataset. Two metrics measured by Quast, Genome
Fraction percentage (X-axis) and percent of correctly assembled (Y-axis), are shown for each genome.
Metrics for the Assembly method are shown in circles and the SpaRC-hybrid method in stars. (C) Bar
charts of biosynthetic gene clusters (BGCs) predicted from the Biocrust dataset. Here we directly compared
the difference in predicted BGCs counts for major BGC classes between assembly with metaFlye and our
SpaRC-hybrid approach with the same assembler.

Currently, SpaRC-hyrbid tends to produce a more fragmented assembly containing more small errors268

(mismatches, small indels). The most likely cause for this problem is under-clustering, as reads from the269

same genome were separated into different clusters. In the subsequent assembly step, each cluster does270
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not have sufficient read coverage for good contiguity, precluding the building of contigs. Some additional271

matrices may be needed to further reduce under-clustering. The small errors are likely those carried over272

from long read sequencing. In the control dataset, BMock12, there are only 12 species, applying an273

error-correction step by either using short reads to correct long reads, or using long reads to correct each274

other, should improve this problem. In real-world complex metagenome datasets error-correction may not275

be reliable, especially those with a large strain-level diversity. The recent PacBio high-fidelity reads may276

be used to avoid small errors, but at the expense of read-length reduction and more under-clustering.277
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