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ABSTRACT  

This thesis presents a hybrid-computer Monte-Carlo  

method for the optimization of systems containing random  

parameters. In the design of a dynamical system, the  

values of a set of system parameters may be chosen so as  

to optimize a performance criterion. If, however, the  

manufacturing process results in production variations in  

these parameters, the optimal system becomes an idealiza­

tion which cannot, in general, be realized by the systems  

actually manufactured. In this case it may be advantageous  

to treat the system parameters as random variables having,  

for example, Gaussian probability distributions. Then  

parameter mean values and variances can be chosen so as to  

optimize a criterion function which includes averag! system  

performance and also the cost of manufacturing systems with  

certain parameter variances.  

In order to solve this type of problem, the  

dynamical system, including the random variations in the  

system parameters, is simulated on a fast repetitive analog  

computer (The University of Arizona's ASTRAC-II) and the  

average system performance is estimated by the Monte-Carlo  

method. A small digital computer (Digital Equipment  

CorporatLon PDP-9) controls the operation of the analog  

ix  



machine and implements an optimization algorithm for  

determining the optimal parameter means and variances.  

Since an estimate of the average system performance  

is a random variable, the optimization algorithm must  

operate with noisy measurements of the criterion function.  

A review of the literature on parameter optimization led  

to the development of a creeping-random-search algorithm  

for optimization in the presence of noise. Incorporated in  

the optimization program are provisions for interaction  

between the operator and the algorithm by way of a cathode­

ray-tube display console and the accumulator switches on  

the PDP-9.  

The method is applied to the optimization of the  

means and variances of two guidance-unit parameters in a  

hypothetical radar-homing missile. With differential  

equation solution rates of approximately 500 runs per  

second, typical optimization times are on the order of 6-7  

minutes. It is found that optimizations with lower bound  

constraints on the parameter variances result in optimal  

mean values different from those for the unconstrained  

case.  



CHAPTER 1  

INTRODUCTION  

A common approach to the design of an engineering 

system is fLrst to choose a general configuration in which 

the values of several parameters are left undetermined; 

these values are then chosen so as to optimize some 

criterion of performance. If many of these systems are to 

be manufactured, however, it may be difflcult and/or 

costly  to  ensure  that  the  parameter  values  are  very  close 

to the optimum. The system with optmum parameter values 

then becomes only an idealization which is not, in general, 

realized by the systems that are manufactured. In such a 

situation it  may be advantageous to model the output of the 

manufacturing process as a statistical ensemble of systems  

with parameters having, for example, Gaussian probability  

distributions. Then, parameter mean values and varLances  

could be chosen to optmmLze a criterion function which  

would include average system performance as well as the  

cost of manufacturing systems with certain parameter  

variances.  

In this thesis, a hybrid-computer method employing  

a fast repetitive analog computer (ASTRAC-IT) and a digital  

computer (PDP-9), is developed for the simulation and  

1  
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optimization of an ensemble of systems with random  

parameters. The method is applied to the simultaneous  

optimization of the means and variances of two parameters  

in a hypothetical radar-homing missile.  

1.1 Problem Definition  

Let us consider an ensemble of systems identical  

except for the values of a set of k system parameters p =  

t  
-- I pk ) t .  (p , p2, These parameters are assumed to be  

statistically independent random variables. A sample  

system from the ensemble is defined by a specific ordered  

pk ) set (pl' p 2, .. ' The situation is pictured in  

Fig. 1.1.  

It is assumed that the type of probability dis­

tribution for each random parameter is specified, but that  

the constants which precisely define these distributions  

may be varied. These constants are termed distribution  

) . constants and are represented by x = (xl, x2V ...  ,  xn 

For example, suppose the parameters p are Gaussian with 

respective means t and standard deviations a3 , where the 

Ia'sand 's may be chosen by the design engineer. Then  

k ) t S(k'-2) = ( tl' "- I  k; all  ... l and n = 2k. 

For any sample system in the ensemble, we define 

a measure of system performance, a performance index J,  

which is a function of the random parameters and is,  

therefore,  a  random  variable: 



3 S (3pl1 1... 3OP p 2 k )  

S 2Pil 2P21 •1 22pk)  

1  5 1p2,  j~k  

Fig. 1.1  Three samples iS, 2S, 3S from an ensemble of  

systems.  
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J =  J(p  1 ,  P2' "''I Pk Ui-i) 

The ensemble average (expected value) of J is a measure of  

the average system performance. This expectation of J,  

E [J =T ,  termed the average performance index, is a 

function of the distributLon constants of the random  

parameters:  

E =  p =  T  (xl, ... , xn ) (1.2) 

For a given set of distribution constants we may  

also define a cost function, C(O), as a measure of the  

cost associated uith manufacturing systems with these  

distribution constants. Typically, C(x) will depend  

specifically on the parameter tolerances, a,- The cost .  

function and the average performance index are summed to  

form the criterion function, F(x).  

F(x)= T  W  + C x)(1.3) 

The problem to be solved is that of optimizing (mLnimizing 

or maximizing) P with respect to x1, ... I X,, subject to a 

set of m inequality constraints on the xMs. 

V1 (x) < 0 1 = 1, ... ,m (1.4)  

The inequality constraints may represent restrictions  

imposed by the design engineer or constraints required for  

proper definition of the distribution functions of the  

system parameters. For example, if p1 is Gaussian with  
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mean ± and variance 12 , then the designer may require 

­ 10 < i  <5, and  we  must  have  ai1  0. 

1.2 Previous Work  

The problem of optimizing an ensemble of systems  

with respect to parameter variances as well as parameter  

mean values has been recognized for some time, but little  

work in this area has been accomplished. The exceedingly  

large number of system simulations necessary to evaluate  

and optimize the criterion function for a dynamic system  

with random parameters makes the solution to such problems  

impractical without the use of very fast hybrid computers,  

which have become available only in recent years. In 1959  

McGhee and Levine (1964) employed Monte-Carlo simulation in  

the optimization of production tolerances for two Gaussian  

parameters in a radar-homing missile (this paper is dis­

cussed more thoroughly in Chapter 4). Parameter mean  

values were selected prior to the simulation, and the  

criterion function was then estimated for sixteen combina­

tions of tolerance values. With a slow analog computer,  

approximately one week of computing time was required,  

demonstrating the need for a fast repetitive machine in  

solving a problem of any complexity. Korn (1966) has  

outlined the problem of hybrid-computer optimization of  

systems with parameters subject to production variations.  

Note that simultaneous optimization of mean values as well  
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as  variances  will, in  general,  result  in  optimum mean 

values different from those for the case where all vari­

ances are set to zero.  

Recently Bohling and O'Neill (1970) have presented  

a hybrid-computer approach to parameter tolerance analysis.  

With the aid of an interactive display system, the operator  

can quickly evaluate the effects of parameter tolerances  

on system performance and reject unsatisfactory designs  

without waiting for the accumulation of large statistical  

samples. This type of operator-program interaction, which  

provides insight into system behavior as well as a saving  

in computer time, could be equally beneficial in parameter  

optimization.  

1.3 Solution Approach  

The solution of the parameter optimization problem  

outlined in Section 1.1 may be divided into two parts:  

evaluating the criterion function F(x) and choosing the  

x  Is to optimize F(x). 

The main problem in evaluating F is the calculation  

of T = EfJ(p1, p2, ..., pk)J. This expectation may be  

calculated analytically for only the simplest of systems  

and performance indices. For systems of any complexity, a  

natural method of calculating T is to estimate it by Monte- 

Carlo simulation. With this approach, the mathematical  

model of the system is implemented by a computer, For a  
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given set of distribution constants sample values of the  

random system parameters are obtained from noise  

generators, and the system is operated or "run" many times  

to obtain an estimate of the average performance index T.  

For systems described by differential equations, this task  

is a natural one for a high-speed iterative analog computer,  

which is capable of solving differential equations much  

more quickly than a digital machine.  

The job of optimizing the Monte-Carlo estimate of F  

is most easily handled by a digital computer, which can  

examine the performance index estimate and implement  

sophisticated strategies for locating the optimal parameter  

values. The main difficulty in solving the parameter  

optimization problem results from our inability to measure  

(x) exactly. The estimate of T from many analog computer  

runs will, in general, contain an error which can lead to  

a wrong decision in the search for the optimum parameters.  

For  the  reasons  discussed  in  Chapter  3, a  creeping  random 

search algorithm was chosen for the optimization strategy.  

The division  of the problem into these two tasks, 

estimation of T(x) and optimization, suggests the use of a  

hybrid computer consisting of a small digital computer  

interfaced to a high-speed analog machine. Such a com­

puting system is employed for the problem solved here.  

The digital computer is a Digital Equipment Corporation  

PDP-9, which has an 18-bit word length and 16K of core  
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memory. The University of Arizona's ASTRAC-II is a +  10. 

volt repetitive analog computer capable of differential­

equation solution rates of 1000 runs per second.  

A revi.ew of the literature on parameter optimiza­

tion was undertaken in preparation for selecting an effec­

tive search strategy for noisy criterion functions. This  

survey is the subject of Chapter 2. The algorithms  

developed for the estimation of the criterion function and  

optLmization are discussed in Chapter 3. Chapter 4  

describes the application of the method to the radar­

homing missile problem, and some general remarks and con­

clusions are given in Chapter 5.  



CHAPTER 2  

A SURVEY OF PARAMETER OPTIMIZATION TECHNIQUES  

2.1 Introduction and Notation  

During the past fifteen years the fields of  

optimum systems design and optimal control have produced a  

large number of parameter optimization techniques. This  

survey reviews the important techniques available and  

attempts to evaluate their relative worth. Since no one  

method is best for all situations, attention is focused on  

factors which determine the suitability of a method for a  

particular class of problems. These factors include the  

type of criterion function to be minimized, constraints on  

the parameters, errors in measuring the criterion function,  

and the computing equipment to be used. The techniques  

discussed have been chosen for their applicability to the  

wide range of criterion functions found in engineering  

problems. Thus, algorithms designed for rather specific  

functions are not treated here. Such methods include  

linear programming, Gauss's least squares, and geometric  

programming, which are discussed by Wilde and Beightler  

(1967).  

There are several references which review or dis­

cuss parameter optimization methods in detail. The most  

9  
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comprehensive and thorough treatment is found in Wilde and  

Beightler (1967), which covers most of the methods mentioned  

here, with the exception of the creeping random techniques  

and stochastic approximation. The latter topic is discussed  

by Wilde (1964). Creeping random methods are treated by  

Rastrigin (1967), Korn (1966), and Bekey and Karplus (1968).  

McGhee (1967) gives an introduction to gradient methods.  

Techniques especially suitable for analog or hybrid  

computers are described by Korn and Korn (1964), Bekey  

(1964), and Bekey and Karplus (1968). A more mathematical 

treatment of parameter optimization, specifically of the 

nonlinear programming problem, may be found in Saaty and 

Bram (1964) ,  which contains a full treatment of techniques 

for handling constraints. Some other general references  

with discussions of several parameter optimization methods  

are Leon (1964), Lavi and Vogl (1966), Carnahan (1966),  

Fleischer (1966), Kopp (1967), Hague and Glatt (1968), and  

Spang (1962). A bibliography of hybrid-computer parameter  

optimization methods is given by Gilbert (1967).  

Formal definitions of the general parameter  

optimization (nonlinear programming) problem and related  

mathematical concepts are given by Korn and Korn (1968)  

and Saaty and Bram (1964). The notation to be used here  

is introduced in the following problem statement.  

Determine the ordered set of n unknown parameters  

(xlI1 x25 ... Xn)-Gwhichoptimizes (minimizes or  
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maximizes) the criterion function (objective function,  

performance index)  

FWx (2.1)  

subject to the m inequality constraints  

9(x) > 0 (or < ) (i=1, ... , m) (2.2)  

The optimal parameter values and associated criterion  

x = (xi, x*, ... , x)t 
function value will be denoted by  

and F'. The set of all x satisfying the constraints (2.2)  

defines a region R called the feasible region. For con­

venience, all optimization problems are considered here as  

minimization problems. In some situations, constraints  

are not present or may be effectively eliminated (uncon­

strained optimization).  

In the evaluation of optimization algorithms the  

notion of convergence is used t0 describe how quickly the  

search proceeds to the optimum point. In particular, some  

algorithms are said to exhibit quadratic convergence, which  

has been defined in several ways in the literature. Wilde  

and Beightler (1967) state that an algorithm capable of  

finding the minimum of a quadratic function of n variables  

after measuring n gradients is said to converge quadrati­

cally. McGhee (1967) defines quadratic convergence in the  

following way. Let Ax be the parameter step vector com­

puted by the algorithm. Then quadratic convergence implies  
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that as 6x = x* - x approaches zero, the ratios of the 

components of Ax and 8 x, Ax /68x , approach 1 for i  = j and 

approach zero for i  / j. According to Box (1966) and 

Fletcher and Reeves (1964), an algorithm enjoying quadratic 

convergence will locate the minimum of a quadratic function  

in a finite number of steps. Unless otherwise stated, this  

last definition will be adopted for discussions here.  

The notions of quasi-quadratic functions and quasi­

quadratic convergence are used by Wilde and Beightler  

(1967). Let F(x) be a quadratic function of X, and let h  

be a monotonic function. Then  

y(x) = h[F(x)]  

is said to be quasi-quadratic, and we shall describe an  

algorithm capable of minimizing a quasi-quadratic function  

in a finite number of steps as converging quasi­

quadratically.  

The optimization techniques described here have  

been grouped under the headings: gradient descent methods,  

conjugate search-dmrection methods, quadratic fit methods,  

direct search methods, random methods, and stochastic  

approximations. The discussions are carried out for the  

unconstrained case, Section 2.8 describes methods for  

handling constraints. Comparative evaluations of the  

methods on the basis of results from test functions and  

practical problems are given in Section 2.9.  
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2.2 Gradient Descent Methods  

The techniques discussed in this section assume a  

smooth objective function and make use of first-order  

partial derivatives to determine the optimizing steps.  

These methods include steepest descent schemes and Partan  

(McGhee, 1967, Wilde, 1964).  

2.2.1  Steepest Descent  

A smooth function F(x) may be represented locally  

about any point x by a Taylor series"  

°  F(x°+Ax) =  F(x ) + VF(x°)t A + 0(Ax2)  (2.3) 

wh er e 

a F 

Xl o 
x 

a F  

ax2o 
x 

VF(x0 ) ()0 0 .   (2.4) 

n  o 
x 

and O(Ax2 ) indicates a remainder consisting of terms of 

second-order and higher in the Ax .  For small Ax ,  the 

i0  

term linear in Ax is dominant, and to make F(x 0 + Ax) <  

F(x O ) we take a step in the direction -g(x 0 ). To show that  
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F(x) can be decreased by such a step, we let Ax = -g(xo),  

a > 0. Then,  

2~F(x 0 +Ax) ­ F(x 0 ) = aMQ( 0 ) t (O)0 + O[  ( 0cg~C) 

< 0 for small a.  

The choice of ( is critical in determining the speed of  

convergence; for small a, convergence is slow, and too  

large an a may result in no convergence. While there are  

many schemes for choosing a, probably the most used are  

the Newton-Raphson and "optimum gradient" methods.  

The Newton-Raphson technique (McGhee, 1967) uses  

the representation of Eq. (2.3) and, neglecting the higher  

order terms, finds C = ao such that F(x 0 + Ax) = 0. Thus,  

F(xO)  
0 ot o  

00  

This step size may locate a point x ­ Ax such that  

°  F(x + Ax) > F(x°), and it is possible for the Newton- 

Raphson method never to converge, as shown in the example  

of Fig. 2.1. On the other hand, this technique can be  

effective in avoiding local minima (Fig. 2.2).  

The problem of instability can be avoided by  

determining a by the optimum gradient method (McGhee, 1967;  

Bekey and McGhee, 1964). Since F(x) is known to decrease  

in  the  negative  gradient  direction  for  some  small  (, there 

exists an a* on (o, ao] such that F(x0 + U-Ax) < F(x 0 + aAx) 
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F(x) 

SI­  I  

I   I-

2  . 1  3  5  

Fig.  2.1  An example of non-convergence with the Newton-

Raphson method. 



F(x) 

3x x 2 x  x x  

FIg. 2.2  An example showing avoidance of a local minimum  

with the Newton-Raphson method.  
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where a is any other scale factor on (0,&x. The optimum  

gradient method uses a one-dimensional search to locate *  

for each step in the steepest-descent direction.  

Steepest-descent methods were of the first to be  

used in optimization and have been applied successfully to  

many problems, especially in the initial stages of the  

search. Convergence, however, tends to be very slow near  

the optimum, and the method may fail altogether for  

functions with irregular parameter landscapes. In addi­

tion, since the direction of the gradient vector depends on  

the scaling of the parameters, xl, the performance is  

strongly dependent on this scaling, problems with long,  

narrow contours will be more difficult to solve than ones  

with nearly circular contours. When gradient information  

is available, more modern methods such as Partan or the  

conjugate direction techniques are superior.  

2.2.2  Parallel Tangents (Partan)  

An attempt to speed up the convergence of gradient  

descent algorithms led to the method of parallel tangents  

(Partan), which was developed by Shah, Buehler, and  

Kempthorne (1964) after Forsythe and Motzkin's (1951)  

suggestion of a steepest descent acceleration technique in  

two dimensions. The two versions, steepest-descent (or  

gradient) Partan and general Partan, are discussed in  



detail by Buehler, Shah, and Kempthorne (1964), Shah et al.  

(1964), and Wilde (1964).  

Steepest-descent Partan alternates steepest descent  

steps with acceleration steps as shown in Fig. 2.3. [In  

this discussion of Partan a "stepr7 implies a minimization  

of F(x) along a line.] For general Partan acceleration  

steps alternate with steps along lines parallel to planes  

which are tangent to F(x) at previous even-numbered  

points Jx (Fig. 2.4. TI = tangent plane at 3x). General  

Partan has the property of scale invarLance, which is  

usually considered an advantage in minimizing general  

functions. With either method a quasi-quadratic function  

of n variables is minimized in Zn or less steps. To carry  

on the algorithms for general functions after 2n steps 

2n 
either method can be restarted at the point x (iterated 

Partan) ,  or steepest descent Partan may simply be continued 

(continued Partan). The partial derivatives SF/x must be 

evaluated or approximated before alternate steps to obtain 

the gradient for steepest descent Partan or the tangent 

plane for general Partan. HarkLns (1964) has found the 

very interesting result that convergence can be improved by 

inaccuracies in determining the minimum along a line. He 

suggested using only one to five points with a golden 

section search. 
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2.3 Conjugate Search-Directmon Methods 

The techniques discussed in this section are 

designed to minimize a quadratic function by a series of 

one-dimensional minimizations along lines termed conjugate 

directions. For most of the methods, a quadratic function 

of  n  variables  is  minimized with n  one­dimensional  minimiza­

tions. To the extent that a non-quadratic function to be 

minimized can be approximately represented by a quadratic, 

these methods provide rapid convergence, especially in a  

region near the optimum, where the first- and second-order  

terms of a Taylor series expansion of a smooth function  

dominate. The conjugate-direction algorithms perform well  

on difficult test functions and have been used successfully  

in the solution of optimal control problems (Birta and  

Trashel, 1969, Lasdon, Mitter, and Waren, 1967). An  

introduction to some general properties of conjugate  

directions is followed by discussions of several algorithms.  

Let F(x) be a quadratic function of n variables x ­

F(x) =  xtAx + btx - c (2.5) 

with gradient  

(x)= Ax + b (2.6)  

where A is positive definite and symmetric.  
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2.3.1 Conjugate Direction Properties  

A set of n independent directions °d di .  n-l d 

are conjugate with respect to a positive semi-definite 

matrix B (B-conjugate) if 

idtBd = 0 i / j 

(2.7) 

idtBd = 0  

The importance of conjugate directions derives from 

the property that n successive minimizations in the A­

conjugate directions will locate the minimum of F(x). 

To see this (Fletcher and Reeves, 1964), let °d, 1 d . 

n-l d be A-conjugate, and let a step from ix to x1+be  

determined by  

i+l x+ id  (2.8)  

where ' is chosen such that  

gt(+lx)xd = + t 'd =  0 (2.9) 

(i.e. ' minimizes F along the direction Ld). Iteration  

on (2.8) from J+lx to nx yields  

< n x + E d (0 < n-l) (2.10)  

i=j+l  

As a convenience, let us assume a change of variables so  

that b = 0. It then follows from (2.6) that  
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n-1  
fl =+1 ; +aA ia (2.11)  

i=j+1  

From (2.9) we have  

ng t 3 d S ic dtdtA3d  (2.12)  

i=j+l  

and as 1 . are A-conjugate, 

n9t Jd  = 0  (2.13) 

Since the n independent Jd's constitute a basis for En  
n  n 
n =  0 which is the condition for n to be the minimum  

of (2.5).  

This same property may be demonstrated in a slightly  

different way. Pearson (1968) shows that since d, 1d  

n  ...In-l d constitute a basis, any xsE can be represented  

in terms of the id's, and F(x) = F(°d5 id n- d) may  

be decomposed into n independent terms (each depending on  

only one i d) to be minimized separately.  

2.3.2 Conjugate Direction Algorithms  

Pearson (1968) has presented a unified treatment of  

a class of conjugate-direction algorithms. One, the  

projected-gradient algorithm, is based on the fact that  

conjugate directions may be generated by requiring that 

i i+l i 

successive steps, is = + ­ x, be made orthogonal to 

previous gradient differences, i.e., 
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(J+lg Jg)t is j t i =  o (3  < i  ­ i) (2.14) 

This leads to the following method. (Pearson's numbering  

of the algorithms is retained here.)  

Algorithm 1--Projected Gradient  

Choose an initial point °x and an initial positive­

definite symmetric matrix 0H. Set i = 0.  

1.  Compute the search direction  

a  = - aH i (2.15)  

ilel  
2.  Locate the next point x by minimizing  

F(ix  + iaid) with respect to a (im > o).  

xx+l=  +a X  iaid 

i  i  (2.16) 

3- Update the matrix iH by  

i i i ti  

i+lH =  iH i H  H  (2.17) 

and  return to step 1 with i replaced by i+l.  

After not more than n iterations (each consisting of  

steps 1-3), x =  x* and H =  0. 

The other algorithms considered by Pearson,  

including the well-knowun Fletcher-Powell-Davidon variable  

metric method, are based on the following idea.  
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Let IS =  [°s, 1  '...i-is] be a matrix whose 

columns are the search steps as, and let iy =  [oy 1 ."5 

L-1 3 be a matrix whose columns are the gradient differ­

ences = --g. Then if Os 1  ... ,  -s are 

independent, the next search step s wall be A-conjugate 

to the is (O < j < a-l) if 

.d= iH t ig (2.18)  

where 'H is chosen to satisfy  

iH y = S (2.19)  

Equation (2.19) h ts the following general solution for an  

arbitrary n x n matrix Z.  

IH isiy+ + Z(I-iYiY+)  (2.20)  

where ay+ is the generalized inverse of 'Y. Different  

choices of Z in (2.20) yield dadferent solutions for ilH  

corresponding to different methods of choosing the A­

conjugate directions ld. Pearson derives four algorithms  

in this way, three of which lead to readily computable  

formulas given below. Each algorithm proceeds from an  
o 

initial point x according to steps 1-3 above with the  

proper formula for iH inserted for Eq. (2.17).  
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Algorithm 2  

(as-'Iiy)ist  

-+iH = aH + t  (2.21) 1 ti  
s y  

Algorithm 3  

i+iH = H + -s- lt (2.22)  

31 tiHyi  

AlgorLthm 4 Fletcher-Powell-Davidon (F-P-D)  

a+lH = 3H+xA+ iB  (2.23)  

where 

.it  
ss 

mA  =  ­
i  ti

S  y 

=-H ay3-ytaH  

1L ti  HBy  

For a quadratic F(x) each algorithm converges in n steps  

or less to the optimum point x*, and this convergence is  

stable in the sense that F(x+ix) < F(ax). At x*, H = A - I  

the inverse (Hessian) matrix of the second partial deriva­

tives of F(x). This information can be helpful in practical  

design problems, since it indicates the sensitivity of F(x)  

to small deviations of x from x*. Note that for each  

iteration the major computational effort consists of:  
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evaluating the gradient of F(2x), performing a linear 

search for the optimum scale factor Nxa,  and updating iH. 

Algorithm 4 is the modification by Fletcher and Powell 

(1963) of Davidon's (1959) variable metric algorithm.  

Fletcher and Reeves (1964) have investigated the  

conjugate gradient algorithm, which is a modification of a  

technique due to Hestenes and Stiefel (1952) for iteratively  

solving a set of n linear equations in n variables u .  

B u = k (2.24)  

An excellent description of the conjugate-gradient method  

for solving Eq. (2.24) is given by Beckman (1960). The  

application to the problem of minimizing a quadratic  

function (2.5) is made clear by writing the condition for  

x to be the optimum point.  

g(x)  =  Ax + b =  0 

Ax = -b (2.25) 

Thus, the problem of minimizing F(x) is equivalent to  

solving the set of linear equations (2.25) when A and b  

are  not known explicitly.  

The Fletcher-Reeves (F-R) algorithm proceeds as  

follows. Choose a starting point 0x and initially let  

o d  =  0g. Set i = 0. 

1.  Locate the next point by minimizing F(ix+iUid)  

with respect to ".  
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x =  x  +  i ad 

1  1 
=  x+ s 

i+l  
2. Compute the next search direction d by  

i+1 =  +l + i id 

where  

1+1 (:lg)22  

('g) 2  

and return to step 1 with i+l replacing i. 

In the original method for linear equation solving,  

a and 'g  are computed directly from B and k, while here  

must be evaluated by computing the partials of F(x), and  

is determined by the linear minimization of step 1.  

Convergence is stable, and for quadratic functions, the  

optimum point is obtained in at most n mnterations. Unlike  

- I in the Fletcher-Powell-Davidon method, A is not explicitly  

available at the end of the search, but the computational  

effort for this algorithm is less.  

Results of applying the algorithms to test functions  

have been published by Box (1966), Fletcher and Powell  

(1963), Fletcher and Reeves (1964), and Pearson (1968).  

Pearson found that in using these algorithms to minimize  

functions where x is located on the boundary of a  
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constraint, convergence was improved by setting IH = 0H  

every n + 1 steps for Algorithms 1-4 and resetting = g 

in the Fletcher-Reeves algorithm. (The constrained minimi­

zations were performed using the created response-surface  

technique discussed in Section 2.8.) Acceleration of  

convergence by resetting 'H in irregular parameter land­

scapes has also been reported by Huelsman (1968).  

A conjugate-direction method for minimizing a 

function without calculating the gradient has been invented 

by Powell (1964) Beginning  with  an  initial point  x and 

n linearly independent directions 1id 2d, ...  ,  dl, his 

basic procedure minimizes F(x) sequentially along id 2d  

n n d x  
... , I. Let x be the point determined by the last one­

0 dimensional minimization. Then nx - x is taken as the  

direction for another one-dimensional minimization. For  

the next iteration of the procedure, d is replaced by  

i+ld for i = 25, ... 5 n-l, and nids replaced by (n.  

0x). Thus, at each iteration a new search direction is  

defined, and Powell proves that for a quadratic F(x) these  

directions are conjugate. Thus, the minimum is located in  

n iterations. A difficulty with this method arises because,  

in discarding the old Id at each iteration, the algorithm  

may be left with a new set of directions which does not  

span the parameter space. Powell's modification to  

eliminate this problem results in an algorithm requiring  

more than n iterations to minimize a quadratic.  



30 

Zangwill (1967) considered this same problem and 

proposed  his own modification  of  Powell's  basic  procedure. 

HMis algoritlm is shown to converge for the case of F(x) 

strictly convex and to converge in n or less iterations (or 

in 2n 2 or less one-dimensional minimizations) for a 

quadratic F(x). 

Powell's method has been applied to several test 

functions with good results (Box, 1966; Fletcher, 1965; 

Powell, 1964). Similar data  for  Zangwill's  algorithm  are 

not available, although the author has used it successfully 

in minimizing Rosenbrock's function (Section 3.1). 

2.4 Quadratic Fit Methods  

It is again assumed that the function to be  

minimized can be represented adequately by a quadratic  

(Eq. [2.5]) in the neighborhood of the optimum. Using  

Eq. (2.6) for the gradient of F(x), we can solve for the  

* parameter change Ax x  ­ x  which yields  g(x)  =  0. 

Ax -A- g(x) (2.26)  

Newton's method (Bekey and McGhee, 1964, McGhee, 1967)  

consists of evaluating g and A and computing the optimizing  

steps by Eq. (2.26). For problems which can be expressed  

in the framework of a least-squares regression, the Gauss- 

Newton method approximates A by a regression matrix, which  

requires only first-derivative information (McGhee, 1967).  
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Note that for either method considerable computational  

effort is required at each step--evaluating g and A (or its  

approximation) and inverting A. Furthermore, if i and A  

are calculated from perturbations, care must be taken in  

selecting the step size (Section 2.9). Although conver­

gence may be very rapid with either method, a poor starting  

point may result in divergence. This disadvantage makes  

methods of this type more desirable when incorporated in a  

strategy including a more stable search method. The follow­

ing technique may be more suited to this type of strategy.  

Rather th§n evaluating g and A directly, we may fit  

a second-order regression surface to a set of N observa­

tions of F(x). The regression surface is defined by  

T  ­)  2-t fx+ flx +t (2.27) 

Performing the minimization  

min FE __  _  2-

Y ,cc [iX) Vqij (2.28)IM ­ 

J i=l  

results in (n 2 + 3n + 2)/2 equations which determine F, , 

and a. The estimate for the optimum point is obtained by  

solving  

r(x)x  +  P  =  0  (2.29)r 

Since the N observations may be taken at any values of x  

(although they must be sufficient to define F, P, and a),  
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this technique could be combined with another climbing  

method, for example, a pattern search (Section 2.5) or  

a creeping random search (Section 2.6), i.e., observations  

made during the climbing method are also stored for use  

in Eq. (2.28).  

2.5 Direct Search Methods  

Gradient descent methods and the conjugate direc­

tion methods utilizing the gradient expend a large amount  

of effort in obtaining information (the gradient) at a  

single point; this information is extrapolated to search  

for a better point. Noting this considerable effort at one  

point and the inefficiency of steepest descent techniques  

on many problems, Hooke and Jeeves (1961) proposed making  

exploratory moves and always moving the base of the search  

when an improvement was found. Algorithms of this type  

have become known as direct search methods.  

Hooke and Jeeves' pattern search is a direct  

method designed to follow a descent path to the optimum by  

searching in previously successful directions (pattern  

moves). (Explicit instructions for the algorithm are  

given by Wilde and Beightler [19671.) Following each  

pattern move, exploratory moves are made with each  

coordinate separately to detect changes of direction of  

the descent path. The programmer sets the exploratory  

move step length (which may be reduced later by the  
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algorithm); the lengths of pattern moves are determined by  

exploratory step lengths and previous pattern-move lengths.  

Thus, there is no effort expended in minimizing along a  

search direction. The search is ended when successive  

failures lead to a reduction in the exploratory step  

length below a preset minimum. Note that the progress of  

a pattern search depends only on whether each function  

measurement is greater than or less than some previous  

observation, the magnLtude of differences in function  

values are ignored. The fact that convergence does not  

depend on accurate measurements of function differences  

(as in the case of algorithms requiring gradients or linear  

minimizations) may be an advantage in problems with noisy  

observations of the criterion function. (The problem of  

optimizLng in the presence of noise is dLscussed in  

Section 2.7.)  

Rosenbrock's method of rotating coordinates  

(Rosenbrock, 1960, Wilde, 1964) and its alteration by  

Swann (Swann, 1964, Fletcher, 1965) are also designed to  

recognize a direction of descent and to search along it.  

However, the fixed-length steps of pattern search are  

replaced by successive linear minimizations in n orthogonal  

directions. The net progress in parameter space resulting  

from n such minimizations establishes a new search direc­

tion, whch is analogous to a "pattern" direction. The  
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remaining n-i directions for the next series of minimiza­

tLons are made orthogonal to the newly established one.  

A unique approach to optimization was borrowed from 

the sequential simplex or simplLcial method of Spendly, 

Hext, and HLmsworth (1962) for locating a nearby optimum 

point and following it in the presence of noise. The method 

is begun by placing n+l measurements at the vertices of an 

n­dimensional  simplex  (Fig.  2.5).  The poLnt on the simplex 

with the largest function value is determined, and a new 

point is located by reflecting this "worst" point through 

the center of the simplex. Thus, a new simplex is created, 

consisting of the old one, but with the new point replacing 

the previous worst one. This movement of the simplex  

tends to track the optimum point. In order to speed the  

progress of the search from a starting point far from the  

optimum, Nelder and Mead (1965) modified the original  

method to allow for expansion and contraction of the  

simplex. With this provision it was found that the initial  

sLze of the simplex did not greatly affect the speed of  

convergence. Since the movement of the search depends only  

on finding the worst point of the simplex, the method is  

not disturbed by small observation errors. Spendly, Hext,  

and  Himsworth  noted  that  the  rate  of  advance  was  nversely 

proportional to the standard deviation of Gaussian measure­

ment noise--an indication that averaging observations at a  

point would not be beneficial, since the standard deviation  
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x2  

initial simplex-
1o 

initial  worst  point 

x 1  

Fig. 2.5 Operation of the simplex method in two dimensions.  
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is reduced in proportion to the square root of the number  

of observations.  

Data on the performance of the simplicial and  

rotating coordinates algorithms have been published by  

Fletcher (1965) and Box (1966). Similar data for pattern  

search are not knovn to the author, although it has been  

applied successfully to network-design optimization by  

Huelsman (1968). Wilde and Beightler (1967) report that  

for pattern search the number of function evaluations for  

optimization tends to be only a linear function of the  

number of parameters, n, rather than a quadratic or cubic  

function as for most other methods (another exception is  

the creeping-random search of Section 2.6).  

The direct search methods are designed to find the  

best search directions and to proceed in these directions  

without  wasting  time  evaluating  derivatives.  This tends to 

make their performance favorable in the early stages of the  

search. However, in the neighborhood of the optimum the  

derivative information acquired by the quadratically­

convergent conjugate-direction algorithms accelerates their  

progress. This behavior was noticed by Fletcher in com­

paring  the  performance  of  Swann's  version  of  the  rotating 

coordinates method with the conjugate direction method of  

Powell (1964). The results of Box indicate that the  

simplicial and  rotating coordinate  methods  become 
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ineffective compared to the conjugate direction algorithms  

as n increases beyond 5.  

2.6 Random Search Methods  

The development of random search optimization was  

motivated mainly by the need for methods which were simple  

to program and effective in irregular parameter landscapes.  

Before the availability of true analog-digital hybrid  

computers simple random search algorithms could be imple­

mented by hard-wired optimizers attached to analog machines.  

Random search methods are still especially attractive for  

hybrid computers consisting of high-speed repetitive analog  

machines capable of evaluating the criterion function  

quickly and small digital computers without the floating­

point hardware necessary to make complicated algorithms  

fast enough to be advantageous. Furthermore, the complex,  

nonlinear dynamic systems which are most advantageously  

simulated on analog machines often have parameter land­

scapes with the sharp ridges, discontinuous first deriva­

tives, etc., which can cause deterministic algorithms to  

fail. There is also evidence to suggest that random  

methods are superior in optimizing smooth functions of many  

parameters (Schumer and Steiglitz, 1968).  

The literature reviewed here has been loosely  

grouped into the categories of theoretical developments and  

specific algorithms with applications.  
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2.6.1 Theoretical Developments  

Brooks (1958) suggested choosing observation points  

from a uniform distribution over the entire parameter  

space. After N such points have been tested, the one with  

the smallest criterion function value is taken as the best  

approximation to the optimum. To evaluate the effective­

ness of this method, let the parameter space be an n­

dimensional hypercube with sides of unit length, and  

imagine the optimum point to be enclosed by a smaller  

. hypercube with sides of length 6 and volume v = 6n We  

would like to ensure that the search will place at least  

one  point  in  the  smaller  hypercube  with  a  specified 

probability. Brooks showed that the number of trials  

necessary to have probability p of casting at least one  

point into the smaller hypercube is  

N iog(l (2.30) 
log( 1 -v  

Taking v to be constant in Eq. (2.30), it was concluded  

that the number of trials required for random search does  

not depend on the number of parameters. However as  

pointed oat by Hooke and Jeeves (1958) and Spang (1962),  

for v to remain constant, 8 must increase exponentially, so  

that for a fixed number of trials the uncertainty in the  

parameter values, 6, increases exponentially with n. Spang  

showed that substitution of 6 n for v in Eq. (2.30) yields  
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N ­ log(l-p)/6 

P  2.­3/6 n  (2.31) 

for p = .9, whereas the number of points required for a  

deterministic grid test (points located equal distances 6  

n apart) is 1/6 . Such a large number of trials obviates the  

use of either method as a means to locate the optimum  

accurately. But in the absence of any information regard­

ing the location of the optimum, a grid search might be  

used to choose a starting point for some sequential search  

algorithm.  

Rastrign' (1963) has studied the convergence  

properties of a fixed step-size, creeping random search  

algorithm (FSSRS). Beginning from a point i exploratory  

steps Ax are made with fixed length and random direction.  

When a point as found such that F(ix + Ax) < F(ix), the  

corresponding increment is labeled A+l6x and the search is  

moved to the new base point  

+lx X  +1 Ax (2.32) 

(With  this  notation,  i  indexes  only  successful  trials.) 

The algorithm was compared to a steepest descent method in  

which at each iteration a step of the same magnitude was  

made in the direction of the gradient at -x. Rastrlgin  

introduced the concept of search loss, defined as the  

number of criterion function evaluations required for a  
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displacement in the negative-gradient direction equal to 

the step length Ax ,  or equivalently, the reciprocal of 

the average displacement in the negative-gradient direction 

per function evaluation. The search loss was computed for 

both algorithms applied to a linear test function and a 

distance function F(x) =  x21/2 For both functions 

i=l  
it was found that as the number of parameters increased,  

the creeping random algorithm was superior to the steepest  

descent method on the basis of search loss. The limita­

tions of this comparison might be noted here. The steepest  

descent algorithm is made very inefficient by requiring a  

gradient evaluation (n+l function evaluations) at each  

iteration and allowing only constant step sizes. A more  

practical steepest descent program could make more effi­

cient use of the gradient information (for example, the  

optimum gradient method of Section 2.2). Thus, in practice  

the relative advantage of the creeping random strategy  

might not be as great.  

The convergence of the creeping random method in  

the presence of noise has been studied by Gurmn and  

Rastrigin (1965). For a linear criterion function,  

measurements were corrupted by Gaussian noise with zero 

2 
mean and variance y The random search algorithm used a 

"testing step" of fixed length c and random direction.  

When such a testing step resulted in an improvement in the  

measured value of F()W, a step of length Ax was taken in  



the  same  direction.  The  progress  of  this  algorithm  was 

compared to that of a steepest descent method, which  used 

2n  perturbations  of length  a to  determine  the  gradient  and 

then took a working step of length Ax in the estimated 

negative-gradient direction. Comparisons  were  made  on  the 

basis of search loss, and as a function of the number of 

parameters n and a signal-to-noise ratio 

6- ­F 

For any fixed value of 5 search loss is a linear function  

of n for the random method. For 6 =  a'  (no noise) the 

gradient method has a search loss linear iLn n, but for  

=  1  the  search  loss  is  greater  than  c  nJT, where  c  is 

a constant. For 6 =  1 and 6 =  a'  the random search method 

was superior for n > 6. For n =  6 the increase of noise 

level from 6 = - to 6 = 1 caused the search loss for both  

methods to increase from 12 to approximately 32 (function  

evaluations necessary for a net progress of Ax in the  

negative-gradient direction). Brooks and Mickey (1961)  

have studied the fixed step-size steepest-descent  

algorithm  for  a  linear  criterion  function  with  Gaussian 

noise.  Their results indicate that in order to minimize 

search loss, a minimum number of function evaluations  

N 

should  be  expended  on  estimating  the  gradient.  Thus,  had 

Gurin and Rastrigin used n-l steps (rather than 2n) to  
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estimate VF, the relative advantage of the creeping random  

method over steepest descent might have been diminished.  

Beginning  with  Rastrigin's  fixed  step­size  random 

search (Eq. [2.32 ] ), Schumer and Steiglitz (1968) developed  

an algorithm with adaptive step size. For the criterion  

2  2 
function F(x) =  S  x  p ,  the expected improvement per

i=i 

step, normalized by the present value of F, was computed as 

a function of n and I = s/p,  the ratio of the step size to 

the distance to the optimum, i.e.,  

=~ .­E[AFJ
F (2.33)  

T(n,') was maxLmized with respect to TI, and the optimum 

T(n) was evaluated for large n. This led to the result 

that the average number of function evaluations necessary 

to minimize F within a fixed accuracy is asymptotically 

linear  in  n.  A  practical  algorithm, which  attempts  to 

adjust the step size to the optimum during the minimization 

process,  was developed  and  compared  to  two deterministic 

algorithms. These were the simplicial method of Nelder and 

Mead (1965) and a second-order method which evaluates first 

and second partial derivatives at each iteration. Per­

formances  were  compared  on  the  basis  of  the  average  number 

of  function  evaluations  required  for  minimization. For  a 

quadratic function, the second-order method was superior 

n  4 
for n < 78, but for the function F(x) = x i the adaptive 

i=l  
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random search algorithm was superior to the second order  

i=l  

method  for  n  > 2  and  superior  to  the  simplicial  method  for 

n  > 10.  The  adaptive  search  was  also  tested  for 

2 
F  =  Z  a  x  where

1 1 
the  a i  were  chosen  from  a  probablity 

distribution uniform on [.l,1.1. For each of these three  

test functions the number of function evaluations required 

by the adaptive random search method was proportional to n. 

This  compares  with  results  reported  for  pattern  search 

(Section 2.5). For other methods, function evaluations are 

usually  proportional  to the  second  or  third  power  of  n. 

Adaptation of a creeping random search with respect 

to search direction has been discussed at length by  

Rastrigin (1967). He has proposed several learning  

k 
algorithms which adjust pi, the probability of selecting  

a positive increment for the iLi parameter at the kh step,  

as a function of past performance. Adjustment is accom­

plished by making kp =  kpi (k3), a nonotonic, non­

k 
decreasing function of the memoryparameter k One1 . 

k 
example of Rastrigin's schemes for adjusting k is the 

i 

following  algorithm. 

k+l  =  k  - 6  kAx  kAF  (2.34) 

where 

kAx  k x  k­ x 
ii  i 
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kAF ­ Fkx)  _ Fl  - x)  

and  

1<  wIa.<  c2 

k 

The adjustment of k is proportional to the magnitude of  

k F5 the step size causing kAF  and a positive coefficient,  

6. For example, a positive kAx causing an improvement  

(ACF < 0) brings about an increase in kI and thereby an  

k+l  
increase in pl the probability of increasing x at the  

next step. Rastrigin introduces other algorithms similar  

to Eq. (2.34), which allow for a discarding information  

collected in the distant past ("forgetting") and which  

provide for better adaptation to the best of possible  

successful directions.  

An interesting aspect of Rastrigin's work is his  

idea of separating the search algorithm from the learning  

algorithm. The learning algorithm (Eq. [2.343) collects  

information on past performance and adjusts the directions  

for future exploratory steps. It is the function of the  

search algorithm to decide whether or not to actually move  

the center of the search as a result of an exploratory  

step. One possibility is to move only when such a step  

results in a reduction of F. e.g., Eq. (2.32). Rastrigin  

also suggests the possibility of moving the search with  

every exploratory step. This places the learning algorithm  
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in complete control of the search. Such a policy might be  

beneficial in stepping over local minima or local flat  

regions and in problems with observation error.  

2.6.2 Specific Algorithms and Applications  

Experiments with creeping random search strategies  

on analog computers were reported as early as 1958-59.  

Favreau and Franks (1958) described a creeping random  

method for optimizing dynamic systems, and Munson and Rubin  

(1959) optimized a system of nonlinear algebraic equations  

by a continuous creeping random perturbation of parameters.  

A hard-wired creeping random optimizer, including provi­

sions for expanding and reducing step size and correlating  

future trial-step directions with past successful direc­

tmons, was built by Mitchell (1964) for use with a fast  

repetitive hybrid computer. This was employed by Maybach  

(19 6 6 a) to solve minimum-time bang-bang optimal control  

problems.  

The availability of true analog-digital hybrid  

computers has made it possible to employ more sophisticated  

random search strategies than could be implemented by  

hardware optimizers attached to analog machines. Here we  

shall discuss alterations to the basic creeping random  

search which were introduced and applied chiefly by Bekey  

et al. (1966) and by Stewart, Kavanaugh, and Brocker  

(1967).  
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One modification concerns the classification of a 

trial step as a success or failure. Let F('x) be the 

current value of the criterion function and F(  Ix +  Ax) the 

value at a trial step. Stewart et al. use a threshold  

strategy to define a success for a minimization problem*  

F(x +  Ax) ­ F(ix) <  il  F('x) (Tq >  0) (2.35) 

In the beginning of the search, when F(Lx) is large, a  

relatively large improvement is required for a success,  

while near the end of the search smaller improvements are  

required. Stewart et al. found that the average number of 

steps required for solution could be reduced by approxi­

mately one-third for q = .3 and q = .7 as opposed to TI = 0, 

while 1  = 1 resulted in a sharp increase in required steps. 

Another possibility is a constant threshold level: 

F('x +  Ax) - F(ix) < e (2.35) 

For example, e might be taken just large enough to overcome 

errors in measuring F(x). 

A vector-valued criterion function was employed by 

Stewart et al. in a creeping random algorithm to solve the 

two-point boundary value problem resulting from a Maximum-

Principle optimization of an orbit transfer problem. 

Boundary conditions were to be matched for state variables 

representing displacement and velocity, xd and xv, and 
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adjoint variables, p. The criterion function was defined  

as  

F r(Fd  Fv5 Fp)I 

where each component of F is the sum of the errors in 

matching the boundary conditions for one class of variables. 

For a trial to be regarded as a success it was required  

that all three components of F be reduced (the threshold  

strategy [Eq. (2.35)] was applLed to each component). This  

more restrictive success criterion might be useful in  

avoiding a local minimum where only one or two components  

of F are small. Gonzalez (1969) employea a vector-valued  

function in a Maximum-Principle optimization of the same  

systems solved by Maybach (1966a). The number of evalua­

tions required for convergence was reduced on the average,  

the most striking reductions being obtained for difficult  

starting points in the parameter space.  

A modification for directional adaptation is the  

introduction of absolute positive and negative biasing  

(Bekey et al., 1966) into the basic creeping random  

algorithm, which is repeated here.  

x = X+ _ Ax (2.37)  

If the last increment resulted in a success, it is used  

again for the next trial step, i.e., ALx =  iAx (positive 

biasing). If the last increment Ax resulted in a failure,  
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-1Ax is used for the next trial step (negative biasing). Of  

course,  negative  biasing  is  not  used  folloiing  two  succes-

sive failures, or the algorithm will loop endlessly. Also,  

it is wasteful to use it after the first failure following  

a success. Bekey et al. reported that absolute biasing was  

effective in improving convergence. Stewart et al. used  

only positive biasing and found that it decreased the  

average number of steps required by approximately 40%  

compared to the search wathout biasLng.  

Another element of randomness may be introduced by  

using a random increment for each variable, rather than an  

increment of fixed length and random sign only. This  

results in a step Ax which is random in length and direc­

tion, and all directions are possible. For the algorithm  

with only random sign for each variable, only 2 n discrete  

directions are possible. The disadvantage of this can be  

seen in Fig. 2.6, where a zig-zag path must be followed  

from the initial point Ox to the optimum. Bekey et al.  

chose the increments Ax
i 

as independent Gaussian random 

variables with zero mean. Gonzalez (1969) chose the  

increments from a uniform distribution, which is usually  

easier to generate on a digital computer.  

If random increments Ax are used, the average step 
3  

size can be adjusted by changing the variance of the  

distribution of the increments. If the step size is small,  

a large proportion (asymptotic to 50%) of the trials result  
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x 2  
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x  

x  

Fig.  2.6  The behavior of a "dascrete-darectaon" random 
search algorLthm. 



50 

in success (assuming no threshold strazegy), but the  

average improvement per step is small. On the other hand,  

a large step size results in a small ratio of improvements  

to trial steps. Karnopp (1963) suggests increasing the  

variance if an improvement occurs within two trials and  

decreasing the variance if no improvement occurs within  

three trials. Stewart et al. provide for variance reduc­

tion by some factor after a number of consecutive failures.  

Bekey et al. used a constant variance of 4% of the range of  

each parameter during the entire local search. It was  

reported that their work and the results of a further  

study (Adams and Lewf, 1966) failed to find a variance  

adjustment strategy yielding faster convergence than the  

constant variance method. This result is especially  

interesting when contrasted with the work of Schumer and  

Steiglitz (1968) on an adaptive step-size algorithm. It  

should be noted that the adaptive algorithm was developed  

n 2  

for the criterion function F = S x and was tested on  
i=l  

other smooth functions, whereas the results of Bekey  

et al. are based on a nonlinear dynamic system with  

minnmum-time and minimum-fuel criteria, which could lead  

to an irregular parameter landscape.  

An algorithm for directional adaptation of the  

creeping random search has been proposed by Matyas (1965).  

From the point ix a trial step i+1Ax is taken.  
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mx Ix - lAx  

If F(+Ix) < F(iX), the center of the search is moved to 

the point x.  Otherwise the center of the search remains 

at i-x5 and another trial step is taken. The trial steps 

are given by 

i+1 Ax = i+ld + 1+1 T i+l_  

where  Ll_  is  an  n­dimensional  Gaussian  random  vector  with 

zero mean and unit correlation matrix, l+d specifies the  

mean of Ax, and T is an n x n matrix. Adaptation is  

accomplished by adjusting lid as a function of past trial  

steps and past successes and failures. Let  

d = c 0 d__ c 1  

where  c  and c1 satisfy  the  following  conditions. If the 

last step iAx resulted in an improvement IF(x) < F(-lx)], 

0  <  C  <  11 C1 >  0,  Co  +  c 1 >i. 

Otherwvise, 

O<C < 1  cI<  01c 0  +  C  <.0  

Thus, the mean value for the next trial step is weighted  

positively by the present mean value and weighted positively  

or negatively by the last trial step. The transformation  

matrix 3+IT  maght  be  used  to  introduce  correlation  between 

the trial step components x 3 . But for a simple  



52 

algorithm, Matyas specified j+IT  by 

i+lT =  1+1b  I 

where I is the identity matrix. The coefficient 2+lb may  

be adjusted to control the variance of the trial steps.  

A somewhat different approach to random search has  

been described by Rastrigin (1967) and is currently being  

investigated by Heydt (1969). A search is made about an  

initial point Ox for an improved point lx [F(lx) < F(°x)]. 

The  line  1 ­ x  is used to determine the  axis  of  symmetry 

0 
of a hyperoone in parameter space with focus at x (Fig.  

2.7). The hypercone is constructed with angle 0 and  

length h. Observations are made at points uniformly  

The best of these (2x) is distributed inside the cone.  

2  1 

selected, and the line x - x defines the axis of  

symmetry of the next hypercone. Thus, past successes are  

i+i  

used  to  determine  the  search  direction.  If no x  with  

F(l+ix) < F('x) is found in some number of observations,  

o  and h are increased to enlarge the search region. This 

method would seem to be effective in jumping over some 

local minima. On the other hand a hyperconical search 

region may  make  the algorithm  inefficient  in  turning  sharp 

corners, and Heydt has proposed experimenting with hyper­

paraboloids and hyper-hyperboloids. His algorithm with the 

hyperconical search region was successful in optimizing a 

satellite  attitude  acquisition  problem,  which was solved  by 
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Fig. 2.7  Creeping random search with hyperconical search  
regions.  
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Kavanaugh, Stewart, and Brocker (1968) with the creeping  

random algorithm described by Stewart et al. (1967).  

2.7 StochasticApproximation  

Most of the optimization techniques discussed in  

previous sections assume that the criterion function is  

evaluated without error. If error or "noise" is present,  

these methods are reduced in efficiency or may fail  

altogether. Stochastic approximation is a technique for  

optimization in the presence of noise.  

Let us assume that the observations f(x) of a  

unimodal criterion function are contaminated by additive  

noise:  

f(x) = F(x) + v, (2-38)  

where the random variable v has zero mean and finite  

variance. A stochastic approximation minimLzation  

algorithm (satisfying certain conditions discussed below)  

will converge to the optimum, x', in mean square and with  

probability I as the number of observations, ia, of f(x)  

tends to infinity. Since the existing theorems of  

stochastic approximation guarantee convergence only as  

i > m, it is necessary to refer to specific applications  

for speed of convergence. Unfortunately, published  

experimental results obtained with these algorithms are  

few. 
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The mathematical requirements which the algorithm  

must satisfy in order to converge were discovered and  

developed mainly by Robbins and Munro (1951), Kiefer and  

Wolfowitz (1952), Blum (1952), and Dvoretsky (1956).  

Chapter 6 of Wilde (1964) contains a lucid introduction to  

stochastic approximation; other readable treatments are  

given by Hampton (1968) and Chang (1961). Tn this section  

we shall discuss briefly the algorithm of Kiefer and  

Wolfowitz, the general theorem given by Dvoretsky, and some  

practical algorithms with applications.  

The Kiefer-Wo]fowitz (K-W) algorithm described here  

is for a function of one variable; the extension to the  

multidimensional case is straightforward. The technique is  

similar to a deterministic steepest descent. From a point  

3Xthe noisy objective function is evaluated  at two  

points ix + 'c and x - 3c to obtain an estimate of the  

slope of F( 1x)  

f(ix + ie) - f(ix - i) (2.39)  

21c  

Then a workLng step is taken according to this estimate  

and a step-size factor, 2 a  

i+lx  ==a[f(ixx+  i +  ic)  ­ fc(ix  ­ 2c)  (2.40)(.0 
i  
C  
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a and  c are  elements  of  sequences  of  real  numbers  whLch 

must satisfy the following conditions in order that Eq. 

(2.40) converges to the mniimumi  of  F(x)  as  i-

ixm aa =  0  (2.kla) 

rm C = 0 (2.41b)  

3-a =w (2.1±lc)  
i=l  

i C - w(2.41d)  

Note that, as with all stochastic approxLmation schemes,  

convergence is guaranteed only as i approaches infinity,  

the movement toward the optLmum may be very slow. It may  

be seen from Eq. (2.4±0) that if the true differences  

[EPx + Lc) - F(ix - ic)] are not large compared to the  

noise variance, many steps will be taken in  the wrong 

direction.  

Dvoretsky (1956) has treated stochastic approxima­

tion from the point of vi-ew of a very general algorLthm,  

which includes those of Robbins and Munro and Kieffer and  

Wolfoijtz  as  special  cases  and  from  which other  specific 

methods have been developed. His basic algorithm is  

represented as the sum of a deterministic ternm T(  1 x 2x  

,x)3-.. and a random term ir,  which includes the effects  
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of noise:  

=+lT(x 2 = 1x "', x) ­ '­r.  (2.42) 

Equation (2.40) could be expressed in this form by writing  

f('x) = F(x) + iv and separating out the terms containing  

V. It may be noted that the algorithm allows +lx to be a  

function of all previous x's. Although Dvoretsky's theorem  

is important in the mathematical development of stochastic  

approximation, it is not stated here, as it provides no  

specific algorithm for optimization.  

The problem of optimization in the presence of  

noise has been investigated by Kushner (1963), who used  

the  K­Wq  algorithm  as  a  basis  for  several  search  procedures. 

A feature of Kushnerts methods is the use of information  

obtained during the search to estimate the "best" sequences  

[ia]  and  [1c3,  whose  optimum  values  depend  on  the  unknown 

function to be minimized. This information is extracted  

from the sequence of angles -0 formed by successive steps  

in  the  parameter  space,  as  illustrated  in  Figs.  2.8  and 

2.9.  In  Fig.  2.8 there is a sequence of predominantly 

large angles, indicating that the ratio of the step size to 

the distance from the optimum is small. In Fig. 2.9 the 

angles are small, indicating that the process is overshoot­

ing the optimum. This information is used to adapt (Ca)  

and [ac) to the local behavior of the objective function.  
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X202  

3 

xl  

Fig. 2.8  A stochastic approximation algorithm with a small  

step size.  
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x 2  

x  1  

Fig.  2.9   A  stochastic  approximation  algorithm  with a  large 
step size. 
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Five search procedures were investigated, each  

incorporating the K-W algorithm with adaptive coefficient 

sequences. The first (a) is the basic n-dimensional K-W 

algorithm. which estimates  the gradient for every working 

step. The other four procedures sequentially choose single  

directions in parameter space and apply the one-dimensional  

K-W algorithm to search for a minimum along these lines.  

For these four methods the search directions are selected  

as follows.  

(b)  the coordinate directions  

(c)  the estimated gradient direction  

(d)  a randomly chosen direction  

(e)  the direction determined by the current point and  

the point corresponding to the lowest objective  

function measurement for a number of local,  

randomly placed observations.  

Method (b) was suggested as an improvement over (a), since  

a pair of sequences Iia 3 and IIc 3 (j=l, ... , n) can be  

assigned to and adapted for each coordinate direction.  

However, the efficiencies of both (a) and (b) were thought  

to decrease rapidly as the number of parameters is  

increased. Methods (c), (d), and (e) are attempts to  

increase efficiency for problems with many parameters,  

especially in the initial stages of the search. Methods  

(c) and (e) were found superior to (d) for quadratic  

objective functions with additive, uniformly-distributed  
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noise whenever the true function value is large compared to  

the noise variance. This advantage is greatly reduced  

close to the optimum, i-here the signal-to-noise ratio  

becomes small. Close to The optimum , attempts at con­

sistently choosing profitable search directions are  

unsuccessful, but the properties of the stochastic approxi­

mation algorithm ensure convergence, although it may be  

very slow.  

Janac (1967, 1969) has proposed an algorithm con­

sisting of the basic K-W formula with two modifications:  

ilX =  ix ­
i 
a (ih ­ 1) w(iY) (2.43) 

where. 

lh is an integer equal to the first unsuccessful  

w working' step in the estimated gradient direction,  

subject to (3h-l) > 1, 
1y ix i  1  i 

f(
1  

...  x +  c ...  ' x )  ­ f (x), 

(J=l' ... ' n);  

w(Y) is a vector with the same direction as 1Y and  

a magnitude function illustrated in Fig. 2.10; and 

the sequences t[a3 and 13c) satisfy 

1 1 

a, c  >  0 

lim ic =  0 
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k  

k  1  ax~ 

Fag. 2.10 A function for specifying the step size an a  

stochastic  approximation  algorithm. 
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i=liC 

1  1 
T a c  <W 

i=l  

a.  2 

In Eq. (2.43) 1 x and i+ix are points at which a new  

gradient is measured. Following a gradient estimate,  

steps are taken in the negative-gradient direction until  

such a step results in an increase of the criterion  

function measurement. This strategy is designed to make  

maximum use of each gradient estimate. The nonlinear  

a 
kia <function w- constrains the step size a  by ­ <  a 
c c 

This algorithm was applied to a 4-parameter optimization of 

the suspension system of a trailer truck riding on a random 

road surface (Janac, 1969). While the optimization was 

completed in only 30 working steps (not including function 

evaluations for gradient estimates), it is impossible to 

judge the value of the algorithm, because no information is 

given  concerning  the  variance  of  the  noise. 

Stochastic approximation is an attractive approach 

to the noisy optimization problem, because convergence is 

guaranteed as i  >  wounder very general conditions. However, 

it may be that other methods are more effective in reaching 
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a small neighborhood of the optimum in a finite number of  

steps--a more practical type of convergence to seek.  

2.8 Constraints  

The optimization techniques which have been dis­

cussed here are suitable for unconstrained problems or  

problems where the optimum is located far enough from the  

constraint boundaries so that the search procedure does not  

encounter them. But for many engineering problems the  

optimum may lie on or close to a constraint boundary. Most  

of the methods discussed above must be altered to allow for  

this possibility.  

The problem of minimizing F(x) subject to inequality 

constraints includes the nonlinear programming problem 

Minimize the criterion function 

F(xI, x2 5 ...  ,  xn) (2.44) 

subject to the m inequality constraints  

0l(x)  < 0 (i=l, ...  ,  m) (2.45) 

and  

x 0 (j=l, ... ,n) (2.46)  

Elegant methods for solving this problem are described by  

Saaty and Bram (1964) and Wilde and Beightler (1967). Most  

of these require assumptions such as the convexity of F(x)  

and of the (x) and many are designed for a quadratic  
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F(x) and/or linear constraints. The methods described here  

are applicable to less restrictive cases, and do not  

require the condit-Lons (2.46).  

2.8.1 GradLent Projection Method  

The gradient projection method (Rosen, 1960, 1961,  

Saaty and Bram, 1964; Wilde and Beaghtler, 1967) alter the  

gradient of F(x) at constraint boundaries, so that a  

modified steepest-descent minimization can be employed.  

The constraints are only required to be convex.  

When the search reaches the boundary of a nonlinear  

constraint, the negative gradient vector is projected onto  

a plane tangent to the constraint boundary at that point  

(Fig. 2.11). A move in this negative projected-gradient  

direction results in an infeasible point which must be  

moved onto the constraint boundary. For linear constraints  

the gradient projection is onto the constraint boundary  

itself, a modified steepest-descent move results in a  

feasible point. For the case of simple range constraints,  

aa_< x i  < b (i:l, ... ,  n) (2.47) 

there is a simplified method for obtaining the projected  

gradient. This has been incorporated into the optimum  

gradient procedure and is described by McGhee (1967).  
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x 2  

/ negative gradient at x 
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­ ­ 2 
x  1   3-

x tangent plane at x  

Feasible Regi-on  

constraint  boundary  

0ox 

Fig. 2.11  The gradient projecti-on method at the boundary  

of a nonlinear constraint.  
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2.8.2 Created Response-Surface Method  

The created response-surface method (Fiacco and  

McCormick, 1964, 1968, Saaty and Bram, 1964; Wilde and  

Beightler, 1967) is based on the definiti-on of a modified  

objective function:  

m 

i(x,r) = F(x) ­ r z 1/9 (x) (r > 0) 

i=l  (2.48) 

Note that for any r > 0, _(xr) increases rapidly as x  

moves toward a constraint boundary (0_(x) - 0). The  

technique selects values of r from a monotone decreasing  

sequence and optimizes 5(x r) for each value of r. Thus,  

the constrained minimization problem is converted into a  

sequence of unconstrained minimizations. If the optimum  

point of F(x) is on the boundary, the minimum of -(xr)  

approaches the boundary as r >- 0. In order to have (x r)  

well-behaved near the boundary, it is required that F(x)  

and each of 93(x) be continuously tice differentiable and  

&(x r) be strictly convex for each r.  

Fiacco and McCormick (1964) have used the created  

response­surface  technique  with  the  optimum  gradient 

method (Section 2.2) and Newton's method (Section 2.4) for  

minimizing 6(xr). Box (1965) reports that the Fletcher­

Powell-Davidon method (Section 2.3) also has been employed  

successfully with this technique.  
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2.8.3 Penalty Functions  

An optimization problem subject to constraints can  

be converted into a single unconstrained one by modifying  

the criterion function with the addition of penalty func­

tions, pL(W1 ) (Korn and Korn, 1968).  

m 

&W = F(x) + F1 c i (01 ) (2.49)  

where c > 0 and  

h1(0) i > 0  

P(  .)  = 

0 9  < 

and where h ( 1) is a strictly monotone increasing function  

of 0 . For x in the feasible region R, 6(x) = F(X), but as  

x moves outside R, (x) is made to increase rapidly. During  

the optimization x is allowed to violate the constraints,  

but such a move is penalized by a large value of the  

modified criterion functions. Note that here, in contrast  

to the created response-surface method, the minimum of (x)  

is found only once. The simplicity of this approach is  

offset by disadvantages in certain situations. It may be  

that F(x) is undefined for x outside R--for example,  

x < 0 where x I is a length or a spring constant. In such  

a case we might redefine (x)  
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F(X) xeR 

() =  (2.50) 
m 

+  E cpI Pa.) x  j R 

2-=l 

where K >  F(x) for x on the constraint boundary. In either 

case, unless F(x)  is knorn analytically and h (0  )  can be 

chosen carefully, 6(x) and/or izs derivatives will be dis­

continuous at the boundaries. This is detrimental to  

search algorithms, such as the conjugate direction methods,  

with quadratic convergence properties.  

2.8.4 Restrict t 0 Feasible Region  

For direct search methods and random methods  

inequality constraints may be handled by simply restricting  

x  to the feasible region R. Before any step Ax is made,  

the values of the proposed new point x are checked, and if  

any constraints are violated, a different point is chosen.  

The search can be made to move very close to the boundary  

if the step size Ax is reduced until no constraLnt is  

violated. The simplicity of this scheme makes direct and  

random search methods attractive for problems where the  

optimum may lie close to or on a constraint boundary.  

2.9 A Comparison of Methods and Some Remarks  

While most  of  the  techniques  discussed  in this 

chapter  are  designed  to locate  local  minimum points,  the 

engineer is usually seeking the best of these, the global 
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optimum. If the value of F(x) at the global optimum, F* 

is  knon,  the  optimizing algorithm  can  automatically  escape 

from local minima with F > Ft by expanding the search about 

the local minimum or jumping to a new starting point. For 

the  more  difficult  case  in which F*  is unknown,  local 

minima must be detected and the values of F(x) compared. 

Automatic search for the global optimum may be inefficient, 

and interaction by the operator could be valuable. 

The value of easy interaction between the operator  

and the algorithm has been recognized by Bohling and  

Chernak (1965) and Carlson (1967). Displays of the per­

formance of the system being optimized and information  

concerning the progress of the search help the engineer to  

gain insight into the behavior of the system. With this  

information and his own experience he may be able to help  

guide the search toward a solution, by changing parameters  

of the optimization strategy or selecting different start­

ing points. Bohling and Chernak point out that information  

about the system gained during the optimization may be more  

valuable than the final solution. The opportunity for this  

kind  of  interaction  has  made  hybrid  computation  attractive 

for optimization. However,  display  systems  interfaced  with 

small  digital  computers  or  time­shared  computers  are  making 

easy  interaction  possible  with  all­digital  optimizations  as 

well  (Korn,  1969). 
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The choice of a parameter optimization method for a 

specific problem should be guided by the computing equip­

ment available, what is expected about the nature of the 

criterion function--a smooth or irregular landscape, noisy 

or noise-free--and the number of parameters. If the time 

to measure the criterion function is relatively long, then 

the computational effort required by complex methods will 

not increase the optimization time appreciably. But if the 

time to evaluate F(x) is small compared to the time for 

calculations, as in the case of a high-speed analog machine 

interfaced to a minicomputer without floating-point hard­

ware, then a simple direct search method or random search 

may be faster, even though it is less efficient  in terms of 

function evaluations. For very irregular criterion func­

tions derivatives may not exist at some points, and the 

choice of a perturbation step size for derivative measure­

ment is difficult. Too large a step size gives a poor 

approximation for a derivative at a point; a step size too 

small may cause problems due to accuracy limitations in 

computing F(x). Noise can cause large errors in derivative 

measurement. For problems with many parameters the results 

of Rastrigin (1963), Gurin and Rastrigin (1965), and Schumer 

and Steiglitz (1968) indicate that the creeping random 

methods are likely to require fewer function evaluations.  

In addition, for large n the computation times for creeping  

random search methods do not increase as rapidly as for  
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algorithms requiring matrix manipulations. Korn and Kosako  

(1970) have successfully employed a creeping random  

algorithm in a 200-parameter functional-optimization  

problem.  

If the criterion function is smooth, or if deriva­

tives can be obtained without using the perturbation  

method, the conjugate direction algorithms appear to be the  

most efficient and most reliable. The extremely rapid  

convergence of Newton's method [Ax = -A- g (x)] from  

favorable starting points is offset by the computational  

effort for calculation of A - 1 and the tendency of the  

algorithm to diverge. When gradient measurements are  

easily obtained, the Fletcher-Powell-Davidon algorithm is  

superior. This conclusion is based on the results of Box  

(3966) for a series of test functions and the results of  

Birta and Trushel (1969), who found the F-P-D algorithm  

more efficient than the Fletcher-Reeves algorithm in  

solving optimal control problems via the Maximum Principle.  

Lasdon et al. (1967) found the F-R algorithm far superior  

to a steepest descent scheme for similar optimal control  

problems. The calculations for the F-R algorithm are  

simpler than for the F-P-D method, while the latter  

requires fewer function evaluations. A comparison of  

Partan with the conjugate direction algorithms is diffl­

cult, because there is a lack of published data for the  

performance of Partan on test functions and practical  
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problems which have been solved by the conjugate-direction  

algorithms. Walde and Beightler (1967) found the F-P-D  

algorithm more efficient in minimizing Rosenbrock's  

function. If the gradient of F is not readily obtained,  

Powell's conjugate-direction method without gradients  

appears to be the most efficient (Fletcher, 1965; Box,  

1966). Although no published data have appeared for  

Zangwill's modification of Powell's method, the author has  

found the two to be roughly equivalent in minimizing  

Rosenbrock's function.  

For the case of irregular criterion functions with  

discontinuous derivatives and possibly measurement noise,  

direct search methods, creeping random search and  

stochastic approximation are more practical. The direct­

search and creeping random search algorithms decide on the  

next step Ax simply by comparing function values at differ­

ent points rather than using function differences to  

calculate precise search directions and step sizes. Again,  

there is a lack of comparative data from which to judge the  

relative merits of the various direct-search and creeping  

random algorithms. But the theoretical and practical  

results obtained for the creeping random algorithms make  

a strong case for this method as an efficient and reliable  

technique. For noisy criterion functions the stochastic  

approximation algorithms have the attractive feature of  

convergence as the number of steps tends to infinity, but  
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more results for test functions and practical problems are  

required to indicate how quickly they reach a reasonable  

neighborhood  of  the  optimum. 

The most obvious conclusion from a study of 

parameter optimization methods is that no one technique is 

best suited for all types of problems. An algorithm 

designed to be capable of minimizing all types of criterion 

functions iill probably be inefficient for the majority of 

individual  functions.  It seems  necessary  to  be  armed  with 

a variety of techniques in order to attack efficiently a 

problem  with  a  completely  unknown  criterion  function.  Some 

optimization  software  packages,  including  AESOP  (Hague  and 

Glatt, 1968) and GOSPEL (Huelsman, 1968), have been  

developed. Such a battery of algorithms, coupled with a  

computer system having easy operator-machine interaction,  

could comprise a fruitful approach to the solution of a  

variety  of  parameter  optimization  problems. 



CHAPTER 3  

OPTIMIZATION IN THE PRESENCE OF NOISE  

The problems of optimizing a noisy criterion  

function have been pointed out in Chapter 2. This  

chapter considers the evidence from the literature and  

some experimental results leading to the development of a  

strategy for optimizing noisy criterion functions (Sectmons  

3.1 and 3.2). Constraints and the problem of estLmating  

the criterion function are discussed in Sections 3-3 and  

3.4. A specific optimization algorithm for the example  

problem treated in this study is described in Chapter 4.  

3.1 The Choice of a Strategy  

From the discussion of search methods in Chapter 2,  

the strategies best suited for noisy optimization appear to  

be stochastic approximation, direct search, and random  

search. However, the powerful convergence properties of  

the con3ugate-direction methods also seem to warrant an  

investigation of their efficiency in the presence of noise.  

The only results known for gradient algorithms on a noisy  

function are those of Gurin and Rastrigin (1965), who con­

cluded that a steepest-descent method is inferior to a  

creeping-random-search algorithm. It was felt that a  

75 
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conjugate-direction algorithm involving no gradient  

measurements but only linear minimizations might still  

perform well in the presence of noise.  

The algorithm developed by Zangwill (1967) combined  

with a quadratic-interpolation method for the linear  

minimizations was programmed in FORTRAN for the PDP-9  

computer. Gaussian noise was added to the criterion  

function, with the standard deviation chosen as a fraction  

of the value of F(x). The observed function values are  

f(x) = F(x) + [U F(x)lz (3.1)  

where z is a Gaussian random variable with zero mean and  

unit variance, and a is the coefficient specifying the  

standard deviation of the noise added to F(i). The  

algorithm  was applied  to  two test  functions  with given 

starting points, as follows  

2  o 
F(X) = Z x,. x ( i, ...  i) (3.2)

i=l 

)2 F(x) = lO0(x 2 ­ x +  (I ­ 2, o =  (-1.2, 1) (3.3) 

After each linear minimization the (noisy) function value  

is compared to F =  10 4; if f(x) < Fm the search is 

ended. Zangwill's algorithm also terminates the search if  

n successive minimizations in the coordinate directions  

lead to no improvement--an indication that the gradient is  

zero.  
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To minmize the quadratic function (3.2) for  

a = 0., 9 and 20 function evaluations were required for  

n=2 and n=4, respectively. For a = 0.1 and n=2, 5 of 10  

trials failed to converge, because observation errors  

resulted in a false indication of zero gradient. For the  

5 successful trials, an average of 18 function evaluations  

were required. For n= 4 , there were no failures in 10  

trials, and an average of 74 function evaluations were  

required. For large n. there is less chance of noisy  

observations leading to n successive coordinate minimiza­

tions with no improvement.  

For Rosenbrock's function (3.3), 135 evaluations  

- were required to converge for F =  10 and a = 0. How­m i 

ever, no convergence could be obtained for noise levels as 

small as a = .01. Again, the algorithm terminated pre­

maturely due to a zero-gradient indication. 

These results indicate that for Zangwill's algorithm 

to be effective in the presence of noise, the premature  

terminations due to false zero-gradient indications would  

have to be eliminated, and/or the linear-minimization  

algorithm would have to be improved. One possibility would  

be to use a stochastic-approximation algorithm, such as  

Kushner's (1963), for the linear search.  

Modification of this algorithm was abandoned, and  

a  creeping­random­search  strategy  was  chosen  for  this 

study. The reasons for this selection are summarized here.  
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1.  Unless the variance of the measurement noise is  

very small, estimating the gradient of F(x) b_  

small perturbations is impractical. Gurin and  

Rastrigin (1965) have shown a random search  

algorithm to be more effective than steepest  

descent in the presence of noise.  

2.  While stochastic approximation algorithms have the  

attractive feature of guaranteed convergence as the  

number of optimLzing steps tends to infinity,  

actual progress toward the optimum may be slow.  

3.  Creeping random search has been found effective in  

optimizing very "i3rregular" parameter landscapes  

(Maybach, 1966a, Stewart et al., 1967; Kavanaugh  

et al., 1968, Bekey et al., 1966).  

4.  The results of Rastrigin (1963) and Schumer and  

Steiglitz (1968) indicate that creeping random  

search is especially effectLve for problems with  

many parameters.  

5.  CreepLng-random-search algorithms permit the use of  

a "vector-valued" crLterion function (Stewart et  

al., 1967).  

6.  Constraints are easily handled by simply restrict­

ing trial steps to the feasible region of parameter  

space.  

7.  The comparatively modest computations required for  

random search algoriLhms can be programmed easLly  
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in assembly language (instead of FORTRAN) for a  

small digital computer. This results in a fast  

digital program, which is better suited for opera­

tion with a high-speed analog machine.  

3.2 A Random-Search Algorithm for Nosy  

Criterion Functions  

For the class of problems considered in this study,  

the parameter vector x consists of the distribution 

constants introduced in Section 1.1. It is assumed that 

each system parameter p  is Gaussian with mean [L and 

2  
variance a2 so that x appears as a column vector (J a). 

x = 4t,) (3.4)  

We also assume constraints of the form  

a<  p  <  b  (3.5) 

a1  >c_  L>  0 (3.6) 

(i =  1, 2, ..., n/2) 

These are discussed in Section 3.3.  

To arrive at an effective search procedure for  

noisy criterion functions, a basic creeping-random-search  

algorithm is combined with a strategy for averaging  

measurements of the criterion function so as to reduce the  

noise variance. The observations of the criterion function  

are represented by  

f(x) =  F(x) +  v (3-7) 
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where F(x) is the true value of the criterion function, and  

v is a zero-mean random variable. Our estimate of F(C)  

will be denoted by 7 (x). At a point x observations of the  

function are averaged until the variance of f(x), denoted  

2  
by s25 is less than some specified value. (A sequential  

estimation scheme for thTs is described in Section 3-4.)  

2  
Before discussing the strategy for choosing s 2 the creeping  

random algorithm is described.  

Figure 3.1 illustrates a basic creeping-random­

search algorithm, which searches for a local minimum. (In 

the following paragraphs, numbers enclosed by brackets, [3, 

refer to corresponding numbers in the flow diagrams.)  

Exploratory steps, AL and Ac [11, are random in magnitude  

and  direction. When the criterion function estimate Y at  

an exploratory point is an improvement over the current  

optimum value (7 < ) [2], the center of the search is  

moved to the corresponding new point [3]. Following some  

integral number, LF, of consecutive failures, the search  

range is then reduced [4], and after LF failures with  

minimum search range, the algorithm is finished [5]. Other  

features of the algorithm may be noted:  

1.  The random parameter perturbations, A l and A 1,  

are chosen from a uniform distribution, which has  

a variance proportional to the current optimum  

value of pi" For most problems this method of  

choosing the variance of the perturbations appears  
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more logical than having a fixed parameter­

perturbation variance. In the latter case, the  

same perturbation, A L , can represent a very large  

or a very small percentage change in the parameter  

value, depending on the current optimal value of  

reason, the standard deviations a.  For the same  

are expressed in the program as percentages of a1  

the corresponding mean values.  

2.  The algorithm employs absolute positive biasing [61  

and absolute negative biasing [7] as described in  

Section 2.6.  

3.  During the optimization the program keeps track of  

both the previous optimum point (o , 0 0o; foo) £31  

and the point with the smallest function value  

since the last success ; -< << 

where i indexes all of the other failure points 

since the last success) [8 and 9]. Saving these  

values has no effect on the basic creeping-random­

search algorithm, but they will be used in the  

overall strategy described below.  

To implement the creeping-random-search method, the  

2
variance  s  allowed  in the  estimate  f of  F,  must  be 

specified.  Let us assume that the optimization must be 

accomplished with some number N of criterion function 

observations.  If  s 2  is  chosen  to  be  small,  then  there  talIi 
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be few errors in deciding whether a trial step is a success  

or failure, in spite of the noise, but we will be able to  

take only a small number of trial steps. For a large value  

2  
of s 2 more trial steps are possible, but many of our  

success-failure decisions are likely to be erroneous. In  

particular, the situation pictured in Fig. 3.2 may result.  

The optimization has proceeded to the point ix, at which  

the estimate f(ix) is unusually noisy. From this point, it  

is difficult to find a successful step; either another  

unusually noisy observation will have to occur, which may  

* require many trials, or else a large trial step toward x  

must be generated. These considerations suggest that the  

2  
choice of the variance s is an important one in determnin­

ing the success of the optimization.  

If the starting point for the search is in a  

"smooth" region of the criterion surface where there is an  

appreciable gradient, the creeping-random-search algorithm  

can progress well, even when the variance of f is large.  

Thus, in the initial search our estimates of F are allowed  

to be rather coarse. If many exploratory-step failures  

occur consecutively, indicating that the search has  

encountered a ridge, entered a region of small gradient, or  

(later in the search) approached the optimum, then the  

estimation algorithm should be made to reduce the variance  

of f.  
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Fig. 3.2  A creeping random search in a region of small  

gradient for a noisy criterion function.  
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The flow diagram for the algorithm is shown in  

Fig. 3-3. The "initial search" is executed with coarse  

estimates of F(lic). When LF consecutive trial steps result  

in no improvement, the algorithm proceeds to the "final  

search" [1]. At this point, a better estimate of F(a 02)  

is computed [2]. More observations are taken at the point  

until the variance of the estimate fo s less than  
2 2 2  

or equal to s (s2 < s 2). The recalculation of £ is  
O  0 0  

designed to avoid the type of difficulty illustrated in  

Fig. 3.2. In general, note that whenever a more accurate  

estimate of F(ury) is computed, previous observations at  

are utilized, thus saving computer time. Following  

the recalculation of f., the algorithm proceeds by the  

following steps:  

1.  f is compared to the previous optimum f,0 in case  

the move from ( ooo) to (o,ao) was erroneous  

[3].  

2.  The minimum of f and 7 is also compared to the  

"best" of the failures (f+), in case a very noisy  

observation at (a_,.oo) had resulted in rejecting an  

improved point [43.  

3.  After the minimum of f0, fo0 and + as determined  

and labeled 0o the creeping random algorithm is  

continued [5]. For trial steps (Io AL, .0 + Aa)  

the variance of f is still only required to be less  

2  
than  s But if  an improvement is indicated, 
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(7 < 7) T£ is recalculated and again compared to 

T [6].  This strategy allows for a greater number 
0  

of trial steps to be taken.  

4.  Following KF successive failures in the final  

search, the search range is reduced [73, and the  

algorithm returns to recalculate fo again.  

5.  When XF consecutive failures occur with s° 2  at its 

minimum value (s in ), the search is terminated  

In order to use this random-search method, a  

starting point (oauo), starting and minimum values of the  

2 2 2 

search range, and values for LF, KF, s s 2 and s 2 mus 

be specified. In the absence of any prior knowledge of the 

nature of the criterion function, it  is likely that initial 

choices for these values may result in an inefficient 

search. It is felt that a solution to this problem lies in 

a provision for communication between the search algorithm 

and the operator. Such a facility for interaction with the 

computing system employed for this study is described in 

Section 4.3. 

3.3 Constraints, Modeling the Distributions of  

the System Parameters  

The  constraints on the system parameters p and the  

distribution constants a are specified by the inequalities  

(3-5) and (3.6). The constraints on p may arise from  

design limits set by the engnneer or from considerations of  
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realizability of the physical system being modeled. For  

example, if p. is the mass of a flywheel, the design  

engineer may place an upper limit on pi, and physical  

i realizability requires p >0. The constraints on U may  

be necessary in a situation where it is knoin that produc­

tion tolerances cannot be held below a certain percentage  

of the design values Vi"  

In the form of (3.5), the constraints on the p Is  

are inconvenient to enforce. After values of L and a for  

a trial step are selected by the optimization program, many  

values of p are generated in order to estimate F(L).  

Checking each value of p is time consuming. Furthermore,  

if, after many observations of the criterion function, a  

value of p1 violates the constraints, new values of L and  

a must be selected and the estimation of F(Lcr) begun  

again. To avoid this waste of computer time, the con­

straints of (3.5) are replaced by  

­ r  i > ai 

Pa + r a (3.8)  

For r=3, only 0.27% of the sample values of a Gaussian  

random variable will violate the constraints of (3.5) when  

S-ra3 = a and V' rg = b3. With this form of the  

constraints, feasible values of 1 and U may be selected  

before the estimation of F(ka) is begun.  
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Pseudo-Gaussian samples for the random variables p1  

are generated by adding and normalizing ten uniformly­

distributed  random  numbers  from  a  hardware  random­noise 

generator interfaced to the digital computer (Belt, 1969). 

This provides for deviations from the mean as large as 

5.5 a- We introduce negative correlation into our random­

parameter sample (Korn, 1966) by selecting p 1 Pil ''I 

n P  with  deviations  about  p.  which are equal and opposite 
1 p3 n-l 

to the deviations of 1  ... pil i.e., -'.  

k+l =  -kPl -i (k = 1, 3, 5, "..,  n-l) 

This ensures that the sample mean is equal to p  ,C and time 

is saved, since only n/2 pseudo-Gaussian random numbers are  

generated.  

Although the inequalities (3.8) are a practical way  

of enforcing constraints on almost all of the p Is. values  

of piwhich violate (3.8) must still be accommodated by the  

analog machine used to estimate F(J ). Thus, all values  

of p are limited to the range of the analog computer to  

produce  a new random variable p 1 . 

1  m.u.  if  p  >  1  m.u. 

<Pl  =  ­i  m.u.  if  P  ­i  m.u.  (3.9) 

p  otherwvise 

where 1  m.u. denotes one machine unit for the analog 

computer. In general, the limited random variable p1 ' will 
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have a new mean p.' and standard deviation U different  

from pL and a1 " The effect on pl is most severe if p is  

limited on only one side of the distribution. If b i  

corresponds to 1 machine unit, as shown in Fig. 3.4, all  

values of p > I + ra will be set equal to 1 machine  

unit. The effect on o is greatest when p1 is limited on  

both sides of the distribution, a and b correspond to  

-1 m.u. and 1 m.u. respectively (Fig. 3.5). The effects of 

these two cases of limiting are calculated in Appendix A, 

and results are shown in Table 3.1. For the problem 

described in Chapter 4, a. = 0 and b i =  1 m.u. The values 

of V 1 and Ua (satisfying the constraints) which result in 

maximum a are pl = 0.5 m.u. and a1 = -5/3 m.u. For this 

=  worst case and for r = 3, p. p. .00051 m.u. =  p 1 -

.0051 volts for the + 10 volt range of ASTRAC-II. This  

5 my. worst case error is approximately equal to the  

accuracy of setting the values of p' by the digital-analog  

converters on ASTRAC-II. The worst case error in the  

standard deviation a is approximately 0.13%. i  

3.4 Sequential Estimation of F(,a)  

The criterion function F(LL,a) is estimated from  

observations denoted by f(kc) =  F(ua) + v, where v is a  

zero-mean random variable. An unbiased estimate of F based  

on n observations is  

n 
nr=- E if (3.10)  

n i=l  
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b..  p 

FiLg. 3.4  The Gaussian density functi-on limited at one end. 
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a b  

Fig. 3.5  The Gaussian density function limited at both 

ends. 
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Table 3.1  The effects of limiting a Gaussman random  

variable.  

r L'  0' 

Limiting at ro at one end of a Gaussian distribution 

1 v - .0833a .8667a 

2 V - .0312a -9794a 

3 V ­ .00308a -9987a 

4 p - .00010a .99997a 

Limiting at ro at both ends of a Gaussian distribution  

1 .7183a  

2 .95940  

3 ­99750 

4 .99990 
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The sample variance  

n2 1  ni  2 
s n-i ' (f - n) (3.11)  

1=1 

is an unbiased estimate of Varff]. If f has a Gaussian  

distribution then  

(nT  ­ F) Gn- =  (3.12) 

nn  S  

where tn 1 has the Student-t distribution with n-i degrees  

of freedom. This allows us to make a confidence statement  

about our estimate of F. Before sampling, we can state  

that the probability that our estimate nf will differ from  

F by some amount less than d is given by  

P[I nT ­ F1 S d] = 1 - a (3.13) 

where 

dn-i/2 (3.14) 

and tn-l;U/2 is the value of the Student-t variable such  

that  

X/2 =  
(z)dz 

tn-l;a/2 f  

(0 is the density function for the Student-t variable with 

n-1 degrees of freedom). To use this statement in deciding 



99 

the number of observations to make for our estimate, 

samples of f are taken until nS/n- s small enough so 

that (ns t 1 2 )/xC n <  d. 

In order to implement such a sequential estimation 

scheme, it is convenient to have recursive estimates of 11 

and nS2 rather than performing the summations of Eqns.  

(3.10) and (3.11) after each observation. Recurrence  

relations are given by Korn (1966). Let ns2 = n-InS2. n 

ny = n-ly +   1 Lf _ n-l-) (3.15) 

n 

ns2 z n-1 s  + [(nf ­ n-2 n-2 (3.16) 

Note that for large n, ns2 n S.  Updating  n  2ith 

these relations requires a division by n, which may be time  

consuming when floating-point or double-precision fixed­

point arithmetic is necessary to obtain accurate estimates.  

Deardorff and Trimble (1968) replace the division by n by a  

division by a power of two to obtain the so-called "stable­

averaging" algorithm.  

=t 1 nf n-li (.N -1 N n)  
n= n-l- +  N   ­ <  n < 2  (3.17) 

2Nn  

This algorithm is considerably faster than Eq.  

(3.15), because the division can be accomplished by a  

simple shift operation in a binary computer. However,  

N  
2 n <  n for  all n, so that the variance of nt is greater 
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than the variance of n-f (the minimum-variance linear  

unbiased estimate of the expected value of f).  

The variance of the "stable-averagmng" estimate can  

N 

be reduced by modifying the choice of N so that 2 is  
n 

more nearly equal to n (White, 1970). The modified  

ejstimate is defined by  

nr =n­1  +  1 (nf n-l) (2 n l )  (3.18) 

n 2  

The method of uniquely determining Mn is most easily shown n 

by a flow diagram (Fig. 3.6). Table 3.2 lists the result- 
N N  

ing sequences [nI, (2 n,, f2 n). It is seen that this  

method of choosing the power of two in Eq. (3.18) yields  

a divisor closer to the ideal value n than Eq. (3.17), and 

the increased time needed to generate Mn rather than Nn is 

small. White (1970) shows that for n >  100 only about 5% 

more observations are required with the modified algorithm  

(3,18) to reduce the standard deviation of nr to that of n  

in Eq. (3.15). This should be compared with 15-20 per cent  

more observations required with the "stable averaging"  

estimate f. The improvement appears modest, but repre­

sents a very substantial saving in cases where E[f] must be  

estimated many times at best possible speed.  
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n=l 

N=0 
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N - 1
k=­2 

N=N+1  

Fig.  3.6 Flow diagram for the shift operation in Eq. 

(3.18). 
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Table 3.2 Divisors used 3n the three recursive estimation  

algorithns. 

N m  
2 n 2 n  

n  

1  1  1 
2  2  2 
3  4  2 

4  4  4 
5 8  4 
6  8  4 
7  8  8 
8  8  8 
9 16 8  

13 16 16  

1 7 32 1 



CHAPTER 4 

AN OPTIMIZATION EXPERIMENT  

In 1959, McGhee and Levine (1964) studied the  

problem of the determination of optimum production  

tolerances for a hypothetical radar-homing missile. Their  

experiment was performed before fast analog-digital hybrid  

computers were generally available. An analog computer was  

used to simulate flights of missiles having production  

variations in two guidance-unit parameters, a gain K and a  

time constant T, w ich were modeled as Gaussian random  

variables with means 11K and (a and variancesK 
2 

and o1 
2  

Values of tK and were wT selected prior to the simulation  

and were held constant during their experiments. For  

sixteen combinations of values of GK and CT an average  

performance index (the probability of hitting a target) was  

estimated by Monte-Carlo simulation. A digital computer  

then performed a quadratic regression analysis on these  

data in order to arrive at an expressLon for the hit  

probability as a function of aK and o. Surprisingly, it  

was found that for aT equal to 20% or 30% of V., increasing  

UK from 10% of K to 20% caused an increase in the hit  

probability. Thus, the popular assumption that performance  
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is degraded by increasing production tolerances is not  

always valid.  

This chapter discusses the simulation and optimiza­

tion of a similar missile system. In this experiment the  

mean values, 11K and ht. are optimized simultaneously with  

2 2 
Cx and a2 

the variances,  

4.1 A Radar-Homing Missile Problem  

Figure 4.1 illustrates the motion in one plane of a  

hypothetical radar-homing missile. In the diagram we con­

sider a small change 6v in the missile velocity vector v.  

For a small angle 6r, jv+ 6vjzlI v The accelera­

tion normal to v is  

dr  
v  ­­ =  v  r  (4.i) 

or  

vm. 

f 
t 

it)  =  Vmi(s)ds - yr (4.2) 

0  

Equation (4.2) describes the kinematics of the missile. 

For a small angle a, 

=  arctan v Z --- (4.3)y- 
vT CT C  C 
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a  N3 

of sight v T  

V6r  

y = missile position normal to initial line of sight (ft.)  

v = missile-to-target closing velocity (ft./sec.)  

T = time to go until impact (sec.)  

r = angle between missile velocity vector and initial line  

of sight (rad.)  

a = true line of sight angle  

v  = missile velocity vector; I  =  v (ft./sec.)  

F . .m  

Fig. 4.1 The motion of the missile in a plane.  
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The line-of-sight angle a is used by the guidance unit to 

steer the missile toward the target, as shown in the block 

diagram of Fig. 4.2. The guidance-un3t output is a 

commanded turning rate j c and the missile aerodynamics 

produce an actual turning rate . At time t=0, the missile 

is given a random heading angle, r(0) = r0 , which is chosen 

from a Gaussian distribution with zero mean and a standard 

deviation of 0.1 radians. At t = t =  7. sec, the missile 

position normal to the initial line of sight y, is 

measured. If Iy(tf)l < =  30. ft., we say that the missile 

has hit the target. The line-of-sight angle G is corrupted 

by wideband radar-tracking noise with 5(0) = .0155 deg. 2/Hz, 

where 6(w) is the two-sided power spectral density. The 

navigation gain, K, and the principal missile filtering 

time constant, T,  are assumed to be Gaussian with mean K 

2 2 
and variance a and Gaussian with mean L and variance a2 

respectively. The problem is to choose the values of bK,  

LIt, a., and a. which maximize the probability of hitting 

the target. 

In the notation of Chapter 1, the system parameters 

are E = (K,), and the distribution constants are x = 

K~~K). The performance index is given by:  

1  if  ly(tf)l< 30 ft. (hit) 

J= 
0 otherwise (miss) 



v, radar 
Lracking  

noise  

Aerodyn amics 

Guhdance  2 tt2  

^~~  +s s  +2  wlS+Ul2 s +2  w  s+w2  

apparent comal t  
f 

llne ssghti  
turnong rate wlag=50 rad/sec rad/sec vl2=i20  

T Kinematics  

a , y , r , 
true line-of-sight missile position actual turning rate 
angle to target normal  to  initial 

line  of  smght 

VC1 Ilssl­to­target  losng  velocity  =2913  ft/sec  

VmI missile velocity = 1942 ft/sec  

T, time to  go until impact = 7. sec initially  

Fig. 4.2 Radar-homing missile navigating in  a plane.  
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The average performance index is the hmt probabili-ty  

T=  E[J]  =  probability  of  a  hit. 

Since a cost function is not included for this problem, the  

criterion function simply equals the average performance  

index  

F(x) = 4= probability of a hit. 

The inequality constraints are:  

KC>O  

T  >  0
Kl >  c0 lj  ~ 

aT  1  0. 

K and T  must be greater than zero for the system to be 

stable. Positive values of cK and/or cT may be used to  

determine the best performance obtainable when production  

variations are allowed in K and/or T. 

4.2 The Simulation  

Figures 4.3 and 4.4 show the analog computer  

diagram and control logic for the simulation. The time  

scale is given by  

=  1 

250 x 10  

where t is the problem time (0 < t < tf = 7. sec) and t' is 

the computer tame (0 <  t' <  1.75 msec). This allows for 



1o9  

225 

,769  

.2 

Guidance  

S  A   A  A 

R  R   R  g 

Aerodynamics  

Fag. 4.3  Analog computer diagram of the radar-homing  
missile simulation.  
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Kinematics  

x 

Steepest-descent division circuit  

Fig. 4.3--Continued Analog computer diagram of the radar­

homing missile simulation.  



t-rack-/hot]d­

Hit-miss decision circuit  

clock frc3 "ecqc
1 . M'Hz 

Radar  tracking­noise  g;eneration 

Fig. 4 3--Continued Analog computer diagram of the radar­

homing  missile  simulation. 
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control) 
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Fig. 4.k Control logic for the simulation.  
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solution rates of 500 runs per second. The digital inputs, 

aK and a., to the multiplying D/A converters provide the 

following ranges for K and T. 

O  <  K  <  6. 

0  <  T  <  1.3 sec 

The  awkward  division  by  v cT  whLch  approaches  zero  together 

with the numerator y(t) as t approaches tf is  implemented 

by a very fast steepest-descent circuit (Maybach, 1966b).  

Potentiometers p1 and P2 compensate for the fact that the  

actual divisor is vcT +  P, where P = 3. volts. This 

constant is added to maintain a reasonably large input to  

the quarter-square multLplLers, which are less accurate for  

small inputs.  

A missile-firing simulation is begun with a random 

inLtial condition r . At t tf the track-hold circuit 

holds y(tf), which is compared to +  d by the two comparators. 

The 1 i'f capacitor and the summing amplifier constitute a 

d.c. blocking circuit for filtering out drift voltages.  

The comparator outputs are gated and applied to a read-in  

gate on the analog-digital interface for hit-miss detection  

by the digital computer. The integrators are controlled by  

a logic signal R (Fig. 4.4). This is essentially the  

normal compute-reset signal (R) modifled for automatic  

resetting at the occurrence of an overload or upon a  

command from PDP-9 by way of the control register. The  
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track-hold logic signal S is S augmented by a provision  

for specifying the track mode with PDP-9 at an overload  

condition and during idle periods. Snmulations are  

initiated by Free Pulse #2. The end of a simulation is  

signaled by Flag 1, which is raised upon the occurrence of  

an overload or at the completion of the 1.75 msec COMPUTE  

period. If an analog computer overload occurs during a  

simulation, that simulation is regarded as a miss.  

Usually overloads occur for parameter values and/or  

an initial condition which would result in a miss. It is  

possible, however', for an overload to occur even during a  

simulation which would result in a hit; in this case,  

assigning a miss is erroneous. If Y such errors are made  

in a hit-probability estimate of N simulations, the error  

in probability is Ap =  ­ 2k/N. The optLmization program 

allows three overloads per 1024 simulations before voiding 

the estimate of the hit probability. Thus, the worst-case 

error is given by Ap =  ­ .0059. 

4.3 The Optimization  

The basic optimization strategy has been discussed  

in Section 3.2. A modification and some additional  

features are described here.  

Since the criterion function for the example problem  

is a probability p, and separate runs are considered to be  

statistically andependent, the variance of an estimate of p  
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is  known  a  priori.  Let  our  estimate  of  p  be  given  by 

N 

y 1 
1

Ni~ 
if (4.4) 

where 

1  if  fy(tf)[ <  30.  ft. 

f  = 

0 otherwise  

' has a binomial distribution with mean p and variance  

p(l-p)/N. For Np and N(1-p) both at least 5, the distribu­

tion may be approximated reasonably as Gaussian (Hahn and  

Shapiro, 1967). Then, we can make the following probability  

statement concerning our estimate of p:  

P[ffT-PjI <  pUl-p) =1 Cc 
N U/21  

where  

a/2 
(z)dz =  

z 
J 

/2 

and O(z) is the standardized Gaussian density function  

(zero mean, unit variance). Table 4.1 lists values of the  

confidence-interval half-width as a function of p and N for  

a =  0.05. In the optimization program for the example 

problem (Fig. 4.5), the variance of our estimate of p is  

controlled by adjusting N. Otherwise, the strategy is the  

same as discussed in Section 3.2. In order to estimate the  
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Table 4.1  Confidence-interval half-widths, zpo-/2) 

for =  .05 

Hit probability, p  

Number of simulations, N 0.1 0.25 0.5  

128 .0520 .0750 .0866 

256 .0367 .0530 .0613 

512 .0260  .0375 .0433 

1024  .o184 .0255 .0306 

2048 .0130 .0187 .o216  

4096 .00919 .0133 .0153  

8192 .oo649 .00915 .OO8  
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Choose an initial point  

(Lo,20) and compute ?oN  
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Fxg. 4±.5 A flow¢ diag-ram for the opt3.mazati-or algorlTthm.  
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Fig.  4.5­­Coninued  A  flowv  diagram  for  the  optamization 
algorithm.  
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Fig. 4 .5--Continued A flowv diagram for the optimization  

algorithm.  
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Fig. 4.5--Continued A flow diagram for the optimization  

algorithm.  
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hit probability for the final optimal parameters within  

=  approximately + .01 for the worst case of po 0.5, the  

maximum number of simulations per estimate (N in Fig. 
max 

4.5) was chosen as 8192. 

In order to find a reasonable starting point for  

the creeping random algorithm, an initial pure-random  

search is provided. The criterion function is estimated at  

some specified number of points chosen from a distribution  

which is uniform over the entire parameter space. The  

point with the largest estimate of the function is returned  

for use as a starting point for the creeping random search  

Alternatively, the operator may specify any starting point  

himself.  

An optimization study involving searches from  

several starting points, each requiring five to ten minutes,  

may take an hour or more of computing time in spite of the  

fast analog computations. In this case, up to two million  

computer runs could be made. For this reason, malfunction  

or drift of an analog computer component should be detected  

before a large amount of spurious data is collected. For  

this purpose a "benchmark test" is included in the optimiza­

tion program. Upon loading the program and beginning an  

optimization, the criterion function is measured at a point  

(L B  ,  ge). During subsequent optimizations, the  program 

periodically returns to the same point and reevaluates the  

criterion function. If an estimate P(B, .B) differs from  
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the original measurement by an amount which causes the  

rejection of the hypothesis that the criterion function is  

unchanged, the operator is notified by a message on a  

cathode-ray-tube display console (CRT), as shown in Fig.  

4.6. For the benchmark tests, 8192 simulations are used to  

estimate the criterion function. Let fi be the estimate of  

the hit probability p1 at the initial benchmark evaluation,  

and let f2 and p. be the estimate and the hit probability  

at some later test. We want to test the hypothesis 

H  :p1 =  P2 =  p- f and f are approximately Gaussian with 

mean pl and variance p (l-p)/n, for i = 1,2 and n = 8192. 

Under the hypothesis H the distribution of f ­ f2 is 

approximately Gaussian with zero mean and variance 

2p(l-p)/n, and the followng probability statement applies: 

EIf- 72 p(1P) ]a2=  1 ­ ac. (4.5) 

Since p is unknown, the variance 2p(l-p)/n is replaced by  

the sample variance.  

(­7  )  +  T(­2)  /­

(4.6)  

(The new statistic has a Student-t distribution, but is  

approximately Gaussian for large n.) Equation (4.6) is  

used to test the hypothesis H at the 0.95 level of  
o 

significance.  
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..  . ,  

Fg. 4.6 CRT output for a benchmark test failure.  
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4.4 Operation of the Optimization Program  

This section briefly describes the procedure for  

performing an optimization and the facility for operator­

program interaction.  

The differential equations for the simulation are  

patched on ASTRAC-II's analog and digital patchbays.  

ASTRAC-II is placed in the SINGLE RUN mode, which allows  

for initiation of compute periods on command from the  

PDP-9 by way of the linkage patchbay.  

After the digital program is loaded from magnetic  

tape into core memory, the program enters a "command mode,"  

and the following index is displayed on the CRT,  

1.  Read input data  

2.  Display input data  

3. Begin optimization  

The operator can select the desired mode of operation by  

typing the corresponding index number on the CRT keyboard.  

Typing a "1" results in a display of an index to the pro­

gram variables which must be assigned values by the  

operator:  

1.  M, the number of system parameters.  

2.  MODE, a number specifying one of three operating  

modes: 0--a single evaluation of the criterion  

function for specified parameter values; 1--the  

creeping-random-search algorithm; 2--the uniform­

random search.  
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3.  NSHIFT, a number specifying the initial search­

range for the creeping-random search.  

4.  MAXS, a number specifying the minimum search-range  

for the creeping-random search.  

5- NRAN, the number of criterion function evaluations  

for the uniform-random search.  

6.  LF, the number of consecutive failures allowed in  

the initial search (Fmg. 4.5).  

7.  KF, the number of consecutive failures allowed in  

the final search (Fig. 4.5).  

8.  N, the number of ASTRAC-II runs per function  

evaluation for trial steps.  

9.  MAXN, the maximum number of runs per function  

evaluation in the final search (Fig. 4.5).  

10.  NPRINT, the number of trial steps between CRT  

printouts of the progress of the optimization.  

11.  PMIN(I), PMAX(I), the minimum and maximum allowable 

values for the system parameters (a and b in 

Eq. £3.5]). 

SLIM(I), the lower bound on the percentage standard  

deviations of the parameters (c in Eq. £3.6]). 
1  

12.  U(I), S(I), initial values of k1 and a  .  

13.  UB(I), SB(I), values for the "benchmark" parameters.  

Displayed on the CRT screen below the index is a request  

for the operator to type the number corresponding to the  

input variable he wishes to enter. When the number is  
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typed, the screen is cleared, and the input variable name  

followed by an t"equal" sign is displayed. The operator  

then types in the value for the input variable. When the  

value is read by tiae computer, the input data index is  

displayed again. After the input data have been entered,  

the operator may return to the command mode by typing a  

special-code S (QS). For verification of the input data.  

the 6perator can type a 11211 while in command mode to obtain  

a CRT display of the data. Typing a 113"I in the command  

mode initiates an optimization according to the specified  

value of MODE (No. 2 above).  

As the optimization proceeds, the CRT displays the  

number of steps taken, the number of these steps resulting  

in an improvement of the criterion function, and the  

parameter values and criterion function value at the current  

optimal point (Fig. 4-7). A summary of the optimization is  

displayed upon completion (Fig. 4.7).  

The operator can affect the course of the optimiza­

tion by communicating with the algorithm through accumulator  

switches. While the search proceeds, he can control the  

search range, hold any parameters constant while the pro­

gram continues to optimize with respect to the other  

parameters, suppress the failure counters (K or L) in order  

to remain in one part of the search, request any CRT output  

duplicated in hard copy by a Teletype, or request a termina­

tion of the search. This kind of alAorithm-operator  
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a. InLtial search.  

l ­m  -q--k 

b. Beginning of the final search.  

Fig. 4.7 CRT displays during the optimization.  
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C. End of the search.  

Fig. 
4 .7--Contnued  
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interaction can provide the engineer with insight into the  

behavior of the system and might enable him to speed the  

search for the optimum.  

In the interest of execution speed, the programs  

for estimating the criterion function and for the optimiza­

tion were written in MACRO-9, the PDP-9 assembly language.  

Input-output routines were programmed in FORTRAN. The  

program-interrupt facility enables efficient use of  

computing time by allowing the digital computer to perform  

computations during ASTRAC-II's compute period. While one  

simulation is under way, the PDP-9 averages the results of  

the previous simulation and selects the random parameter  

values and initial conditions for the next simulation.  

4.5 Experiments and Results  

Contours of constant hit probability are shown in  

Figs. 4.8 and 4.9. Results are expressed in terms of  

scaled parameter values, K' = K/6. and T' = T/1.3, which  

are in the range (0,1). In Fig. 4.8, contours are plotted  

as a function of the scaled parameter mean values for  

K, =  = 0. The maximum hit probability, p0 .750, 

occurs at approximately ( LK!, t, aK, a T,) = (0.42, 0.22, 

0.0, 0.0). In Fig. 4.9, the contours are plotted against 

the dispersions UKT and L7. for Kt = 0.42 and p7  ,  = 0.22. 

For the optimal parameter values, Fig. 4.10 shows sample 

trajectories with and without the radar-tracking noise. 
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a. Trajectories w¢ith noise.  

b.  Trajectories without 
noise.  

line of sight, y/4o,  

missile position 
normal to  

Vertical:  0.2 msec/cm. 
problem time, t',  

1 volt/cm;  horizontal:  

The effect of radar-tracking 
noise on the missile  

Fig. 4.10  
trajectories.  
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In order to study the effectiveness of the 

optimization strategy, searches were begun from pre­

selected starting points as well as from points chosen by 

the pure-random search. The results of these searches are 

summarized in Tables 4.2-4.5. With Nmax  ­ 8192, a 95% 

confidence-Lnterval half-width for the hit-probability 

estimate is approximately ± .01. Thus, for optimizations 

without constraints on CK or a., searches yielding an 

"optimal" point with f <  .74 are considered failures. An 

asterisk precedes the data for these searches. 

Searches were begun from the point (IKI' , 

aK1,G )= (0.9, .6,0.0,0.2) with LF = 20 and KF = 40 in 

order to study the behavior of the algorithm as a function  

of N. the number of simulations used to estimate p at trial  

points (Table 4.2).  

This starting point is in a region where the  

gradient of the criterion function is small; noise in the  

estLmates of the hit probability can easily obscure the  

gradient. Note that for the successful searches, the  

ranges of the final values of T' and UT, are much larger  

than the ranges of htK' and uK'. This behavior is to be  

expected from the shape of the contours in Fags. 4.8 and  

4.9. In general, as N decreases, so do the average number  

of simulations and the computer time per optimization while  

the number of unsuccessful searches increases. An excep­

tion is the case of N = 64, where the average number of  
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Table 4.2 Data for automatic optimizations from the 

starting point C,,aK,,aT,) =  (0.9,0.6,0.0, 
0.2).  

LF = 20 KF= 40 N = 4096 Nmax  = 8192o  

Trial ASTRAC-II 
N fo VKI VT, OK I  UI  steps runs 

64 .741 .450 .169 .005 .067 174 234000  
.750 .421 .253 .028 .128 187 177000  
.744 .4o6 .268 .015 .172 174 213000  

*.715 .429 .371 .024 .038 146 133000  

*.739 .438 .217 .010 .227 151 248000  
*.706 .431 .393 .023 .234 117 119000  

*.716 .412 .367 .011 .148 161 237000  

.742 .421 .265 .o14 .121 208 375000  

Average: 165 217000 
Average time =  7 thin 23 sec 

128  .748 .407 .212 .014 .010 240 267000  
*.707 .428 .440 .006 .120 157 118000  

.751 .427 .259 .020 .111 132 136000  
*.672 .457 .784 .010 .073 115 117000  
*.738 .427 .247 .029 .130 148 165000  
*-733 .424 .300 .017 .o66 127 135000  

.754 .422 .203 .011 .113 174 120000  

*.688 .436 .513 .026 .193 152 105000  

Average: 156 145ooo  

Average time =  5 mi-u 0 sec 

256  .752 .425 .239 .019 .054 167 189000,  
.747 .431 .269 .003 .020 173 211000  

*.721 .424 .393 .024 .034 149 176000  

.740 .420 .277 .035 .141 140 109000  
*.719 .429 .367 .029 .220 l19 117000  

*.705 .419 .402 .018 .151 142 i04ooo  

.756 .422 .194 .005 .056 229 345000  

.748 .413 .226 .o4o .109 195 497000  

Average: 140 198000  

Average time = 6 mmn 36 sec  
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Table 4.2--Continued  

512 .748 .416 .208 .039 .077 210 216000 
.749 .411 .245 .015 .145 162 212000 

*.695 .424 .504 .oo4 .o6l  120 146000 

*.720 .413 .317 .009 .296 141 182000 

.755 .435 .209 .021 .152 222 229000 

.758 .421 .214 .009 .043 202 220000 

.754 .422 .254 .026 .121 154 183000 

.744 .437 .214 .046 .020 159 165000 

Average: 171 185000 

Average time =  6 mn 20 see 

1024 .745 .425 .286 .028 .052 ill 152000 

.747 .435 .199 .017 .112 137 186000 
*739 .421 .282 .028 .195 125 201000 

*.732 .422 .309 .028 .169 169 301000 

.745  .426 .307 .007 .176 226 393000 

.758 .414 .245 .010 .034 238 359000 

.740 .412 .189 .009 .198 125 200000 

.743 .42i .323 .020 .166 169 230000 

Average: 162 246000 

Average time =  8 min 23 see 

2048 .745 .419 .305 .003 .223 257 650000 

.761 .422 .267 .002 .065 133 331000 
*.730 .424 .363 .005 .298 112 237000 

•756 .42o .231 -002 .075 209 424ooo 

Average. 178 447000 

Average time =  15 mam 3 sec 
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simulations  and  computer  time  increases.  This  is  caused 

by the relatively large variance in the estimates of hit  

probability for trial steps in the final search. The  

"noisy" estimates lead to many false indications of  

improvements in the hit probability; each indication of an  

improvement is followed by a reevaluation requiring many  

simulations. From the data of Table 4.2, it was decided  

that the best compromise between performance of the  

algorithm and computer time occurred for N = 512. This  

value was used for the remainder of the study.  

Table 4.3 shows results for searches begun from the  

point ( K,1TCKIaT,) = (0.5,0.9,0.3,0.0). This is a  

particularly difficult starting point, because here the  

search must climb a narrow ridge, which has steep sides and  

a very small slope in the direction of the optimum. In  

order to have the search reach the optimum, it was neces­

sary to increase LF and KF the number of consecutive  

failures allowed in the initial and final searches.  

To illustrate a more practical method for locating  

the optimum, the algorithm was next started from the best  

point chosen from the pure-random search described above.  

Estimates of p based on 512 simulations were calculated for  

45 random points. Data for the creeping random searches  

are listed in Table 4.4. Note that the two unsuccessful  

searches stopped at points on the ridge.  
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Table 4-3 Data for automatic optimizations from the 

starting point (IK,41 ,aGK,,aT,) =  (0.5,0.95, 

0.3,0.0). 

N = 512 NoO  = 4096 Nmax  = 8192 

Trial ASTRAC-II 

oPK ' UK ' ­ , steps runs 

LF=20 

KF=40 
*.694 .421 .519 .oo4 .107 133 117000 

*.698 .415 .497 .019 .030 140 161ooo 
*.681 .447 .706 .026 .059 129 131000 

*.681 .449 .675 .015 .046 139 155000 

Average: 135 147000 

Average time 5 man 4 see 

LF= 40 

KF=40 

.751 .419 .222 .010 .173 215 249000 
*720 .430 .434 .005 .243 144 142000 
.753 .409 .245 .022 .o16 187 208000 

*.725 .434 .374 .001 .215 204 171000 

Average: 187 197000 

Average tLme =  6 mmn 35 sec 

LF =60 

KF=30 
*.739 .419 .255 .025 .268 187 224000 

.764 .427 .209 .005 .005 294 287000 
*684 .460 .752 .003 .043 202 205000 

.762 .415 .239 .013 .o44 16o 14oooo 
*.705 .424 .511 .025 .oo4 265 238000 

Average: 222 219000 

Average time = 7 min 28 sec 

http:0.5,0.95
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Table 4.4  Data for automatic optamizations from starting  

points chosen by the pure-random search.  

LF=20 KF=40 N=512 N =4096 N =8192  
o  max 

Trial ASTRAC-II  

fo T a tK steps runs CK UI  

.748 .420 .223 .048 .003 121 143000  
*.721 .424 .423 .014 .165 112 129000  

•754 .419 .205 .001 .o48 123 175000  
.747 .432 .201 .019 .143 ill 160000  

.747 .416 .187 .002 .022 154 165000  

.756 .422 .223 .012 .138 213 266000  
*723 .425 .381 .001 .258 147 163000  

.753 .424 .228 .014 .io6 181 255000  

Average: 143 172000  

Average time =  5 man 55 sec 
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A pure-random search followed by the creeping­

random-search algorithm was applied to optimizations with  

lower-bound constraints on aK, and a., (Table 4.5). This  

is intended to model a situation where it is knoun that  

holding production tolerances below a certain level is very  

difficult and/or costly. Note that a lower bound on a.,  

causes an increase in the optimal mean value g,." For the  

case of UK, > .2 and a., > .2, the maximum hit probability  

appears to be about 0.625. This should be compared with a  

value of 0.600 for the point (IK,,Ix,,K,,UT,) = (0.4210.225  

0.2,0.2) in Fig. 4.9.  

Optimizations were performed with several other  

combinations of lower-bound constraints on CK', and aT' as  

well as with equality constraints on UK, and a '" In no  

case, however, was it observed that increasing UKt or aTf  

resulted in an increase in the hit probability. It is  

believed that McGhee and Levine's observation of the hit  

probability increasing as aK is increased is a result of  

holding gK, and T' constant, instead of locating new  

optimal values.  

From the results for this example problem, it could  

be concluded that production variations in the gain K will  

have a significant effect on the hit probability, while  

large variations in T degrade the performance only slightly.  

Also, for lower bounds on UK, and a., the mean value I1Kt  

must be increased to obtain optimal performance. Note that  
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Table 4.5 Data for automatic optimizations wiath lower  

bound constraints on a., and CI. 

LF=20 KF=40 N=512 N =4096O N =8192 max 

Trial ASTRAC-II 

f 0  K' T' GK,I  aT' steps runs 

.700 .441 .268 .113 .243 120 164ooo 

.708 .473 .172 .101 .004 150 232000 

.707 .432 .282 .101 .o43 131 179000 

.706 .457 .187 .1o4 .094 148 198000 

Average: 137 193000 

Average time = 6 man 26 sec 

UK,3.2 

GT?>'2 .610 .458 .174 .217 .233 123 154000 

.613 .479 .182 .208 .297 115 176000 

.623 .461 .206 .206 .236 149 195000 

.618 .488 .228 .208 .248 149 191000 

.628 .487 .194 .203 .222 175 224000 

.624 .501 .221 .205 .200 125 198000 

.631 .451 .186 .205 .212 158 212000 

.631 .456 .187 .201 .251 199 215000 

Average: 149 191000 

Average time = 6 mmn 32 sec 
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this latter effect is revealed by the simulation of  

relatively large random variations in K; it would not be  

predicted from a small perturbation analysis.  



CHAPTER 5  

CONCLUSIONS AND DISCUSSION  

In spite of the very large number of system  

simulations requLred for the optmimzation of the example  

problem, it is believed that this hybrid-computer approach  

to the optimization of systems wLth random parameters ms a  

feasible one if a fast digitally controlled analog computer  

is available. CertaLnly, the large number of simulations  

demonstrates that an all-digital optimization of a dynam3cal  

system with random parameters by the Monte Carlo method  

would be impractical at this time.  

It might be noted that the type of criterion func­

tion optimized in the example (a probability) is one  

requiring a very large number of simulations in order to  

obtain a reasonable criterion-function estimate. For  

example, if the hit probablity is 0.5, our estimate is  

approximately Gaussian with mean 0.5 and standard deviation  

I/2-n where n is the number of simulations used for the  

estimate of p. Then 100 simulations are required just to  

obtain an estimate with a standard deviation which is 10%  

of the mean. Criterion-function measurements for other  

types of problems may well have a more favorable signal-to­

noise ratio.  

142 
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With a computing speed of approxlmately 500 simula­

tions per second, typical optimization times were on the  

order of 6-7 minutes for the 4-parameter example problem  

simulated on ASTRAC-II. For a commercially-available  

machine capable of about 200 simulations per second, a  

typical optimization time of about 16 minutes does not  

appear prohibitive. The results of Schumer and Steiglitz  

(1968) indicate that function evaluations (and computer  

time) should be expected to increase linearly as a function  

of the dimension of the parameter space.  

The data presented in Chapter 4 were for completely  

automatic optimization in order to evaluate the effective­

ness of the search algorithm. Operator-program interaction  

can save much computer time and provide more insight into  

the nature of the system. The automatic search is, how­

ever, the most important factor in devising an effective  

optimization system.  

Parameter optimization in the presence of noise is  

surely an area requiring further research. The creeping­

random-search algorithm described here is effective but  

wants improvement. The addition of a scheme for biasing 

the search in the direction of past successful steps should  

speed the progress along a ridge (Mntchell, 1964; Matyas-,  

1965, Rastragin, 1967).  

Two  other  approaches to  "noisy"  parameter  optimiza-

tion might be investigated. The digital computer is  idle 
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for much of the time during the integration of the differ­

ential equations on the analog machine. For the problem  

solved here, some of this time was used to generate  

parameter values for the next simulation. The opportunity  

for using this "i-dle time" would be increased with  

commercially-available hybrid computers, which have analog  

machines with slower computing speeds than ASTRAC-II and,  

typically, faster floating-poLnt arithmetic than the PDP-9.  

During this time, the digital machine might make use of  

previous criterion-function measurements in order to fit a  

second-order regression surface to the criterion function,  

as brLefly described in Section 2.4. If a measurement of  

the criterion function at the minimum point of the  

regression surface is an improvement over the current best  

point obtained by the creeping random search, the center of  

the search could be placed at the new poLnt. Computing the  

regression surface and solving for the minimum point would,  

practically speaking, require floating-point computations.  

Another possible approach to optimizing noisy  

criterion functions is to combine the conjugate-gradient  

algorithm of Powell (1964) or Zangrill (1967) with a  

stochastic-approximation method for the one-dimensional  

minimizations. It may not be necessary to locate the  

minima along the search directions with great accuracy;  

Harkins (1964) has noted that with the Partan method,  
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convergence could be improved by inaccuracies an determLn­

ing these minima. 



APPENDIX A  

THE EFFECTS OF LIMITING A GAUSSIAN RANDOM VARIABLE  

Let the random variable X be Gaussian with mean  

2  
and variance a The distribution function for X is given  

by  

x 
F(X) =f f(z)dz  

­ exp[-(z-0p) 2 /2a 2 ]dz  

We "limit" the random variable X at +ra and at + ro(r>O)  

and show how the mean and variance of X are changed by  

these two limiting operations.  

A.1 Limiting at -ra  

Without loss of generality, we can assume =  0. 

Let the new random variable U be given by 

X for X < ra  

U= 

rc for X  >  ra 
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The distribution functLon for U is given by 

F(u) for u < ry 
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G(u)  = 

1 for  u  >  r 

The expected value of U is 

E[ul =  f udG(u) 

ra 

f  uf(u)du  +  ro  f f(u)du 

-W rcy 

­a  exp(-r2/2) + r }
rcr 

f(u)du (A.1) 

The  variance 

VartU3 = 

of  U  is 

E [  (U-Efu]) 2 

= E[u2 _ [Elul] 2 

ra 

-M 
u2f(u)du +  (r) 

2 f 

ra 

f(u)du [Elu] 
2 

(A.2) 
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A.2 Limrnting at ±_ ro 

Again we assume p =  0. Let V be given by 

­ra  for X < -ra 

V= X for -ry < X < ry 

ru for X > ra 

The distribution function for V is given by 

0 for v <  -ra 

H(v) F(v) for -rc < v < rc 

1 for v >  ra 

Since the limiting operation is symmetric about the mean, 

EfV] = E[Xj (A.3)  

The varLance of V is  

2  
Var(VJ = EfV

2 3 ­ [E(V}] 

=  E({V3 

(ra)2 f(v)dv +  v f(v)dv +  (r)2J f(v)dv 

- -ra ra 

v
2 f(v)dv + 2(ra)2 f  f(v)dv  

-rcv rc  

ao2[1 + 2[(r2_l f(v)dv -rE exp(-r2/2) (A.4) 

=~  ~  a  f[a r  Tr1ffvd 
r  Y 
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Equations (A.l)-(A.4) give the means and variances 

of the limited random variables U and V as functions of r 

and a- Table 3.1 lists the numerical values for r=l 2, 

3,  and 4. 
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