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Software-Defined Network (SDN) can improve the performance of the power communication network and better meet the
control demand of the Smart Grid for its centralized management. Unfortunately, the SDN controller is vulnerable to many
potential network attacks. )e accurate detection of abnormal flow is especially important for the security and reliability of the
Smart Grid. Prior works were designed based on traditional machine learning methods, such as Support Vector Machine and
Naive Bayes. )ey are simple and shallow feature learning, with low accuracy for large and high-dimensional network flow.
Recently, there have been several related works designed based on Long Short-Term Memory (LSTM), and they show excellent
ability on network flow analysis. However, these methods cannot get the deep features from network flow, resulting in low
accuracy. To address the above problems, we propose a Hybrid Convolutional Neural Network (HYBRID-CNN) method.
Specifically, the HYBRID-CNN utilizes a Deep Neural Network (DNN) to effectively memorize global features by one-di-
mensional (1D) data and utilizes a CNN to generalize local features by two-dimensional (2D) data. Finally, the proposedmethod is
evaluated by experiments on the datasets of UNSW_NB15 and KDDCup 99. )e experimental results show that the HYBRID-
CNN significantly outperforms existing methods in terms of accuracy and False Positive Rate (FPR), which successfully
demonstrates that it can effectively detect abnormal flow in the SDN-based Smart Grid.

1. Introduction

)e Smart Grid is a grid system with automatic control and
self-protection adjustment capabilities [1]. It is supported by
information and communication technology to achieve
reliability, security, and real-time requirements [2, 3]. )e
emerging network architecture Software-Defined Network
(SDN) ignores the coaxial hardware structure of the network
which separates the control plane and the data plane, and
directly implements the virtualized configuration of the
switch. It is especially suitable for mobile communication
network, wired interconnection network, and sensor net-
work in the Smart Grid [4]. )e SDN improves the data
transmission capability and network compatibility of the
Smart Grid, but it also brings new security issues. )e highly
centralized network control capability and the damage
caused by network abnormal flow intrusion have increased
significantly [5]. As the control center of the whole network,

the SDN itself may be the target of various attacks, such as
DDoS, fake flow, breakthroughs in switches, and attacks on
the control layer. )e destruction of the SDN will cause all
switches under its control to be paralyzed or disorders can
have devastated effects on the entire network [6]. In the
SDN, collaborative abnormal flow detection across multiple
domains requires detailed flow data for each relevant do-
main, such as the contents of a flow table in the last few
seconds. Network abnormal flow has the characteristics of
potential and unforeseen attacks. )erefore, the detection
technology of network abnormal flow is challenged by the
demand for larger-scale and higher-dimensional flow data
[7].

Recently, most of these studies are based on state
transition [8] and artificial intelligence methods [9]. )e
method based on state transition requires manual calcula-
tion and has low recognition accuracy.)emethod based on
artificial intelligence has more advantages in this respect
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because of network big data. However, most of the re-
searches have not carried out in-depth feature learning of
network flow. For large-scale network abnormal flow de-
tection, there are mainly two types of methods.)e first type
of method relies on sampling data, it uses network flow data
to establish a library of attack intrusion behavior patterns,
and the collected data including the host’s system logs or
collected from the network nodes matches the established
pattern library. If the match is successful, it is proved to be an
intrusion; otherwise, it is a normal behavior [10]. )is
method can effectively identify existing attacks and maintain
them effectively and improve network security at the time.
However, with the development of computers and the In-
ternet, more and more new types of attacks appear in the
field of vision. )e detection accuracy of expert systems has
fallen sharply. It has been unable to meet the requirements,
and the sampling data itself is not accurate, which may cause
the loss of useful information.

Another type of method is to utilize machine learning
methods to perform feature extraction and detection
classification after constructing features. )e massive
amount of network data makes machine learning methods
more effective than judgment methods based on expert
systems [11]. )e traditional machine learning methods are
just a shallow feature learning classifier. )ey have certain
limitations when processing complex data. )e feature
processing that traditional machine learning must do is
time consuming and requires specialized knowledge. )e
performance of most machine learning algorithms depends
on the accuracy of the extracted features. Deep learning
reduces the manual design effort of feature extractors for
each problem by automatically retrieving advanced features
directly from raw data [12]. Previous studies have used deep
learning to classify mobile encrypted traffic and achieved
excellent results [13, 14]. In [15], the authors investigated
several deep learning architectures, including 1D CNN, 2D
CNN, LSTM, Stacked Autoencoder (SAE), and Multilayer
Perceptron (MLP) for mobile encrypted traffic classifica-
tion. Based on this, this paper aims to apply the excellent
feature learning capabilities of deep learning to the SDN-
based Smart Grids to achieve highly accurate network
abnormal flow detection.

To meet the above problems and challenges, we hope to
apply the excellent feature learning capabilities of deep
learning to the SDN-based Smart Grid to achieve highly
accurate network abnormal flow detection. )e main con-
tributions of this article can be summarized as follows:

(i) First, we design a framework for improving the
security of the Smart Grid by applying an abnormal
flow detection algorithm in the SDN-based Smart
Grid communication network; it can identify ab-
normal flow and detect the type of attack.

(ii) Second, we propose a deep learning algorithm of
Hybrid Convolutional Neural Networks (HYBRID-
CNN) to detect abnormal flow in the SDN-based
Smart Grid communication network.)eHYBRID-
CNN adopts dual-channel data input, which can
extract effective features from 1D and 2D flow data,

use the self-attention mechanism to fuse key fea-
tures, and finally use the fully connected neural
network for detection.

(iii) )ird, we compare the proposed method with the
single model and verify the performance im-
provement of the hybrid model. In addition, we
discuss a parameter study to optimize the HYBRID-
CNN model.

(iv) Fourth, we perform a lot of experimental com-
parisons on the UNSW_NB15 and KDDCup 99
benchmark dataset. Experimental results show that
the HYBRID-CNN significantly outperforms
existing approaches in terms of accuracy and False
Positive Rate (FPR).

)e rest of this article is organized as follows: we discuss
related work in Section 2 and introduce the system model
and security requirements in Section 3. We then introduce
some preliminary knowledge in Section 4. In Section 5, we
introduce our proposed algorithm, and then in Section 6 we
introduce experimental comparative analysis. Finally, we
discuss and conclude in Sections 7 and 8.

2. Related Work

)is section discusses two related types of work, namely,
traditional machine learning and deep learning. In the SDN-
based network controllers, using traditional machine
learning and deep learning to develop flexible and efficient
abnormal flow detection schemes presents some challenges.
One of the main challenges is how to choose an appropriate
feature selection method and another challenge is to ac-
curately grasp the correlation between the selected feature
and the abnormal flow detection task and the redundancy
between these features [16].

2.1. Traditional Machine Learning. Most of the previous
studies were based on traditional machine learning methods,
such as Support Vector Machine (SVM), Decision Tree, and
Naive Bayes. Naive Bayes algorithm is an important algo-
rithm in the field of machine learning and data mining. It is
widely used in the field of machine learning classification,
such as text classification andmedical diagnosis. Ashraf et al.
[17] applied Naive Bayes for network intrusion detection;
their basic idea is to select the most likely category based on
the Bayesian algorithm under the assumption that the
classification is based on feature independence. But this
method is only simple shallow feature learning, and it has
poor performance for large-scale network flow data. Rai et al.
[18] used decision tree C4.5 to perform intrusion detection
experiments on the NSL-KDD dataset. In this work, 16
attributes were selected as detection features on the dataset.
)e proposed algorithm can be used for feature-based in-
trusion detection, but its accuracy is too low, only 79.52%.
Reddy et al. [19] proposed a filtering algorithm based on the
SVM classifier to perform the classification task on the
KDDCup 99 dataset. )is method performed well on the
training field but performed poorly in the test dataset and
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could not effectively detect unknowns’ network abnormal
flow.

2.2. Deep Learning. In recent years, as a branch of machine
learning, deep learning is becoming more and more
popular. It is applied to intrusion detection and research
shows that deep learning has completely surpassed tradi-
tional methods in performance [20]. Kwon et al. [15]
utilized Deep Neural Network-based deep learning
methods for flow-based anomaly detection. Experimental
results evidence that deep learning can be applied to ab-
normal flow detection in the SDN. Long Short-Term
Memory (LSTM) is a special deep learning model of Re-
current Neural Network. It can remember the input and
predicted output of any period and solves the problem of
gradient vanish and explosion in the Recurrent Neural
Network (RNN). LSTM is widely used in the field of
Natural Language Processing [21]. Existing researches have
been done on abnormal flow detection based on LSTM [22],
and they found that the algorithms have a significant
performance improvement for sequence learning com-
pared with traditional machine learning methods, but there
is still room for improvement in detection rate and ac-
curacy. CNN is a multi-layer network structure learning
algorithm. It can learn hierarchical features from a large
amount of data and has broad application prospects in the
field of abnormal flow detection. Wang et al. [23] proposed
an end-to-end classification method for one-dimensional
Convolutional Neural Networks. )is method integrates
feature extraction, feature selection, and classifiers into a
unified end-to-end framework and automatically learns
original inputs and expectations. )e nonlinear relation-
ship between the outputs has obtained good experimental
results. However, the one-dimensional data used in this
method is not suitable for local feature extraction, resulting
in the detection rate less than the ideal one. In [24], the
authors present a new technique for network traffic clas-
sification based on a combination of RNN and CNNmodels
that can be used for Internet of )ings (IoT) traffic, which
provides the best detection results. Wang et al. [25] pro-
posed using CNN combined with LSTM to analyze and
detect network flow. It utilizes CNN to learn low-level
spatial features of network flow for the first time and then
uses LSTM to learn high-level temporal features. )e Deep
Neural Network completes it automatically, and this
method has achieved good results in terms of accuracy and
detection rate.

Based on the above works, traditional machine learning
methods that are typically used in abnormal flow detection
often fail and cannot detect many known and new security
threats, largely because those approaches provide less focus
on accurate feature selection and classification. It is often
inefficient for large-scale network flow. For the current deep
learning methods like LSTM and CNN, they often pay more
attention to the improvement of the model and ignore the
original flow structure features. To address the above
problems, we propose a HYBRID-CNN deep learning
method for more accurate feature learning. )e method

utilizes two-channel input structure of 1D data and 2D data:
using a CNN to extract local features and using a DNN to
extract the global features. Specifically, a self-attention
mechanism is added to select the most important features.

3. System Model View

In this section, we formalize the system model and system
security requirements.

3.1. System Model. )e Smart Grid uses two-way commu-
nication technology to connect many power components to
ensure mutual communication between the components.
Implementing the SDN on Smart Grid technology separates
network control from data forwarding equipment that in-
cludes network infrastructure, thereby enabling logically
centralized control and enabling the network to be pro-
grammed by a central software unit. )e control layer, as the
brain of the network, carries the controller software. )e
software-defined routing rules determine where to route
flow. )ere are programmable network devices in the data
plane to route flow according to the rules defined by the
controller.)e top of themodule implements the function of
the abnormal flow detection module. As shown in Figure 1,
the SDN-based Smart Grid mainly includes the following
parts [26].

3.1.1. Physical Plane. )is layer is responsible for packet
switching and routing. It includes the basic components of
network communication in Smart Grid, such as smart meter,
Power Management Unit (PMU), various sensors, and
various communication equipment. Different from the
traditional network, these basic components cannot make
decisions independently because of no control unit. )ey are
only responsible for collecting the generated key data and
forwarding the collected data to the control layer through
the programmable SDN switch infrastructure while com-
plying with the rules defined by the controller.

3.1.2. Southbound Interface. )e definition of south inter-
face provides the communication protocol between the
physical layer and the control layer. OpenFlow protocol
developed by Stanford is currently the most common and
standard protocol in south interface [27]. It can realize
secure communication in the SDN by determining the
message format from a programmable switch to controller.

3.1.3. Control Plane. As the central brain, the control layer
has a SDN controller or more whose task is to manage the
forwarding behavior of data flow by determining forwarding
rules, which need to be written into the flow table of the
programmable switch in the physical layer through the south
interface.

3.1.4. Northbound Interface. )e north interface definition
provides an interface for communication between the
control layer and the application layer and enables
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application programs to program the network. It abstracts
the details of data in the physical layer and allows network
administrators, service providers, and researchers to cus-
tomize the control rules and behaviors of their networks.

3.1.5. Application Plane. )e application layer comprises
many Smart Grid applications, including network security
function programs such as abnormal flow detection module
and flow data filtering module. All these application-defined
policies need to be translated into OpenFlow rules that are
transferred to the physical layer programmable switch and
then transferred from the north interface to the control
layer.

3.2. System Security Requirements

3.2.1. -e Immovability and Concentricity of Network
Architecture. )e function of the Smart Grid communica-
tion network is generated with the design phase, and it is
almost impossible to reconfigure the network based on the
real-time needs of the network. In terms of performance and
resilience, the bottlenecks will be caused by this nondynamic
structure of today’s Smart Grid. At the same time, the
network will be vulnerable to multiple types of attacks. On
the other hand, the highly centralized network control ca-
pability increases the damage caused by network abnormal
flow intrusion considerably [28]. )e SDN is the control
center of the entire network. It may itself be the target of
various attacks and these attacks will damage the SDN
resulting in all its control paralysis or misbehavior of a
switch can have a devastating effect on the entire network.
)erefore, it is necessary to design an effective abnormal
flow detection algorithm in the SDN controller.

3.2.2. -e Hierarchy of Network Flow. Network flow has a
distinct hierarchy, as shown in Figure 2, where the bottom
row shows a sequence of flow bytes. According to a specific
network protocol format, multiple flow bytes are combined
into a network packet, and then multiple network packets
are combined into a network flow. A network flow is divided
into normal or malicious tasks, and a deep learning algo-
rithm is used to learn hierarchical features, which has
achieved good results. )ese studies urge us to use deep
learning to learn the hierarchical features of network flow to
complete the task of intrusion anomaly detection.

3.3. Working Methodology. Devices in the physical layer
initiate access request through the Internet, and the flow
collection module of the SDN controller captures all re-
quest flow statistics table information to extract flow fea-
tures. )e abnormal flow detection module includes three
stages: data preprocessing, model training, and model
validation, as shown in Figure 3. First, the collected
flowmeter data are preprocessed, including data encoding,
data normalization, data reshaping, and data split. After
data preprocessing, the flow data vectors will be feature-
extracted, feature-fused, and anomaly-detection-classified
by the HYBRID-CNN algorithm.

In addition to the powerful anomaly flow detection
above, the proposed solution performs end-to-end delivery
of detection reports through the SDN as shown in Figure 1.
)is is achieved by incorporating the anomaly flow detection
model into the core of the SDN control plane. )e execution
process works in the following order: (i) detection stage, (ii)
reporting phase, and (iii) update phase. In the first stage, the
control plane encapsulated with the anomaly flow detection
model classifies the incoming flow as abnormal and normal.
)en in the second stage, the report is communicated to the
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Figure 1: )e system model of the SDN-based Smart Grid; it mainly includes physical plane, southbound interface, control plane,
northbound interface, and application plane. Devices in the physical layer initiate access request through the Internet, and the flow
collection module of the SDN controller captures all request flow statistics table information to extract flow features. HYBRID-CNN is used
to detect abnormal traffic and generate abnormal reports. )en, the generated anomaly report is sent to the SDN controller through the
security channel. Finally, the SDN controller discards attack packets and updates the flow table according to the received report.
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control plane. If the incoming flow is abnormal, the control
plane discards the packet and immediately gives up com-
munication with the requesting host. )is helps protect the
underlying network with malicious content and prevents it
from spreading further on the network. During the update
stage, the control plane updates the flow table entry of the
forwarding device.

4. Preliminaries

In this section, we briefly describe the general notion used in
our proposed algorithm.

4.1. Activation Function. )e activation function provides
the nonlinear modeling capability of the network. Rectified
Linear Unit (ReLU) is the most widely used function [29]; it
can keep the gradient from attenuating, thus effectively
alleviating the problem of gradient disappearance; the
function expression is as follows: the ReLU activation
function produces 0 as an output when x< 0 and produces a
linear with slope of 1 when x> 0:

ŷ′ � max(0, x). (1)

4.2. Cross-Entropy Loss. Cross-entropy loss measures the
performance of a classification model whose output is a

probability value between 0 and 1. It increases as the pre-
dicted probability diverges from the actual label. In binary
classification, where the number of classes M equals 2, the
cross-entropy loss can be calculated as

loss � − (ylog(p)) − (1 − y)log(1 − p). (2)

If M> 2 (i.e., multiclass classification), we calculate a
separate loss for each class label per observation and sum the
results:

loss′ � − ∑M
c�1

yo,clog po,c,( ), (3)

where y is binary indicator (0 or 1) if class label c is the
correct classification for observation o and p is predicted
probability that observation o is of class c.

4.3. Optimizer. We use Adam optimizer to learn the net-
work weight parameters. And independent adaptive
learning rates are designed for different parameters with
calculating the first-order moment estimation and the
second-order moment estimation of the gradient. Empir-
ical results prove that Adam has greater advantages over
other optimizers in practice [30]. Moving averages of
gradient mt � β1mt− 1 + (1 − β1)gt and squared gradient
vt � β2vt− 1 + (1 − β2)g

2
t , bias corrected estimators for the

Network flow

Packet Packet

Byte Byte Byte Byte Byte

...... ...... Packet
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Figure 2: )e structure of a network flow. Multiple bytes are combined into a packet, and then multiple packets are combined into a
network flow.
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Figure 3: Working methodology of the proposed anomaly detection algorithm; it includes data preprocessing, model training, and model
validation.
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first moments m̂t and second moments v̂t � vt/(1 − βt2), the
update rules for Adam are as follows:

ωt � ωt− 1 − η
m̂t��̂
vt

√
+ ε
, (4)

where ω is model weights, η is the step size, and β, ε are
hyperparameters.

5. Proposed HYBRID-CNN Algorithm

In this part, we first introduce the data preprocessing op-
eration. )en, we describe the structure of HYBRID-CNN
algorithm and how to detect abnormal flow.

5.1. Data Preprocessing

5.1.1. Data Encoding. )e input flow data contains a variety
of features; some of them are no-numeric types, so they need
to be encoded as numeric types to be used as input to the
neural network. Here, we use Label encoder encoding to
convert discrete features to continuous features [31], such as
[protocol: TCP, service: HTTP, state: FIN, . . .]⟶ [pro-
tocol: 4, service: 2, state: 2, . . .].

5.1.2. Data Normalization. Data normalization can speed up
the solution, improve the accuracy of the model, and prevent
a feature with a particularly large value range from affecting
the distance calculation. For the features that there is a very
large scope in the difference between the minimum and
maximum values, such as “dur,” “sbytes,” and “dbytes,” we
apply the logarithmic scaling method for scaling to obtain
the features which are mapped to a range. We choose the
MIN-MAX scaling method [31] and normalize the data
according to the following equation:

Xi �
Xi − Xmin

Xmax − Xmin

, (5)

where Xi denotes each data point, Xmin denotes the mini-
mum value from all data points, and Xmax denotes the
maximum value from all data points for each feature.

5.1.3. Data Reshaping. For CNN input, its format should be
three-dimensional data (height, width, channel), and as a
single sample, the channel should be 1, so that we can re-
shape a single flow sample with a length of s � h∗w + 1 to
obtain a data structure similar to an image and construct a
matrix M of h∗w, namely,

M′ �
M11 . . . M1w

⋮ ⋱ ⋮
Mh1 . . . Mhw

 . (6)

5.1.4. Data Split. For every model we want to train, each
model has two datasets: one is the training dataset and the
other is the validation dataset. As shown in Figure 4, in order
to separate them, we first apply the shuffle method on the

dataset to generate random data and then slice the entire
dataset to obtain a training dataset and a validation dataset.

5.2. HYBRID-CNN. )e structure of CNN is shown in
Figure 5. It is an end-to-end deep learning model with
powerful feature learning and classification capabilities. It is
widely used in image classification, speech recognition,
computer vision, and other fields [32].

)e network flow contains both abnormal and normal
flow, and HYBRID-CNN training is performed at this stage
to detect misused attacks, which aims to further categorize
the malicious data from stages into corresponding classifi-
cation strategies, i.e., Scan, R2L, DoS, and Probe. )e
structure of our proposed HYBRID-CNN algorithm is
shown in Figure 6.We divide it into three parts.)e first part
is feature extraction, the second part is feature fusion, and
the third part is the detection classification.

5.2.1. Feature Extraction. In the feature extraction phase, we
use the form of dual input of flow data, which aims to extract
the features of flow more comprehensively. )e role of the
input layer is to receive input data, and the size of the input
layer is consistent with the size of the input data, such as a
vector x � [x1, x2, . . . , xn], or a matrix M.

For the first input (the upper part of the blue box), every
user’s access flow essentially is 1D data. We utilize two layers
of DNN to extract the global features of the flow. Our
motivation is to learn the frequent co-occurrence of features
pass by memorizing one-dimensional data. )e calculation
method of each neuron in the fully connected layer is

xi � f ∑n
i�1

ωi,jxi + b1 . (7)

After the data preprocessing, its input shape is
(h∗w, 1). In layer 1, we set a neuron, and the shape of the
output data is (h∗w, a). In the fully connected layer 2, we
set b neurons, and the shape of the output data is (h∗w, b).
)e two-dimensional data is straightened to obtain a one-
dimensional feature vector of h∗w∗b, 1. In this process, the
activation function used is ReLU to obtain the output
feature Owide.

[d1, d2, …, dN]

Shuffle

Validation datasetTraining dataset

[d1′, d2′, …, dN′]

[d1′, d2′, …, dt′] [dt+1′, dt+2′, …, dN′]

Figure 4: Data split. Using the shuffle method on the network flow
dataset to generate random data, and then splitting the random
data into a training dataset and a validation dataset.
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For the second input (the lower part of the blue box), we
reshape the one-dimensional data of the first input into a
two-dimensional matrix. We believe that the deeper features
can be better learned in the form of two-dimensional matrix
input. )e CNN uses a sliding convolution kernel to extract
local features of flow data. In this part of the network, a
convolution layer, a pooling layer, and a flatten layer are
included.

One of the limitations of conventional neural networks is
poor scalability due to the full connection of neurons; CNN
overcomes this shortcoming by convolving each neuron to
its neighbors instead of all neurons [33]. Set the input of the
i-th layer to xl+1, the output to xl, and the convolution kernel
to k. )e convolution operation is performed by the fol-
lowing equation:

xl � f ∑xl− 1i ⊗k
l
i + b

l( ), (8)

where f(·) is a nonlinear activation function, ⊗ is a con-
volution sign, and bl is a bias term. )e pooling layer is

usually placed after the convolutional layer. By performing a
merge operation on a local area of the feature map, the
feature has a certain spatial invariance. )e merge operation
reduces feature size and prevents overfitting. xl+1 is obtained
by the following pooling:

xl+1 � β down xl( ) + b, (9)

where down(·) represents the pooling function, β is a
multiplicative bias, and b is additive bias.)e reshaped shape
of the input data is (h, w). We use k convolution kernels with
the same shape to extract the convolution features. At first,
the data shape is (h − k + 1, k); after pooling, the shape of the
data is ((h − k + 1)/2, k). )en, through the flatten layer, the
data shape is ((h − k + 1)/2∗k, 1), and the output feature
OCNN is obtained.

For the two extracted features, perform feature fusion to
obtain the feature Oi(k):

Oi(k) � Owide + OCNN. (10)

Input
Output

Convolution
+ activation

Convolution
+ activation

Pooling Pooling Fully connected

So�Max

Figure 5: )e structure of a CNN. It includes input layer, convolution layer, activation function, pooling layer, fully connected layer, and
output layer.
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Figure 6: )e structure of the proposed HYBRID-CNN algorithm; it includes feature extraction, feature merge, and classification. )e
feature extraction aims to extract the feature of flow more comprehensively, the self-attention mechanism aims to fuse key feature, and the
classification aims to classify accurately.
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5.2.2. FeatureMerge. In the feature fusion part, we use a self-
attention mechanism to fuse key features. )e essence of the
self-attention mechanism is to observe a specific part
according to the observation of the need [34].

For self-attention, we get three matrices Q (Query), K
(Key), and V (Value) from the input Oi(k). )e self-at-
tention mechanism obtains different representations, cal-
culates scaled dot-product attention of each representation,
and finally concatenates the results. Specifically, the current
representations input into the self-attention layer, and the
new representation is calculated. First, we have to calculate
the point product between Q and K, and then in order to
prevent the result from being too large, it will be divided by a
scale

��
dk

√
, where dk is the dimension of a query and key

vector, and then the results are normalized to a probability
distribution using a SoftMax operation and then multiplied
by the matrix V to obtain a weighted summation repre-
sentation. )is operation can be expressed as

Attention(Q,K,V) � softmax
QKT��
dk

√( )V. (11)

5.2.3. Classification. After feature fusion, we use a fully
connected layer for detection and classification; all neurons
in the previous layer are connected to each neuron in the
current layer. )e fully connected layer is located before the
output layer. After the extracted features are converted into a
one-dimensional feature vector, they are connected to each
neuron in the current layer to map the high-level features in
a targeted manner:

xi′ � f ∑n
i�1

ωi,jxi + b1( ). (12)

)e fully connected layer will target high-level features
according to the specific tasks of the output layer perform
mapping and use the SoftMax and Sigmoid activation
function after mapping to get the final classification de-
tection result (normal, abnormal, or attack types).

)e output layer is a SoftMax function [35]; it normalizes
K real numbers into a K probabilities distribution, after
applying SoftMax, each component will be in the interval
(0, 1), and the components will add up to 1, which can be
interpreted to map the nonnormalized output of a network
to a probability distribution over predicted output classes.
Set z � (z1, . . . , zK) ∈ RK; the standard SoftMax function
σ: RK⟶ R

K is defined by the formula:

σ(z)j �
ezj∑Kk�1 ezk , forj � 1, . . . , K. (13)

Hence, the predicted class would be ŷ:

ŷ � argmax σ(z)j[ ]. (14)

6. Experimental Evaluation

To evaluate the proposed abnormal flow detection scheme,
we conduct the simulation on a 64-bit computer with Intel

(R) i7-9750Hz 2.60 GHz CPU, 8 GB RAM, NVIDIA
GeForce RTX 2060 6G GDDR6 GPU, and 10.2 CUDA,
using Python, Scikit-learn, NumPy, Pandas, TensorFlow,
and Keras. )e data we use comes from an online public
dataset. We carried out model comparison experiments to
verify that the mixed model has higher accuracy than the
single model. Compared with traditional machine
learning methods and deep learning methods, the ex-
perimental results show that our method is superior to
these methods.

6.1. Experimental Setup

6.1.1. Experimental Data. )e dataset we are using is
UNSW_NB15 on network intrusion detection [36], which is
a mixture of real normal activity flow and attack flow created
by the Australian Network Security Center in the network
laboratory using IXIA Perfect Storm tool. Table 1 is the list of
features and categories.

)ese features are categorized into five groups:

(i) Basic features: they involve the attributes that
represent protocols connections

(ii) Flow features: they include the identifier attributes
between hosts (e.g., server-to-client or client-to-
serve)

(iii) Content features: they encapsulate the attributes of
TCP/IP; also, they contain some attributes of http
services

(iv) Time features: they contain the attributes time, for
example, arrival time between packets, start/end
packet time, and round-trip time of TCP protocol

(v) Additional generated features: this category can be
further divided into two groups: general-purpose
features, whereby each of them has its own purpose,
to protect the service of protocols, and connection
features that are built from the flow of 100 record
connections based on the sequential order of the last
time feature

To label this dataset, two attributes were provided:
attack_cat represents the nine categories of the attack and
the normal, and label is 0 for normal and otherwise is 1.

6.1.2. Performance Metrics. )e performance metrics for
abnormal flow detection depend on the confusion matrix
constructed for any proven classification problem [37].
Its size depends on the number of classes contained in the
dataset. Its main purpose is to compare the actual tags
with the predicted tags. )e intrusion detection problem
can be defined by a 2 × 2 confusion matrix, which includes
normal and attack categories for evaluation. )e
detailed description of the confusion matrix is shown in
Table 2.

TP and TN denote the conditions for correct classi-
fication, while FP and FN denote the conditions for the
mistaken classification. TP and TN refer to correctly
classified attack flow and normal flow, respectively, while
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FP and FN refer to misclassified normal and attack rec-
ords, respectively. )ese four items are used to generate
the following performance evaluation metrics.

)e Accuracy (Acc) is a measure used to evaluate the
overall success rate of the model in detecting normal records
and abnormal flow and is calculated as

Acc �
TN + TP

TP + FP + TN + TP
. (15)

)eDetection Rate (DR), also known as the True Positive
Rate (TPR), is the ratio of correctly classified malicious flow
instances to the total number of malicious flow instances.
)e calculation formula is

DR �
TP

FN + TP
. (16)

)e False Positive Rate (FPR) is the proportion of
normal instances that are misclassified as attack flow in the
total number of normal instances. )e formula is

FPR �
FP

FP + TN
. (17)

)e Precision (Pre) represents the proportion of the
actual normal samples to the samples divided into normal;
the formula is

Pre �
TP

TP + FP
. (18)

)e F1 score is used to synthesize precision and recall as
an evaluation index. )e formula is

F1score �
2∗Pre∗DR

Pre +DR
. (19)

6.2. Performance Comparison

6.2.1. Model Comparison. For comparison, we used a single
CNNmodel and a simple DNNmodel. Our proposed hybrid
CNN model includes 2 input layers, 1 convolutional layer, 1
pooling layer, and 4 fully connected layers. A single CNN
model includes a convolutional layer, a pooling layer, and a
fully connected layer. )e simple DNN model contains only
3 fully connected layers.

)e configuration of the model structure parameters in
this paper is shown in Figure 7. Each column is a model. )e
input data shape of the DNN part of our proposed hybrid
CNN model is (42,1), the data shape through Dense1 is
(42,128), the data shape through Dense_2 is (42,64), and
then the data shape through Flatten_1 is (2688), the shape of
the input data of the CNN is (6,7) through the Conv1D_1
layer, the shape of the data becomes (4,32), followed by
Pooling_1, and the shape of the data becomes (2,32). In the
Merge layer, the two-channel data are merged into one.
After this layer, the shape of the data becomes (2752) and
then passes through the Dense_3 layer. As a result, the same
shape is formed in each model by these layers in turn.

As shown in Table 3, we set the initial weight parameters
to random values, set the batch size to 512, and use our
Adam optimizer and binary_cross-entropy loss function to
compile the model. To evaluate the performance of the
model, we use accuracy as a metric function during training
verification.

After the model is compiled, we use the input data to
perform model training in batch mode and evaluate the
performance index values at the end of each epoch. One
epoch means that all training datasets have undergone a
complete training iteration.)e training results are shown in
Figure 8, where the horizontal axis represents the number of

Table 1: Features of the UNSW_NB15 dataset.

No. Feature name Category

(1) dur Numeric
(2) Proto Nonnumeric
(3) service Nonnumeric
(4) state No-numeric
(5) spkts Numeric
(6) dpkts Numeric
(7) sbytes Numeric
(8) dbytes Numeric
(9) rate Numeric
(10) sttl Numeric
(11) dttl Numeric
(12) sload Numeric
(13) dload Numeric
(14) sloss Numeric
(15) dloss Numeric
(16) sinpakt Numeric
(17) dinpakt Numeric
(18) sjit Numeric
(19) djit Numeric
(20) swin Numeric
(21) dwin Numeric
(22) stcpb Numeric
(23) dtcpb Numeric
(24) tcprtt Numeric
(25) synack Numeric
(26) ackdat Numeric
(27) smean Numeric
(28) dmean Numeric
(29) trans_depth Numeric
(30) response_body_len Numeric
(31) ct_srv_src Numeric
(32) ct_state_ttl Numeric
(33) ct_dst_ltm Numeric
(34) ct_src_dport_ltm Numeric
(35) ct_dst_sport_ltm Numeric
(36) ct_dst_src_ltm Numeric
(37) is_ftp_login Numeric
(38) ct_ftp_cmd Numeric
(39) ct_flw_http_mthd Numeric
(40) ct_src_ltm Numeric
(41) ct_srv_dst Numeric
(42) is_sm_ips_ports Numeric

Table 2: Confusion matrix for binary classification problem.

Predicted
Actual

Negative Positive

Negative TN (true negative) FP (false positive)
Positive FN (false negative) TP (true positive)
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epochs trained, and the vertical axis represents the loss and
accuracy score values. We observe that the loss of our
proposed hybrid CNN model becomes smaller and smaller
as the training progresses, and after 100 epochs of training, it
obtains higher accuracy scores than the single CNN model
and DNN model.

6.2.2. Method Comparison. To evaluate the performance of
our proposed hybrid CNN model, we performed experi-
ments on UNSW_NB15 dataset. )e comparison methods
selected are as follows:

(i) Naive Bayes [17]: Naive Bayes is a supervised
learning classifier based on Bayes theorem. It
classifies the problem by combining previous cal-
culated likelihood and probabilities to make the
next probability using Bayes rule.

(ii) SVM [19]: an SVM is a discriminative classifier
formally defined by separating hyperplanes. SVM-
based kernels classify the data which effectively
works for most of the datasets. Discriminant
function: “Linear SVM.”

(iii) LSTM [22]: the improved model based on RNN for
intrusion detection, using ReLU activation function,
Adam optimizer, 100 epoch, and two-layer LSTM
{128, 64}.

(iv) CNN-LSTM [25]: a CNN combined with LSTM to
analyze and detect network flow. It utilizes CNN
to learn low-level spatial features of network flow
for the first time and then uses LSTM to learn
high-level temporal features, using ReLU activa-
tion function, Adam optimizer, 100 epoch, and
two-layer LSTM {128, 64}; two-layer CNN in-
cludes pooling layer.

Table 4 lists the performance comparison between our
proposed HYBRID-CNN and some other existing methods.
It is worth noting that we select a subset for experiments
based on a certain training dataset ratio. )e training dataset
ratio is defined as the proportion of training samples. )e
proportion of the dataset is 60%, 70%, and 80%. In each
dataset of experiments, we evaluated five methods including
our proposed method and evaluated three performance
metrics (Acc, DR, FPR). )e experimental results in Table 4
show that our proposed HYBRID-CNN compared with
other traditional machine learning methods and deep
learning methods. Compared with other methods, our
proposed HYBRID-CNN can reach Accuracy of 0.9564, DR
of 0.9856, and FPR of 0.0442, which means that our pro-
posed method has higher accuracy in detecting abnormal
flow than other traditional methods. It is because the
combination input using a DNN and CNN has better feature
learning capabilities.

Figure 9 is a comparison of the training and validation
accuracy and loss between our proposed HYBRID-CNN
method and the other two methods. All models have been
trained for 100 epochs, and performance indicators have
been evaluated after each epoch. By comparison, we can
find HYBRID-CNN in the training and validation process
of the method; the loss convergence speed is much faster.
And the best results can be achieved faster for the accuracy
improvement, which is obviously better than other
methods.

6.2.3. ROC Curves Comparison. We further plot the Re-
ceiver Operating Characteristic (ROC) curves of our pro-
posed HYBRID-CNN and state-of-the-art methods on
UNSW_NB15, as shown in Figure 10. )e ROC curve of
HYBRID-CNN is the closest one to the upper left corner,

Hybrid CNN model Single DNN model Single CNN model

Input1: (42, 1)

Dense_1
(42, 1)

(42, 128)

(42, 128)

(42, 128)

(42, 64)

2688

(42, 1)

(42, 128)

(42, 128)

(42, 128)

(42, 64)

2688

(6, 7)

(4, 32)

(4, 32)

(2, 32)

(2, 32)

64

(6, 7)

(4, 32)

(4, 32)

(2, 32)

(2, 32)

64

––Attention merge layer: (2752)

Conv1D

Pooling

Flatten_2

Conv1D

Pooling

Flatten_2

Dense_3: (32)

Dense_4: (1)

Dense_2

Flatten_1

Dense_1

Dense_2

Flatten_1

Input4: (42, 1) Input3: (6, 7)Input2: (6, 7)

Figure 7: Model configuration parameters.

Table 3: Configuration parameters for different models.

Methods Origin weights Batch_size Activation

Single DNN model Random 512 ReLU
Single CNN model Random 512 ReLU
Our proposed model Random 512 ReLU
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indicating better generalization ability against the other
methods. All the results reported above demonstrate that
HYBRID-CNN outperforms its competitors. We can con-
clude that HYBRID-CNN effectively handles the abnormal
flow detection problem by the ability to compress the
original data to more discriminative abstract features, and

HYBRID-CNN is capable of efficient abnormal flow
detection.

6.2.4. Computation Comparison. To deepen this investi-
gation, Table 5 reports the number of training parameters
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Figure 8: Comparison of different models. (a) Training loss. (b) Validation loss. (c) Training accuracy. (d) Validation accuracy.

Table 4: Performance comparison of the proposed and state-of-the-art methods.

Reference Method
Proportion� 80% Proportion� 70% Proportion� 60%

Acc DR FPR Acc DR FPR Acc DR FPR

Ashraf et al. [17] Naive Bayes 0.7663 0.8514 0.3841 0.7669 0.8611 0.3999 0.7655 0.8512 0.3883
Reddy et al. [19] SVM 0.7594 0.6895 0.1170 0.7257 0.7806 0.3714 0.7346 0.7874 0.3591
Xin et al. [22] LSTM 0.8916 0.9843 0.2724 0.8897 0.9840 0.2775 0.8894 0.9835 0.2778
Wang et al. [25] CNN-LSTM 0.8995 0.9612 0.2095 0.8965 0.9460 0.1910 0.8955 0.9571 0.2138
Proposed method HYBRID-CNN 0.9564 0.9856 0.0442 0.9408 0.9382 0.0544 0.9386 0.9493 0.0803
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(in millions) and running time required for both the
proposed HYBRID-CNN and state-of-the-art methods. We
use GPU to accelerate the training speed of all models. It
can be noticed that, when training on the UNSW_NB15
dataset, the proposed HYBRID-CNN has fewer trainable
parameters and lower training time and testing time. )is
outcome results from the use of CNN in the proposed
method, which can realize efficient parallel computation,
and we use as small number of parameters as possible in the
structure.

6.3. Parameter Study. )ere are various configurable
hyperparameters in the model, such as Batch_size α,
number of convolution kernels β, convolution kernel size
c, and optimizer ε. )ese hyperparameters can only be
configured manually but cannot be optimized

automatically through the training process, which will
greatly affect the performance of the model. Batch_size α
is the number of training samples of the neural network
after one forward-propagation and back-propagation
operation, which means howmany samples will be used to
evaluate the loss in each optimization process; β is the
number of different convolution kernels used in convo-
lution operation, how many convolution kernels there
are, and how many feature maps will be generated after
convolution; c is the size of convolution kernels. Each
convolution kernel has three dimensions of length, width,
and depth. In a convolution layer of CNN, the length and
width of convolution kernels need to be manually con-
figured. Optimizer ϵ is the type of optimizer used to
optimize loss and then update weight parameters.
)erefore, we deeply analyzed the influence of these super
parameters on the performance of our proposed hybrid
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Figure 9: Comparison of different methods. (a) Training loss. (b) Validation loss. (c) Training accuracy. (d) Validation accuracy.
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CNN model. In Figure 7, the parameters of the hybrid
CNN model proposed by us are α� 512, β� 4, c� 1 × 3,
and ε�Adam. )e model training results for these pa-
rameters are as follows.

6.3.1. Effect of Batch_size α. As shown in Figure 11, we set α
to 128, 256, and 512 for experiments. When α� 128, the
training and validation loss converge faster in the same
period and finally reach the set number of iterations. )e
best effect is 0.9477. We can know that a smaller
Batch_size can speed up the optimization in the same
period, but it means that more calculation time is needed
to optimize. Increasing the Batch_size properly can im-
prove the running speed and gradient descent direction.
With accuracy increasing, the amplitude of training vi-
bration decreases.

6.3.2. Effect of Number of Convolution Kernels β. As shown
in Figure 12, we set the number of convolution kernels β as
1, 2, and 4 for experiments. When the number of

convolution kernels is 1, we can get an accuracy of 0.9403.
When the number of convolution kernels increases to 2,
the loss convergence rate also increases. At 4, the speed of
loss convergence is significantly accelerated. Generally,
when the network is deeper, more convolution kernels are
often required to fully extract key features.

6.3.3. Effect of Convolution Kernel Size c. As shown in
Figure 13, we set the size c of the convolution kernel to 1× 2,
1× 3, and 1× 4 for experiments. When the size of the
convolution kernel is 1× 2, the training loss and accuracy
rate will jitter sharply. It is not conducive to convergence.
When the size of the convolution kernel is increasing, the
loss converges a little faster and the fluctuation range be-
comes smaller, so it should be better to choose a 1× 3 or 1× 4
size convolution kernel.

6.3.4. Effect of Optimizer ε. As shown in Figure 14, we have
selected several commonly used optimizers SGD, RMSprop,
Adam, and Adagrad for experimental comparison. When
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Figure 10: ROC curves of HYBRID-CNN and state-of-the-art methods on UNSW_NB15 dataset.

Table 5: )e comparison of the computational complexity of the proposed and state-of-the-art methods.

Method Trainable parameters Training time (s) Testing time (s)

LSTM 0.1391 402.58 1.77
CNN-LSTM 0.1404 526.31 8.99
Proposed 0.0951 271.26 0.75
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SGD is used as an optimizer, the effect is not ideal. It can only
achieve an accuracy of 0.9259. )ere was a large shock at
around 40. We can see that when Adam optimizer is used,
the initial loss convergence is like other optimizers. In the
medium term, the Adam optimizer loss convergence is
significantly faster and finally achieves the best.)e accuracy
is 0.9483.

6.4. Ablation Study. For a thorough analysis, we conduct an
ablation study onHYBRID-CNN to analyze the effectiveness
of each module. )e details of the ablation study based on
UNSW_NB15 are listed as follows:

(1) w/o attention: we remove the self-attention module
from HYBRID-CNN but keep the DNN module and
the CNN module

(2) w/o DNN: the DNN module is removed from
HYBRID-CNN

(3) w/o CNN: the CNN module is removed from HY-
BRID-CNN

We further analyzed the detailed performance ofHYBRID-
CNN in the ablation study, and the results of the ablation
studies are shown in Table 6. Comparing HYBRID-CNN with
model (1), we can conclude that the self-attention module can
help detect abnormal flow, because attention can capture key
features more comprehensively. )e effectiveness of DNN can
also be demonstrated by comparing HYBRID-CNN with
model (2). When we removed the DNN module, accuracy
declined because themodel could not extract high-dimensional
global features. However, when the CNN module was re-
moved, it could be found that the accuracy was greatly reduced,
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Figure 11: Parameter study of α. (a) Training loss. (b) Validation loss. (c) Training accuracy. (d) Validation accuracy.
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because the model could not extract the local features of the
flow, and CNN has a great impact on the results.

6.5. Attack Detection. In order to detect the attack type of
abnormal flow, the dataset we used to evaluate the model
was KDDCup 99 [38]. )e entire dataset has approxi-
mately 5 million flow records, each of which has 41
features (the 1–9 features are the basic attributes of the
packet, the 10–22 features are the packet content, and the
23–31 features are flow function and 32–41 are host-based
features). As shown in Table 7, these attack flow
instances can be further divided into DoS, U2R, R2L,
and Probe. For the KDDCup 99 dataset, the flow
sample has 41 features and a label. We cannot directly

reshape a one-dimensional flow dataset into a two-
dimensional matrix, so a zero feature is used here to add
a dummy feature. It does not affect the result and is
just for data reshaping.

We made comparisons with the current latest tech-
nology, and Figure 15 illustrates the relative comparison
of our proposed abnormal flow detection algorithm with
the current latest technology model. It is obvious from the
obtained results that the proposed model performs better
on the KDDCup 99 dataset than the existing scheme in
terms of Accuracy, Detection Rate, and F1 score.
Figure 15(a) shows the Precision evaluation of the pro-
posed method corresponding to Normal, PROBE, DoS,
U2R, and R2L data examples (99.92%, 98.11%, 99.98%,
93.81%, and 93.16%, respectively). Figure 15(b) shows the
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Figure 12: Parameter study of β. (a) Training loss. (b) Validation loss. (c) Training accuracy. (d) Validation accuracy.
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Detection Rate evaluation of the proposed method cor-
responding to successful detection of Normal, PROBE,
DoS, U2R, and R2L data examples (98.21%, 93.62%,
98.89%, 92.59%, and 87.76%, respectively). Figure 15(c)
shows the F1 score evaluation of the proposed method
corresponding to Normal, PROBE, DoS, U2R, and R2L
data examples (96.74%, 94.02%, 98.51%, 91.92%, and
89.37%, respectively).

It can be clearly seen from the obtained results that,
for normal flow, DoS attacks and PROBE attacks have
reached the maximum detection level, while detection
effects for U2R and R2L attacks are slightly lower. In the
real network, normal activity flow dominates while U2R
and R2L are very few classes. Dataset imbalance is a quite
common problem in intrusion detection. )e detection
model is biased towards most classes and neglects a few

classes. For U2R and R2L, although the detection rate of
the proposed model is lower than that of other classes,
overall, it still achieves better results compared with other
methods.

7. Discussion

Evaluation of the UNSW_NB15 dataset shows that our
model can provide 95.64% accuracy, which is a major
improvement over other deep learning methods. How-
ever, it should be noted that the results of the “R2L” and
“U2L” attack classes are lower than those of other classes,
because the model needs more data to learn. Unfortu-
nately, due to the severe imbalance in the training data of
such attacks, the results obtained are not stable. Hybrid
detection methods are mainly combined with deep
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Figure 13: Parameter study of c. (a) Training loss. (b) Validation loss. (c) Training accuracy. (d) Validation accuracy.
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learning models, which can usually achieve higher de-
tection accuracy. Considering the complexity of the deep
learning algorithm, the algorithm can use less running

time. Of course, our proposed model will spend more
time on training, but using GPU acceleration can reduce
training time.
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Figure 14: Parameter study of ϵ. (a) Training loss. (b) Validation loss. (c) Training accuracy. (d) Validation accuracy.

Table 6: Detailed performance (%) of HYBRID-CNN in ablation study.

Model Acc DR Pre FPR

HYBRID-CNN 95.64 98.56 96.13 4.42

(1) w/o attention 94.88 98.29 95.77 4.69
(2) w/o DNN 93.57 93.94 93.16 5.89
(3) w/o CNN 91.85 92.47 92.43 7.36
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8. Conclusion

In this paper, we consider the problem of abnormal net-
work flow detection of the Smart Grid integrated with the
SDN. For the pursuit of accurate detection and guaran-
teeing network performance, we formulate a deep learning
detection algorithm based on the HYBRID-CNN. In

particular, our HYBRID-CNNmodel consists of the double
channel feature extraction, key feature fusion, and classi-
fication. It gains the benefits of global memorization and
local generalization brought by the DNN and the CNN,
respectively. Besides, to measure the performance of the
proposed algorithm, we analyze the hyperparameters of the
HYBRID-CNN. Compared with other existing detection

Table 7: Attacks in the KDDCup 99 dataset.

Category Training dataset Testing dataset

DoS Back, land, Neptune, pod, smurf, teardrop
Back, land, Neptune, pod, smurf, teardrop, mailbomb, processtable, udpstorm,

apache2, worm
U2R Buffer-overflow, loadmodule, perl, rootkit Buffer-overflow, loadmodule, perl, rootkit, sqlattack, xterm, ps

R2L
fpt-write, guess-passwd, imap, multihop, phf,

spy, warezclient, warezmaster
fpt-write, guess-passwd, imap, multihop, phf, spy, warezmaster, xlock, xsnoop,

snmpguess, snmpgetattack, httptunnel, sendmail, named
Probe ipsweep, nmap, portsweep, Satan ipsweep, nmap, portsweep, Satan, mscan, saint
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Figure 15: Experimental evaluation of the proposed method on the KDDCup 99 dataset. (a) Precision evaluation. (b) Detection Rate
evaluation. (c) F1 score evaluation.
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algorithms, the experiment results show that the HYBRID-
CNN has a higher detection accuracy and a lower false
alarm rate.

In our future work, a problem to be solved is to improve
the performance of the model through network structure
optimization and automatic hyperparameter tuning. )e
swarm intelligent optimization algorithm, such as Particle
Swarm Optimization (PSO) algorithm and Artificial Bee
Colony (ABC) algorithm, can be used to automatically tune
hyperparameters, which is an efficient method to improve
the detection accuracy. Another problem to be solved is the
unbalanced dataset. )e detection accuracy of a few types of
attacks needs to be improved. We hope to use data aug-
mentation in future work to reduce the impact of the dataset.
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