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ABSTRACT

This thesis presents a hybrid-computer Monte-Carlo
method for the optimization of systems containing random
parameters. In the design of a dynamical system, the
values of a set of systiem parameters may be chosen =zo as
to optimize a performance criterion. If, however, the
manufacturing process results in production varirations in
these parameters, the optimal system becomes an idealiza-
tion which cannoE, in general, be realized by the systems

actually manufactured. In this case 1t may be advantageous

to treat the system parameters as random variables having,

for example, Gaussian probability distributions. Then

parameter mean values and variances can be chosen so as to

optimize a criterion function which includes average system

performance and also the cost of manufacturing systems with

certain parameter variances.

In order to soclve this type of problem, the
dynamical system, including the random variations in the
system parameters, is simulated on a fast repetataive analog
computer (The Uniaversity of Araizona's ASTRAC-II) and the
average system performance 1s estimated by the Monte-Carlo
method. A small digital computer (Daigital Equipment
Corporation PDP-9) controls the operation of the analog
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machine and azmplements an optimization algorithm for
determining the optimal parameter means and variances.

Since an estimate of the average system performance
18 a random variable, the optimization algorithm must
operate with noisy measurements of the criterion function.
A review of the laterature on parameter optaimization led
to the development of a creeping-random-search algorithm
for optimization 1n the presence of noixse. Incorporated in
the optimization program are provisions for interaction
between the operator and the algorithm by way of a cathode-
ray-tube display conscle and the accumulator switches on
ithe PDP-9.

The method is applied to the optimization of the
means and variances of two guldance-umit parameters in a
hypothetical radar-homing missile, With differential
equation solution rates of approximately 500 runs per
second, typical optimization times are on the order of 6-7
minutes. It is found that optimizations with lower bound
constraints on the parameter variances result in optimal
mean values different from those for the unconstrained

case.



CHAPTER 1

INTRODUCTION

A common approach to the design of an engineering
system 1s farst to choose a general configuration in which
the values of several parameters are left undetermimned;
these values are then chosen so as teo optimize some
criterion of performance. If many of these systems are to
be manufactured, however, a1t may be difficult and/or
costly to ensure that the parameter values are very close
to the optimum. The system with optimum parameter values
then becomes only an i1dealization which is not, 1n general,
realized by the systems that are manufactured. In such a
situation it may be advantageous to model the output of the
manufacturing process as a statistical ensemble of systems
with parameters having, for example, Gaussian probability

distraibutions. Then, parameter mean values and variances

could be chosen to optimize a criterion function which
would i1nclude average system performance as well as the
cost of manufacturing sysliems with certain parameter
varrances.

In this thesis, a hybriad-computer method employing
a fast repetitive analog computer (ASTRAC-II) and a digital
computer (PDP—9), 15 developed for the simulaticn and

1



optimization of an ensemble of systems with random
parameters. The method is applied to the simultaneous
optimization of the means and variances of two parameters

1n a hypothetical radar-homing missile.

1.1 Problem Defainition

Let us comsider an ensemble of systems identical
except for the values of a set of k system parameters P =
(pl, Poy +oes pk)t. These parameters are assumed to be
stataistically independent random variables. A sample
system from the ensemble 1s defined by a specific ordered
set (pl, Pos ...,bpk). The situation 1s paictured an
Fig. 1.1,

It 1s assumed that the type of probability das-

tribution for each random parameter is specifred, but that

the constants which precisely defaine these distributions

may be varaied. These constants are termed dastraibution
t
constants and are represented by x = (x;, X5, 20, x ) -

For example, suppose the parameters pJ are Gaussian with
respective means pJ and standard deviations OJ’ where the
pJ's and gJ's may be chosen by the design engineer. Then
t
?_c_ = (E, g_} = (!—Ll, L l—Lk; 011 LRI Y Gk) and nn = 2k-
For any sample system in the ensemble, we define

a measure of system performance, a performance index J,

whaich s a function of the random parameters and as,

therefore, a random variable:



Fapag. 1.1 Three samples lS 28 38 from an ensemble of

b 3
systems.
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J = J(p]-’ p2, v ey p]:C) (1-1)

The ensemble average (expected value) of J 18 a measure of
the average system performance. This expectation of J,

E {J} =¥, termed the average performance index, 13 a

function of the distribution constants of the random

parameters:

E{J}=‘P=‘y(xl, -aO,X) (1'2)

n

For a given set of distribution comstants we may

also define a cost function, C(x), as a measure of the

cost associated with manufacturing systems with these
distribution constants. Typically, C{x) will depend
specifically on the parameter tolerances, o, The cost

function and the average performance index are summed to

form the craterion function, F(x).

F(x) = ¥ (x) + C(x) (1.3)

The problem to be solved 1s that of optimizing (minimizing
or maximizing) ¥ with respect to Xyg ey X subgect to a

set of m ainequality constraints on the xl's.

g (x) =0 1 =1, veoy, m (1.4%)

The inequality constraints may represent restrictions
imposed by the design engineer or constraints required for
proper definition of the distribution funections of the

system parameters. For example, 1f p, 1s Gaussian wath



2 .
mean pl and variance T then the designer may reguire

- 10 < p, <5, and we must have ¢, > O.

1.2 Previous Work

The problem of optimizing an ensemble of systems
with respect to parameter variances as well as parameter
mean values has been recognized for some time, but little
work in this area has been accomplished. The exceedingly
large number of system simulations necessary to evaluate
and optimize the craiterzon function for a dynamic system
with random parameters makes the solution to such problems
impractical without the use of very fast hybrid computers,
which have become available only in recent years. In 1959
McGhee and Levine (1964) employed Monte-Carlo simulation in
the optimization of production tolerances for twoe Gaussian
parameters in a radar-homing missile (this paper i1s dis-
cussed more thoroughly in Chapter 4). Parameter mean
values were selected prior to the simulation, and the
criterion function was then estimated for sixteen combina-
tions of tolerance values. With a slow analog computer,
approxamately one week of computing time was required,
demonstrating the need for a fast repetaitive machine in
solving a problem of any complexaity. Korn (1966) has
outlined the problem of hybrid-computer optimization of
systems with parameters subject to production variations.

Note that simultaneous optimizatlion ol mean values as well




as varlances will, in general, resull in cptimum mean

values different from those for the case where all vari-

ances are set to =zero.

Recently Bohling and O0'Neill {(1970) have presented
a hybrid-computer approach to parameter ftolerance analysis.
With the aid of an interactaive display system, the operator
can quickly evaluate the effects of parameter tolerances
on system performance and reject unsatisfactory designs
without waiting for the accumulation of large statistical
samples. This type of operator-program interaction, which
provides insight inio system behavior as well as a saving
in computer time, could be equally beneficial in parameter

optaiamization.

1.3 Solution Approach

The solution of the parameter optimization problem
outlined in Section L.l may be divided anto two parts:
evaluating the criterion function F(E) and choosaing the
xl's to optimize F(x).

The main problem in evaluating F i1s the calculation
of Y= E{J(pl, Pos =5 pk)}. This expectation may be
calculated analytically for only the simplest of systems
and performance indices. For systems of any complexity, a
natural method of calculating ¥ i1s to estimate 1t by Monte-
Carlo saimulation. With thas approach, the mathemataical

model of the system 1s implemented by a computer. For a



given set of distribution constants sample values of the
random system parameters are obtained from noise

generators, and the system i1s operated or '"run'" many times
to obtain an estimate of the average performance index Y.
For systems described by differential equations, this task
1s a natural one for a high-speed iterative analog computer,
which 1s capable of solving differential equations much
more gquickly than a digital machine.

The job of optimizing the Monte-Carlo estimate of F
1s most eas1ly handled by a digatal computer, which can
examine the performance index estimate and implement
sophisticated strategies for locating the optimal parameter
values. The main difficulty in solving the parameter
optimization problem results from our inabilaity to measure
Y({x) exactly. The estimate of ¥ from many analog computer
runs will, 1n general, contain an error which can lead to
a wrong decasion in the search for the optimum parameters.

For the reasons discussed in Chapter 3, a creeping random

search algorithm was chosen for the optaimization strategy.

The daivaiszon of the problem into these two tasks,
estimation of W(E) and optimization, suggests the use of a
hybrid computer comsisting of a small dagital computer
interfaced to a high-speed analog machine. Such a com-
puting system 1s employed for the problem solved here.

The dagaital computer is a Digital Equipment Corporation

PNP-9, which has an 18-bit word length and 16K of core



memory. The University of Arizona's ASTRAC-II i1s a + 10.
volt repetitive analog computer capable of differential-
equation solution rates of 1000 runs per second.

A review of the laiterature on parameter optimiza-
tion was undertaken in preparation for selecting an effec-
tive search strategy for moilisy criterion functions. Thas
survey 13 the subject of Chapter 2. The algorithms
developed for the estimation of the criterion function and
optimization are discussed zn Chapter 3. Chapter b
describes the application of the method to the radar-
homing missile problem, and some general remarks and con-

clusions are gaven 1n Chapter 5.



CHAPTER 2

A SURVEY OF PARAMETER OPTIMIZATION TECHNIQUES

2.1 Introduction and Notation

Duraing the past fifteen years the fields of
optimum systems design and optimal control have produced a
large nmumber of parameter o¢optimization techniques. Thuos
survey reviews the important techmniques available and
attempts to evaluate their relative worth. Since no one
method 1s best for all situations, attention is focused on
factors which determine the suitability of a method for a
particular class of problems. These factors include the
type of criterion function to be minimized, constraints on
the parameters, errors in measuring the craiterion function,
and the computing equipment to be used. The techniques
discussed have been chosen for their applicability to the
wide range of criterion functions found 1n engineering
problems. Thus, algorathms designed for rather specific
functions are not treated here. SBuch methods ainclude
linear programming, Gauss's least squares, and geometrac
programming, which are discussed by Wilde and Beightler
(1967).

There are several references which review or dis-

cuss parameter opitimization methods in detail. The most

9



0
comprehensive and thorocugh treatment i1s found in Wilde and
Beightler (1967), whach covers most of the methods mentioned
here, with the exception of the creeping random technigues
and stochastic approximation. The latter topic is dascussed
by Wilde (196%4). Creeping random methods are treated by
Rastraigin (1967), Korn (1966), and Bekey and Karplus (1968).
McGhee (1967) gives an introduction to gradient methods.
Technigques especially suitable for analog or hybr:d
computers are described by Korn and Korn (1964), Bekey
(1964), and Bekey and Karplus (1968). A more mathematacal
treatment of parameter optimization, specifically of the
nonlinear programming problem, may be found in Saaty and
Bram (1964), which contains a full treatment of techniques
for handling constraints. Some other general references
with discussions of several parameter optimization methods
are Leon (1964), Lavi and Vogl (1966), Carnahan (1966),
Fleischer (1966), Kopp (1967), Hague and Glatt (1968), and
Spang (1962). A baibliography of hybrid-computer parameter
optimization methods is given by Gilbert (1967).

Formal definitions of the general parameter
optimization (nonlinear programming) problem and related
mathematical concepts are given by Korn and Korn (1968)
and Saaty and Bram (1964). The notation to be used here
i1s introduced in the following problem statement.

Determine the ordered set of n unknown parameters

T
x ==(xl, Koy voey xn) whaich optimizes (minimizes or
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maximizes) the craiterion function (objective function,

performance index)

subject to the m 1mequality constraints

g (x) >0 (or <) (a=1, ..., m) (2.2)

The optimal parameter values and associated craiterion
function value will be denoted by x* = (xi, x%, seey x;)t

and F*, The set of all x satisfying the constraints (2.2)

defines a region R called the feasible region. For con-

venlience, all optimization problems are considered here as

minimization problems. In some situations, constraints

are not present or may be effectively elimainated (uncon-

strained optimization).

In the evaluatzion of oplimization algorithms the
notion of comvergence 1s used to describe how guickly the
search proceeds to the optimum point. In particulax, some

algoraithms are said to exhibit quadratic convergence, which

has been defined in several ways in the literature. Wilde
and Beightler (1967) state that an algorithm capable of
finding the minimum of a guadratic function of n variables
after measuring n gradients 1s saird to converge quadratay-
cally. McGhee (1967) defanes guadratic convergence in the
following way. Let Ax be the parameter step vector com-

puted by the algorithm. Then quadratic convergence implies
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that as dx = x* - x approaches zero, the ratios of the
components of Ax and dx, Axl/ﬁﬁJ, approach 1 for 2 = 3 and
approach zero for 1 ¥ j. According to Box (1966) and
Fletcher and Reeves (1964), an algorathm enjoying quadratic
convergence willl locate the minimum of a quadratic function
in a finite number of steps. Unless otherwise stated, thas
last definition will be adopted for discussions here.

The notions of guasi-quadratic functions and quasi-

quadratic convergence are used by Wilde and Beightler

(1967). Let F(x) be a quadratic function of x, and let h

be a monotonic fugctlon. Then
y(x)} = n[F(x)]

1s said to be quasi-quadratic, and we shall descraibe an
algorithm capable of minimizing a gquasi-quadratic function
in a fainite number of steps as converging gquasi-
quadratically.

The optimization techniques described here have
been grouped under the headings: gradient descent methods,
conjugate search-direction methods, quadratic fit methods,
direct search methods, random methods, and stochastic
approximations. The discussions are carried out for the
unconstrained case, Section 2.8 describes methods for
handling constraints. Comparative evaluations of the
methods on the basis of results from test functions and

practical problems are given in Section 2.9.
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2.2 Gradient Descent Methods

The technaiques discussed 1n this section assume a

smooth objective function and make use of farst-order

partial deravatives to determine the optimizing stieps.

These methods include steepest descent schemes and Partan

(McGhee, 1967, Wilde, 1964).

2.2,1 Steepest Descent

A smooth function F(x) may be represented locally
about any point E? by a Taylor series-
F(x%+ax) = F(x°) =+ QF_(£°)tA_>5 + O(AEZ) (2.3)
where

oF
Bxl

[M

oF
sz o

M

VE(x®) = g(x°) = g% =| - (2.4)

2
and O(AE ) indicates a remaindexr comnsisting of terms of
second-order and higher in the Axl. For small Ax , the

. o
term limear in Ax is dominant, and to make F(E + QE) <

F(E?) we take a step in the dairection —g(EO). To show that
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F(x) can be decreased by such a step, we let Ax = -ag(x’),

@ > 0. Then,

F(x%+8x) - F(x°) = ~ugﬁ§0)tg(§°) + O[(uagﬁEO))zj
< 0 for small «&.

The chozice of & 1s cratical in determining the speed of
convergence; for small &, convergence 1s slow, and too
large an & may result in no convergence. While there are
many schemes for choosing &, probably the most used are
the Newton-Raphson and "optimum gradient™ methods.

The Newton-Raphson technique {(McGhee, 1967) uses

o

the representataion of Eq. (2.3) and, neglecting the higher

order terms, finds o« = ao such that F(EF + AE) = 0. Thus,
_ Fx)
% = Bt o °

This step size may locate a point 5? = A% such that

F(go + Ax) > F(g?), and 1t 1s possible for the Newton~
Raphson method never to converge, as shown in the example
of Fig. 2.1. On the other hand, this technique can be
effective 1n avoiding local minaima (Fig. 2.2).

The problem of instabilaily can be avoided by

determining o by the optimum gradient method (McGhee, 1967
Bekey and McGhee, 1964). Saince F(E) 1s known to decrease
an the mnegative gradient directaion for some small «, there

exists an &” on (o, a_ 7 such that F(x® + a=dx) < F(x° + odx)



Fig,

F(x)

3

2.1

o
/

x Xy Xyees XxX* X,BX,SX,--. X

An example of non-convergence with the Newton-
Raphson method.

15



Faig.

F(X)J

2.2

An example showing avoizdance of a local minimum
with the Newton-Raphson method.
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where & is any other scale factor om (0,x_ 1. The optimum
gradient method uses a one-dimensional search to locate oF
for each step an the steepest-descent direction.

Steepest-descent methods were of the farst to be
used in optimization and have been applied successfully to
many problems, especially in the initial stages of the
search.,. Convergence, however, tends to be very slow near
the optimum, and the method may faxrl altogether for
functions with irregular parameter landscapes. In addi-
tion, since the direction of the gradient vector depends on
the scaling of thg parameters, x , the performance 1s
strongly dependent on this scaling, problems with long,
narrow contours will be more difficult to solve than ones
with nearly circular contours. When gradient information
1s available, more modern methods such as Partan or the

conjugale direction techniques are superior.

2.2.2 Parallel Tangents (Partan)

An attempt to speed up the convergence of gradient
descent algorithms led to the method of parallel tangents
(Parian), which was developed by Shah, Buehler, and
Kempthorne (1964) after Forsythe and Motzkin's (1951)
suggestion of a steepest descent acceleration technique in
two dimensions. The two versions, steepest-descent (or

gradient) Partan and general Partan, are discussed i1in
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detairl by Buehler, Shah, and Kempthorme (1964), Shah et al.
(1964), and Wilde (1964).

Sieepest-descent Partan alternates steepest descent
steps waith acceleration steps as shown in Fig. 2.3. [In
this discussion of Partan a "step" implies a minimization
of F(E) along a line.] For general Partan acceleration
steps alternate with sleps along lines parallel to planes
which are tangent to F(E) at previous even-numbered

J

points 35 (Fig. 2.4, ﬂJ = tangent plane at “x). General

éartan has {the property of scale invariance, which is
usually considered an advantage in minimizing general
functions. With eather method a quasi-quadratic function
of nn variables is minimized zn 2n or less steps. To carry
on the algorithms for general functions afiter 2n steps
ei1ther method can be restarted at the point 2%& (1terated
Partan), or steepest descent Partan may simply be continued
(continued Partan). The partial derivatives BF/Bxl must be
evaluated or approximated before alternate steps to obtain
the gradient for steepest descent Partan oxr the tangent
plane for general Partan. Harkins (1964) has found the
very interestaing result that convergence can be improved by
inaccuracliles in determining the minamun along a line. He
suggested using only one to five points with a golden

section search.



Fig,

2.3 Schematic diagram of steepest descent Partan.
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Fig. 2.4 Schematic diagram of general Parian.
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2.3 Congugate Search-Direction Methods

The techniques discussed in this section are
deszigned to minimize a quadratic function by a series of

one-dimensional minimizations along lines termed conjugate

directions. For most of the methods, a quadratic function
of n variables 1s minimized with n one-dimensional minimiza-
tions. To the extent that a non-quadratic function to be
minimized can be approxXimately represented by a quadratic,
these metheds provide rapid convergence, especially 1in a
region near the optimum, where the fairst- and second-order
terms of a Taylor series expansion of a smooth function
domanate. The conjugate-direction algorithms perform well
on difficult test functions and have been used successfully
in the solution of optimal control problems (Biria and
Trushel, 1969, Lasdon, Mitter, and Waren, 1967). An
introduction to some general properties of conjugate
directions 1s followed by discussions of several algoraithms.

Let F(x) be a guadratic function of m varziables X

F(x) =% xAx + b'x * ¢ (2.5)

-~

with gradient
g(x) = Ax + b (2.6)

where A 1s positive definite and symmetrac.
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2.3.1 Congjugate Direction Properties

1 n-1
T P R d

A set of n aindependent directions ?g
are conjugate with respect to a positive semi-defunale

matrix B (B-conjugate) if

(2.7)

l_gi_tBJ’E -0

The aimportance of conjugate directions deraives from

the property that n successive minimizations in the A-

conjugate directaions will locate the mainimum of F(E).

o 1
21 Ea A )

To see this (Fleicher and Reeves, 196%4&), leil

n~l§ be A-conjugate, and let a step from 15 to 1+l£ be
determined by
where T 1s chosen such that

(p.e., o manimaizes F along the direcizion %g). Iteration

J+1X n

on (2.8) from to "x yields

x = x + o d (0 < 3 < mn-1) (2.10)
1=3+1

As a convenience, let us assume a change of variables so

that b = 0. It then follows from (2.6) that
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n +1 nol 1 i
g=9"¢g+ 3 o A Td (2.11)
1=3+1
From (2.9) we have
n-1
R da =z *a*d®ada (2.12)
1=3+1
and as ogj 1Q, cen, -1y are A-conjugate,
Pgt g = 0 (2.13)

Since the n independent JE'S constitute a basis for En,

?§'= QJ which 53 the condition for nx to be the minimum

of (2.5).

This same property may be demonstrated 1n a slightly

1

differeni way. Pearson (1968) shows that since OQ, d,

ey n"lg_constltute a basis, any EﬁEn can be represented

1 n-1
s Ay ey, d) may

in terms of ilhe 12}5, and F(x) = F(OE
be decomposed into n independent terms (each depending on

only one lg) to be minimized separately.

2.3.2 Congjugate Direction Algorithms

Pearson (1968) has presented a unafied treatment of
a class of conjugate-direction algorithms. One, the
projected-gradient algorithm, 1s based on the fact that
conjugate directions may he generated by requiring that
itl 1

1
successive steps, s = X - X

, be made orthogonal to

previous gradient differences, 1.e.,



2k

Qg -39t %5 =33P 35 20 (j <1 - 1) (2.14)

This leads to the following method. (Pearson's numbering

of the algorathms s retained here.)

Algorithm 1--Projected Gradient

Choose an initial poaint oz.and an initial positive-

definitie symmetric matrix °H. Set 1 = O.
1. Compute the search dairectzon
*d=-TH g (2.15)
-+
2. Locate the next point * lE'by Mminimizing

F(l_zi + 1061_c_1_) with respect to o (Yo > 0).

1+1 a 11
x

3. Update the matrix H by

1H1;}XF1H

H="H - ——"" (2.17)
b T Vs T

y Hy

L

and return to step 1 with 1 replaced by 1+1.

After not more than n iterations (each consisting of

1

steps 1-3), “x = x* and *

H = 0.
The other algorithms considered by Pearson,

including the well-known Fletcher-Powell-Davidon wvariable

melric method, are based on the following idea.
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S = [oi, lgﬁ “eey l—lij be a matrix whose

columns are the search steps Ji, and let 7Y = [Ox, lzj

1-1

LI

lj be a matrix whose columns are the gradient differ-

ences Jy = J+lg - Jg. Then 1f oi, li, ey 1_15 are

_ =4

independent, the next search step li w1ll be A-conjugate

to the Js (0 < j < 1-1) af

*a = *m g (2.18)
where “H 1s chosen to satwsf{y
*H 'Y = s (2.19)

Equation (2.19) has the following general solution for an

arbatrary n x n matrix Z.

g = s o4 ozt D) (2.20)

where y* 1s the generalized inverse of Y. Dafferent
choices of Z 1n (2.20) yield dirdferent solutions for i
corresponding to different methods of choosing the A-
conjugate darections li. Pearson deraves four algorithms
in this way, three of which lead to readily computable
formulas gaven below. Each algorithm proceeds from an
inaitial poznt 05 according to steps 1-3 above wilh the

proper formula for “H inserted for Eg. (2.17).
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Algorathm 2

H = "H + (2.21)

H = "H + - (2.22)

Algorathm & Fletcher-Powell-Davaidon (F-P-D)

1tly - lgetastp (2.23)

wnere

For a quadratic F(x) each algorithm converges 1n n steps
or less to the optimum poaint x*, and this convergence 1s

stable i1n the sense that F(l+l

x) <¥F('x). At x*, "H =a"t
the inverse (Hessian) matrix of the second partial deraiva-
tives of F(x). Thas information can be helpful in practical
design problems, since 1t andicates the semsaitaivity of F(x)

to small deviations of X from E*' Neote that for each

iteration the major ccmputational effort coeonsists of:
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evaluating the gradient of F(lz), performing a linear
search for the optimum scale factor 1&, and updating *H.
Algoraithm 4 1s the modification by Fletcher and Powell
(1963) of Davaidon's (1959) variable metric algoraithm.

Fletcher and Reeves (1964) have invesligated the

conjugate gradient algorithm, which 18 a modafication of a

technique due to Hestenes and Stiefel (1952) for aiteratively

solving a set of n linear equations i1n n variables u_ -
B.l.l..=}.£ (2.24)

An excellent description of the conjgugate-gradient method
for solving Eg. (2.24) 1s given by Beckman (1960). The
application to the problem of minimizing a quadratic
function (2.5) 1s made clear by writing the condition for

x to be the optimum point.

g(x) = Ax + b =0

pram—

Ax = -b (2.25)

Thus, the problem of minimizing F(E) 1s equivaleni to
solvang the set of linear equations (2.25) when A and b
are not known explicitly.

The Fletcher-Reeves (F-R) algorithm proceeds as

follows. Choose a starting point OE and initially let
°a = -°g. Set i = 0.
1. Locate the next point by minimizing F(l§+lal£)

with respect to Ta.
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1l 1 1 1
x

i+l
2, Compute the next search darection 4 by

i+l ., =

Q _1+1§ + lBlQ
where
1.2
= 2
(*e)

and return to slep 1 with 1+1 replacing .

In the original method for linear equation solving,
o and 1§_are computed directly from B and k, while here i&
must be evalualed by computing the partrals of F(ﬁ), and To
1s determined by the linear minimization of step 1.
Convergence 1s stable, and for quadratic functions, the
optimum poaint is obtained in at mest n interations. Unlike
in the Fletcher-Powell-Davidon method, A_l 15 not explaicitly
available at the end of the search, but the compulalional
effort for this algorithm 18 less.

Results of applying the algorithms to test functions
have been publaished by Box (1966), Fletcher and Powell
(1963), Fletcher and Reeves (1964), and Pearson (1968).

Pearson found that i1n using these algorithms to minimize

functions where gfls lJocated on the boundary of a



constraint, convergence was improved by setiting H = °m

1
every n + 1 steps for Algorithms 1-4 and resetting d = —1§
in the Fletcher-Reeves algorithm. (The constrained minimi-

zations were performed using the created response-surface
technique discussed in Section 2.8.) Acceleration of
convergence by resetting H in irregular parameter land-
scapes has also been reported by Huelsman (1968).

A conjugate-direction method for minimizing a
function without calculating the gradient has been invented

by Powell (1964). Beginning with an initial poaint OE and

2
n lainearly independent directions lg, dy een, ?ﬂ, his
basic procedure minaimizes F(x) seqguentially along lg, d,

vewy 4. Let nEbe the point determined by the last one-

—

n o)
dimensional minimization. Then x - "x is taken as the
direction for another one-~dimensional minimization. For

the next ateration of the procedure, 12 1s replaced by

l+1£_for i=11x, 2, «esy n-1, and ni 15 replaced by (nz_“
°x). Thus, al each iteration a new search direction is

defined, and Powell proves that for a quadratic F(x) these

directaions are conjugale. Thus, the minimum 1s located in
n aterations. A diffaculty with this method arises because,
1

1nn discarding the old "d at each iteration, the algorithm
may be left with a new set of directions which does noi
span the parameter space. Powell's modification to
eliminate this problem resulis in an algorailhm requiring

more than n iierations to minimize a gquadratac.
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Zangwxll (1967) considered this same problem and
proposed his own modification of Powell's basic procedure.
Has algoraithm is shown to converge for the case of F(E)
strictly convex and to converge in n or less rterations (or
in 2n2 or less one-dimensional minimizations) for a
quadratic F(x).

Powell's method has been applied to several test
functions with good results (Box, 1966; Fletcher, 1965;
Powell, 1964). Saimilar data for Zangwill's algoraithm are
not available, although the author has used i1t successfully

in minimizing Rosenbrock's function (Section 3.1).

2.4 Quadratic Fit Methods

It 1s again assumed that the function to be
minimized can be represented adequately by a quadratac
(Eq- [2.5]) n the mneighborhood of the optimum. Using
Eg. (2.6) for ihe gradient of F(x), we can solve for the

parameter change Ax = x* -~ x which yields gﬁﬁj = 0.

px = -A"Tg(x) (2.26)

Newton's method (Bekey and McGhee, 1964, McGhee, 1967)

consists of evaluating g and A and computing the optimizing
steps by Eq.(2.26). For problems which can be expressed
1n the framework of a least-squares regression, the Gauss-

Newton method approximales A by a regression matrix, whuich

reguires only firsi-deraivalive information (McGhee, 1967).
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Note that for either method considerable computational
effort is required at each step--evaluating g ;nd A {or ats
approximation) and inverting A. Furthermore, af g and A
are calculated from perturbations, care musl be taken in
selecting the step size (Section 2.9). Although conver-
gence may be very rapid with either method, a pooxr starting
point may result in divergence. This disadvantage makes
methods of this type more desirable when incorporated in a
strategy including a more stable search method. The follow-
ing technique may be more suited to this type of strategy.

Ralher than evaluating g and A darecily, we may fat

a second-order regression surface to a set of N observa-

taons of F(x). The regression surface is defined by

t t

Yi(x) =5 x Ix+Bx+u (2.27)

-

Performing the minimization

min g [F(l ) (1—)]2 (2.28)
YJ,kvﬁasa o1 x) - ¥(Tx .

results in (n2 + 3n + 2)/2 equations which determaine F,_E,
and . The estimate for the optimum point 15 obtained by
solving

V¥(x) = Tx+ B =0 (2.29)

Since the N observations may be taken at any values of x

(although they must be suffaicient to defane r, B, and a),
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this technique could be combined with another climbing
method, for example, a pattern search (Section 2.5) or
a creeping random search (Section 2.6}, 1.e., observations
made during the climbing method are also stored for use

in Eq. (2.28).

2.5 Dairect Search Methods

Gradient descent methods and the conjugate direc-
tion methods uvtilizing the gradient expend a large amount
of effort in obtaining information (the gradient) at a
single point; this information 1s extrapolated to search
for a better point. Noting this considerable effort at one
peint and the inefficiency of steepest descent techniques
on many prcblems, Hooke and Jeeves (1961) proposed making
exploratory moves and always moving the base of the search
when an improvement was found. Algorithms of this type

have become known as direct search methods.

Hooke and Jeeves' patfern search is a direct

method desaigned to follow a descent path to the optimum by
searching in previously successful directions (pattern
moves). (Explicait instructions for the algorithm are
given by Wilde and Beightler [1967].) Following each
pattern move, exploratory moves are made with each
coordinate separaltely to detect changes of direction of
the descent path. The programmer sets the exploratory

move step length (which may be reduced later by the
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algorithm); the lengihs of pattern moves are determined by
exploratory step lengths and previous pattern-move lengths.
Thus, there 1s no effort expended i1n minimizing along a
search direction. The search is ended when successive
failures lead to a reduction in the exploratory step
length below a preset minimum. Note that the progress of
a pattern search depends only on whether each function
measurement 18 greater than or less than some previous
observation, the magnitude of differences in function
values are ignored. The fact that convergence does not
depend on accurate measurements of function differences

(as in the case of algorathms requiring gradients or linear
minimizations) may be an advantage in problems with noisy
cbservations of the criterion function. (The problem of
oplaimizing in lhe presence of noise is discussed in
Section 2.7.)

Rosenbrock's mathod of rotating coordinates

(Rosenbrock, 1960, Walde, 1964) and its alteration by
Swann (Swann, 1964, Fletcher, 1965) are also designed to
recognize a direction of descent and to search along at.
However, the fixed-length steps of pattern search are
replaced by successive linear minimizations in n orthogonal
directions. The net progress in parameler space resulting
from n such minimizations establishes a new search direc-

tion, which 1s analogous to a "pattern'" direction. The
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remaining n-1 dairections for 1lhe next series of minimiza-
tions are made orthogonal to the newly established one.

A unique approach to opitimization was borrowed from

the sequential simplex or saimplicial method of Spendly,

Hext, and Himsworth {1962) for locating a nearby optamum
point and following 1t in the presence of nozse. The method
1s begun by placing n+l measuremenis at the vertices of an
n-damensional simplex (Fig. 2.5). The point on the simplex
with the largesl function value 1s determined, and a new
point 1s located by reflecting this "worst!" point through
the center of the, simplex. Thus, a new simplex 1s created,
consistaing of the old one, but with i1he new point replacing
the previous worst one. This movement of the simplex

tends to track the optaimum point. In order to speed the
progress of the search from a starting point far from the
optamum, Nelder and Mead (1965) modified the original
method to allow for expansion and coentraction of the
simplex. With this provision 1t was found that the i1nitial
size of the simplex daid not greatly affect the speed of
convergence. Since the movement of the search depends only
on finding the worsil point of the simplex, the method is
not disturbed by small observation errors. Spendly, Hext,
and Himszworth noted {ihat the rate of advance was inversely
proportional to ihe standard deviation of Gaussian measure-
ment noise--an indicataion that averaging observations at a

point would not be beneficial, since the slandard devialion
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inttral 51mplexff

initial worst point

=
1

Fig. 2.5 Operation of the simplex method 1in two dimensions.
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1s reduced in proportion to the square root of the number
of observations.

Data on the performance of the simplicial and
rotating coordinates algorithms have been published by
Fletcher (1965) and Box (1966). Saimilar data for pattern
search are not known to the author, although 2t has been
applied successfully to network-design optimization by
Huelsman (1968). Wilde and Beightler (1967) report that -
for patiern search the number of function evaluations for
optimization tends to be omly a lanear function of the
number of parameters, n, rather than a quadratic or cubic
function as for mosl olher methods (another exception is
the creeping-random search off Section 2.6).

The direct search methods are designed to faind the
best search directions and to proceed in these directions
without wasting time evaluatang deravatives. This tends to
make their performance favorable in the early stages of the
search. However, in the neighborhood of the optimum the
derivative information acquired by the quadratically-
convergent conjugale-direction algorathms accelerates thear
progress. This behavior was noticed by Fletcher in com-
paring the performance of Swann's version of the rotating
coordinates melhod with 1lhe conjugate direction method of
Powell (1964). The results of Box indicale 1lhat the

samplaiciral and rotaling coordinaite methods become
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ineffective compared to the conjugate direction algorithms

as n increases beyond 5.

2.6 Random Search Methods

The development of random search optlmlzatloﬁ was
motivated mainiy by the need for methods which were simple
to program and effective i1n irregular parameter landscapes.
Before the availability of true analog-digital hybrid
compulers simple random search algoraithms could be i1mple-
mented by hard-wired optimizers attached to analog machines.
Random search methods are still especially attractive for
hybrid computers consasting of high-speed repetitave analog
machines capable of evaluating the criterzon function
quickly and small digital computers without the floating-
point hardware necessary to make complicated algoraithms
Tast enough to be advantageous. Furthermore, the complex,
nonlinear dynamic systems which are most advanlageously
simulated on analog machines often have parameter land-
scapes with the sharp ridges, discontinuous first deriva-
tives, etc., which can cause deterministic algorzthms to
fazl. There is also evidence to suggest that random
methods are superior in oplimizing smooth functions of many
parameters (Schumer and Steiglitz, 1968).

The laiterature reviewed here has been loosely
grouped into the categories of theoretical developments and

specific algorailhms wilth applications.
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2.6.1 Theoretical Developments

Brooks {(1958) suggested choosing observation points
from a uniform distribulion over the entire parametexr
space. After N such points have been tested, the one with
the smallest criterion function value 1s taken as the best
approximation to the optimum. To evaluate the effective~
ness of this method, let the parameter space be an n-
dimensional hypercube with sides of unit length, and
rmagine the optzmum point to be enclosed by a smaller
hypercube with sides of length 6 and volume v = 57, We
would like to ensure that the search will place at least
one point in the smaller hypercube waith a specxrfaied
probability. Brooks showed 1hat the number of irials

A
necessary to have probabiliiy p of casting al least one

point i1nto the smaller hypercube is

= %%g%%%% (2.30)
Taking v to be censtant in Eg. (2.30), 11 was concluded
that the number of trials required {or random search does
not depend on the number of parameters. However, as
pointed oat by Hooke and Jeeves (1958) and Spang (1962),
for v to remain constant, & must increase exponenizially, so
that for a fixed number of trials the uncertainty ain the
parameter values, 0, increases exponentially with n. Spang

showed that substitution of &6 for v in Eq. (2.30) yields
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N = - log(l-p)/s™

~ 2.3/67 (2.31)
for p = .9, whereas the number of points required for a
deterministic grad test (points located equal distances &
apart) s 1/6n. Such a large number of traials obviates the
use of either method as a means to locate the optimum
accurately. But in the absence of any information regard-
ing the location of the optimum, a grid search might be
used to choose a stariing poznt for some sequential search
al gorailhm.

Rastrigin® (1963) has studied the convergence
properiies of a fixed step-size, creeping random search
algorithm (FSSRS). Beginning from a point 15, exploratory
steps Ax are m;de with fixed length and random direction.
When a point is found such that F('x + Ax) < F('x), the

L

corresponding increment is labeled +lA§'and the search is

moved to the new base point

1+1§ = Tx + 1+1Ax {2.32)

(With thas nolation, 1 indexes only successful trials.)
The algoriihm was compared 1o a sleepest descenl method in
which al each 1teration a step of the same magnitude was

1

made in lhe direction of the gradient at ~x. Rastragin

initroduced the concept of search loss, defined as the

number of craiterion function evaluations required for a
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dasplacement in the negataive-gradient direction equal to
the step length Ax , or equavalently, the reciprocal of
the average displacement in the negative-gradient direction
per function evaluation. The search loss was computed for
both algorithms applied to a linear test function and a
X3)1/2

n
distance function F(x) = ( Z . For both functions

1t was found that as the nz;%er of parameters increased,
the creeping random algorithm was superior to the steepest
descent method on the basis of secarch loss. The limrta-
tions of thais comparison might be noted here. The steepest
descent algorithm is made very i1nefficient by requiring a
gradient evaluation (n+l function evaluations) at each
i1teration and allowing only constant step sizes. A more
practical steepest descent program could make more effi1-
cient use of the gradient information (for example, the
optimum gradient method of Section 2.2). Thus, an practice
the relative advantage of the creeping random strategy
might not be as great.

The convergence of the creeping random method 1n
the presence of mnoise has been studied by Gurin and
Rastraigin (1965). For a linear criterion Tunction,
measurements were corrupted by Gaussian noise with zero
mean and variance 02. The random search algoriibm used a
Utesting step! of faxed lengih o and random direction.

When such a tesiing step resulted azn an improvement in the

measured value of F(x), a step of length Ax  was laken in
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the same dairection. The progress of this algorithm was
compared to lhat of a steepest descent method, which used
2n periurbations of length & to determime 1lhe gradzent and
then took a working siep of lengih Ax 1n the estamated
negative-gradient direction. Comparisons were made on the
basis of search loss, and as a funclion of the number of

parameters n and a signal-to-noise ratio

o8 [

For any faixed value of & search loss 18 a lancaxr function

i)

of n for the random method. For 8 = o (no noise) the
gradient method has a search loss linear in n, bﬁt for

8 = 1 the scarch loss is greater 1han c n\/n—l, where ¢ 1is

a constant. Fé% § = 1 and § = « the random search method
was superior for n > 6. For n = 6 the increase of noise
level from & = = to 8 = 1 caused the search iloss for both

methods to increase from 12 to approximately 32 (function
evaluations necessary for a net progress of Ax in the
negative-gradient darection}. Brooks and Mickey (1961)
have studied the fixed step-size steepesl-descent
algorxithm for a linear craiterion function with Gaussian
neoise. Their results indicate that 1n order 1o minimize
search loss, a minimum number of function evaluations
should be expénded on estimaling the gradieni. Thus, had

Gurain and Rasiragain used n+l steps (rather ihan 2n) to
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estimale VF, the relatave advantage of 1he creeping random
method over steepest descenl might have been dimimaished.
Beginning with Rastrigin's fixed step-size random

search (Eq. [2.32]), Schumer and Steiglatz (1968) developed

an algorithm with adaptive siep size. Foxr the craiterion
o2 2

function F(x) = T X, = P, the expected improvemenl per
1=1

step, normalized by the present value of F, was computed as
a function of n and n = s/p, the ratio of the step size to

ihe distance to 1he optamum, 1.e.,

~E[ AF
Hn,n) = —% = (2.33)

I(n,n) was maximized with respect 1o 7, and the optimum
T(n) was evaluated for large n. This led to the result
that the averagde number of function evaluations necessary
to minimize F within a fixed accuracy i1s asymptolically
linear in n. A practical algoritihm, which attempts to
adjust ithe step size Lo the optimum during the minimization
process, was developed and compared to two delerministic
algorithms. These were the simplicaial method of Nelder and
Mead (1965) and a second-order method which evaluates first
and second partial derivatives at each iteraiion. Per-
formances were compared on the basis of the average number
of functiron evalualions required for minimization. For a
guadratic function, the second-order method was superior

noy
for n < 78, bul for the Tunction F(x) = I x: the adaptave
=1



l_|:3
random search algorithm was superior to the second order
method for n > 2 and superior to the simplaicial method for

n > 10. The adaptive search was also lesied for
n

2
F = % a x_ where the a, were chosen from a probabilaity
=1
distribution uniform on [.l,l.]. For each of these lhree

tesi functions the number of function evaluations required

by the adapitive random search method was proportional to n.

This compares with results reported for pattern search
(Section 2.5). For other methods, funclicn evalualions are
usually proportional to the second or 1hird power of n.
Adaptation of a creeping random search with respect
to search direction has been discussed at length by
Rastrigan (1967). He has proposed several learning
algorithms which adjust kpl, the probability of selecling
a posilive ancrement for the 1t parameter at ihe ki step,
as a function of pasl performamnmce. Adjustment 1s accom-
k k k

plxshed by making P, = P (

w_), a monotonic, non-
1 1

k
decreasing function of the memory parameter W One

example of Rastrigin's schemes for adjusiing kwl 1s the

feollowing algoxithm.

wo=w, - b Axi AR (2.34)

where
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Bap o= Px) - F(571x)

and

c, < w

<
1 = ¢

1 2°

The adjustmenl of kwl 15 proportional to the magnitude of
kAF, the step size causing kAF and a positive coefficrent,
6. For example, a positive kAxl causing an improvement

k
(kﬂF < 0) braings aboul an increase 1in {wl and 1lhexreby an

increase 1n k+1pl, the probability of increasing X at the
next siep. Rasirigin introduces other algorithms similar
to Eq. (2.34), whach allow for a discarding anformation
collected i1n the dastant past ("forgetting") and which
provide for better adaptation to the best of possible
successful dareciions.

An inleresting aspect of Rastrigin's work is his
rdea of separating the search algorithm from the learning
algorithm. The learning algorathm (Bgq. [2.34)) collects

information on past performance and adjusts the directrons

for future exploratory steps. It is the function of the

search algorithm to decide whether or not to actually move
the center of ithe search as a result of an exploratory
slep. One possabilaty 1s to move only when such a step
resulls in a reduction of F, e.g., Eg. (2.32). Rastrigin
also suggesis the possibility of moving i1he search with

every exploratory step. This places the learning algorailhm
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in complete conilrol of the search. Such a policy might be
beneficial in stepping over local minima or local flat

regions and in problems with observalion error.

2.6.2 Specific Algoraithms and Applications

Experaments with creeping random search strategies
on analog computers were reported as early as 1958-59,.
Favreau and Franks (1958) descraibed a creeping random
method for optaimizing dynamic systems, and Munson and Rubin
(1959) optimized a system of nonlinear algebraic equations
by a continuous creeping random perturbation of parameters.
A hard-wired creeping random optimizer, including provi-
sions for expanding and reducing step size and correlating
future trial-step directions with past successful darec-
tions, was built by Matchell (1964) for use with a fast
repetitive hybrid computer. This was employed by Maybach
(1966a) ito solve minimum-time bang-bang optimal centrol
problems.

The avairlability of true analog-digital hybrid
computers has made 1t possible to employ more sophasticated
random search silrategies ithan could be implementied by
hardware optimizers attached to analog machines. Here we
shall discuss alierations io the basic creeping random
search which were iniroduced and applaied chiefly by Bekey
et al. (1966) and by Stewarti, Kavanaugh, and Brocker

(1967).
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One modification concerns the classification of a
trial step as a success o) failure. Let F(li) be the
current value of the craterion function and F(IE + Aﬁ) the
value at a traial slep. Stewart et al. use a threshold

strategy to define a success for a minimization problem:

F('x + Ax) - F('x) <1 F(*x) (n > 0) (2.35)

In the beginning of the search, when F(lz) 1is large, a
relalively large improvemeni 18 required for a success,
while near the end of 1he search smaller improvements are
required. Stewarl et al. found thal the average number of
steps required for solution could be reduced by approxi-
mately one-third for n = .3 and 1 = .7 as oppesed tonn = 0,
while 1 = 1 resulled 1n a sharp increase in required steps.

Anolher possibrlity 1s a constant threshold level:

F(*x + Ax) - F(*x) < ¢ (2.35)

For example, ¢ might be taken just large enough to overcome
errors 1in measuring F(x).

A vector-valued craiterion function was employed by

Stewart et al. 1n a creeping random algoraithm to solve the
two-point boundary value problem resulting from a Maximum-
Praincaiple optamizalion of an oxrbat transfer problem.

Boundary condaitions were to be matched for siate variables

represenling displacemenl and velocity, Xq and X, and
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adjoint variables, p. The craterion function was defined

as

where each component of F is the sum of the errors in
matching the boundary conditions for one class of variables.

For a trial to be regarded as a success, 1t was required

that all three components of F be reduced (the threshold
strategy [Eq. (2.35)] was applied to each component). This
more restrictive success criterion might be useful in
avoiding a local minimumn where only one or iwo components
of F are small. Gonzalez (1969) emploved a vector-valued
function in a Maximum-Principle optaimization of the same
systems solved by Maybach (1966a). The number of evalua-
tions reguired for convergence was reduced on the average,
lhe most striking reductions being obtained for difficult
starting poants 1n the parameter space.

A modification for directional adaptation is the

introduction of absolute posaiiive and negative brasing

{Bekey et al., 1966) into the basic creeping random

algorithm, which 1s repeated here.

1%15 = o A (2.37)

If the last increment resulied in a success, 1t 15 used
again for the next traial step, 21.e., Ax = lAE (posatave

brasing). If the last incrementl Ax resulted in a failure,



48
~Ax 15 used for the next trial step (negative brasaing). OF
course, negalive biasing 1s not used following two succes-
sive failures, or the algorithm will loop endlessly. Alsao,
1t 1z wasteful 1o use 1t after the first fairlure following
a success. Bekey et al. reported that absolute blasing was
effectave in 1mproving convergence. Stewart et al. used
only positive birasaing and found that 1t decreased the
average number of steps required by approximately 0%
compared to the search without bilasing.

Another element of randomness may be introduced by
using & random ancrement for each variable, rather than an
increment of fixed length and random sign only. This
results i1n a step Ax which 1s random in length and direc-
tion, and all directions are possible. For the algorathm
with only random sign for each variable, only 2™ discrete
directions are possible. The disadvantage of this can be
seen in Fig. 2.6, where a zig-zag path must be followed
from the iniztial poxnt 05 to the optimum. Bekey et al.
chose the incrementls &xl as 1ndependent Gaussian random
variables with zero mean. Gonzalez (1969) chose the
increments from a uniform dastrabulion, which s usually
easier to generale on a digital compuler.

If random aincrements AxJ are used, the average step
size can be adjusied by changing the varaiance of the
distiraibution of ithe increments. If the stiep size 1s small,

a large proportion (asymptotic to 50%) of the ilrials result
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2.6 The behavior of a
search algorathm.

"discrete~directron” random

&9



50
in success (assuming no threshold strategy), but the
average improvement per step s small. On the other hand,
a large step size results in a small reiio of improvements
to trial steps. Karnopp (1963) suggests increasing ilhe
variance 1f an improvement occurs within two trials and
decreasing the variance 1f no improvement occurs withain
three trials. Stewart et al. provade for variance reduc-
tion by some factoxr after a number of consecutaive failures.
Bekey et al. used a constant variance of 4% of the range of
each parameter during the entire local search. It was
reported thal their work and the results of a furiher
study (Adams and Lew, 1966) failed to find a varisance
adjustment strategy yielding faster convergence than the
constant variance melhod. This result 1s especirally
interesting when conlrasted with the work of Schumer and
Steirglaitz (1968) on an adaptive step-size algorzthm. It

should be noted that the adaptive algoraithm was developed
for ihe criterion functaon F = 2 Xz and was lested on
other smooth functions, Whereaslzie results of Bekey
el al. are based on a nonlinear dynamic system with
minimum-time and minimum-fuel craiieria, which could lead
to an 1rregular parameter landscape.

An algorithm for directional adaptation of the

creeping random search has been proposed by Maiyas (1965).

From the point 15 a irzal step l+lA£ 1s taken.
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a+1 1 1+1

x=x" bx
If F(l+1§) < F(lﬁ), the center of ihe secarch is moved to
the poxnt 1+]§f Otherwise the center of the search remains
at 1§J and another traial step is taken. The trial steps

are given by

:1.-!-1Ax _ l+lg + 1+1T 1+1§

N

where ¢ 1s an n-damensional Gaussian random vector with

-—

i+l
zero mean and unit correlation matrix, d specifies the

+ +
mean of 1Ax, and 17 15 an n x n matrix. Adaptation is

accomplished by adjusting 1+l£ as a Tunction of pasi trial

steps and past successes and failures. Let

2+1 L i

o3
H|
(9]
[
+
(9]
>
W

where c, and ¢4 satisfy the Tollowwing conditions. If£f the

last step 1A§_resulted in an improvement [F(lﬁ) < F(l_lg)],

0<c <1, c¢c, >0,c_ +c, >1.

o - 1 e} A

Otherwaise,

0 <c <1, c <0,

< 1.
1

C + <
o] 1

0

Thus, the mean value for the next traial step 1s weighted
positively by the present mean value and weaighled posaitavely
or negatively by ithe last irial step. The transfTormation
matrix l+lT might be used to introduce correlation belween

the irial step componenils 1*lx3- But for a simple
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i+l

algorithm, Matyas specified T by
1+1T _ 1—:—1b I
where I 1s the zdentiiy matrix. The coeffacient l+1b may

be adjusted to contrel the variance of the irial steps.

A somewhat dafferent approach to randcm search has
been described by Rastraigin (1967} and 1s currently being
investigated by Heydt (1969). A search i1s made about an
anitial point °x for an improved point lEI[F(lﬁ) < F(°x)].
The line 1§ - 05 1s used to delermaine the axis of symmetry
of a hypercone 1in parameter space with focus at Oz (Fig.
2.7). The hypercone 1s constructed with angle © and
length h. Observations are made at points uniformly
disiributed inside the cone. The best of these (25) is
selected, and ihe line 25_— 15 defines the axis of
symmetry of the next hypercome. Thus, past successes are
used to determine the search direction. If no l+l§_W1th
F(1+1§) < F(lﬁ) 1s found in some number of observatilions,
© and h are increased to enlarge the search region. Thas
method would seem 1o be effectaive in Jjumping over some
local minima. On the other hand a hyperconical search
region may make the algorithm inefficient in turning sharp
corners, and Heydt has proposed experimenting with hyper-
paraboloids and hyper-hyperboloids. His algorathm with the

hyperconical search region was successful in optimizing a

satellile attitude acquisztion problem, which was solved by
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Fig. 2.7 Creeping random search wiath hyperconical search
reglLons.
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Kavanaugh, Stewart, and Brocker {(1968) with the creeping

random algorithm described by Stewart et al. (1967).

2.7 Stochastaic Approximatron

Most of the optimization techniques discussed iIn
previous seclions assume that the craiterion function is
evaluated without error. If error or 'moise’ is present,
these methods are reduced in efficiency or may fail
altogelher. Stochastic approximation 15 a technique for
oplimization in the presence of noise.

Lel us assume that the observations f(x) of a
unimodal craiterion function are contaminated by additive

noise:
f(E) = F(E) + v, (2.38)

where the random variable v has zero mean and finite
variance. A stochastic approximation minimLzation
algorithm (satisfying certain condaiions discussed below)
will converge to the optaimum, x™, in mean square and with
probability 1 as the number of observations, 1, of f£(x)
tends to ainfainity. Since i1he exaisting theorems of
stochastic approximation guarantee convergence only as

r > e, 1t 1s mecessary to refer to specifac app%lcatlons

for speed of convergence. Unfortunately, published

experimental results obtained wiith these algorithms are

few.
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The mathematical requirements which the algorithm
must satisfy 1n order to converge were discovered and
developed mainly by Robbins and Munro (1951), Kiefer and
Wolfowitz (1952), Blum (1952), and Dvoretsky (1956).
Chapter 6 of Wilde (196L4) contains a lucid inlroduction to
stochastic approximation; other readable treatments are
given by Hampton (1968) and Chang (1961). In this section
we shall daiscuss briefly the algorithm of Kiefer and
VWolfowitz, the general theorem given by Dvoretsky; and some
practical algoraithms with applicalions.

The Kiefer-Wolfowiltz (K-W) algorithm described here
is for a function of one variable; the extension to the

multidimensional case is siravrghtforward. The technigue as

similar to a deterministic steepest descent. From a point

lx, the noisy objective function is evaluated at t1wo

poinils *x + *¢ and 'x - Tc to obtain an estimate of the

slope of F(*x)-

o) - £t (tx = o)

Zlc

£(tx +

(2.39)

Then a working step is taken according to this estaimate

and a step-size factor, 2 " a
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1 1
a and ¢ are elements of sequences of real numbers which

must satisf{y the following conditions in order that Eq.

(2.40) converges to the minimum of F(x) as 1 » o,

I1im a = 0
13w

laim lc =0
150

@4

Py a = w
1=1

e {21 V2

z “;I:é) < e
i=1 C

{(2.41a)

(2.41b)

(2.41¢)

(2.414)

Noie that, as wilh all stochastic approximalion schemes,

convergence 1s guaranteed only as 1 approaches infinaty,

the movement toward the optimum may be very slow. It may

be secen from Egq. (2.40) that 21f the itrue differences

[F('x + ¢} - F(*x -~ T¢)] are not large compared to the

noise varzance, many sleps will be taken i1n the wrong

direction.

Dvoretsky (1956) has treated stochastic approxima-

tion from the poant of view of a very general algorzthm,

which includes those of Robbains and Munro and Kielffer and

Wolfowaitz as special cases and from which other specific

methods have been developed. His basic algoraithm ais

represenled as the sum of a delermanistic term T(lx,

2

X,

ey 1x) and a random term 1r, which includes 1lhe effects
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of noaise:

l+¥§ = T(li, %E’ cae, 15) = Fr, (2.42)

Equation (2.40) could be expressed in this form by writing
£f(*x) = F(Tx) + 1y and separaling out the terms containing
Tv. It may be noted that the algoriilhm allows l+l§ to be a
function of all previous x's. Although Dvoretsky's theorem
1s important in the mathematical development of stochastac
approximation, 1t is not stated here, as 1t provides no
specific algoraithm for optimizmation.

The problem of optimization in the presence of
noise has been anvestigated by Kushner (1963), who used
the K-W algorithm as a basgis for several search procedures.
A feature of Kushner's methods is the use of information
obtained during the search tc estamate the '"best!" sequences
{1a} and {lc], whose optimum values depend on the unknown
function to be minimized. This informalion is extracted
from the sequence of angles 16 formed by successive steps
in the parameter space, as a1llustrated in Faigs. 2.8 and
2.9. In Fig. 2.8 there 1s a sequence of predominantly
large angles, indicaiting that the ratio of the step size to
the distance from the optimum 1s small. In Fig. 2.9 the
angles are small, indicating 1lhat the process is overshoot-
ing the opltimum. Thais information a1s used to adapt {la}

and {lc] to Lhe local behavior of the objective function.
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MY

Fig. 2.8 A stochastic approximation algorithm with a small
step size.
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Mr

Fig. 2.9 A stochastic approximation algorithm with a large
step saize.
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Fave search procedures were 1nvestigated, each
incorporating the K-W algoraithm with adaptive coefficient
sequences., The fuirst (a) i1s the basic n-dimensional K-W
algorithm. which estimates the gradient for every working
step. The othexr four procedures sequentially choose single
direclions i1n parameter space and apply the one-dimensional
K-W algorathm 1o search for a minimwn along these lines.
For these four methods the search directions are selected
as Lollows.
{b) the coordinate directions
{c) the estimated gradient direction
{d) a randomly chosen direction
(e) the direction determined by the current point and
the point corresponding to the lowest obhjectave
_;;£ctlon measurement for a number of local,
randomly placed observations.
Method (b) was suggested as an improvement over (a), since
a pair of sequences {1aJ} and {ch} (3=1, ..., n) can be
assigued to and adapted fo1r each coordinate directaion.
However, the efficiencies of both {(a) and (b) were thought
to decrease rapidly as the number of paramelers is
increased. DMethods {c), (d), and (e) are attempts to
increase efficiency for problems wilh many parameters,
especially in the initial siages of the search. Methods
(¢) and (e) were found superiror to (d) for gquadrataic

objeclive functions wilh additive, uniformly-daisirabuted
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noise whenever the true function value 1s large compared to
the neoise varrzance. This advantage is greatly reduced
close to the optimum, ihere the signal-to-noise ratao
becomes small. Close to the optimum, attempts al con-
sistently choosing profaztable search direciions are
unsuccessful, but the properties of the stochastic approxi-
mation algorithm ensure convergence, although 1t may be
very slow.

Janac (1967, 1969) has proposed an algorithm con-

sisiing of the basic K-W formula wath two modifarcations:

H

e o2 (*n - 1) w(*1) (2.43)

W

ol

where.
*h 1s an integer equal to the first unsuccessful
"working!" step an the estimated gradient direction,

subject to (*h-1) > 1, :

Eﬂlz) 158 a vector with the same direciion as %X and
a magnitude Tunction 1llustrated in Fig. 2.10; and

the sequences {la} and {lc} satisfy
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/

Faig. 2.10 A function for specaifying the step size 1n a
stochasiic approximation algorathm.
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In Eq. (2.43) lg and i+l_}__c_are points at which a new
gradient i1s measured. Following a gradient estimate,
steps are taken in 1lhe negatave-gradient direction until
such a step results in an increase of the craterion
function measurement. This sirategy 1s designed to malke
maximum use of each gradienl estimate. The nonlinear

kl 1

a

& <o o< —2,
—— —-1

C [od

This algorithm was applied 1o a 4-parameter optimization of

function w constrains the step size ¢ by

the suspension system of a trailer truck riding on a random
road surface (Janac, 1969). Whale the optimization was
completed in only 30 working sieps (not including functzion
evaluations for gradienl estaimates), a1t 1s impossable to
Judge the value of the algoraithm, because no information is
gaven concerning the variance of the noise.

Stochastic approximation 1s an altractive approach
to the noisy optimizalion problem, because convergence is
guarantieed as 1 > « under very general conditions. However,

31t may be 1lhat other melhods are more effectaive in reaching
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a small neighborhood of the optamum in a finite number of

steps—-—-a more practical type of convergence to seek.

2.8 Constraints

The optimization techniques which have been dis-
cussed here are suitable for unconstrained problems or
problems where the optimum 15 located far enocugh from the
constraint boundaries so that the search procedure does not
encounter them. But for many engineering problems the
optimum may lie on or close to a constraini boundary. Mosi
of the methods discussed above must be altered 1o allow for
this possibilaty.

The problem of minamizing F(E) subject to ainequalaty

constraints includes the nonlinear programming problem

Minimaize {1the craterion function

F(xl’ X2’ LRI Y Xn) (B.I:kl.l:)

subject to the m inequalaity constraints

g, (x) <0 (2=1, «.., m) (2.45)

and

x, 20 (3=1, «.., m) (2.46)

Elegant methods for solving this problem are described by
Saaty and Bram (196%4) and Wilde and Beaightler (1967). Most
of these require assumptrons such as the convexily of F(E)

and of tihe ¢1(§) and many are designed for a quadratic
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F(§) and/or linear constrainis. The methods described here
are applicable to less restrictive cases, and do not

require the condaiions (2.46).

2.8.1 Gradient Projection Method

The gradient projection method (Rosen, 1960, 1961,
Saaty and Bram, 196%4; Wilde and Beightler, 1967) alter tilhe
gradient of F(x) at comstraint boundaries, so thal a
modifired steepest-descent minimization can be employed,

The constraints are only reguired to be convex.

When the search reaches the boundary of a nonlinear
constraint, the negative gradient vector 1s projected onto
a plane tangent 1o the constraint boundary at that poant
(Fig. 2.11). A move 1n this negative projected-gradaient
direction results in an infeasaible point which must be
moved onto the constraint boundary. For linear constraints
the gradient projection 15 cnito the consiraint boundary
1itself, a modified steepest-descent move results ain a

feasible point. For 1he case of simple range comnstraints,

a __<_X

X < b (z=1, ..., n) (2.47)

1 1

there 15 a simplified melhod for obtaining the projected
gradient. This has been aincorporated into the optimum

gradient procedure and is described by McGhee {(1967).
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Feasable Region \

Ox l

Fig. 2.11 The gradient projection method at the boundary
of a nonlinear constraint.
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2,8.2 Created Response-Surface Method

The created response-surface method (Fiacco and
McCormack, 196%, 1963, Saaty and Bram, 1964; Wilde and
Bexghtler, 1967) 1s based on the definaiion of a modifzed

objective function:

m
?(x,r) = F(x) ~ r 3 1/¢_ (x) (r > 0O)
- - i=1 1 (2.48)

X

Note ihat for any r > O, é(ﬁ,r) increases rapidly as x
moves toward a constraint boundary Gl(z) > 0]. The
technigque selecis values of r from a monotone decreasing
sequence and optimizes &(x,r) for each value of r. Thus,
the constrained minimizalion problem i1s converted anto a
sequence of unconstrained minimizations. If the optimum
point of F{x) 1is on the boundary, the minimum of &{x,r)
approaches the boundary as r > 0. In oxrder to have é(z,r)
well-behaved near the boundary, 1t i1s required that F(x)
and each of 91{5) be continucusly twice differentiable and
8(x,r) be strictly convex for each r.

Fiacco and McCormick (1964) have used the created
response-surface technique with the optimum gradient
method (Section 2.2) and Newton's method (Sectzon 2.4) for
minimizaing 3(x,r}. Box (1965) reports that the Fletcher-
Powell-Davidon method (Section 2.3) also has been employed

successfully with ihis t{technigue.
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2.8.3 Penalty Functions

An optimarzation problem subject to consilraznts can
be converted zntec a single unconstrained one by modifying
the criterion funcitzon with the addition of penalty func-

tions, pl(gl) (Korn and Korn, 1968).
m
&(x) = Flx) + 121 e pl(gl) (2.49)
where ¢ > 0 and
1
h(g) g, >0

pi(¢13 =

0 g, =0

and where hl(ﬁl) 15 a straclly monoione increasang function

of Gl. For x in the feasible region R,

[ia]]

(x) = F{x), but as
x moves outsade R, &(x) 21s made to increase rapadiy. Duraing
the optimization x 15 allowed to violate the constraints,
but such a move 1s penalized by a large value of the
modified craterion functions. Note that here, 1n contrast
to the created response~surface method, the minimum of @(E)
18 found only once. The simplacaly of this approach is
offset by disadvanlages in certain saituations. It may be
that F(x) 1s undefined for x outside R--for example,

Xy < 0 where X, 1s a length or a sprang constant. In such

a case we might redefine &(x)
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1

where X Z.F(E) for x on the comnstraint boundary.

case, unless F(x)
chosen carefully,
continuous at the

search algorithms,

m
Z
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F(x) xeR

(2.50)

[ad

1 pl(gl)

x ¢ R

In exther
18 known analytically and hl(ﬁl) can be
2(x) and/or 1ts derivatives will be das-
boundaries.

This 15 detrimental to

such as the conjugate direciion methods,

with quadratic convergence properties.

2.8.4 Restrict to Feasible Region

For direct search methods and random methods
inequality constrainis mayv be handled by simply restricting

X lo ithe feasible region R. Before any step AX 1s made,

the wvalues of the proposed mew poant x are checked, and 1f

any constraints are viclated, a dafferent poant is chosen.

The search can be made to move very close to the boundary
1f the step size Ax

is reduced until no comstraint is
vioclated. The simplicaity of this scheme makes direct and

random search methods atiractive for problems where the

optamum may lie close to or on a constraint boundary.

2.9 A Comparison of Methods and Some Remarks

While mosl of the techniques discussed in thuis
chapter are designed to locale local minamum points, the

engineer 1s usually seeking the besi of these, the global
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optaimum. IXf the value of F{x) at the global Optlmum; P
1s known, the optimizing algorithm can automatically escape
from local minima with F > F* by expanding the search about
the local minimum or jumping to a new starting point. For
the more dafficult case i1n which F* 1s unknown, local
minima must be detected and the values of F(E) compared.
Auitomatic search Tor the global optimum may be inefficient,
and wnteraction by the operalor could be valuable.

The value of easy interaction between the operator
and the algorithm has been recognized by Bohling and
Chernak (1965) and Carlson (1967). Dasplays of the per-
Tormance of the system being optimized and information
concerning the progress ol the search help the engineer to
gain insight into the behavior of the system. With this
information and his own experience he may be able to help
guirde the search toward a 501utlon; by changing parameters

of the optimization sitrategy or selecting different start-

ing points. Bohling and Chernak point out that informalion

about the system gaimned during the optimization may be more

valuable than the final solultion. The opportunity for this

kind of interaction has made hybraid computation altractive
for optimizalion. However, display syslems interfaced witlh
small digiatal computers or tame-shared computers are making

easy interaction possible with all-digital optimizations as

well (Korm, 1969).



71

The choice of a parameter optaimizatzron methoed for a
specaific problem should be guided by the computing equip-
ment avallable, what a1s expected about the nature of the
criterion funclion--a smooilh or arregular landscape, noisy
or noise~free--and the number of parameters. If the time
to measure the criterion function s relatively long, then
the computational effort required by complex methods will
not increase the optimization time appreciably. But af the
time to evaluate F(ﬁ) 1s small compared to the time for
calculations, as in the case'of a high-speed analog machine
interfaced to a minicomputer without floating-point hard-
ware, then a simple direcl search method or random search
may be faster, even though a1t 1s less efficient in terms of
function evaluations. For very irregular craterzon func-
tions deraivatives may not exist at some points, and tihe
choice of a perturbation slep size for derivataive measure-
ment 1s dafficult. Too large a step size gives a poor
approximation for a deraivative at a poinl; a step size loo
small may cause problems due tTo accuracy limaitations in
computing F(z). Noilse can cause large errors in deraivative
measuremenil. For problems with many parameters the results
of Rasirigain (1963), Gurin and Rastragin (1965), and Schumer
and Steaglatz (1968) indicate that ihe creeping random
methods are likely Lo require fewer function evaluations.
In additiion, for large n the computation times for creeping

random search methods do not increase as rapidly as for
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algorithms regquiring matlrix manapulations. Korn and Kosako
{1970) have successfully emploved a creeping random
algorithm in a 200-parameter functiomal-optimizalion
problem.

If the craterion funcition 1s smooth, or if deriva-
tives can be obtained without using the perturbation
method, the conjugate direction algoraithms appear to be the
most efficient and most relaiable. The extremely rapid
convergence ol Newton's melhod [&g = —Aulg (E)] from
favorable startaing points 1s offset by the computational
effort for calculation of AHl and the tendency of the
algorathm to daverge. When gradient measurements are
easily obltained, the Fletcher-Powell-Davidon algorithm is
superior. This conclusion 1s based on the results of Box
(1966) for a series of tesl functions and the results of
Birta and Trushel (1969}, who found the F-P-D algorathm
more efficient than the Fletcher-Reeves algorithm in
solving optimal conitrol problems via the Maximum Praincaiple.
Lasdon et al. {(1967) found the F-R algorithm far superior
to a sleepest descent scheme for similar optimal control
problems. The calculations for the F-R algorithm are
sampler than for the F-P-D method, while the latter
requires fewer function evalualions. A comparison of
Partan with 1lhe conjugale direction algoraithms zs diffai-~
cult, because there 1s a lack of publaished data for the

performance of Partan on tesi functions and practaical
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problems which have been solved by the conjugate-~direction
algorithms. Wilde and Beightler (1967) found the F-P-D
algorithm more efficient i1n minimizing Rosenbrock's
function. If the gradient of F as not readily obtained,
Powell's conjugate-direction metihod without gradienis
appears to be the most efficient (Fletcher, 1965; Box,
1966). Although mo publaished data have appeared for
Zangwill's modification of Powell's method, the author has
found ithe two to be roughly equivalent in minimizing
Rosenbrock's function.

For the case of airregular crilerion functions with
discontainuous derivatives and possibly measurement n01se;
direct search methods, creeping random search and
stochastic approximation are more practical. The direct-
search and creeping random search algorithms decide on the
next step Ax simply by comparing function values at differ-
ent points rather ithan using funclion dizfferences to
calculate precise search directions and step sizes. Again,
there 158 a lack of comparative data from which to judge the
relative merits of the various direct-search and creeping
random algorithms. But the theoretical and practical
results obtained for the creeping random algorithms make
a strong case for this melhod as an efficient and reliable
technique. For noisy craterion funclions the stochasliac

approximation algorithms have the altractive feature of

convergence as the number of steps tends to anfinaty, bul
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more results for lest functions and practical problems are
regquired to andicate how guickly they reach a reasonabhle
nelghborhood of the optimum.

The most obviocus conclusion from a study of
parameter optimization metheods 1s that no one technique is
best suaited for all types of problems. An algorithm
designed 1o be capable of minimizing all types of criteraon
funciions will probably be inefficient for the majoraiiy of
individual functions. It seems necessary to be armed with
a variety of technigues in order to allack efficrently a
problem with a completely unknown criterion function. Some
optimization software packages, including AESOP (Hague and
Glatt, 1968) and GOSPEL (Huelsman, 1968)—, have been
developed. Such a batlery of algorithms, coupled with a
computer sysiem having easy operator-machine interaction,
could comprise a fruirtful approach to the solution of a

variety of parameter optimization problems.



CHAPTER 3
OPTIMIZATION IN THE PRESENCE OF NOISE

The problems of optimizing a noisy criterion
function have been pointed out in Chapter 2. Thas
chapter considers the evidence from the laterature and
some experimental results leading to the development of a
strategy for optaimizing moisy criterion functions (Sections
3.1 and 3.2). Constraints and the problem of estimating
the criterion function are discussed i1n Sections 3.3 and
3.4. A specific optimization algorithm for the example

problem treated an this study is described in Chapter &.

3.1 The Choice of a Strategy

From the discussion of search methods an Chapler 2
the strategres best suited for noisy optimization appear to

be stochaslic approximation, direcl search, and random

seaxrch. However, the powerful convergence properties of
the conjugate-direction methods also seem to warrant an
investigalion of their effaiciency in the presence of noise,
The only results known for gradient algorithms on a nocisy
function are ithose of Gurin and Rastraigin (1965), who con-

cluded ihat a steepest-descent method 1s inferior to a

creeping-random-search algorithm. It was felt that a
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conjugate-direction algorithm involvineg no gradient

measurements but only linear minimizations might stall

perform well in the presence of noise.

The algoraithm developed by Zangwill (1967) combined
with a quadratic-interpolation method for the linear
minimizations was programmed in FORTRAN for the PDP-9
computer. Gaussian noise was added to the criterion

function, with the standard deviation chosen as a fraction

of the wvalue of F(E)' The observed function values are
f(x) = F(x) + [og « F(x)]= (3.1)

where z 15 a Gaussian random variable with zZero mean and
unit varaance, and g 1s the coefficient specrfying the
standard deviation of the noise added to F(x). The
algoraithm was applied to two test functions wath given

starting points, as follows
n
F(x}) = = x x = (1, 1, ... 1) (3.2)

2,2
lOO(k2 - xl)

F{x) + (1 - x) x = (-1.2, 1) (3.3)

After each linear minimization ihe (noisy) function value

b

1s compared to F = 10 7; af f(x) < F , the search is
min - min
ended. Zangwill's algorithm also terminates the search af

n successive minimizatrons ain the coordinate directions

lead to no improvement--an indircation lhal the gradient is

zZexr Q.
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To minimize the quadratic function (3.2) for
o =0., 9 and 20 function evaluations were required for
n=2 and n:&, respectively. For o = 0.1 and n=2, 5 of 10O
trials faxrled to converge, because observation errors
resulted 1m a false indication of zero gradient. For the
5 successful trials, an average of 18 functaion evaluations
were required. For n=4, there were no failures in 10
trials, and an average of 74 function evaluations were
required. For large n, there i1s less chance of noisy
observations leading to n successive coordinate minimiza-
tiomns with no improvement.

For Rosenbrock's function (3.3), 135 evaluations
were reguired to converge for len = 10—4 and g = 0. How-
ever, no convergence could be cbtained for noise levels as
small as g = .0l. Again, the algorilhm terminated pre-

matlurely due to a zero-gradient indication.

These results indicate that for Zangwill's algorzithm

to be effective 1n the presence of noise, lhe premature

terminations due to false mero-gradient indications would

have to be elaminated, and/or the linear-minimization

algoriihm would have to be improved. One possibilaity would

be to use a stochastic-approximation algorithm, such as
Kushner's (1963), for the linear search.
Modafication of 1has algorithm was abandoned, and

a creeping-random-search stralegy was chosen for this

study. The reasons for this selection are summarized here.
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Unless the variance of the measurement noise 1S

very small, estimating the gradient of F(x) by

small periurbations 1s impractical. Gurin and

Rastraigin (1965) have shown a random search
algorithm to be more effectaive than steepest
descent 1n the presence of noise.

While stochastic approximation algorithms have the

attractive feature of guaranteed convergence as the

number of optimizing steps tends to infinity,

actual progress toward the optimum may be slow.

Creeping random search has been found effective in

optimizing very "irregular! parameter landscapes

(Maybach, 1966a, Stewart et al., 1967; Kavanaugh
et al., 1968, Bekey et al., 1966].

The results of Rastrigan (1963) and Schumer and

Steiglitz (1968) indicate that creeping random

search 1s especirally effective for problems with

many parameters.

Creeping-random-search algorithms permit the use of

a "vector-valued!" criterion funcliion (Stewart et

al., 1967).

Constraints are easily handled by simply restrict-

ing irial steps to the feasible region of parameter

sHace .

The comparatively modest computations required for

random search algoriithms can be programmed sasily
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in assembly language (instead of FORTRAN) for a

small digital computer. This results in a fast

digital program, whaich 1s better suirted for opera-

tion with a high-speed analog machine.

3.2 A Random-Search Algorithm for Noisy
Craiterion Functions

For the class of problems considered in this study,
the parameter vector x consists of the daistribution
constants aintroduced in Section 1.1. It 15 assumed that
each system parameter P, 1s Gaussian with mean ”1 and

2
variance ¢, SO that x appears as a column vector (EJ g).

x = (g, o) (3.4)

We also assume constraints of the Fform

a, <p, <b_ (3.5)

o. > ¢ > 0 (3.6)

(. =13, 2, ..., n/2)
These are discussed in Seclion 3.3.

To arrive at an effective search procedure for

noisy criterion functions, a basic creeping-random-search

algoraithm s combined with a strategy for averaging

measurements of the crilerion function so as to reduce the

noise variance. The observalions of the criterion function

are represented by

f(E) = F(x) + v (3.7)
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where F(x) 1s the true value of the criterion function, and
v As a zero-mean random variable., Qur eslimate of F(ﬁ)
w1ll be denoted by ?fﬁ). At a point x observations of the
function are averaged untal the variance of f(x), denoted
by 52, 1s less than some specifaied value. (A sequential
estimation scheme for this 1s descraibed in Sectaon 3.54.)
Before discussing the strategy for choosing 52, the creeping
random algorilhm is descraibed.

Figure 3.1 1llusirates a basic creeping-random-
search algoraithm, which searches for a local minimum. (In
the following paragraphs, numbers enclosed by brackets, [],
refer {o corresponding numbers in the flow diagrams.)
Exploratory steps, Al and Ag (1), are random in magnitude
and direction. When ihe criterion function esiimate T at
an exploratory poant is an aimprovement over the current
optimum value (f < Té) [2], the center of the search is
moved to ihe corresponding new point [3]. Following some
integral number, LF, of consecutive failures, the search
range 1s then reduced [4], and after LF failures with
minimum search range, the algoraithm 1s finaished [57. Other

features of the algorithm may be noted:

i. The random parameler perturbations, Aul and Acl,

are chosen from a uniform daistribution, which has

a variance proporiional to the currenl optimum

~

value of [ For mosti problems this method of

choosing lhe variance of the periurbations appears
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more logical than havaing a fixed parameter-
perturbation variance. In the latter case, the
same perturbation, Apl, can represent a very large
or a very small percentage change in the parameter
value, depending on the current optimal value of
By For the same reason, the standard deviations
g, are expressed 1n the program as percentages of
the corresponding mean values.

2. The algorithm employs absolute positave biasaing [ 6]
and absolute negative biasing [ 7] as described an
Section 2.6.

3. During ihe optimization the program keeps track of
both the previous optimum poant (B__, g .3 ?;o) £33

and the poant waith the smallest function value

since the last success (u , g 3 £  : £, < f, <f,
where i i1ndexes all of 1lhe other Tailure points
since the last success) [8 and 9]. Saving these
values has no effect on the basic creeping-random-

search algorithm, but they wall be used in the

overall stralegy described below.

To a1mplement the creeping-random-search method, the

2 —_
variance s allowed i1n the estimate f of F, must bhe

specified. Let us assume that the optimization must be

accomplaished with some number N of criterion function

observations. It s2 1s chosen ito be small, then there will
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be few errors in decidaing whether a trial step 1s a success
or failure, in spite of the noase, but we will be able to
take only a small number of traial steps. For a large value
of sz, more trial steps are possible, but many of our
success-failure decisions are likely to be erroneocus, In
particular, the situation pictured in Fag. 3.2 may result.
The optimizalion has proceeded to the point lx, at whxch
the estimate ?(lx) 1s unusually noisy. From this poant, ai
1s daffacult to find a successful step; exther another
unusually noisy observation will have to occur, which may
require many trials, or else a large trial step toward x*
must be generated. These consaiderations suggest thal the

2
choice of the variance s 15 an important one in determin-

ing the success of the optimigalion.

If the starling poinl for the search is in a
"smooth!" region of the crilerion surface where lhere 1s an
appreciable gradient, the cresgping-random-search algorithm
can progress well, even when the variance of £ as large.
Thus, 1n the inatial search our estimates of F are allowed
to be rather coarse. If many exploratory-step falilures
occur consecutively, aindicating that the search has
encountered a ridge, entered a region of small gradient, or
(later in the search) approached the optaimum, then tihe

estimation algorithm should be made to reduce the variance

of T.
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gradient for a noisy criterion function.
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The flow diagram for the algorithm is shown in
Fig. 3.3. The "inatial search'" is executed with coarse
estimates of F{u,g). When LF consecutive trial steps result
in no improvement, the algorithm proceeds to the "final
search” [1]. At thais point, a better estimate of F(Eo’go)
1s computed [2]. More observations are taken at the poaint
(E@,go) until the variance of the estimate E; 1s less than

2 2 2

or equal to s_ (so < s5°). The recalculation of ?; 1s

designed to avoid the type of dafficulty 1llustrated in

Fig. 3.2, In general, nmote that whenever a more accurate

estimate of F(u,g) 2s computed, previous observations at

(L,o) are utilized, thus saving computer time. Following

the recalculation of %;, the algorathm proceeds by the

followaing steps:

— —

1. fo 1s compared to the previous optimum f in case

o')
the move from (Eno’goo) to (Eo‘go) was erroneous
{3].

2. The minimum of %g and E;o 1s also compared to the
hest" of the failures (f+), i case a very noisy

observation at (&o’go) had resulted in rejecting an

improved point [4&].

3. After the minimum of f s f , and T, 1s determined
o el +

and labeled ?;, the creeping random algorithm is
continued [5]. For trial steps (go = A, o * Ag)

the variance of T 15 still only required io be less

2
than s . But 11 an improvement 1s indicated,
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(f < f;), f 1s recalculated and again compared to
?; [6]. This strategy allows for a greater number
of traial steps to be takemn.
4, TFollowing KF successaive failures ain the final
search, the search range 1s reduced [7], and the
algorithm returns to recalculate ?6 again.

2
5. When KF consecutive failures occur with s, at 1ts

minimum value (siln), the search 1s termanated [8].

In order to use this random-search method, a
starting point (Ho°oo)’ starting and minimum values of the

search range, and values for LF, KF, 52, soz, and Siln must
be specified. In the absence of any pricr knowledge of the
nature of the craterizon function, 1t 1s likely that initial
choixces for these values may result in an ainefficient

search. It s felt that a solution to this problem lies in

a provision for communication between the search algorithm

and the operator. Such a facilaity for interactiomn wirth the

computing system employed for this study is described in

Section 4.3.

3.3 Constraints, Modeling the Distrabutions of
the System Parameters

The constraints on the system parameters P, and the
distraibutron conslants o, are specified by lhe 1nequalaities
(3.5) and (3.6). The constraints on p, may arise from

design limiils set by the engineer or from comsiderations of
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realizabilaty of the physical system being modeled. For
example, 1T p; 18 the mass of a flywheel, the desaign
engineer may place an upper limit on P, and physical
realizabilaty requaires P, > 0. The constraints on g, may
be necessary in a situation where 1t a1s known that produc-
tion tolerances cannot be held below a certain percentage
of the desaign values H e

In the form of (3.5), the constraints on the pl's
are inconvenient to enforce. After values of | and g for
a trial step are selected by the optimization program, many
values of p, are generated i1n order to estimate F(EJE)'
Checkaing each value of p, 1s time consuming. Furthermore,
ir, after many observations of the criterion function, a
value of P violates the constraints, new values of g and
g must be selected and the estimatzon of F{p,g) begun
again. To avoid this waste of computer time, the con-

straints of (3.5) are replaced by

- T > a
i o, =

b (3.8)

R

For r=3, only 0.27% of the sample values of a Gaussian
random variable will violate the constraints of (3.5) when
B, - ro, = a, and p, *ro, = b1' With thas form of the

constraints, feasible values of U and g may be selected

before the estimation of F(lu,g) s begun.
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Pseudo-Gaussian samples for the random variables <
are generated by adding and normalizing ten uniformly-
distributed random numbers from a hardware random-nolise
generator interfaced to the digital computer (Belt, 1969).
This provides for deviations from the mean as large as
5.5 g. We introduce mnegative correlation inte our random-

LR L

parameter sample (Korn, 1966) by selecting 2Pl, 4p19

npl with deviations about B which are equal and opposite

to the deviations of lpl, 3pl, ey n—lp 1.Ca,

11
- ) (x =1, 3, 5, «v., n-1)

This ensures that the sample mean 1s equal to B and taime
1s saved, since only n/2 pseudo-Gaussian random numbers are
generated.

Although the inequalities (3.8} are a practical way
of enforcing constraints on almost all of the pl's, values
of p_ which violate (3.8) must staill be accommodated by the
analog machine used to estimate F(EJQ)' Thus, all values
of p, are limited to the range of the analog computer tfo

produce a new random variable pl'.

1 meu. 21T P > 1L m.u.

p.!' = -1 m.u. 2f p, < -1 m.u. (3.9)

P, otherwise

where 1 m.u. denotes one machine uniti for the analog

computer. In general, the limited random varzable pl' will
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have a new mean pl' and standard deviation ¢ ' dafferent
from b and o . The effect on P, o1is most severe if p, 18
limited on only one side of the distribution. I bl
corresponds to 1 machine unit, as shown an Fig. 3.4, all
values of 1 > pl + ro, will be set equal to 1 machine
unit. The effect on o, is greatest when P, 1S limited on
both sides of the distraibution, a, and b:L correspond to
-1 m.u. and 1 m.u. respectively (Fig. 3.5). The effects of
these two cases of limiting are calculated in Appendaix A,
and results are shown in Table 3.1. For ilhe problem
described in Chapter &, a = 0 and b:L = 1 m.u. The values
of h_ and o, (satisfying the constraints) which result in
maximum o are pl = 0.5 m.u. and o, = .5/3 m.u. For this
worst case and for r = 3, pi =W, - +00051 m.u. = By -
0051 volts for the + 10 volt range of ASTRAC-II. Thais
5 mv. worst case error 15 approximately equal to the
accuracy of setting the values of pi by the daigital-analog

converters on ASTRAC-II. The worst case error in the

standard deviation G, s approximately 0.13%.

3.4 Sequential Estimation of F(U,c5)

The craterion function F(p,g) 1s estimated from
observalions denoted by f(u,g) = F(u,0) + v, where v 1s a

zero-mean random variable. An unbiased estimate of F based

on n observalions 1s

1 n
£ == _z; f (3.1.0)
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Fig. 3.4 The Gaussian densaity function limited at one end.



Fig. 3.5 The Gaussian density function limited at both
ends .
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Table 3.1 The effects of limiting a Gaussian random
variable.

r ! o!

Limitaing at rg at one end of a Gaussian daistribution

1 L - .0833¢ .8667¢
2 L - .0312¢ « 97940
3 L - .00308¢ .9987¢
b4 b - .00010g -99997¢

Limiting at rg at both ends of a Gaussian distribulion

i . 71830
2 «9594¢

-99750
4

+9999¢c
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The sample variance

n
— 2
25?2 L 5 (*p - TE) (3.11)
n-1
1=1
is an unbiased estimate of Var{f]}. If f has a Gaussian
distribution then
Ties
(£ -F)Vn _ (3.12)
ng n-1

where tn~1 has the Studeni-t distribulion with n-1 degrees

of freedom. This allows us to make a confidence statement
about our estimate of F. Before sampling, we can state
that the probability that our estimatle "F will differ from

F by some amount less than d 1s given by

P[|nE-F|_<_dj =1 -« (3.13)

where

g ¢
a = n-1;x/2 (3.14)

N

and t is the value of the Student-t wvariable such
n~-Lj;o/2

that

[=~]

f G(z)dz = a/2
<

n-1l;a/2

(# 15 the densaty function for the Student-t variable with

n-1 degrees of freedom). To use this statement in decaiding
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the number of observations to make for our estimate,

samples of £ are taken until nS/W/n 18 small enough so
n

that (78 tn_l;m/z)/\/n < d.

In order to 1mplement such a sequential estimation

- n—.u-
scheme, it 1s convenient to have recursive estimates of f

and n52 rather than performing the summations of Egns.

(3.10) and (3.11) after each observation. Recurrence

- 2
relations are given by Korn (1966). Lel n2 EEl g

T = F o+ % (Fg - P1E (3.15)

n 2 mn-1 2
s s

o

|
B
+
'
B
H
jne]
!
=
|
,._l
W
(1%}
-

(3.16}

+
n

Note that for large n, n52 ~ nsz' Updatang F and I]'sz with
these relations requires a division by m, which may be time
consuming when floating-point or double-precision fixed-

point arithmetic 15 mnecessary to obtain accurate estimates.
Deardorff and Tramble (1968) replace the divaision by n by a
divaision by a power of two to obtaimn the so-called "slable-

averaging" algoraithm,

N -1 N
np _ n-la -—lﬁ— £ -1 2™ <n<a2® (3.17)

5 1

This algoraithm s considerably Lfaster than Eg.
(3.15), because the division can be accomplished by a
simple shift operalion an a binary computer. However,

N
o I < n for all n, so that 1lhe variance of N2 o4s greater
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than the variance of nf (the minimum-variance lLinear
unbirased estimate of the expected value of f).

The variance of the "stable-averaging! esiimate can

N
be reduced by modifying the choice of Nn so that 2 n is

more nearly equal to n (Whate, 1970). The modafied

estimate is defined by

<n<2™ (3.18)

The method of uniquely determining Mn 1s most easily shown
by a flow diagram (Fig. 3.6). Table 3.2 lasts the result-
ing sequences {n}, {ZNH}, {2Mn}. It 1s seen that thas
method of choosing the power of two in Eq. (3.18) vaields

g divisor closer to the i1deal value n than Eq. (3.1?), and
the increased time needed to generate Mn rather than Nn is
small. White (1970) shows that for n > 100 only about 5%
more observations are required with the modafied algoriilhm
(3,18) to reduce the standard deviation of “F to that of °F
in Eq. (3.15). This should be compared with 15-20 per cent
more observations required with the 'stable averaging"
estimate f. The improvement appears modest, but repre-
sents a very substantial saving in cases where E{f} must be

estimated many times at best possible speed.
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Table 3.2 Daivaisors used in the three recursive estimation
algorithms.
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CHAPTER &
AN OPTIMIZATION EXPERIMENT

In 1959, McGhee and Levine (1964%) studied the
problem of the determination of optimum production
tolerances for a hypothetical radar-homing missile. Thear
experiment was performed before fast analog-digital hybrad
computers were generally available. An analog computer was
used to simulate flights of missailes having production
variations in two guidance-unit parameters, a gain K and a
time constant T, which were modeled as Gaussian random
variables wilh means By and o and variances OE and g?.
Values of P and P, were selected prior to the simulation
and were held constant during their experiments. For

sixteen combinations of values of Tk and ¢ an average

T,
performance index (the probability of haitting a target) was
estimated by Monte-Carlo simulation. A digital computer
then performed a guadratic regression analysis on these
data in order to arrive at an expressaon for the hat
probabilaity as a function of ox and O e Surprasingly, it
was found that for O equal to 20% or 30% of P,y 1ncreasing

Ox from 10% of MK to 20% caused an increase in the hat

probabzlity. Thus, the popular assumption that performance
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15 degraded by increasing production tolerances is not

always valid.

Thas chapter discusses the simulation and optimiza-
tion of a similar missile system. In this experiment the

mean values, My and B, are optimized saimultanecusly waith

the variances, o; and c?-

4.1 A Radar-Homaing Missile Problem

Figure 4.1 1llustrates the motion in one plane of a
hypothetacal radar-homing missile. In the diagram we con-

sider a small change 0v 1n the missile velocity vector v.

For a small angle dr, [v + Ov Iz ]El = V.- The accelera-
tion normal to v 1s
dr .
or
¥ = F
t
y{(i) =/vmr(s)ds - VT (L4.2)

[+

Equation (4.2) describes the kinematics of the missile.

For a small angle ¢,

o = arctan —= =~ —Jo (4.3)
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missile posaition normal to initaal line of saght (Lft.)
missile-to-target closing velocaty (ft./sec.)
izme to go until impact (sec.)

angle between maissile velocity vector and initial line
of saght (rad.)

true laine of saight angle

missile velocity vector; |E! = v (ft./sec.)

4.1 The motion of the missile in a plane.
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The line-of-sight angle g 1s used by the guidance unit to
steer the missile toward the target, as shown in the block
diagram of Fig. 4.2. The guidance-unit output is a
commanded turning rate fc, and the misgsile aerodynamics
produce an actual turning rate r. At time t=0, the missile
is given a random heading angle, r(0) = o which 1s chosen

from a Gaussian distribution with zereo mean and a standard

deviation of 0.1 radians. At t = tf = 7. sec, the missile

pgsitlon normal to the initial line of saght, y, is
measured. If iy(tf)l < = 30. ft., we say that the massile
has hit the target. The line-of-sight angle ¢ s corrupted
by wideband radar-tracking noise with 2(0) = .0155 deg.z/Hz,
where 3(w) is the two-sided power spectral density. The
navigation gain, K, and the praincipal missale filtering
time constant, T, are assumed to be Gaussian with mean Mg
and wvariance ci, and Gaussian waith mean HT and variance G?,
respectively. The problem is to choose the values of B

Beos O and O which maximize the probability of hitting

the target.

In the notation of Chapter 1, the system parameters
are p = (K,T), and the daistribution constants are x =

(MK’QT’OK’UT)' The performance index is given by:

1 1fly(tf)]_<_ 30 £t. (hat)

¢ otherwise (miss)
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The average performance index is the hit probability

Y= E{J} = probability of a hit.

Since a cost function 1s not included for this probler, the

craiterion Tunction simply equals the average performance

andex

F(x) = ¥ = probabilaty of a hat.

The inegquality constraints are:

>0

T >0
ochK'uK;zo
o, 2

c. luTI > 0.

K and T must be greater than zero for the system to be
stable. Positive values of cy and/or c, may be used to
determine the best performance oblainable when production

variations are allowed in K and/or T.

L.2 The Simulation

Figures 4.3 and 4.4 show the analog computer
diagram and control logic for the simulation. The time

scale 1s given by

1
250 x 10

= T
t 8 t

wvhere t 1s the problem time (0 < t < te = 7- sec) and t!' a1s

the computer {ime (O <1 < 1.7Y5 msec). This allows for
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Fag. 4.3 Analog computer diagram of the radar-homing
missile simulation.
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solution rates of 500 runs per second. The dagital znputs,

Qe and R to the multaplying D/A converters provide the

following ranges for K and T.
0 <K < 6.

0 <7< 1.3 sec

The awkward division by ch, which approaches zerc together

with the numerator y(t) as t approaches t 1s 1mplemented

f°*
by a very fasi steepest-descent circuit (Maybach, 1966b).

Potentiometers Py and Py compensate for the fact that the
actual divisor is VCT + B, where B = 3. volts. This
constant is added to maintain a reasomably large input to
the quarter-square muliiplaers, which are less accurate for
small inputs.

A missile-fairing simulalion s begun with a random
initial condxtion r,- At t = tf, the 1rack-hold circuit
holds y(tf), which 1s compared to + d by the two comparators.
The 1 WUf capacitor and the summing amplifier constitute a
d.c. blocking circuat for filtering out drift voltages.

The comparator outputs are gated and applied to a read-in
gate on the analog-digitlal interface for hit-miss detection
by the digital computer. The integrators are controlled by
a logic signal R (Fig. 4.4)., This a1s essentially the
normal compute-reset signal (R) modified for auilomatic
resetting at the occurrence of an overload or upon a

command from PDP-9 by way of the control regisler. The
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track-hold logic signal §2 is S2 augmented by a provision
for specifying the track mode with PDP-9 at an overlocad
condition and during idle periods. Simulations are
initiated by Free Pulse #2. The end of a simulation is
signaled by Flag 1, which 1s raised upon the occurrence of
an overload or at the completion of the 1.75 msec COMPUTE

period. If an analog computer overload occurs during a

simulation, that simulaiion 1s regarded as a miss.

Usually overloads occuxr for parameter values and/or
an 1nitial condition which would result ain a miss. It as
possible, however’, for an overload to occur even during a
simulation whach would result in a hit; in this case,
assigning a miss 1s erroneous. If £ such errors are made

in a hit-probability estimate of N simulations, the error

in probabailaty i1s Ap = - 24/N. The optimization program

allows three overloads per 1024 simulations before voiding

the estamate of the hit probability. Thus, the worst-case

error 18 given by Ap = - ,0059.

4.3 The Optamization

The basic optimization strategy has been discussed
in Section 3.2. A modification and some additional

features are described here.

Since the craiteraon funclion for the example problem

1s a probabilaity p, and separate runs are considered to be

stataslically independent, the varziance of an estimate of p
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15 known a priori. Let our estimate of p be given by

= 1
f=5 2 £ (&.4%)

where
1 if ly(tf)[ < 30. ft.

0O otherwise

f has a binomial diastribution with mean p and variance

p(1-p) /N. For Np and N{1-p) both at least 5, the dastribu-
tion may be approximated reasonably as Gaussian (Hahn and
Shapiro, 1967). Then, we can make the following probabality

statement concerning ouxr estimate of p:

PI[T - pf <\ B 5,1 =1 - a,

where

J[ g(z)dz = o/2

Za/z

and ¢{z) 1s the standardized Gaussian density function
(zero mean, unit varrance}. Table 4.1 lasts values of the
confidence-interval half-width as a functron of p and N for
a = 0.05. In the optimization program for the example
problem (Fag. 4.5), the variance of our estimate of p 1s
controlled by adjusting N. Otherwise, the strategy 1s the

same as discussed in Section 3.2. In order to estimale the



Tabie 4.1 Confidence-interval ha1f~wldths’ EL&JEL z
for o = ,05

Hit probabilaty, p

Number of simulations, N 0.1 0.25 0.5
128 .0520 .0750 .0866
256 .0367 .0536 L0613
512 .0260 0375 L0433
1024 L0184 .0255 .0306
2048 .0130 .0187 .0216
4096 .00919 .0133 .0153

8192 .00649 .00915 .0108
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Fig. 4.5 A flow diagram for ihe ocptimization algoriihm.
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hit probability for the fainal optimal parameters within
approximately + .0l for the worst case of P, = 0.51 the
maximum number of simulations per estimate (Nmax in Fig.
4.5) was chosen as 8192.

In order to find a reasonable starting peoint for

the creeping random algorithm, an initial pure-random

search 1s provided. The criterion function 1s estimated at

some specified number of points chosen from a distrabution
which 15 uniform over the entire parameier space. The
poaint with the largest estimate of the function 1s returned
for use as a starting point for the creeping random search
Alternatively, the operator may specify any starting poaint
himself.

An optimization study ainvolving searches from
several starting poinis, each requirang five to ten minutes,
may take an hour or more of computing time i1n sprte of the
fast analog computations. In thas case, up to two millaion

computer runs could be made. For this reason, malfunction

or drift of an analog computer component should be detected

before a large amount of spuriocus data 1s collected., For

this purpose a "benchmark test" 1s ancluded in the optimiza-

tion program. Upon loading the program and beginning an
optimization, the criterzon function 25 measured at a point
(EB’ QB)' During subsequent optimizations, the program
periodically returns to the same point and reevaluates the

craiterion funcizon. If an estimate ?(EB’ QB) differs from
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the oraginal measurement by an amount which causes the
rejection of the hypothesis that the c¢riterzion function is
unchanged, the operator 1s notified by a message on a
cathode-ray-tube display console (CRT); as shown in Fig.
4,6, For the benchmark tests, 8192 simulations are used to
estimate the critericn function. Le‘t"fl be the estimate of
the hat probabalaty Py at the initial benchmark evaluation,
and 1et_f2 and Py be the estimate and the hit probability
at some later test. We want to test the hypothesis
HO: Py = Py = P .fl and ?2 are approximately Gaussian wirth
mean p. and varlagce pl(l—pl)/n; for 1 = 1,2 and n = 8192,

Under the hypothesas Ho’ the dastraibution of fl - f2 is
approximately Gaussian with zexoc mean and variance

2p(1~p)/n, and the following probability statemeni applies:

P[l?l - 'le < \/—2-3%ii z(x/zl =1 - Q. (&.5)

Since p is unknown, the variance 2p{(l-p)/n 1s replaced by

the sample varaiance.

; (4.6)
(The new statistic has a Student-t distribution, but is
approximately Gaussian for large n.) Equation (4.6) ais
used to test the hypothesas HO at the 0.95 level of

significance.
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4.4 Operation of the Optimization Program

This section briefly describes the procedure for

performing an optimization and the facility for operator-

program mnteraction.

The differential equations for the simulation are
patched on ASTRAC-IT's analog and dagital patchbays.
ASTRAC~IT a1s placed in the SINGLE RUN model whach allows
for mnitiation of compute periods on command from the
PDP-9 by way of the linkage pagchbay.

After the daigital program is loaded from magnetaic
tape into core memory, the program enters a 'command mode, "
and the following index is dasplayed on the CRT:

1. Read input data

2. Dasplay input data

3. Begin optimization

The operator can select the desired mode of operation by
typing the corresponding aindex number on the CRT keyboard.
Typang a "1" results in a display of an index to the pro-
gram variables which must be assigned values by the
operator:

1. M, the number of system parameters.

2, MODE, a number specifyzng one of three operating
modes: O--a single evaluation of the craiterion
function for specified parameter values; 1--ilhe
creeping-random-search algorithm; 2~~the uniform-

random search.
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3. NSHIFT, a number specifying the inatial search-
range for the creeping-random search.
4, MAXS, a number specifying the minimum search-range
for the creeping-random search.
5. NRAN, the number of criterion function evaluations
for the uniform-random search.
6. LF, the number of consecutive failures allowed 1in
the 1nitial search (Fag. 4.5).
T e KF, the number of consecutive fairlures allowed in
the final search (Fig. 4.5).
8. N, the number of ASTRAC-TT runs per funciion
evaluation for traial steps.
9. MAXN, the maxaimum number of runs per function
evaluation in the final search (Fig. 4.5).
10. NPRINT, the number of trial steps between CRT
praintouts of the progress of the optimization.
11. PMIN(I), PMAX(I), the minimum and maximum allowable
values for the system parameters (al and b1 in
Eq. [3.5]).
SLIM(I), the lower bound on the percentage standard
deviations of the parameters (c::L in Eq. [3.6]).
i12. U(I), S(I), ainmitial values of u_  and o .
13. UB(I), SB{I), values for the "benchmark" parameters.
Displayed on the CRT screen below the index 1s a request
for the operator to type the number corresponding to the

inputl variable he wishes to enter. When the number 1is
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typed, the screen 18 cleared, and the input varaiable name
followed by an "equal' sign is dasplayed. The operator
then types zn the value for the input variable. When the
value 1s read by the computer, the input data index 1is
displayed again. After the input data have been entered,
the operator may return to the command mode by typing a
special-code S (§S). For verafication of the input data.
the dperator can type a "2" while in command mode to obtain
a CRT display of the data. Typing a "3" in the command
mode initiates an optimization according to the specified
value of MODE (No. 2 above).

As the optimization proceeds, the CRT daisplays the
number of steps taken, the number of these steps resulting
in an improvement of the criterion function, and the
parameter values and criterion function value_at the current
optimal point (Fig. 4.7). A summary of the optimization is
dasplayed upon completion (Fig. 4.7).

The operator can affect the course of the optimiza-
tion by communicating with the algorithm through accumulator

switches. While the search proceeds, he can control the

search range, hold any parameters constant while the pro-
gram continues to optimize with respect to the other
parameters, suppress the failure counters (K or L)} im order
to remain in one part of the search, request any CRT output
duplicated an hard copy by a Teletype, or request a termina-

tion of the search. This kind of algorithm-operator
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interaction can provide the engineer with insight into the

behavior of the system and might enable him to speed the

search for the optimum.

In the interesi of execution speed, the programs
for estimating the criterion function and for the opiimiza-
tion were written in MACRO-9, the PDP-9 assembly language.
Input-output routines were programmed in FORTRAN. The
program-interrupt facalaty enables efficient use of
computing time by allowing the digital computer to perform
computations during ASTRAC-II's compute period. While one
simulation i1s under way, the PDP-9 averages the results of
the previocus simulation and selects the random parameter

values and initial condaitions for the next saimulation.

4.5 Experiments and Results

Contours of constant hit probability are shown in

Figs. 4.8 and 4.9. Results are expressed in terms of
scaled parameter values, K' = K/6., and 7' = 7/1.3, whach
are in the range (0,1). In Faig. 4.8, contours are plotted

as a function of the scaled parameter mean values for

Ogs = 0oy = 0. The maximum hit probabilaty, P, & W750,

occurs at approximately (NK" Hevs Ogos UT') = (0.42, 0.22,
0.0, 0.0). In Fag. &.9, the contours are plotted against

the dispersions Okt and Ty for HK' = 0.42 and pT‘ = 0.22.

For the optimal parameter values, Fig. %4.10 shows sample

trajectories with and without the radar-tracking noise.
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In order to study the effectaiveness of the

optimization strategy, searches were begun from pre-
selected starting poaints as well as from points chosen by
the pure-~random search. The results of these searches are
summarized ain Tables 4.2-4.5., Waith Nmax = 8192, a 95%
confidence-interval half-width for the hit-probability
estimate 1s approximately + .0l. Thus, for optimizations

without constraints on ok or o searches yielding an

T
"optimal! point with f < .74 are considered fairlures. An
asteraisk precedes the data for these searches.

Searches were begun from the point (MK"pT"
Og190c4) = (0.9,0.6,0.0,0.2) with LF = 20 and XF = 40 in
order to study the behavior of the algorithm as a function
of N, the number of simulations used to estimate p at traial
points (Table 4.2).

This starting poaint 1s 1n a region where the

gradient of the criterion function i1s small: noise in the

estimates of the hit probability can easily obscure the

gradient. Note that for the successful searches, the
ranges of the final values of uT, and Oy are much larger
than the ranges of pK| and O 1 e Thas behavior 1s to be
expcected from the shape of the contours in Figs. 4.8 and
b,9. 1In general, as N decreases, so do the average number
of saimulations and the computer time per optamization while
the number of unsuccessful searches increases. An excep-

tion 1s the case of N = 64, where the average number of
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Table 4.2

Data for automatic opitimizations from the
starting point (P ,,4.,,0,,,0-,) = (0.9,0.6,0.0,
0.2) K T K T
LF = 20 KF = 40 N_ = 4096 N = 8192
(o] max
_ Trzal ASTRAC-IT
N fo pK, HT' Ok 1 T4, steps runs
64 .741 450 .169 .005 .067 174 234000
- 750 L4231 .253 .028 .128 187 177000
7Ll 406 .268 .015 .172 174 213000
. * 715 h2g 371 .024 .038 146 133000
*,739 438 .217 .010 .227 151 248000
*,706 431 .393 .023 .234 117 119000
*,716 B12 .367 011 148 161 237000
742 A2 .265 .014 .121 208 375000
Average: 165 217000
Average time = 7 min 23 sec
128 L7U8 407 .212 014 010 240 267000
*,707 L4288 ko .006 .120 157 118000
751 L27 .259 .020 111 132 136000
* 672 A57 . 784 .010 .073 115 117000
*,738 LAa27 247 .029 .130 148 165000
*.733 Jazh . 300 .017 .066 127 135000
.754 Jhao2 .203 011 .113 174 120000
* ., 688 436 «513 .026 .193 152 105000
Average: 156 145000
Average time = 5 min 0 sec
256 .752 Lhasg .239 .019 054 167 189000,
747 Lh431 .269 .003 .020 173 211000
*,721 L2k .393 024 .03k 1h9g 176000
. 740 JA20 .277 .035 «141 140 109000
*,719 2o .367 .029 .220 119 117000
*,705 A1 o2 .018 151 142 114000
.756 Jhze 194 . 005 056 229 345000
.748 413 .226 .04k0  .109 195 497000
Average: 140 198000
Average time = 6 min 36 sec



Table %&.2--Continued

135

512 . 748
«7ho
*.695
*,720
+ 755
.758
. 754
. 7hl

Average time
1024 . 745
CThT7
*.739
*,732
745
. 758
. 740
<743

Average time
2048 . 745
.761
*,730
.756

Average time

L6
LA
Lok
413
&35
Lh2g,
22
Lb37

6 min

8 min

LA419
Lhoo
Aok
2o

15 main

.208
. 245
504
«317
. 209
214
.254
.214

20 sec

286
.199
0282
. 309
. 307
245
.189

.323

23 sec

. 305
.267
. 363
.231

3 sec

.039
.015
004
.009
.021
.009
.026
046

.028
017
.028
.028
.007
.010
.009
.020

.003
.002
.005
1002

.077
L1455
.061
.296
.152
L043
.121
.020

Average:

.052
112
+195
.169
.176
L0348
.198
.166

Average:

.223
.065
.298
.075

Average.

210
162
120
143
222
202
154
159

171

111
137
125
169
226
2138
125
169

162

257

133
112

209

178

216000
212000
146000
182000
229000
220000
183000

165000

185000

152000
186000
201000
304000
393000
359000
200000

230000

246000

650000
331000
237000

4ahooo

447000
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simulations and computer time i1ncreases. This 15 caused
by the relatively large varzance in the estimates of hit
preobabrlaity for traial steps im the final search, The
"nmoisy" estimates lead to many false indications of
improvements 1n the hit probability; each indication of an
improvement is followed by a reevaluation requiring many

simulations. From the data of Table 4.2, 1t was decided

that the best compromise between performance of the

algoraithm and computer time occurred for N = 512. Thas

value was used for the remainder of the study.
Table 4.3 shows results for searches begun from the
point (py,,0,s05,,0.,) = (0.5,0.9,0.3,0.0). This 1s a

particularly difficult stariing point, because here the

search must climb a narrow ridge, which has steep sides and

a very small slope in the direction of the optimum. In

order to have the search reach the optimum, 1t was neces-
sary to aincrease LF and XKF, the number of consecutive
fazlures allowed in the inatial and final searches.

To 1llustrate a more practical method for locating

the optimum, the algorithm was next started from the best

point chosen from the pure-random search described above.

Estimates of p based on 512 simulations were calculated for
45 random points. Data for the creeping random searches
are listed in Table 4.4. Note that the two unsuccessful

searches stopped at points on the ridge.
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Table 4.3 Data for automatic optimizations from the

starting point {p.,,u_,,o o.,) = (0.5,0.95,
0.3,0.0). Kromwirr 1

N = 512 NO = 4096 Nmax = 8192
B Trial ASTRAC-IT
£ Byt Boo Oxg Ot steps runs
LF=20
KF=40
* 60k L2 .519 .00k .107 133 117000
+,608 A5 Lhg97 .019 .030 140 161000
*.681 b7 . 706 .026 .059 129 131000
* 681 kg .675 .015 .046 139 155000
Average: 135 147000
Average time = 5 man &4 sec
LF=40 )
KF=40 .
. 751 JA1g .222 010 .173 215 249000
*,720 430 434 .005 243 144 142000
.753 Lhoo 245 .022 .016 187 208000
* ,725 A3k . 374 .001 .215 204 171000
Average: 187 197000
Average time = 6 min 35 sec
LF=60
KF=30
* 739 Lh19 .255 .025 .268 187 224000
.764 27 2009 .005 .005 294 287000
* 684 LA60 .752 .003 043 202 205000
.762 Lh1s .239 .013 LOhh 160 140000
* 705 Lok .511 .025 .004 265 238000
Average: 222 219000
Average time = 7 min 28 sec



http:0.5,0.95

138

Table 4.4 Data for automatic optimizations from starting
points chosen by the pure-random search.

LF=20 KF=40 N=512

NO=4096 Nmax=8192

_ Trial ASTRAC-IT
fo uK' pT, Ok 1 Oy steps runs
. 748 420 .223 .048 .003 121 143000

*,721 bk Lh2s .014 .165 112 129000
.754% .Ah19 . 205 .001 048 123 175000
747 k32 .201 .019 143 111 160000
rd 16 .187 .002 .022 154 165000
. 756 oo .223 .012 .138 213 266000

*,723 425 . 381 .001 .258 147 163000
.753 Lok .228 .014 .106 181 255000

Average: 143 1.72000

Average time 5 hln sec
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A pure-random search followed by the creeping-
random-search algorithm was applied to optimizations with

lower-bound constraints on o, and g {Table 4.5). Thas

T
1s intended to model a situation where xt is known that

holding production tolerances below a certain level is very

difficult and/or costly. Note that a lower bound on Ox 1

causes an 1ncrease in the optimal mean value Bgoe For the

case of Ok 1 > .2 and ¢ > .2, the maximum hiit probabilaty

Tt — 3
appears to be about 0.625. This should be compared with a
value of 0.600 for the point (uK"uT"UK"GT') = (0.42,0.22,
0.2,0.2) 1n Fag. 4.9.

Optimizations were performed with several other

combinations of lower-bound constraints on O 1 and O r @S
well as with eqguality constraints on Ok 1 and O e In no
case, however, was 1t observed that increasang Ox 1 OF Oqn

resulted 1n an increase in the hit probabaility. It as

believed that McGhee and Levine's observation of the hit
probability increasing as Ox .+ 18 increased 1s a result of
holding ., and By constant, instead of locating new
optimal values.

From the results for this example problem, 1t could

be concluded that production variations in the gain K wall

have a significant effect on the hait probability, while

large variations in T degrade the performance only slightly.

Also, for lower bounds on O 1 and g the mean value P 4

T 1

must be increased to obtain optimal performance. WNote that
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Table 4.5 Data for automatic optimizations with lower
bound constraints on Ok 1 and Ogye

LF=20 KF=40 N=5]12 N =4p96 N =8192
9] max
_ Trial ASTRAC-IX
fo By B Ok 1 O steps runs
O'K l_?_O «1
.700 441 .268 .113 .243 120 164000
.708 473 L1772 L1011 .004 150 232000
.707  J432  .282 .101 .043 131 179000
.706  JA457  .187 (104 .094 148 198000
Average: 137 193000
Average time = 6 min 26 sec
GK r_>_‘2'
o ey
610 .458 .174 .217 .233 123 154000
.613 479 .182 .208 .297 115 176000
.623  L461 .206 .206 .236 1k9 155000
.618 .,488 ,228 ,208 .248 149 191000
.628 487 .194 .203 .222 175 224000
624 501 .221 .205 .200 125 1980060
.631 .41 .186 .205 .212 158 212000
.631 .456 ,187 .201 .251 199 215000
Average: 149 191000
Average taime = 6 min 32 sec
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thais latter effect 1s revealed by the simulation of

relatively laree random variations in K; 1t would not be

predicted from a small perturbation analvysis.




CHAPTER 5

CONCLUSIONS AND DISCUSSION

In spite of the wvery large number of system
simulations required for the optimizatzion of the example
problem, it is believed that this hybrad-computer approach
to the optimization of systems with random parameters i1s a
feasable one 1f a fast digitally controlled analog computer
1s avairlable. Certainly, the large number of saimulations
demonstrates that an all-dagital optaimization of a dynamical
system with random parameters by the Monte Carlo method
would be impractical at thais time.

It might be noted that the ivpe of criteraion func-

tion optimized in the example {a probability) i1s ome

requiring a very large number of simulations in order to

obhtain a reasonable criterion-function estimate. For

example, 2f the hat probability is 0.5, our estimate is
approximately Gaussian with mean 0.5 and standard deviation
1/2*V§} where n 18 the number of simulations used for the
estimate of p. Then 100 simulations are required just to
obtain an estimate with a standard deviation which 1s 10%
of the mean. Criterion-function measurements for other
types of problems may well have a more favoerable signal-to-

noise ratio.

142
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With a computing speed of approximately 500 saimula-

tions per second, typical optimization times were on the

order of 6-7 minutes for the A-parameter example problem

simulated on ASTRAC-ITY., For a commercially-available

machine capable of about 200 simulations per second, a
typrcal optimization time of about 16 minutes does not
appear prohibitiive. The results of Schumer and Steiglitz
{1968) indicate that function evaluations (and computer
time) should be expected to increase linearly as a function
cf the dimension of the parameter space.

The data Presented in Chapter 4 were for completely
automatic ophtimization in order to evaluate the effectaive-

ness of the search algorithm. Operator-program interaction

can save much computer time and provide more imsight into

the nature of the system. The automatic search i1s, how-

ever, the most important factor in devising an effective

optimization system.

Parameter optimization in the presence of noise 18
surely an area requirang further research. The creeping-
random-~search algorithm described here 1s effectaive but
wants improvement. The addition of a scheme for brasing
the search in the direciilon of past successful steps should
speed the progress along a ridge (M:tchell; 1964; Matyas’
1965, Rastrigin, 1967).

Two other approaches to ™oisy'" parameter optimiza-

tion maght be investigated. Ths digaital computer 1s adle
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for much of the time during the antegration of the differ-
ential equations on the analog machine. For the problem
solved here, some of this time was used to gemerate
parameter values for the next simulation. The opportunaty
for using this "idle time! would be increased with
commercially-available hybrid computers, which have analog
machines with slower computing speeds than ASTRAC-IT and,
typically, faster floating-point arithmetic than the PDP-9.
During this time, the digital machine might make use of
previous criterion-function measurements in order to fait a
second-order regression surface to the craiterion function,
as briefly described zn Section 2.4. If a measurement of
the craterion function at the minimum point of the
regression surface 1s an improvement over the current best
point obtained by the creeping random search, the center of
the search could be placed at the new point. Computing the
regression surface and solving for the minimum point would;
practically speaking, require floating-point computations.

Another possible approach to optimizing noisy
criterion functions a1s to combine the conjugate-gradient
algorithm of Powell (1964) or Zangvall (1967) with a
stochastic-approximation method for the one-dimensional
minimizations. It may not be necessary to locate the

minima along the search directions with great accuracy;

Harkins (1964) has noted that wath the Partan method,
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convergence could be improved by inaccuracies in delermin-

ing these minima.



APPENDIX A
THE EFFECTS OF LIMITING A GAUSSIAN RANDOM VARTABLE

Let the random variable X bhe Gaussian with mean [

and variance 02. The distrabution function for X s gaiven

by

F(x) f{z)d=

o

2 2
expl -(z-p)"/2¢" 142
c‘\/ 27

b=

We "limait!" the random wvariable X at +rg and at i.ro(r>0)
and show how the mean and variance of X are changed by

these two limaiting operations.

A.l Lamitaing at -rg

Without loss of generalaity, we can assume @ = O.

Let the new random variable U be given by

X for X < rg

rg for X > ro

146
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The distraibution function for U is gaiven by
F(u) for u < rg

G{u) =

1 for u > rg

The expected wvalue of U uis

f udG(u)

E{U}

rg =
= uf(u)da + rg f fl{u)du
- rg
(=x2 /
= —9 . EXp T /2) + rO./r f(u)du (a.1)
\IZE
rgo

The variance of U is

Var{U} = E {(U-E{U])2 }

= E{Uz} - [E[U}]2

rg 2]

= Jr uzf(u)du + (rd)a J/-f(u)du - [E{U}Jz

- ro' (A.Z)
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A.2 Laimiting at £ rg

Again we assume {1 = 0. Let V be gaiven by

-rg for X < -rg
V = X for -rg < X < ro

rg for X > rg
The daistraibution function for V is given by

0 for v < -rg
H(v)} = F(v) for -rg < v <rg

1 for v > rg
Since the limiting operation is symmetric about the mean,
E{V} = B{X]} (4.3)

The wvariance of V 2as

var{v] = B{v?} - [B{v}]®
= B{V?]
-rg rg o
= (rcf)2 f f{v)dv + f vzf(v)dv + (rg)zf f{v)idv
- -to Tg
rg ®
= vzf(v)dv + 2(rg)2f f(v}dv
-rg rg
2 2 / T exp(—r2/2)
= ¢ {1 + 2[(r —l)ff(v)dv - — 11 (A.4)

ro
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Equations (A.1)-(A.4) give the means and variances

of the limited random varzables U and V as functions of r
and g. Table 3.1 laists the numeracal values for r=1, 2

k)

3, and 4.
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