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Abstract— It has been shown that image compression based on 

principal component analysis (PCA) provides good compression 

efficiency for hyperspectral images. However, PCA might fail to 

capture all the discriminant information of hyperspectral images 

since features that are important for classification tasks may not 

be high in signal energy. To deal with this problem, we propose a 

hybrid compression method for hyperspectral images with 

pre-encoding discriminant information. A feature extraction 

method is first applied to the original images, producing a set of 

feature vectors that are used to generate feature images and then 

residual images by subtracting the feature-reconstructed images 

from the original ones. Both feature images and residual images 

are compressed and transmitted. Experiments on data from 

airborne AVIRIS sensor indicate that the proposed method 

provides better compression efficiency with improved 

classification accuracy than conventional compression methods.  

 
Index Terms— compression, hyperspectral images, principal 

component analysis, feature images, residual images, discriminant 

information. 

 

I. INTRODUCTION 

HE advancement of sensor technology produces 

remotely-sensed data that have a large number of spectral 

bands [1]. There is an increasing need for efficient compression 

techniques for these hyperspectral images [2].  

Many researchers have studied lossless and lossy 

compression techniques, where the latter can achieve higher 

compression ratios than the former. Since adjacent bands of 

hyperspectral data are highly correlated, most compression 

techniques use this property to remove spectral redundancy: 

most lossless techniques resort to prediction, while most lossy 

techniques resort to transform-based approaches. In particular, 

in transform-based methods, principal component analysis 

(PCA) (also known as Karhunen-Loève transform (KLT)) [3] 

has been commonly used, often followed by two-dimensional 

transforms such as the discrete wavelet transform (DWT) [4] or 

the discrete cosine transform (DCT) [5]. Wavelet 

transform-based methods have drawn great interest too and a 

number of 2D wavelet-based techniques have been extended to 

 
This work was supported by grant No. (R01-2006-000-11223-0) from the Basic 

Research Program of the Korea Science & Engineering Foundation, and by 

FEDER, the Spanish Government (MINECO), and the Catalan Government 

under grants TIN2012-38102-C03-03 and 2014SGR-691. 

3D applications, including SPIHT [6], SPECK [7], and tarp 

coding [8]. Also, JPEG2000 standard (Annex I, Part 2) allows 

compressing hyperspectral images with arbitrary spectral 

decorrelation. Region based coding schemes have been studied 

too; often yielding improved SNR performance [9-10]. 

Most lossy compression methods have been developed to 

minimize mean squared errors between the original and the 

reconstructed pixels. However, discriminant information 

required to distinguish between the various classes is also vital 

for classification purposes applications [11]. As an example, 

JPEG2000 coders coupled with spectral PCA produce good 

performance in terms of SNR [12-13], but their classification 

accuracy may not be satisfactory [14] since they may not 

effectively preserve the discriminant features for classification, 

mostly because these features may not be large in terms of 

energy.  

In this paper, we propose a hybrid compression method that 

takes into account the discriminating information of 

hyperspectral images. First, we apply a feature extraction 

method to obtain feature images, which are then used to 

generate feature-reconstructed images. These 

feature-reconstructed images are subtracted from the original 

images to produce residual images. The feature images and 

some eigenimages of the residual images are compressed using 

conventional compression techniques.  

The rest of this paper is organized as follows: in Section II, 

the feature extraction and the feature images are introduced, 

along with the proposed PCA-based compression method with 

pre-encoding discriminant information. In Section III, 

experimental results and discussions are provided. Finally, 

some conclusions are drawn in Section IV. 

 

II. HYBRID COMPRESSION METHOD 

A. Feature extraction and feature images 

Linear feature extraction can be viewed as a linear transform. 

The feature extraction method produces a set of feature vectors, 

}{
i
β , and an extracted-feature is computed as follows: 

 

Xy
T

ii β=
,
          (1) 

 

where X  represents an observation in the N-dimensional 

Hybrid Compression of Hyperspectral Images 

Based on PCA with Pre-encoding Discriminant 

Information
 

Chulhee Lee, Sungwook Youn, Taeuk Jeong, Eunjae Lee, and Joan Serra Sagristà 

T 

0001292
Cuadro de texto
Post-print of: Lee, Chulhee, et al. “Hybrid compression of hyperspectral images based on PCA with pre-encoding discriminant  information” in IEEE geoscience and remote sensing letters, vol. 12, no. 7 (July 2015), p. 1491-1495. DOI 10.1109/LGRS.2015.2409897
Cop. 2015 IEEE. Personal use of this material is permitted. Permissions from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.




> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

2 

space. In most cases, the set of feature vectors }{
i
β  can be 

considered orthonormal. A number of feature extraction 

methods have been proposed for pattern classification in the 

past, including canonical analysis [15] and decision boundary 

feature extraction (DBFE) [16]. In this paper, we select DBFE 

because it can utilize both the mean and covariance differences; 

however, any other feature extraction method can be used for 

the proposed compression method.  

Most feature extraction methods, including canonical 

analysis and DBFE, use covariance matrices, which should be 

invertible. Due to high correlations between adjacent bands, the 

covariance matrix of hyperspectral images may not be 

invertible even with a large number of training samples. To deal 

with this problem, we used the band combination procedure 

[17] and the band expansion method [18]. 

B. Proposed encoding method with discriminant information 

preserved 

Fig. 1(a) shows a block diagram of the proposed 

compression method. We assumed that the original images 

contained N spectral bands and K pixels in each band. We let 

N
JJJ ,...,,

21
 be the N spectral bands where 

i
J  was a 1×K  

column vector. For notational convenience, these vectors were 

presented in a NK × matrix, i.e., ],...,,[
N
JJJJ

21
= . First, we 

apply feature extraction to the original images based on a set of 

given classes. This process will produce a set of feature vectors. 

It is assumed that the set of feature vectors forms an 

orthonormal basis. In this case, the following feature vector 

matrix can be viewed as a unitary transform: 

 

],...,,[ 21 N
B βββ=         (2) 

 

where 
i

β  is a 1×N  column vector. 

Let X be a pixel vector of the original image, which 

corresponds to each column vector of T
J . Then, we can 

represent X as a linear combination of }{
i
β : 

 

j

N

j

jyX β∑
=

=
1

         (3) 

 

where Xy
T

jj β=  represents an extracted-feature found by a 

feature extraction method. In most cases, it is possible to retain 

most of the discriminant information with a small number of 

extracted features. 

Using these extracted features, a subset of extracted feature 

images is produced as follows: 
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where 
ji,β  represents the j

th
 component of 

i
β , 

i
F  is the i

th
 

extracted feature image and S is the number of extracted 

features. From now on, we will refer to these extracted-feature 

images as feature images. These S feature images are encoded 

and the corresponding feature vectors are quantized. Any 2D or 

3D image compression method can be used to compress the 

feature images, but we used the 1D+2D JPEG2000 approach 

due to its superior compression performance. From the encoded 

feature images and feature vectors, the original images can be 

reconstructed. In other words, a pixel vector of the original 

image can be reconstructed as follows: 
 

∑
=

≈
S

j

jjyZ
1

β̂ˆˆ

         

(5) 

 

where 
jŷ  represents the pixel value of the j-th feature image. 

Thus, we reconstructed the original images from the decoded 

feature images, which are called “feature-reconstructed” 

images and denoted by feature
Ĵ . By subtracting the 

feature-reconstructed images from the original images, we 

generated residual images: 

 

),...,(ˆ NiJJJ
feature

ii

res

i 1=−=

    

(6) 

 

PCA was applied to these residual images and a subset of 

eigenimages was compressed with 1D+2D JPEG2000 in this 

paper. In other words, each band of a residual image is 
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(b) 

Fig. 1.  Block diagram of the proposed compression method. (a) Encoding. (b) 

Decoding. 
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represented as follows:  

 

),...,1(ˆ
1

, NicJ
n

j

jij

res

i =+≈∑
=

µφ

    

(7) 

 

where { }
i
φ  is an eigenvector ( 1×K ) of the covariance matrix 

of the residual images as calculated in [19], µ̂  represents a 

reconstructed mean image ( 1×K ) and )ˆ(, µφ −= res

j

T

iij Jc . 

{ }
i
φ  

represents the eigenimages of the residual images and the 

coefficients }{ ,ijc  are quantized. From the compressed 

eigenimages and quantized coefficients, we can produce 

reconstructed images: 

 

),...,1(ˆˆˆˆ

1

, NicJ
n

j

jij

res

i =+=∑
=

µφ

    

(8) 

 

where 
res

i
Ĵ  represents the reconstructed i-th residual image, 

ijc ,ˆ  a quantized coefficient and 
i
φ̂  the reconstructed i-th 

eigenimage. Finally, the hyperspectral images are reconstructed 

by adding the reconstructed feature images to the reconstructed 

residual images (Fig. 1(b)). In the following experiments, 32 

bits were used for quantizing each coefficient since the memory 

requirements for coefficient quantization were negligible 

compared to the memory requirements for image data and the 

mean image ( µ̂ ) was compressed at 3.46 bits per pixel,. 

 

III. EXPERIMENTAL RESULTS 

The Indian Pine AVIRIS data set was used in the 

experiments [20]. This data set contains 220 spectral bands and 

the spatial size of the bands is 2166× 614 pixels. From the data 

set, a sub-region of 256× 256 pixels (sub-region1) has been 

widely used by remote-sensing researchers. The selected 

sub-region is shown in Fig. 2 (50
th

 band). We chose 15 classes 

in sub-region1; Table I reports the class information. 

The Gaussian ML classifier was used, assuming a Gaussian 

distribution for each class [15]. To avoid the singularity 

problem of covariance matrices and the Hughes phenomenon 

[21], 220 bands were reduced to 20 features by combining 

adjacent bands for classification purposes [17]. 

To evaluate the performance of our proposed technique, a 

comparison with several other coding techniques had to be 

performed, namely we investigated the 1D+2D JPEG2000 

approach when the spectral transform is carried out by a DWT 3 

levels (Kakadu v7 implementation with 4 levels in the spatial 

domain has been used). The 1D+2D JPEG2000 method was 

applied to compress both the original image and a subset of 

eigenimages. Fig. 3 shows the SNR performance for various 

bitrates and numbers of encoded eigenimages. It can be seen 

that increasing the number of eigenimages did not always 

improve SNR performance. In this paper, the number of 

eigenimages at each bitrate was selected to have maximum 

SNRs. Table II shows the optimal number of eigenimages for 

each bit-rate. 

 We used SNR and classification accuracy to evaluate the 

TABLE I 

CLASS DESCRIPTION 

-  Sub-region1  

Class Species No. samples No. training samples 

Buildings 375 188 

Corn 819 410
 

Corn-CleanTill 966 483 

Corn-CleanTill-EW 1320
 

660 

Grass 172 86 

Hay 231 116 

NotCropped 480 240 

Pasture 483 242 

Soybeans 836 418 

Soybeans-CleanTill 1050 525 

Soybeans-CleanTill-EW 1722 861 

Water 189 95 

Trees 330 165 

Wheat 940 470
 

Woods 252 126 

 

 

 
Fig. 2.  AVIRIS image with selected classes. Sub-region1 (256× 256, 50

th
 

band). 
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Fig. 3.  SNR performance as the number of eigenimages varies for 

subPCA/1D+2D JPEG2000. Results for AVIRIS sub-region1 image. 

 
TABLE II 

NUMBER OF EIGENIMAGES FOR EACH BIT-RATE 

bpppb 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Number of 

Eigenimages 
7 17 21 29 33 39 35 41 
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compression methods. In the experiments, the bit-rate was 

defined on a per-band basis, i.e., 1 bpppb indicates 1 bit per 

pixel per band. The SNR was computed as follows: 

 

,log10
2

10
MSE

SNR
σ

=

        

(9) 

 

where ])ˆ[( 2
xxEMSE −=  and 2σ  represents the variance of 

the selected image. The value of 2σ  was approximately 
6

10778.1 ×  for AVIRIS sub-region1. The classification accuracy 

was computed using test data that were not used to estimate 

parameters. In the experiments, half of the available samples 

were used for training and the other half were used for test 

purposes (see Table I). 

Table III presents the SNR and classification accuracy when 

the bit distribution ratio varied from 9:1 (feature image: 

eigenimage) to 1:9. Results reported in Table III were obtained 

with 20 feature images, although a similar performance was 

observed for different numbers of feature images. At low bit 

rates (0.1~0.4 bpppb), the classification accuracy was highest 

when most bits were allocated to feature images (e.g., 9:1) 

while SNR was poor. On the other hand, the 1:9 ratio produced 

good performance in SNR and acceptable classification 

accuracy. At high bit rates (0.5~0.8 bpppb), the classification 

accuracy was highest when most bits were allocated to 

eigenimages (e.g., 1:9). The 1:9 ratio also produced the best 

SNR performance. Thus, we used the 1:9 ratio for both low and 

high bit rates.  

Fig. 4 shows a performance comparison of the SNRs (Fig. 

4(a)) and classification accuracy (Fig. 4(b)) when different 

numbers of feature images (10, 15, 20 and 25) were used and 

the 1:9 ratio was applied. As the number of feature images 

increased, the SNRs of the proposed method decreased slightly 

while the classification accuracy increased. The 

subPCA/1D+2D JPEG2000 showed the best SNR performance. 

The SNRs of the proposed method showed the second best 

performance. On the other hand, the classification accuracy of 

the proposed method noticeably improved compared to 1D+2D 

JPEG2000 and subPCA/1D+2D JPEG2000 for all bit rates. Fig. 

5 shows the classification results for each class of the proposed 

method (20 feature images), the subPCA/1D+2D JPEG2000 

method and the 1D+2D JPEG2000 method at 0.4 bpppb. For 

some classes, the improvements were substantial. For example, 

for Soybeans-CleanTill, the classification accuracy of the 

proposed method was 92.1% while the classification accuracy 

values of the subPCA/1D+2D JPEG2000 and 1D+2D 

JPEG2000 were 72.7% and 77.3%, respectively. Also, the 

classification accuracy of the Corn-CleanTill improved from 

82.1% (subPCA/1D+2D JPEG2000) and 83% (1D+2D 

JPEG2000) to 93.5%. 

 

IV. CONCLUSIONS 

In this paper, we proposed a hybrid compression method for 

hyperspectral images based on PCA along with encoding 

residual discriminant information. We first applied a feature 

extraction method to obtain the feature images and then 

encoded the hyperspectral images using the dominant feature 

images. Then we generated residual images by subtracting the 

reconstructed images from the original images. By applying 

PCA to the residual images, we generated the eigenimages, 

which were also encoded. The dominant eigenimages and 

discriminant feature images were compressed using 

conventional image compression techniques to achieve better 

performance. Experiments with AVIRIS showed that the 

proposed method produces better compression efficiency with 

improved classification accuracy than existing compression 

methods such as 1D+2D JPEG2000 and subPCA/1D+2D 

JPEG2000. 
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Fig. 4.  Performance comparison using different numbers of feature images in 

sub-region1. (a) SNR. (b) Accuracy. 

 

 
Fig. 5. Performance comparison of accuracy results in each class. 

 


