HYBRID COMPUTER OPTIMIZATION OF SYSTEMS
WITH RANDOM PARAMETERS
by
Robert Cantey Whıte, Jr.

A Dissertation Submitted to the Faculty of the DEPARTMENT OF ELECTRICAL ENGINEERING

In Partial Fulfillment of the Requarements For the Degree of DOCTOR OF PHILOSOPHY

In the Graduate College
\checkmark THE UNIVERSITY OF ARIZONA NGL-O3-002-024

1970

ACKNOWLEDGMENTS

The author washes to thank Professor Granino A. Morn for his suggestion of the dissertation topic and for his helpful guidance during the research and writing. This project is part of a continuing study of hybrid analog-dıgıtal computation directed by Professor Morn and supported by the National Aeronautics and Space Admınıstratron under NASA Grant NGR-03-002-024. The author as also grateful for support of has Ph . D. program through a NASA Pre-doctoral Traıneeship, a General Electric Foundtron Graduate Fellowship, and a Graduate Associateship an Research in the Engineering Experiment Station of The University of Arizona.

$$
3 \mathrm{M}
$$

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Labrary to be made avallable to borrowers under rules of the Library.

Brief quotatıons from this dissertation are allowable wathout special permission, provided that accurate acknowledgment of source as made. Requests for permassion for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.

SIGNED: \qquad

TABLE OF CONTENTS
Page
LIST OF ILLUSTRATIONS vi
LIST OF TABLES vユユi
ABS TRACT ix
CHAPTER

1. INTRODUCTION 1
1.1 Problem Defination 2
1.2 Previous Work 5
1.3 Solution Approach 6
2. A SURVEY OF PARAMETER OPTIMIZATION TECHNIQUES 9
2.1 Introduction and Notation 9
2.2 Gradient Descent Methods 13
2.2.1. Steepest Descent 13
2.2.2 Parallel Tangents (Partan) 17
2.3 Conjugate Search-Dırection Methods 21
2.3.1 Conjugate Direction Properties 22
2.3.2 Conjugate Direction Algorithms 23
2.4 Quadratıc Fıt Methods 30
2.5 Darect Search Methods 32
2.6 Random Search Methods 37
2.6.1 Theoretıcal Developments 38
2.6.2 Specifıc Algorıthms and Applucations 45
2.7 Stochastac Approximation 54
2.8 Constraints 64
2.8.1 Gradient Projectıon Method 65
2.8.2 Created Response-Surface
Method 67
2.8.3 Penalty Functaons 68
2.8.4 Restrict to Feasible Region 69
2.9 A Comparison of Methods and Some Remarks 69

TABLE OF CONTENTS--Contznued

CHAPTER
3. OPTIMIZATION IN THE PRESENCE OF NOISE 75
3.1 The Cholce of a Strategy 75
3.2 A Random-Search Algorithm for Nolsy Criterion Functions 79
3.3 Constrannts, Modelang the Distrabu- tions of the System Parameters 91
3.4 Sequentıal Estimation of $F(\mu, \sigma)$ 94
4. AN OPTIMIZATION EXPERTMENT 103
4.1 A Radar-Homing Missile Problem 104
4.2 The Simulation 108
4.3 The Optimization 114
4.4 Operation of the Optimization Progran 124
4.5 Expermments and Results 129
5. CONCLUSIONS AND DISCUSSION 142
APPENDIX A. THE EFFECTS OF LTMITING A GAUSSIAN RANDOM VARIABLE 146
REFERENCES 150

LIST OF ILLUSTRATIONS

Figure Page
1.1 Three samples ${ }^{1} \mathrm{~S},{ }^{2} \mathrm{~S},{ }^{3} \mathrm{~S}$ from an ensemble of systems 3
2.1 An example of non-convergence wath the
Newton-Raphson method 15
2.2 An example showing avoldance of a local manımum wath the Newton-Raphson method 16
2.3 Schematıc diagram of steepest descent
Partan 19
2.4 Schematic dıagram of general Partan 20
2.5 Operation of the simplex method in two dimensions 35
2.6 The behavior of a "discrete-darection" random search algorithm 49
2.7 Creeping random search with hyperconacal search regions 53
2.8 A stochastic approximation algorithm with a small step size 58
2.9 A stochastuc approximation algorithm with a large step size 59
2.10 A function for specifying the step size in a stochastic approxımation algorıthm 62
2.11 The gradient projection method at the boundary of a nonlinear constraint 66
3.1 Flow diagram for the basic creeping- random-search algorıthm 81
3.2 A creeping random search in a region of small gradient for a nolsy criterion function 85

LIST OF ILLUSTRATIONS --Contanued

Figure Page
3.3 A flow diagram for the optimlzation algorithm 87
3.4 The Gaussian density function limıted at one end 95
3.5 The Gaussian densaty function lamıted at both ends 96
3.6 Flow diagram for the shaft operation an Eq. (3.18) 101
4.1 The motion of the missile in a plane 105
4.2 Radar-homang mıssile navigating in a plane 107
4.3 Analog computer diagram of the radar- homing massile simulation 109
4.4 Control logac for the sumulation 112
4.5 A flow diagram for the optimization algorzthm 117
4.6 CRT output for a benchmark test fallure 123
4.7 CRT displays during the optamazation 127
4.8 Contours of constant hit probability asa function of μ_{K}, and μ_{τ}, (mean valuesof unknown parameters) 130
4.9 Contours of constant hit probabılaty as a function of σ_{K}, and σ_{T}, (dispersions of unknown parameters) 131
4.10 The effect of radar-tracking nouse on the missile trajectories 132

LIST OF TABLES

Table Page
3.1 The effects of limytang a Gaussian random variable 97
3.2 Divisors used an the three recursive estimation algorithms 102
4.1 Confidence-interval half-wadths,
$\sqrt{\frac{p(1-p)}{N}} z_{\alpha / 2}$, for $\alpha=.05$ 116
4.2 Data for automatic optimızatıons from the starting point ($\mu_{K},, \mu_{\tau}, \sigma_{K}, \sigma_{\tau}$,) = (0.9,0.6,0.0,0.2) 134
4.3 Data for automatic optimizations from the starting point $\left(\mu_{K},, \mu_{\tau}, \sigma_{K}, \sigma_{\tau}\right)=$ ($0.5,0.95,0.3,0.0$) 137
4.4 Data for automatic optimizations from starting points chosen by the pure- random search 138
4.5 Data for automatic optimizations whth lower bound constraints on σ_{K}, and σ_{T}, 140

Abstract

This thesis presents a hybrid-computer Monte-Carlo method for the optimization of systems containing random parameters. In the design of a dynamical system, the values of a set of system parameters may be chosen so as to optamıze a performance craterion. If, however, the manufacturıng process results in production varıations in these parameters, the optımal system becomes an idealization which cannot, in general, be realized by the systems actually manufactured. In this case It may be advantageous to treat the system parameters as random variables having, for example, Gaussian probabilıty distributions. Then parameter mean values and varlances can be chosen so as to optımıze a crıterıon function whıch ıncludes average system performance and also the cost of manufacturing systems with certann parameter variances.

In order to solve thas type of problem, the dynamıcal system, uncluding the random varıations in the system parameters, as simulated on a fast repetatave analog computer (The Unıversaty of Arızona's ASTRAC-II) and the average system performance is estimated by the Monte-Carlo method. A small digital computer (Digital Equapment Corporation PDP-9) controls the operation of the analog

machone and implements an optimazation algorithm for determining the optimal parameter means and variances. Since an estumate of the average system performance Is a random varıable, the optimazation algorıthm must operate wath nozsy measurements of the craterion function. A review of the lıterature on parameter optimızation led to the development of a creepang-random-search algorithm for optimization $1 n$ the presence of nozse. Incorporated in the optimization program are provisions for interaction between the operator and the algorithm by way of a cathode-ray-tube display console and the accumulator switches on the PDP-9.

The method is applied to the optimazation of the means and varıances of two guidance-unit parameters in a hypothetıcal. radar-homing massile. Wıth differential equation solution rates of approximately 500 runs per second, typical optimization tımes are on the order of 6-7 minutes. It us found that optimizations with lower bound constraunts on the parameter variances result in optimal mean values different from those for the unconstrained case.

CHAPTER I

INTRODUCTION

A common approach to the design of an engineering system $u s$ furst to choose a general confuguxation in whach the values of several parameters are left undetermined; these values are then chosen so as to optimıze some cxıterıon of performance. If many of these systems are to be manufactured, however, it may be difficult and/or costly to ensure that the parameter values are very close to the optimum. The system with optimum parameter values then becomes only an ıdealızation which is not, in general, realized by the systems that are manufactured. In such a situation it may be advantageous to model the output of the manufacturing process as a statıstıcal ensemble of systems whth parameters having, for example, Gaussian probabaluty distrıbutıons. Then, parameter mean values and variances could be chosen to optimize a criterion function which would include average system performance as well as the cost of manufacturang systems wath certann parameter varıances.

In thas thesis, a hybrid-computer method employing a fast repetative analog computex (ASTRAC-II) and a digital computer (PDP-9), us developed for the simulation and
optimızation of an ensemble of systems with random parameters. The method $1 s$ applied to the simultaneous optimzzation of the means and varlances of two parameters un a hypothetical radar-homang missile.

1.1 Problem Definition

Let us consider an ensemble of systems identacal except for the values of a set of k system parameters $\underline{p}=$ $\left(p_{1}, p_{2}, \cdots, p_{k}\right)^{t}$. These parameters are assumed to be statustacally undependent random variables. A sample system from the ensemble as defined by a specific ordered set $\left(p_{1}, p_{2}, \ldots, p_{k}\right)$. The situataon as pactured an Fig. 1.1.

It $1 s$ assumed that the type of probabılıty dustribution for each random parameter is specifaed, but that the constants whach precisely defane these distributions may be varied. These constants are termed distribution constants and are represented by $\underline{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{t}$. For example, suppose the parameters p_{j} are Gaussian with respective means μ_{J} and standard deviations σ_{J}, where the $\mu_{J}{ }^{\prime} s$ and $\sigma_{J}{ }^{\prime} s$ may be chosen by the design engineer. Then $\underline{x}=(\underline{\mu}, \underline{\sigma})=\left(\mu_{1}, \ldots, \mu_{k} ; \sigma_{1}, \ldots, \sigma_{k}\right)^{t}$ and $n=2 k$.

For any sample system in the ensemble, we define a measure of system performance, a performance index J, which is a function of the random parameters and 2 , therefore, a random variable:

Fag. 1.l Three samples ${ }^{1} S,{ }^{2} S,{ }^{3} S$ from an ensemble of systems.

$$
\begin{equation*}
J=J\left(p_{1}, p_{2}, \cdots, p_{k}\right) \tag{1.1.}
\end{equation*}
$$

The ensemble average (expected value) of J is a measure of the average system performance. Thas expectation of J, $\mathrm{E}\{J\}=\Psi$, termed the average performance index, is a function of the distribution constants of the random parameters:

$$
\begin{equation*}
E\{J\}=\Psi=\Psi\left(x_{1}, \cdots, x_{n}\right) \tag{1.2}
\end{equation*}
$$

For a given set of distributzon constants we may also define a cost function, $C(\underline{x})$, as a measure of the cost associated wisth manufacturing systems with these distrıbution constants. Typically, $C(\underline{x})$ wall depend specifically on the parameter tolerances, σ_{2}. The cost function and the average performance index are summed to form the criterion function, $F(\underline{x})$.

$$
\begin{equation*}
F(\underline{x})=\Psi(\underline{x})+C(\underline{x}) \tag{1.3}
\end{equation*}
$$

The problem to be solved as that of optimizang (manimizang or maximizing) F with respect to x_{1}, \ldots, x_{n}, subject to a set of m inequaluty constrannts on the x_{1} 's.

$$
\begin{equation*}
\varnothing_{1}(\underline{x}) \leq 0 \quad 1=1, \cdots, m \tag{1.4}
\end{equation*}
$$

The inequality constrants may represent restractions amposed by the design engıneer or constrannts required for proper defination of the distribution functions of the system parameters. For example, $1 f p_{\perp}$ is Gaussian wath
mean μ_{I} and variance σ_{I}^{2}, then the designex may require $-10 \leq \mu_{2} \leq 5$, and we must have $\sigma_{1} \geq 0$.

1.2 Previous Work

The problem of optimazing an ensemble of systems with respect to parameter variances as well as parameter mean values has been recognized for some tume, but luttle work in this area has been accomplıshed. The exceedingly large number of system simulations necessary to evaluate and optimaze the criterion function for a dynamic system whth random parametexs makes the solution to such problems impractical without the use of very fast hybrid computers, which have become avallable only an recent years. In 1959 McGhee and Levine (1964) employed Monte-Carlo simulation an the optimization of production tolerances for two Gaussian parameters in a radax-homang missile (this paper as discussed more thoroughly in Chapter 4). Parameter mean values were selected prior to the simulation, and the crıterion function was then estimated for sixteen combinatıons of tolerance values. Wath a slow analog computer, approximately one week of computing tame was required, demonstratang the need for a fast repetatave machine an solving a problem of any complexity. Korn (1966) has outlined the problem of hybrid-computer optamization of systems with parameters subject to production varıatıons. Note that simultaneous optimization or mean values as well

```
as varlances will, an general, result an optımum mean
values dufferent from those for the case where all vari--
ances are set to zero.
```

Recently Bohling and O'Neill (1970) have presented a hybrıd-computer approach to parameter tolerance analysis. Wath the aid of an anteractave display system, the operator can quickly evaluate the effects of parameter tolerances on system performance and reject unsatusfactory designs whthout waュtang for the accumulatıon of large statistıcal samples. Thas type of operator-program anteraction, whıch provides ansught into system behavior as well as a saving In computer time, could be equally beneficial in parameter optamızation.

1. 3 Solution Approach

The solution of the parametex optamızation problem outlıned \ln Section $1 . l$ may be davided anto two parts: evaluatang the craterion function $F(\underline{x})$ and choosing the x_{z} 's to optimize $F(x)$.

The main problem an evaluating F as the calculation of $\Psi=E\left\{J\left(p_{1}, p_{2}, \ldots, p_{k}\right)\right\}$. This expectation may be calculated analytıcally for only the samplest of systems and performance andıces. For systems of any complexity, a natural method of calculating Ψ is to estimate 1 t by MonteCarlo simulation. With this approach, the mathematical model of the system is amplemented by a computer. For a
given set of distributaon constants sample values of the random system parameters are obtanned from noise generators, and the system $x s$ operated or "run" many times to obtann an estimate of the average performance index $\mathbb{\Psi}$. For systems described by differentıal equatıons, this task Is a natural one for a hıgh-speed iteratıve analog computer, whych as capable of solving differentıal equatıons much more quackly than a digutal machıne.

The job of optimizing the Monte-Carlo estimate of F is most easily handled by a digital computer, which can examıne the performance andex estamate and implement sophistacated strategues for locating the optamal parameter values. The main difficulty in solving the parameter optimizatıon problem results from our anabilıty to measure $\Psi(\underline{x})$ exactly. The estimate of Ψ from many analog computer runs wall, in general, contain an exror which can lead to a wrong decision in the search for the optamum parameters. For the reasons discussed in Chapter 3, a creeping randomx search algorıthm was chosen for the optimization strategy.

The divasion of the problem into these two tasks, estimation of $\Psi(\underline{x})$ and optimization, suggests the use of a hybrid computer consisting of a small digatal computer anterfaced to a hagh-speed analog machune. Such a computing system $u s$ employed for the problem solved here. The digital computer is a Digltal Equipment Corporation PNP-9, which has an 18 -bit word length and 16 K of core
memory, The Unıversity of Arızona's ASTRAC-II as a ± 10. volt repetatıve analog computer capable of differentialequation solution rates of 1000 runs per second.

A review of the literature on parameter optimizatıon was undertaken \ln preparation for selecting an effective search strategy for nolsy criterion functions. Thas survey 1 s the subject of Chapter 2. The algorıthms developed for the estamation of the criterion function and optimazatıon are dascussed mn Chapter 3. Chapter 4 describes the application of the method to the radarhoming massile problem, and some general remarks and conclusions are given $I n$ Chapter 5 .

CHAPTER 2

A SURVEY OF PARAMETER OPTIMIZATION TECHNIQUES

2.1 Introduction and Notation

During the past fifteen years the fields of optimum systems design and optimal control have produced a large number of parameter optimızation technıques. Thıs survey revaews the m mportant technıques avallable and attempts to evaluate thear relatave worth. Since no one method is best for all situations, attention is focused on factors which determane the suntabulaty of a method for a partıcular class of problems. These factors include the type of criterion function to be manamazed, constraints on the parameters, errors an measuring the craterion function, and the computing equapment to be used. The techniques discussed have been chosen for theur applicabilıty to the wade range of craterion functions found in enganeering problems. Thus, algorithms designed for rather specific functions are not treated here. Such methods anclude linear programmang, Gauss's least squares, and geometric programming, which are discussed by Walde and Beightler (1967).

There are several references which review or discuss parameter optimization methods in detail. The most
comprehensive and thorough treatment as found in WIIde and Beightler (1967), which covers most of the methods mentioned here, wath the exception of the creeping random techniques and stochastic approxamation. The latter topic is discussed by Wılde (1964). Cxeeping random methods are treated by Rastrıgın (1967), Korn (1966), and Bekey and Karpius (1968). McGhee (1967) gaves an introduction to gradient methods. Technaques especially suitable for analog or hybrad computers are descrıbed by Korn and Korn (1964), Bekey (1964), and Bekey and Karplus (1968). A more mathematacal treatment of parameter optimızation, specifically of the nonlınear programming problem, may be found mn Saaty and Bram (1.964), which contans a full treatment of techmiques for handling constraints. Some other general references whth discussions of several parameter optimazation methods are Leon (1964), Lavi and Vogl (1966), Carnahan (1966), Fleascher (1966), Kopp (1967), Hague and Glatt (1968), and Spang (I962). A bıbllography of hybrid-computer parameter optamizataon methods as given by Gilbert (1967).

Formal definztions of the general parameter optimization (nonlinear programming) problem and related mathematical concepts are given by Korn and Korn (1968) and Saaty and Bram (1964). The notation to be used here as antroduced in the followang problem statement.

Determine the ordered set of n unknown parameters $\underline{x} \equiv\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\text {t }}$ which optimızes (minimizes or
maxımizes) the criterion function (objective function, performance index)

$$
\begin{equation*}
F(\underline{x}) \tag{2.1}
\end{equation*}
$$

subject to the m inequalaty constrannts

$$
\begin{equation*}
\phi_{1}(\underline{x}) \geq 0 \quad(\text { or } \leq) \quad(1=1, \ldots, m) \tag{2.2}
\end{equation*}
$$

The optimal parameter values and associated crıterion function value wIII be denoted by $x^{*}=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right)^{t}$ and F^{*}. The set of all x satasfyng the constraints (2.2) defines a region R called the feasible region. For convenıence, all optimazation problems are considered here as manımızation problems. In some situations, constraznts are not present or may be effectuvely elmmated (unconstrazned optimization).

In the evaluation of optimization algorithms the notion of convergence $u s$ used to descrabe how quackly the search proceeds to the optimum point. In partıcular, some algorıthms are said to exhıbıt quadratıc convergence, which has been defmed an several ways an the lıterature. Walde and Berghtler (1967) state that an algorithm capable of finding the minimum of a quadratic function of n variables after measuring n gradients is said to converge quadratıcally. McGhee (1967) defines quadratic convergence in the following way. Let Δx be the parameter step vector computed by the algorıthm. Then quadratac convergence amplies
that as $\delta \underline{x}=\underline{x}^{*}-\underline{x}$ approaches zero, the ratios of the components of Δx and $\delta x, \Delta x_{y} / \delta x_{J}$, approach 1 for $\mathcal{I}=J$ and approach zero for $\perp \neq \mathrm{J} \cdot$ Accordıng to Box (1966) and Fletcher and Reeves (1964), an algorıthm enjoyıng quadratıc convergence wall locate the manımum of a quadratıc function In a finnte number of steps. Unless otherwnse stated, thus last definıtion wall be adopted for duscussions here.

The notions of quasx-quadratic functions and quasiquadratic convergence are used by Walde and Belghtler (1967). Let $F(x)$ be a quadratıc functıon of x, and let h be a monotonle function. Then

$$
y(x)=h[F(x)]
$$

Is samd to be quası-quadratıc, and we shall describe an algorıthm capable of mınımızıng a quası-quadratıc function in a finate number of steps as converging quasıquadratacally.

The optimızation techniques described here have been grouped under the headings: gradient descent methods, conjugate search-direction methods, quadratac fit methods, direct search methods, x andom methods, and stochastuc approximatıons. The discussions are carried out for the unconstrained case, Section 2.8 descrabes methods for handlung constraints. Comparative evaluatıons of the methods on the basis of results from test functions and practucal problems are given in Section 2.9.

2.2 Gradient Descent Methods

The techniques discussed in this section assume a smooth objective function and make use of first-order partial derıvatires to determine the optimizung steps.

These methods anclude steepest descent schemes and Partan (McGhee, 1967, Wilde, 1964).

2.2.1 Steepest Descent

A smooth function $F(\underline{x})$ may be represented locally about any point x° by a Taylor serıes.

$$
\begin{equation*}
F\left(\underline{x}^{o}+\Delta \underline{x}\right)=F\left(\underline{x}^{o}\right)+\underline{\nabla F}\left(\underline{x}^{o}\right)^{t} \Delta \underline{x}+0\left(\Delta \underline{x}^{2}\right) \tag{2.3}
\end{equation*}
$$

where
and $O\left(\Delta x^{2}\right)$ indicates a remainder consisting of terms of second-order and hagher in the Δx_{1}. For small $\Delta \underline{x}$, the term linear m n Δx is dommant, and to make $F\left(x^{0}+\Delta x\right)<$ $F\left(\underline{x}^{\circ}\right)$ we take a step in the directaon $-g\left(x^{\circ}\right)$. To show that
$F(\underline{x})$ can be decreased by such a step, we let $\Delta x=-\alpha g\left(x^{\circ}\right)$, $\alpha>0 . \quad$ Then,

$$
\begin{aligned}
F\left(\underline{x}^{0}+\Delta \underline{x}\right)-F\left(\underline{x}^{0}\right) & =-\alpha \underline{g}\left(\underline{x}^{0}\right)^{t} \underline{g}\left(\underline{x}^{0}\right)+o\left[\left(-\alpha \underline{g}\left(\underline{x}^{0}\right)\right)^{2}\right] \\
& <0 \text { for small } \alpha
\end{aligned}
$$

The chozce of α is critical an determaning the speed of convergence; for small α, convergence is slow, and too large an α may result in no convergence. While there are many schemes for choosing α, probably the most used are the Newton-Raphson and "optimum gradient" methods.

The Newton-Raphson technique (McGhee, 1967) uses the representation of Eq. (2.3) and, neglecting the hagher order terms, finds $\alpha=\alpha_{0}$ such that $F\left(\underline{x}^{0}+\Delta \underline{x}\right)=0$. Thus,

$$
\alpha_{0}=\frac{F\left(x^{0}\right)}{g^{o t} \underline{g}^{0}}
$$

This step size may locate a poznt \underline{x}^{0} r $\Delta \underline{x}$ such that $F\left(\underline{x}^{0}+\Delta \underline{x}\right)>F\left(\underline{x}^{0}\right)$, and $1 t$ Is possuble for the NewtonRaphson method never to converge, as shown in the example of Fig. 2.l. On the other hand, this technıque can be effectave in avoiding local mınima (Fıg. 2.2).

The problem of unstabılıty can be avoided by determining α by the optimum gradient method (McGhee, 1967; Bekey and McGhee, 1964). Sunce $F(x)$ is known to decrease min the megative gradient darection for some small α, there exists an α^{*} on $\left(0, \alpha_{0}\right]$ such that $F\left(\underline{x}^{0}+\alpha^{*} \Delta \underline{x}\right) \leq F\left(\underline{x}^{0}+\alpha \Delta \underline{x}\right)$

Fig. 2.I An example of non-convergence with the NewtonRaphson method.

Fig. 2.2 An example showing avoudance of a local manımum wath the Newton-Raphson method.
where α is any other scale factor on ($\left.0, \alpha_{0}\right]$. The optimum gradıent method uses a one-dimensional search to locate α^{*} for each step in the steepest-descent direction.

Steepest-descent methods were of the furst to be used in optimızatıon and have been applied successfully to many problems, especially un the $u n i t i a l$ stages of the search. Convergence, however, tends to be very slow near the optimum, and the method may fall altogether for functions whth urregular parameter landscapes. In addition, since the direction of the gradient vector depends on the scaling of the parameters, x_{1}, the performance is strongly dependent on this scaling, problems with long, narrow contours will be more dirficult to solve than ones with nearly curcular contours. When gradient anformation us avallable, more modern methods such as Partan or the conjugate directıon technıques are superıor.

2.2.2 Parallel Tangents (Partan)

An attempt to speed up the convergence of gradient descent algorュthms led to the method of parallel tangents (Partan), which was developed by Shah, Buehler, and Kempthorne (1964) after Forsythe and Motzkin's (1951) suggestion of a steepest descent acceleration technaque in two dimensions. The two versions, steepest-descent (or gradient) Partan and general Partan, are discussed in
detall by Buehler, Shah, and Kempthorne (1964), Shah et al. (1964), and Wilde (1964).

Steepest-descent Partan alternates steepest descent steps wath accelerataon steps as shown in Fig. 2.3. [In thys discussion of Partan a "step" implies a mınımızation of $F(\underline{x})$ along a line.] For general Partan acceleration steps alternate wath steps along lanes parallel to planes which are tangent to $F(\underline{x})$ at previous even-numbered points ${ }^{J_{x}}$ (Fıg. 2.4. $\pi_{J}=$ tangent plane at ${ }^{J_{X}}$). General Partan has the property of scale invarıance, which is usually considered an advantage in mınimazing general functions. Wıth either method a quasi-quadratıc functıon of n variables is manmmzed in $2 n$ or less steps. To carry on the algorithms for general functions after $2 n$ steps eather method can be restarted at the pount ${ }^{2 n} x$ (aterated Partan), or steepest descent Partan may simply be contunued (continued Partan). The partial derivatives $\partial F / \partial x_{i}$ must be evaluated or approximated before alternate steps to obtain the gradient for steepest descent Partan or the tangent plane for general Partan. Harkins (1964) has found the very interesting result that convergence can be improved by anaccuracies in determinang the minamum along a line. He suggested using only one to five points wath a golden sectuon search.

Fig. 2.3 Schematic diagram of steepest descent Partan.

Fıg. 2.4 Schematac diagram of general Partan.

2. 3 Conjugate Search-Dırection Methods

The techniques discussed in this section are designed to minamıze a quadratic function by a series of one-dimensional mınımızatıons along lines termed conjugate directions. For most of the methods, a quadratic function of n variables 1 s minimızed with n ons-dimensional minimizatıons. To the extent that a non-quadratic function to be minnmized can be approximately represented by a quadratıc, these methods provide rapıd convergence, especially an a region near the optamum, where the farst- and second-order terms of a Taylor series expansion of a smooth function dominate. The conjugate-durectıon algorithms perform well on difficult test functions and have been used successfully in the solutzon of optamal control problems (Burta and Trushel, 1969, Lasdon, Mitter, and Waren, 1967). An introduction to some general properties of conjugate directaons $u s$ followed by discussions of several algorıthms. Let $F(\underline{x})$ be a quadratıc functıon of n varıables x_{1},

$$
\begin{equation*}
F(\underline{x})=\frac{1}{2} \underline{x}^{t} A \underline{x}+\underline{b}^{t} \underline{x}+c \tag{2.5}
\end{equation*}
$$

whth gradient

$$
\begin{equation*}
g(x)=A \underline{x}+\underline{b} \tag{2.6}
\end{equation*}
$$

where A as positive definite and symmetric.

2.3.1 Conjugate Direction Properties

A set of n independent darections ${ }^{\circ}{ }_{d},{ }^{l_{d}}, \ldots,{ }^{n-1} \underline{d}$ are conjugate wath respect to a posituve semı-definate matrax $B(B-c o n j u g a t e)$ af

$$
\begin{aligned}
& { }^{i} \underline{d}^{t_{B}} \underline{d}=0 \quad i \neq J \\
& { }^{{ }^{1} \underline{d}^{t^{1}} B^{1} d \underline{d}=0}
\end{aligned}
$$

The importance of conjugate directaons deraves from the property that \underline{n} successive minimizations in the $A-$ conjugate directions will locate the manimum of $F(\underline{x})$.
To see thas (Fletcher and Reeves, 1964), let ${ }^{\circ}{ }_{d},{ }^{l}{ }^{d}, \ldots$, $n^{n-1} \underline{d}$ be A-conjugate, and let a step from ${ }^{1} \underline{x}$ to ${ }^{1+1} \underline{x}$ be determaned by

$$
\begin{equation*}
{ }^{i+1} \underline{x}={ }^{I} \underline{x}+{ }^{I} \alpha^{I} \underline{d} \tag{2.8}
\end{equation*}
$$

where ${ }^{I} \alpha$ as chosen such that

$$
\begin{equation*}
\underline{g}^{t}\left(\underline{x}^{1+1} \underline{x}\right)^{I}=^{1+1} \underline{g}^{t} \underline{d}=0 \tag{2.9}
\end{equation*}
$$

(ı.e., ${ }^{I} \alpha$ manımızes F along the direction ${ }^{\prime}$ d). Iteration on (2.8) from $J^{+1} \underline{x}$ to ${ }^{n} x$ yuelds

$$
\begin{equation*}
n_{\underline{x}}=j+1 \underline{x}+\sum_{x=j+1}^{n-1} I_{\alpha}^{1} \underline{d} \quad(0 \leq j \leq n-1) \tag{2.10}
\end{equation*}
$$

As a convenience, let us assume a change of varıables so
that $\underline{b}=\underline{O}$. It then follows from (2.6) that

$$
\begin{equation*}
n_{\underline{g}}=3^{+1} \underline{g}+\sum_{1=j+1}^{n-1}{ }^{\prime} \alpha A i^{i} \underline{d} \tag{2.11}
\end{equation*}
$$

From (2.9) we have

$$
\begin{equation*}
\underline{n}_{\underline{g}}^{t}{ }^{\mathrm{J}} \underline{\sum_{d}} \sum_{\mathrm{m}=\mathrm{J}+1}^{\mathrm{n}-1}{ }^{\mathrm{I}} \alpha^{\mathrm{I}} \underline{\mathrm{~d}}^{t_{A}^{\mathrm{J}} \underline{d}} \tag{2.12}
\end{equation*}
$$

and as ${ }^{\circ} \underline{d},{ }^{1_{d}}, \ldots,{ }^{n-1_{d}}$ are $A-c o n j u g a t e$,

$$
\begin{equation*}
\mathrm{n}_{\underline{\mathrm{g}}}{ }^{\mathrm{J}} \mathrm{~J}_{\underline{\mathrm{a}}}=0 \tag{2.13}
\end{equation*}
$$

Since the n independent ${ }^{\mathrm{J}} \mathrm{d}^{\prime}$ s constitute a basas for E^{n}, $n_{\underline{g}}=\underline{O}$, which is the condition for $n_{\underline{x}}$ to be the minimum of (2.5).

This same property may be demonstrated in a slightly different way. Pearson (1968) shows that since ${ }^{\circ}{ }_{d},{ }^{l_{d}}$,
 in terms of the ${ }^{i_{d}}{ }^{\prime} s$, and $F(\underline{x})=F\left({ }^{0} \underline{d},{ }^{1} \underline{d}, \ldots,{ }^{n-1} \underline{d}\right)$ may be decomposed into n independent terms (each depending on only one ${ }^{x}$ d) to be manamazed separately.

2.3.2 Conjugate Direction Algorithms

Pearson (1968) has presented a unffied treatment of a class of conjugate-durection algorathms. One, the projected-gradient algorathm, us based on the fact that conjugate directions may be generated by requarang that successave steps, ${ }^{1} \underline{s}={ }^{1+1} \underline{x}-{ }^{1} \underline{x}$, be made orthogonal to previous gradient differences, ュ.e.,

$$
\begin{equation*}
\left(\mathrm{J}^{+1} \underline{\underline{g}}-\mathrm{J}_{\underline{g}}\right)^{t}{ }^{1} \underline{s} \equiv_{\underline{y}}{ }^{1} \underline{s}=0 \quad(\mathrm{~J} \leq 1-1) \tag{2.14}
\end{equation*}
$$

Thas leads to the following method. (Pearson's numbering of the algorithms as retanned here.)

Algorithm I--Projected Gradient
Choose an inıtıal poınt ${ }^{\circ} \underline{x}$ and an initual positivedefanate symmetric matrix ${ }^{\circ} \mathrm{H} . \operatorname{Set} I=0$.

1. Compute the search directzon

$$
\begin{equation*}
{ }^{1} \underline{d}=-{ }^{1} H^{i} \underline{g} \tag{2.15}
\end{equation*}
$$

2. Locate the next point ${ }^{1+1} \underline{x}$ by manimazing $F\left({ }^{i} \underline{x}+{ }^{I_{\alpha}} \underline{d}\right)$ wath respect to ${ }^{I} \alpha\left({ }^{I} \alpha>0\right)$.

$$
\begin{align*}
{ }^{1+1} \underline{x} & ={ }^{1} \underline{x}+{ }^{1} \alpha^{1} \underline{d} \\
& ={ }^{1} \underline{x}+{ }^{1} \underline{s} \tag{2.16}
\end{align*}
$$

3. Update the matrıx ${ }^{1_{H}}$ by

$$
\begin{equation*}
{ }^{1+1} H={ }^{1} H-\frac{{ }^{1} H^{I} \underline{y}^{\beth} y^{t}{ }^{1} H}{\underline{y}^{t 1} H^{1} \underline{y}} \tag{2.17}
\end{equation*}
$$

and return to step 1 wath 1 replaced by $1+1$.
Aftex not more than n iterations (each consisting of steps $1-3$), ${ }^{1} \underline{x}=\underline{x}^{*}$ and ${ }^{{ }^{1}} \mathrm{H}=0$.

The other algorithms considered by Pearson, ancluding the well-known Fletcher-Powell-Davidon varlable metrac method, are based on the following idea.

Let ${ }^{\lambda_{S}}=\left[{ }^{0} \underline{\underline{s}},{ }^{\mathbf{l}} \underline{\underline{S}}, \ldots,{ }^{i-1} \underline{\underline{1}}\right]$ be a matrix whose columns are the search steps ${ }^{J_{S}}$, and let $^{{ }^{\prime}} \mathbf{Y}=\left[{ }^{0} \underline{y},{ }^{1} \underline{y}, \ldots\right.$, $\left.{ }^{-1} \underline{y}\right]$ be a matrix whose columns are the gradient differences $J_{\underline{y}}=J^{J_{\underline{g}}}-{ }^{J_{\underline{g}}}$. Then $1 f^{\circ}{ }_{\underline{s}},{ }^{l} \underline{\underline{s}}, \ldots,{ }^{1-1} \underline{\underline{s}}$ are andependent, the next search step ${ }^{2}$ s wall be A-conjugate to the $\mathrm{j}_{\underline{\mathrm{S}}}(0<\mathrm{J} \leq$ ューI) If

$$
\begin{equation*}
{ }^{1} \underline{d}={ }^{I_{H}}{ }^{t} \quad I_{\underline{g}} \tag{2.18}
\end{equation*}
$$

where ${ }^{x_{H}}$ as chosen to satasfy

$$
\begin{equation*}
{ }^{I_{H}}{ }^{I_{Y}}={ }^{1} S \tag{2.19}
\end{equation*}
$$

Equation (2.19) has the following general solution for an arbatrary $n \mathrm{x}$ n matrix Z .

$$
\begin{equation*}
{ }^{I_{H}}={ }^{I_{S}} S^{i} Y^{+}+Z\left(I_{-}{ }^{1} X^{I_{Y}} Y^{+}\right) \tag{2.20}
\end{equation*}
$$

where ${ }^{I_{Y}}{ }^{+}$is the genexalızed inverse of ${ }^{{ }^{1}} \mathrm{Y}$. Different choices of Z in (2.20) yield didferent solutions for ${ }^{I_{H}}$ corresponding to different methods of choosing the Aconjugate darections ${ }^{\text { }}$. Pearson derıves four algorithms In this way, three of which lead to readaly computable formulas gaven below. Each algorithm proceeds from an anıtial point ${ }^{\circ} \underline{x}$ according to steps $1-3$ above with the proper formula for ${ }^{1} \mathrm{H}$ Inserted for Eq. (2.17).

Algorithm 2

$$
\begin{equation*}
{ }^{x+1} H=I_{H}+\frac{\left(\underline{I}^{I} \underline{I}^{I} \underline{y}\right)^{I} \underline{s}^{t}}{\underline{S}^{t I} \underline{y}} \tag{2.21}
\end{equation*}
$$

Algorithm 3

$$
\begin{equation*}
{ }^{1+1} 1_{H}=x_{H}+\frac{\left({ }^{I} \underline{s}-{ }^{I} H^{I} y\right)\left({ }^{1} H^{t I} \underline{y}\right)^{t}}{\underline{y}^{t I_{H}^{I}} \underline{y}} \tag{2.22}
\end{equation*}
$$

Algorathm 4 Fletcher-Powell-Davadon (F-P-D)

$$
\begin{equation*}
{ }^{1+I_{H}}=I_{H+}{ }^{I}{ }^{1}{ }^{I} B \tag{2.23}
\end{equation*}
$$

where

$$
\begin{aligned}
& { }^{I_{A}}=\frac{\underline{s}^{i} \underline{s}^{t}}{\underline{s}^{t I} \underline{y}} \\
& I_{B}=\frac{-{ }^{1} H^{1} \underline{y}^{1} \underline{y}^{t x} H}{I_{\underline{y}}^{t H^{I}} \underline{y}}
\end{aligned}
$$

For a quadratic $F(\underline{x})$ each algorithm converges in n steps or less to the optimum poant \underline{x}^{*}, and this convergence as stable in the sense that $\left.F\left({ }^{1+1} \underline{x}\right) \leq F^{(1} \underline{x}\right)$. At $\underline{x}^{*},{ }^{n}{ }_{H}=A^{-1}$, the $\neq n v e r s e ~(H e s s i a n) ~ m a t r i x ~ o f ~ t h e ~ s e c o n d ~ p a r t i a l ~ d e r i v a-~$ tuves of $F(\underline{x})$. This anformation $c a n$ be helpful in practical design problems, since it andicates the sensitivaty of $F(\underline{x})$ to small deviatzons of x from x^{*}. Note that for each Iteration the major computatuonal effort consists of:
evaluating the gradient of $F\left({ }^{I} \underline{x}\right)$, performing a linear search for the optimum scale factor ${ }^{1} \alpha$, and updating ${ }^{{ }^{1}} \mathrm{H}$. Algorathm 4 is the modification by Fletcher and Powell (1963) of Davıdon's (1959) varıable metric algorıthm.

Fletcher and Reeves (1964) have investigated the conjugate gradient algorithm, whach is a modification of a technique due to Hestenes and Stiefel (1952) for iteratavely solving a set of n linear equations in n varaables u_{1}.

$$
\begin{equation*}
\mathrm{B} \underline{\mathrm{u}}=\underline{\mathrm{k}} \tag{2.24}
\end{equation*}
$$

An excellent description of the conjugate-gradient method for solving Eq. (2.24) is gaven by Beckman (1960). The application to the problem of mınımazang a quadratic function (2.5) is made clear by wratang the condation for x to be the optamum point.

$$
\begin{gather*}
g(\underline{x})=A \underline{x}+\underline{b}=0 \\
A \underline{x}=-\underline{b} \tag{2.25}
\end{gather*}
$$

Thus, the problem of manamızing $F(x)$ is equivalent to solving the set of linear equations (2.25) when A and b are not known explacitly.

The Fletcher-Reeves ($F-R$) algorithm proceeds as follows. Choose a starting poznt ${ }^{\circ} \mathrm{x}$ and anltially let ${ }^{\circ} \underline{d}=-{ }^{\circ} \underline{g} . \quad$ Set $i=0$.

1. Locate the next point by minimazang $F\left({ }^{1} \underline{x}^{+1} \alpha^{1} d\right)$ wath respect to ${ }^{I} \alpha$.

$$
\begin{aligned}
I^{1+I_{x}} & ={ }^{1} \underline{x}+{ }^{1} \alpha{ }^{1} \underline{d} \\
& ={ }^{1} \underline{x}+{ }^{1} \underline{s}
\end{aligned}
$$

2. Compute the next search direction ${ }^{+1+1}$ d by

$$
{ }^{1+1} \underline{d}=-{ }^{1+1} \underline{g}+{ }^{1} \beta^{1} \underline{d}
$$

where

$$
I_{\beta}=\frac{\left({ }^{1+1} \underline{g}\right)^{2}}{\left({ }^{1} \underline{g}\right)^{2}}
$$

and return to step 1 wath $1+1$ replacing 2 . -

In the origanal method for linear equation solving, ${ }^{x_{\alpha}}$ and ${ }^{{ }^{\prime}} \underline{g}$ are computed darectly from B and \underline{k}, while here ${ }^{i} \underline{g}$ must be evaluated by computing the partıals of $F(\underline{x})$, and ${ }^{l_{\alpha}}$ ıs determaned by the lınear manımızation of step l. Convergence $1 s$ stable, and for quadratic functions, the optimum point as obtained in at most n interations. Unlike in the Fletcher-Powell-Davidon method, A^{-1} as not explacatly avaılable at the end of the search, but the computational effort for this algorithm 1.5 less.

Results of applying the algorithms to test functions have been publashed by Box (1966), Fletcher and Powell. (1963), Fletcher and Reeves (1964), and Pearson (1968). Pearson found that in using these algorathms to minimaze functions where x^{*} as located on the boundary of a
constraint, convergence was improved by setting ${ }^{1} H={ }^{0}{ }_{H}$ every $n+1$ steps for Algorathms $1-4$ and resetting $\underline{I}_{\underline{d}}=-^{\boldsymbol{I}} \underline{g}$ in the Fletcher-Reeves algorithm. (The constrained manimizatıons were performed using the created response-surface technique dascussed in Section 2.8.) Acceleration of convergence by resetting ${ }^{1}{ }_{H}$ an arregular parameter landscapes has also been reported by Huelsman (1968).

A conjugate-direction method for manimizing a function wathout calculatang the gradıent has been invented by Powell (1964). Beginnang with an mitial point ${ }^{\circ} \underline{x}$ and n Innearly independent darections ${ }^{1}{ }_{\underline{d}},{ }^{2} \underset{d}{ }, \ldots,{ }^{n} \underset{d}{ }$, hus basic procedure minımizes $F(\underline{x})$ sequentially along ${ }^{1} \underset{\underline{d},}{ }{ }^{2}{ }_{\underline{d}}$, $\ldots,{ }^{n}$ d. Let ${ }^{n} x$ be the point determined by the last onedimensional minimization. Then ${ }^{n} \underline{x}-{ }^{\circ} \underline{x}$ is taken as the dixection for another one-dimensional manimization. For the next iteration of the procedure, ${ }^{\text {a }}$ d is replaced by ${ }^{1+1}{ }_{\underline{d}}$ for $1=1,2, \ldots, n-1$, and ${ }^{n} \underline{d}$ is replaced by $\left(^{n} \underline{x}-\right.$ ${ }^{\circ}{ }_{x}$). Thus, at each iteration a new search direction is defined, and Powell proves that for a quadratuc $F(\underline{x})$ these directions are conjugate. Thus, the mınımum as located in n ıterations. A difficulty wath this method arases because, in discarding the old ${ }^{l}$ d at each iteration, the algorithm may be left wath a new set of directions which does not span the parameter space. Powell's modification to ellmınate this problem results in an algorathm requiring more than n mterations to minmmze a quadratic.

Zangwall (1967) considered this same problem and proposed his own modification of Powell's basic procedure. Has algorithm as shown to converge for the case of $F(\underline{x})$ strictly convex and to converge in n or less iterations (or in $2 n^{2}$ or less one-dimensional manamizations) for a quadratıc $F(x)$.

Powell's method has been applied to several test functions with good results (Box, 1966; Fletcher, 1965; Powell, 1964). Similar data for Zangwllis algorithm are not avallable, although the author has used it successfully an minimızang Rosenbrock's function (Section 3.1).

2.4 Quadratuc Fit Methods

It is again assumed that the function to be minımized can be represented adequately by a quadratic (Eq. [2.5]) an the neaghborhood of the optamum. Using. Eq. (2.6) for the gradient of $F(\underline{x})$, we can solve for the parameter change $\Delta \underline{x}=\underline{x}^{*}-\underline{x}$ whach yaelds $\underline{g}(\underline{x})=\underline{0}$.

$$
\begin{equation*}
\Delta \underline{x}=-A^{-1} \underline{g}(\underline{x}) \tag{2.26}
\end{equation*}
$$

Newton's method (Bekey and McGhee, 1964, McGhee, 1967) consists of evaluating g and A and computing the optimizing steps by Eq. (2.26). For problems which can be expressed In the framework of a least-squares regression, the GaussNerton method approximates A by a regression matrix, whach requares only first-derıvative information (McGhee, 1967).

Note that for either method considerable computational effort is requared at each step--evaluating g and A (or ats approximation) and inverting A. Furthermore, if g and A are calculated from perturbations, care must be taken in selecting the step size (Section 2.9). Although convergence may be very rapzd with eather method, a poor starting point may result in divergence. This disadvantage makes methods of this type more desirable when incorporated in a strategy uncluding a more stable search method. The following technıque may be more surted to this type of strategy. Rather than evaluating g and A durectly, we may fit a second-order regression surface to a set of N observations of $F(\underline{x})$. The regression surface is defined by

$$
\begin{equation*}
\Psi(\underline{x})=\frac{1}{2} \underline{x}^{t} \Gamma \underline{x}+\underline{\beta}^{t} \underline{x}+\alpha \tag{2.27}
\end{equation*}
$$

Performing the manimazation

$$
\begin{equation*}
\gamma_{J, k}^{\min }, \beta_{J}, \alpha \sum_{x=1}^{N}\left[F\left({ }^{1} \underline{x}\right)-\Psi\left({ }^{1} \underline{x}\right)\right]^{2} \tag{2.28}
\end{equation*}
$$

results $\ln \left(n^{2}+3 n+2\right) / 2$ equations whach determine $\Gamma, \underline{\beta}$, and α. The estimate for the optimum point is obtained by solvang

$$
\begin{equation*}
\underline{\nabla} \underline{\Psi}(\underline{x})=\Gamma \underline{x}+\underline{\beta}=0 \tag{2.29}
\end{equation*}
$$

Since the N observations may be taken at any values of x (although they must be sufficaent to defane $\Gamma, \underline{\beta}$, and α),
this technique could be combined with another clambing method, for example, a pattern search (Section 2.5) or a creeping random search (Section 2.6), 1. e., observations made during the clambing method are also stored for use In Eq. (2.28).

2.5 Direct Search Methods

Gradient descent methods and the conjugate durection methods uthlazing the gradıent expend a large amount of effort in obtaining anformation (the gradient) at a single poant; this anformation $1 s$ extrapolated to search for a bettex polnt. Noting this considerable effort at one poant and the anefficiency of steepest descent techniques on many problems, Hooke and Jeeves (1961) proposed making exploratory moves and always moving the base of the search when an improvement was found. Algorythms of thas type have become known as direct search methods.

Hooke and Jeeves' pattern search us a durect method deslgned to follow a descent path to the optimum by searching in previously successful durections (pattern moves). (Explicit anstructions for the algorithm are gaven by Walde and Beaghtler [1967].) Following each pattern move, exploratory moves are made wath each coordinate separately to detect changes of durection of the descent path. The programmer sets the exploratory move step length (whych may be reduced later by the
algorithm); the lengths of pattern moves are determaned by exploratory step lengths and previous pattern-move lengths. Thus, there as no effort expended in minimizing along a search direction. The search $1 s$ ended when successive failures lead to a reduction an the exploxatory step length below a preset minimum. Note that the progress of a pattern search depends only on whether each function measurement $1 s$ greater than or less than some previous observation, the magnitude of differences an function values are ignored. The fact that convergence does not depend on accurate measurements of function differences (as in the case of algorıthms requaring gradients or lınear minimızations) may be an advantage an problems with nozsy observations of the cxiterion function. (The problem of optamazing an the presence of noise as dascussed in Sectıon 2.7.)

Rosenbrock's method of rotating coordinates (Rosenbrock, 1960 , Walde, 1964) and ats altexation by Swann (Swann, 1964, FIetcher, 1965) are also designed to recognize a direction of descent and to search along it. However, the fixed-length steps of pattern search are replaced by successive limear manamizations an n orthogonal directions. The net progress in parameter space resulting from n such mznmmzations establashes a new search directıon, which is analogous to a "pattern" direction. The
remaxnung n-l darections for the next serxes of minimizataons are made orthogonal to the newly established one.

A unlque approach to optamızation was borrowed from the sequential simplex or simplacial method of Spendly, Hext, and Hamsworth (1962) for locatang a nearby optimum poant and following $1 t$ an the presence of nolse. The method is begun by placing n+l measurements at the vertices of an n-dimensional simplex (Fig. 2.5). The poant on the samplex with the largest function value $1 s$ determaned, and a new point is located by rerlectang this "worst" point through the center of the.simplex. Thus, a new simplex is created, consastang of the old one, but wath the new poant replacing the previous worst one. This movement of the simplex tends to track the optamum point. In order to speed the progress of the search from a startung pount far from the optımum, Nelder and Mead (1965) modifıed the original method to allow for expansion and contraction of the simplex. With this provision 1 t was found that the multial size of the simplex did not greably affect the speed of convergence. Sance the movement of the search depends only on finding the worst poant of the samplex, the method as not disturbed by small observation exrors. Spendly, Hext, and Himsworth noted that the rate of advance was anvexsely proportional to the standard deviation of Gaussian measurement noise--an andicatuon that averagang observations at a poant would not be beneficial, sance the standard devaation

Fig. 2.5 Operation of the smplex method an two dimensions.
1.s reduced in proportion to the square root of the number of observations.

Data on the performance of the simplicial and rotating coordinates algorathms have been publushed by Fletcher (1965) and Box (1966). Simılar data for pattern search are not known to the author, although i.t has been applaed successfully to network-design optimlzation by Huelsman (1968). Walde and Belghtler (1967) report that for pattern search the number of function evaluations for optimization tends to be only a linear function of the number of parameters, n, rather than a quadratic or cubic function as for most other methods (another exception as the creeping-random search of Section 2.6).

The direct search methods are designed to find the best search directions and to proceed in these directions wathout wasting time evaluating derivatives. This tends to make their performance favorable an the early stages of the search. However, an the neaghborhood of the optimum the derıvatıve information acquired by the quadraticallyconvergent conjugate-durection algorıthms accelerates their progress. This behavior was noticed by Fletcher an comparang the performance of Swann's version of the rotating coordinates method wath the conjugate direction method of Powell (1964). The results of Box indicate that the samplicial and rotatang coordnate methods become
aneffectuve compared to the conjugate durection algorithms as n increases beyond 5 .

2.6 Random Search Methods

The development of random search optimlzation was motuvated mannly by the need for methods which were sumple to program and effectave an arregular parameter landscapes. Before the availabılıty of true analog-dugital hybrad computers simple random search algorıthms could be amplemented by hard-wired optimazers attached to analog machanes. Random search methods are stıll especially attractive for hybrid computers consastang of high-speed repetatave analog machanes capable of evaluating the criterion function quickly and small digltal computers wathout the floatingpoınt hardware necessary to make complicated algorithms fast enough to be advantageous. Furthexmore, the complex, nonlınear dynamıc systems which are most advantageously sımulated on analog machines often have parameter landscapes with the sharp ridges, discontınuous first derivatuves, etc., whach can cause determinıstac algorathms to fall. There as also evadence to suggest that random methods are superıor an optimızing smooth functions of many parameters (Schumer and Stelglıtz, 1968).

The literature reviewed here has been loosely
grouped anto the categories of theoretacal developments and specific algorithms wath applications.
2.6.1 Theoretical Developments

Brooks (1958) suggested choosing observation points from a uniform dastribution over the entare parameter space. After N such points have been tested, the one with the smallest criterion function value $1 s$ taken as the best approximation to the optamum. To evaluate the effectuveness of thas method, let the parameter space be an ndimensional hypercube with sides of unat length, and amagane the optamum point to be enclosed by a smaller hypercube with sides of length δ and volume $v=\delta^{n}$. We would lake to ensure that the search wall place at least one poant an the smaller hypercube wath a specafied probabılıty. Brooks showed that the number of trials necessary to have probability p of casting at least one point into the smallex hypercube is

$$
\begin{equation*}
N=\frac{\log (1-p)}{\log (1-v)} \tag{2.30}
\end{equation*}
$$

Taking v to be constant in Eq. (2.30), at was concluded that the number of trials required for random search does not depend on the number of parameters. However, as pointed out by Hooke and Jeeves (1958) and Spang (1962), for v to x emain constant, δ must increase exponentaally, so that for a faxed number of trials the uncertanty in the parameter values, δ, increases exponentially wath n. Spang showed that substrtution of δ^{n} for v in Eq. (2.30) yuelds

$$
\begin{align*}
N & \approx-\log (1-p) / \delta^{n} \\
& \approx 2 \cdot 3 / \delta^{n} \tag{2.31}
\end{align*}
$$

for $p=.9$, whereas the number of poants required for a determinustic grad test (pounts located equal distances δ apart) $2.51 / \delta^{n}$. Such a large number of trials obviates the use of either method as a means to locate the optamum accurately. But in the absence of any information regardang the location of the optimum, a grad search maght be used to choose a startang poznt for some sequential search algorithm.

Rastrigan (1963) has studued the convergence propertues of a fixed step-size, creeping random search algorithm (FSSRS). Beginning from a point ${ }^{l}$ x, exploratory steps Δx are made with fixed length and random dixection. When a point is found such that $F\left({ }^{I} \underline{x}+\Delta x\right)<F\left({ }^{1} \underline{x}\right)$, the corxesponding increment is labeled ${ }^{1+1} \Delta x$ and the search is moved to the new base pount

$$
\begin{equation*}
{ }^{I+1_{x}}={ }^{1} \underline{x}+{ }^{1+1} \Delta x \tag{2.32}
\end{equation*}
$$

(Wath this notation, I indexes only successful trials.) The algorithm was compared to a steepest descent method in which at each iteration a step of the same magnitude was made $i n$ the durection of the gradient at ${ }^{I} \underset{X}{ }$. Rastragin untroduced the concept of search loss, defaned as the number of criterion function evaluations required for a
dxsplacement in the negative-gradient direction equal to the step length Δx, or equavalently, the reciprocal of the average displacement in the negative-gradient direction per function evaluation. The search loss was computed for both algorithms applied to a linear test function and a distance function $F(\underline{x})=\left(\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{I}}^{2}\right)^{1 / 2}$. For both functions It was found that as the number of parameters uncreased, the creeping random algorathm was superıor to the steepest descent method on the basis of search loss. The lamatations of thas comparison maght be noted here. The steepest descent algorithm $1 s$ made very inefficient by requiring a gradient evaluation (n+l function evaluations) at each Iteration and allowang only constant step sazes. A more practacal steepest descent program could make more efricient use of the gradient information (for example, the optimum gradient method of Section 2.2). Thus, in practice the relative advantage of the creeping random strategy might not be as great.

The convergence of the creeping random method in the presence of nouse has been studied by Gurun and Rastrigin (1965). For a linear criterion function, measurements wexe corrupted by Gaussian noase wath zero mean and variance σ^{2}. The random search algorathm used a "testang step" of fixed length α and random direction. When such a testang step resulted in an improvement in the measured value of $F(\underline{x})$, a step of length Δx was taken in
the same darectıon. The progress of thas algorithm was compared to that of a steepest descent method, whach used 2n perturbatıons of length α to determıne the gradient and then took a working step of length Δx un the estamated negatuve-gradıent direction. Comparısons were made on the bastis of search loss, and as a function of the number of parameters n and a signal-to-nolse ratlo

$$
\delta=\frac{|\nabla F| \alpha}{\sigma \sqrt{2}}
$$

For any fixed value of δ search loss $1 s$ a lıncar function of n for the random method. For $\delta=\infty$ (no nonse) the graduent method has a search loss lunear an n, but for $\delta=1$ the search loss is greater than c n $\sqrt{n-1}$, where c is a constant. For $\delta=1$ and $\delta=\infty$ the random search method was superior for $n \geq 6$. For $n=6$ the ancrease of nolse level from $\delta=\infty$ to $\delta=1$ caused the search loss for both methods to ancrease from 12 to approximately 32 (function evaluations necessary for a net progress of Δx in the negative-gradıent direction). Brooks and Mickey (1961) hare studied the flxed step-size steepest-descent algorathm for a lanear criterion function with Gaussian nomse. Thear results moncate that an order to minamaze search loss, a manimum number of function evaluations should be expended on estimatang the gradient. Thus, had Gurin and Rastrigin used n+1 steps (rathor than 2n) to
estimate $\nabla \mathrm{F}$, the relatıve advantage of the creeping random method over steepest descent maght have been diminıshed.

Beginning with Rastrigin's faxed step-size random search (Eq. [2.32]), Schumer and Steıglıtz (1968) developed an algorithm with adaptive step size. Fox the criterıon function $F(\underline{x})=\sum_{i=1}^{n} x_{1}^{2}=\rho^{2}$, the expected improvement pex step, normalized by the present value of F, was computed as a function of n and $\eta=s / \rho$, the ratio of the step size to the distance to the optamum, i.e.,

$$
\begin{equation*}
I(n, \eta)=\frac{-E\{\Delta F\}}{F} \tag{2.33}
\end{equation*}
$$

$I(n, \eta)$ was maximized with respect to η, and the optimum $\mathrm{T}(\mathrm{n})$ was evaluated for large n . This led to the result that the average number of function evaluations necessary to manmmze F within a faxed accuracy is asymptotically laneax $\neq n$. A practical algorıthm, which attempts to adjust the step saze to the optimum durang the minnmization process, was developed and compared to two determınıstic algorathms. These were the simplacial method of Nelder and Mead (1965) and a second-order method whych evaluates farst and second partial derıvatıves at each iteratıon. Performances were compared on the basis of the average number of function evaluations required for mınımızation. For a quadratic function, the second-order method was superior for $n \leq 78$, but for the runction $F(\underline{x})=\sum_{I=1}^{n} x_{z}^{4}$ the adaptive
random search algorithm was superıor to the second order method for $n>2$ and superior to the simplicial method for $\mathrm{n}>10$. The adaptıve search was also tested for $F=\sum_{i=1}^{n} a_{i} x_{1}^{2}$ where the a_{1} wexe chosen from a probabolity distrabution unfform on [.I,I.]. For each of these three test functions the number of function evaluations required by the adaptuve random search method was proportional to n. This compares wath results reported for pattern search (Section 2.5). For other methods, function evaluations are usually proportional to the second or thard power of n. Adaptation of a creeping random search with respect to search darection has been dascussed at length by Rastrigin (1967). He has proposed several learning algorithms which adjust $k_{p_{1}}$, the probabilıty of selecting a positave increment for the 1 th parameter at the kth step, as a function of past performance. Adjustment is accomplashed by making $k_{p_{1}}=k_{p_{1}}\left(k_{w_{1}}\right)$, a monotonic, nondecreasing function of the memory parameter $k_{w_{1}}$. One example of Rastrıgın's schemes for adjustang $k_{w_{I}}$ is the followang algorithm.

$$
\begin{equation*}
k_{w_{i}}=k_{w_{i}}-\delta^{k_{\Delta x_{i}}} k_{\Delta F} \tag{2.34}
\end{equation*}
$$

where

$$
k_{\Delta x_{1}}={ }^{k} x_{x_{2}}-k-l_{x_{1}}
$$

$$
{ }^{k} \Delta F=F\left({ }^{k} \underline{x}\right)-F\left({ }^{k-l} \underline{x}\right)
$$

and

$$
c_{1} \leq w_{1} \leq c_{2}
$$

The adjustment of ${ }^{k_{w_{1}}}$ is proportional to the magnitude of ${ }^{k_{\Delta F}}$, the step size causing ${ }^{k}{ }_{\Delta F}$ and a positave coefficient, ס. For example, a posituve ${ }^{k} \Delta x_{i}$ causing an improvement $\left({ }^{k} \Delta \mathbb{F}<0\right)$ brings about an increase in ${ }^{k_{w_{1}}}$ and thereby an ancrease in ${ }^{k+1} p_{1}$, the probabilıty of increasing x_{I} at the next step. Rastrigan antroduces other algorithms similar to Eq. (2.34), whach allow for a discarding anformation collected in the distant past ("forgetting") and which provide for better adaptation to the best of possuble successful directions.

An anteresting aspect of Rastrigin's work is his Idea of separatang the search algorithm from the learning algorithm. The learning algorathm (Eq. [2.34]) collects anformation on past performance and adjusts the durections for future exploratory steps. It as the function of the search algorathm to decade whether or not to actually move the center of the search as a result of an exploratory step. One possabılity is to move only when such a step results in a reduction of F , e.g., Eq. (2.32). Rastrigin also suggests the possabalaty of moving the search wath every exploratory step. This places the learning algorithm
in complete control of the search. Such a polacy might be beneficial in stepping over local minima or local flat reglons and in problems with obsexvation error.
2.6.2 Specific Algorithms and Applications

Experiments wath creeping random search strategies on analog computers wexe reported as early as 1958-59. Favreau and Franks (1958) described a creeping random method for optimizing dynamic systems, and Munson and Rubin (1959) optamazed a system of nonlinear algebralc equations by a continuous creepang random perturbation of parameters. A hard-wared creepang random optimazer, including provasions for expanding and reducing step size and correlating future traal-step directions with past successful directrons, was bunlt by Mıtchell (1964) for use with a fast repetュtュve hybrid computer. Thıs was employed by Maybach (1966a) to solve mintmum-time bang-bang optimal control problems.

The avaılabuluty of true analog-digital hybrid computers has made it possible to employ more sophasticated random search strategies than could be implemented by hardware optimnzers attached to analog machınes. Here we shall discuss alterations to the basic creeping random search which wexe antroduced and applaed chiefly by Bekey et al. (1966) and by Stewart, Kavanaugh, and Brockex (1967).

One modification concerms the classification of a trial step as a success or faclure. Let $F\left({ }^{1} \underline{x}\right)$ be the current value of the craterion function and $F\left({ }^{2} \underline{x}+\Delta \underline{x}\right)$ the value at a trial step. Stewart et al. use a threshold strategy to defane a success for a mamamzation problem.

$$
\begin{equation*}
F\left({ }^{\prime} \underline{x}+\Delta \underline{x}\right)-F\left({ }^{1} \underline{x}\right) \leq \eta F\left({ }^{1} \underline{x}\right)(\eta>0) \tag{2.35}
\end{equation*}
$$

In the begammang of the search, when $F\left({ }^{1} x\right)$ is large, a relatavely large $u m p r o v e m e n t ~ i s ~ r e q u i r e d ~ f o r ~ a ~ s u c c e s s, ~$ whale near the end of the search smaller amprovements are requared. Stewart et al. found that the average number of steps requared for solution could be reduced by approximately one-thard for $\eta=.3$ and $\eta=.7$ as opposed to $\eta=0$, while $\eta=1$ resulted n a sharp increase in requared steps. Another possibilaty is a constant threshold level:

$$
\begin{equation*}
F\left({ }^{1} \underline{x}+\Delta \underline{x}\right)-F\left({ }^{1} \underline{x}\right) \leq \varepsilon \tag{2.35}
\end{equation*}
$$

For example, ε maght be taken just large enough to overcome errors in measurang $F(\underline{x})$.

A vector-valued criterion function was employed by Stewart et al. in a creepang random algorıthm to solve the two-point boundary value problem resulting from a MaxımumPrinciple optimızation of an orbut transfer problem. Boundary condutıons were to be matched for state vara ables representang displacement and velocity, \underline{X}_{d} and \underline{x}_{v}, and
adjount variables, p. The criterion function was defaned as

$$
\underline{F}=\left(F_{d}, F_{V}, F_{p}\right),
$$

where each component of F is the sum of the errors in matching the boundary conditions for one class of variables. For a trial to be regarded as a success, it was required that all three components of F be reduced (the threshold strategy [Eq. (2.35)] was applzed to each component). This more restractave success criterion maght be useful an avoiding a local manimum where only one or two components of F are small. Gonzalez (1969) employed a vectox-valued function in a Maxamum-Principle optimazation of the same systems solved by Maybach (1966a). The number of evaluations requared for convergence was reduced on the average, the most strikang reductions being obtained for difficult staxtung poants in the parameter space.

A modification for directional adaptation is the introduction of absolute positıve and negative biasing (Bekey et al., 1966) into the basic creeping random algorathm, which as repeated here.

$$
\begin{equation*}
{ }^{1+I} \underline{x}=I^{I} \underline{x}+{ }^{1+1} \underline{\underline{x}} \tag{2.37}
\end{equation*}
$$

If the last increment resulted in a success, it is used agann for the next trial step, $1 . e ., ~ \Delta \underline{x}={ }^{1} \Delta \underline{x}$ (positave biasang). If the last merement Δx resulted $\perp n$ a faslure,

- $\Delta \underline{x}$ is used for the next trial step (negatave biasang). Of course, negative biasing is not used followng two successave fallures, or the algorithm wall loop endlessly. Also, at is wasteful to use $u t$ after the first falluxe following a success. Bekey et al. reported that absolute buasing was effectave an improving convergence. Stewart et al. used only posituve buasing and found that it decreased the average number of steps requared by approximately 40% compared to the search wathout blasang.

Another element of randomness may be mintroduced by using a random ancrement for each variable, rathex than an ancrement of fixed length and random sign only. Thas results in a step Δx which is random in length and direction, and all directions are possible. For the algorithm with only random sign for each varıable, only 2^{n} discrete durectuons are possable. The dısadvantage of this can be seen in Fig. 2.6, where a zag-zag path must be followed from the anıtial poant ${ }^{\circ} \underline{x}$ to the optamum. Bekey et al. chose the increments Δx_{I} as independent Gaussian x andom varıables wath zero mean. Gonzalez (1969) chose the ancrements from a unıform distrıbution, whıch as usually easier to generate on a digital computer.

If random uncrements ΔX_{J} are used, the average step saze can be adjusted by changing the varaance of the dastribution of the increments. If the step size is small, a large proportion (asymptotic to 50%) of the trals result

Fig. 2.6 The behavior of a "discrete-direction" random
search algorithm.
in success (assumang no threshold strategy), but the average improvement per step us small. On the other hand, a large step size results in a small raino of mprovements to trial steps. Karnopp (1963) suggests increasing the variance if an amprovement occurs wathan two traals and decreasing the variance if no amprovement occurs wathan three trials. Stewart et al. provide for variance reduction by some factor after a number of consecutave fallures. Bekey et al. used a constant variance of 4% of the range of each parameter durang the entare local search. It was reported that thenr work and the results of a further study (Adams and Lew, 1966) failed to find a varıance adjustment strategy yıelding faster convergence than the constant varıance method. Thıs result is especially interestang when contrasted wath the work of Schumer and Stelglıtz (1968) on an adaptive step-sıze algorıthm. It should be noted that the adaptive algorithm was developed for the criterion function $F=\sum_{i=1}^{n} x_{工}^{2}$ and was tested on other smooth functions, whereas the results of Bekey et al. are based on a nonlinear dynamnc system with manjmum-time and mınamum-fuel crıteria, which could lead to an arregular parameter landscape.

An algorithm for directional adaptation of the creepang random search has been proposed by Matyas (1965). From the point ${ }^{l}$ x a trial step ${ }^{1+1} \Delta x$ as taken.

$$
{ }^{1+1} \underline{x}={ }^{1} \underline{x}+{ }^{1+1} \Delta \underline{x}
$$

If $F\left({ }^{1+1} \underline{x}\right)<F\left({ }^{1} \underline{x}\right)$, the center of the search is moved to the point ${ }^{1+1}$ x. Otherwise the center of the search remanns at ${ }^{\prime}$ x, and another trial step is taken. The trial steps are given by

$$
{ }^{1+1} \underline{\Delta x}={ }^{1+1} \underline{d}+{ }^{1+1_{T}}{ }^{1+1} \underline{\underline{\xi}}
$$

where ${ }^{2+1} \underline{\xi}$ as an n-dimensional Gaussian random vector with zero mean and unit correlation matrix, ${ }^{1+1}$ d specifies the mean of ${ }^{1+1} \Delta x$, and ${ }^{1+1} T$ as an $n x n$ matrix. Adaptation is accomplished by adjusting ${ }^{1+1}$ d as a function of past trial steps and past successes and faclures. Let

$$
{ }^{1+1} \underline{d}=c_{0}^{{ }^{x}} \underline{d}+c_{1}^{i} \Delta \underline{x},
$$

where c_{0} and c_{1} satusfy the followang conditions. If the last step ${ }^{1} \Delta \underline{x}$ resulted \ln an improvement $\left[F\left({ }^{2} \underline{x}\right)<F\left({ }^{1-1} \underline{x}\right)\right]$,

$$
0 \leq c_{0} \leq l, c_{1}>0, c_{0}+c_{1}>1
$$

Otherwase,

$$
0 \leq c_{0} \leq 1, c_{1} \leq 0,\left|c_{0}+c_{1}\right|<1 .
$$

Thus, the mean value for the next trial step ls weighted posatuvely by the present mean value and weaghted posatavely or negatively by the last traal step. The transformation matrix ${ }^{I+1} T$ maght be used to antroduce correlation between the trial step components ${ }^{\mathrm{I}^{+} \mathrm{X}_{\mathrm{J}}}$. But for a simple
algorithm, Matyas specrfied ${ }^{j+1}{ }_{T}$ by

$$
{ }^{1+1} T={ }^{I+1} b I
$$

where I is the Identity matrax. The coefficient ${ }^{3+1}$ b may be adjusted to control the variance of the trial steps.

A somewhat different approach to random search has been described by Rastragin (1967) and is currently beang Investugated by Heydt (1969). A search is made about an inctial pornt ${ }^{\circ} \underline{x}$ for an improved point ${ }^{l_{x}}\left[F\left({ }^{1} \underline{x}\right)<F\left({ }^{\circ} \underline{x}\right)\right]$. The line ${ }^{l} \underline{x}-{ }^{0} \underline{x}$ as used to determine the axas of symmetry of a hypercone in parameter space with focus at ${ }^{\circ} \underline{x}$ (Fig. 2.7). The hypexcone is constructed wath angle θ and Iength h. Observations are made at poants unfformly distributed anside the cone. The best of these (${ }^{2} \underline{x}$) us selected, and the line ${ }^{2} \underline{x}-{ }^{1} \underline{x}$ defines the axis of symmetry of the next hypercone. Thus, past successes are used to determine the search direction. If no ${ }^{1+1}$ x wath $F\left({ }^{i+1} \underline{x}\right)<F\left({ }^{I} \underline{x}\right)$ is found in some number of observations, θ and h are increased to enlarge the search regaon. This method would seem to be effectave in jumping over some local minima. On the other hand a hyperconacal search region may make the algorithm anefficient in turning sharp corners, and Heydt has proposed experimenting with hyperparabolozds and hypex-hyperbolozds. Has algorathm wath the hyperconical search region was successful in optimizang a sateliate attatude acquasation problem, which was solved by

Fig. 2.7 Creepang random search wath hyperconical search regions.

Kavanaugh, Stewart, and Brocker (1968) with the creepang random algorıthm descrıbed by Stewart et al. (1967).

2.7 Stochastic Approxzmation

Most of the optimızation technıques discussed in previous sections assume that the criterion function $1 s$ evaluated wathout error. If exror or "nozse" is present, these methods are reduced in efficiency or may faュl altogether. Stochastıc approximation 1.5 a technıque for optimization in the presence of noase.

Let us assume that the observations $f(x)$ of a unamodal criterion function are contamanated by additave nolse:

$$
\begin{equation*}
f(\underline{x})=F(\underline{x})+v, \tag{2.38}
\end{equation*}
$$

where the random variable v has zero mean and finite varıance. A stochastic approximation minimızation algorıthm (satısfying cextain condıtions dascussed below) will converge to the optimum, x^{x}, in mean square and with probability 1 as the number of observations, 1 , of $f(\underline{x})$ tends to infinaty. Since the exastang theorems of stochastic approximation guarantee convergence only as $a \rightarrow \infty$, at is necessary to refer to speciric applications for speed of convergence. Unfortunately, publashed experimental results obtained with these algorithms are few.

The mathematıcal requarements which the algorithm must satusfy in order to converge were discovered and developed maznly by Robbıns and Munro (1951), Kıefer and Wolfowztz (1952), Blum (1952), and Dvoretsky (1956). Chapter 6 of $W_{I l}$ de (1964) contanns a Iucid introduction to stochastıc approximatıon; other readable treatments are given by Hampton (1968) and Chang (1961). In this section we shall discuss briefly the algorithm of Kıefer and Wolforltz, the general theorem given by Dvoretsky, and some practical algorıthms with applications.

The Kıefer-Wolfowitz (K-W) algorıthm described hexe is for a function of one varnable; the extension to the multidimensional case as stranghtforward. The technique as simalar to a deterministac steepest doscent. From a poant ${ }^{x} x$, the noxsy objective function is evaluated at two points ${ }^{2} x+{ }^{3} c$ and ${ }^{3} x-{ }^{I} c$ to obtann an estamate of the slope of $F\left({ }^{l} x\right)$.

$$
\begin{equation*}
\frac{r\left({ }^{I} x+{ }^{I} c\right)-f\left({ }^{I} x-{ }^{1} c\right)}{2^{1} c} \tag{2.39}
\end{equation*}
$$

Then a working step is taken according to this estumate and a step-suze factor, $2^{\text {I }} a$
${ }^{\perp} a$ and ${ }^{1} c$ are elements of sequences of real numbers which must satisfy the following conditaons an order that Eq. (2.40) converges to the manamum of $F(x)$ as $z \Rightarrow \infty$.

$$
\begin{align*}
& \lim _{1 \rightarrow \infty}^{l} a=0 \tag{2.41a}\\
& \lim _{c}{ }^{x}=0
\end{align*}
$$

$$
\begin{align*}
& \sum_{\perp=1}^{\infty} I_{a}=\infty \tag{2.41c}\\
& \sum_{i=1}^{\infty}\left(\frac{1}{a}\right)_{c}^{2}<\infty
\end{align*}
$$

Note that, as wath all stochastic approximation schemes, convergence $u s$ guaranteed only as 1 approaches unfinity, the movement toward the optimum may be very slow. It may be seen from Eq. (2.40) that $1 f$ the true differences $\left[F\left({ }^{1} x+{ }^{I} c\right)-F\left({ }^{1} x-I_{c}\right)\right]$ are not large compared to the nolse varaance, many steps wall be taken an the wrong direction.

Dvoretsky (1956) has treated stochastic approximation from the polnt of vaew of a very general algorithm, whach ancludes those of Robbins and Munro and Kaeffer and Wolfowltz as special cases and from which other specific methods have been developed. Hus basuc algoxithm as represented as the sum of a determanustac term $\mathrm{T}^{\left({ }^{1} x,{ }^{2} x \text {, }, ~ ; ~\right.}$ $\ldots,{ }^{I} x$) and a random term ${ }^{I_{r}}$, whach includes the effects
of nozse:

$$
\begin{equation*}
{ }^{1+1} \underline{x}=T\left({ }^{1} \underline{x},{ }^{2} \underline{x}, \cdots,{ }^{1} \underline{x}\right)+{ }^{1} x \tag{2.42}
\end{equation*}
$$

Equation (2.40) could be expressed an thas form by writing $f\left({ }^{1} x\right)=F\left({ }^{1} x\right)+i_{v}$ and separatang out the terms containing ${ }^{x} v$. It may be noted that the algorithm allows ${ }^{1+1} \underline{x}$ to be a function of all previous x's. Although Dvoretsky's theorem is important in the mathematical development of stochastic approximation, $1 t$ is not stated here, as at provides no specific algorzthm for optimization.

The problem of optimazation in the presence of noise has been ınvestıgated by Kushnex (1963), who used the K-W algorithm as a basıs for several search procedures. A feature of Kushner's methods as the use of information obtanned during the search to estimate the "best" sequences $\left\{{ }^{2} a\right\}$ and $\left\{{ }^{l} c\right\}$, whose optimum values depend on the unknown function to be minımized. This information as extracted from the sequence of angles ${ }^{1} \varnothing$ formed by successive steps in the parameter space, as illustrated in Figs. 2.8 and 2.9. In Fig. 2.8 there as a sequence of predominantly large angles, indicating that the ratio of the step size to the dastance from the optamum is small. In Fig. 2.9 the angles are small, indicating that the process is overshootang the optimum. This information is used to adapt $\left\{{ }^{I}\right.$ a\} and $\left\{{ }^{3} c\right\}$ to the local behavior of the objective function.

Fig. 2.8 A stochastic approximation algorithm wath a small step size.

Fig. 2.9 A stochastic approximation algorithm with a large
step size.

Five search procedures were investıgated, each ancorporating the $K-W$ algorithm with adaptive coefficient sequences. The fırst (a) us the basic n-dimensional K-W algorıthm. whach estumates the gradient for every workang step. The other four procedures sequentially choose single darections an parameter space and apply the one-dimensional $K-W$ algorithm to search for a manamum along these lines. For these four methods the search durections are selected as follows.
(b) the coordinate directions
(c) the estimated gradient direction
(d) a randomly chosen durection
(e) the direction determaned by the current poant and the point corresponding to the lowest objective function measurement for a number of local, randomly placed observations.

Method (b) was suggested as an mprovement over (a), sunce a pair of sequences $\left\{{ }^{1} \mathrm{a}_{J}\right\}$ and $\left\{{ }^{1} \mathrm{c}_{J}\right\}\left({ }_{j}=1, \ldots, n\right)$ can be assigned to and adapted for each coordinate durection. However, the efficiencies of both (a) and (b) were thought to decrease rapadly as the number of parameters us increased. Methods (c), (d), and (e) are attempts to Increase effaciency for problems wath many parameters, especially an the mintual stages of the seaxch. Methods (c) and (e) were found superlor to (d) for quadratic objectave functions with addıtュve, unnfoxmly-distrıbuted
nouse whenever the true function value $1 s$ large compared to the noise varıance. This advantage is greatly reduced close to the optimum, rhere the signal-to-nozse ratzo becomes small. Close to the optimum, attempts at consistently choosang profatable search directıons are unsuccessful, but the properties of the stochastic approximation algorithm ensure convergence, although it may be very slow.

Janac (1967, 1969) has proposed an algorzthm consustıng of the basic K-W formula wath two modıfıcations:

$$
\begin{equation*}
{ }^{1+1} \underline{x}={ }^{1} \underline{x}-\frac{I_{a}^{a}}{I_{c}}\left({ }^{1} h-1\right) \underline{w}\left({ }^{1} \underline{Y}\right) \tag{2.43}
\end{equation*}
$$

where.
${ }^{1} h$ is an anteger equal to the first unsuccessful
"working" step an the estimated gradient direction, subject to $\left({ }^{1} h-1\right) \geq 1$,
 ($\quad=1, \ldots, n$) ;
$\left.W^{(1} \underline{Y}\right)$ is a vector with the same durectzon as ${ }^{1} \underline{Y}$ and a magnıtude function 111 ustrated 1 f Fig. 2.10; and the sequences $\left\{^{1} a\right\}$ and $\left\{^{2} c\right\}$ satusfy

$$
\begin{aligned}
& \operatorname{la}_{a},{ }^{1} c>0 \\
& \lim _{1 \rightarrow \infty}{ }^{1}{ }_{c}=0
\end{aligned}
$$

Fig. 2.10 A function for specifyang the step size an a stochastac approximation algorithm.

$$
\begin{aligned}
& \sum^{\infty} \quad 2 a=\infty \\
& \text { ユ }=1 \text {. } \\
& \sum_{i=1}^{\infty} a^{1}{ }^{x} c<\infty \\
& \sum_{\mu=1}^{\infty}\left(\frac{\lambda_{a}}{I_{c}}\right)^{2}<\infty
\end{aligned}
$$

In Eq. (2.43) ${ }^{I} x$ and ${ }^{i+1} \underset{x}{ }$ are pounts at which a new gradient is measured. Followang a gradient estimate, steps are taken an the negative-gradient direction until such a step results in an ancrease of the criterion function measurement. This strategy as designed to make maximum use of each gradxent estimate. The nonlineax function w constrains the step size α by $\frac{k^{2} a}{l_{c}} \leq \alpha \leq \frac{{ }^{1} a}{l_{c}}$. This algorıthm was applied to a 4-parameter optimızation of the suspension system of a trazler truck riding on a random road surface (Janac, 1969). Whale the optimization was completed in only 30 workang steps (not ancluding function evaluatıons for gradient estımates), ut as ampossible to Judge the value of the algorıthm, because no anformation is gaven concernang the vaxuance of the nouse.

Stochastic approximation us an attractuve approach to the noasy optamızataon problem, because convergence as guaranteed as $2 \rightarrow \infty$ under very general conditions. However, 3.t may be that other methods are more effectave in reaching
a small neaghborhood of the optamum in a fannte number of steps--a more practical type of convergence to seek.

2.8 Constrannts

The optimazation techniques which have been discussed here are sultable for unconstranned problems or problems where the optimum $1 s$ located far enough from the constrannt boundarıes so that the search procedure does not encounter them. But for many enganeerang problems the optimum may lıe on or close to a constraunt boundary. Most of the methods discussed above must be altered to allow for thas possubilıty.

The problem of manmmazing $F(x)$ subject to anequalaty constraints ancludes the nonlunear programming problem

Minimize the criterion function

$$
\begin{equation*}
F\left(x_{1}, x_{2}, \cdots, x_{n}\right) \tag{2.44}
\end{equation*}
$$

subject to the m anequaluty constrannts

$$
\begin{equation*}
\phi_{1}(\underline{x}) \leq 0 \quad(1=1, \ldots, m) \tag{2.45}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{3} \geq 0 \quad(j=1, \ldots, n) \tag{2.46}
\end{equation*}
$$

Elegant methods for solving thas problem are descrubed by Saaty and Bram (1964) and Wılde and Beaghtler (1967). Most of these require assumptions such as the convexity of $F(x)$ and of the $\phi_{2}(\underline{x})$ and many are deszgned for a quadratac

F(즈) and/or linear constraints. The methods described here are applacable to less restrictave cases, and do not require the conditzons (2.46).

2.8.1 Gradient Prozection Method

The gradıent projection method (Rosen, 1960, 1961, Saaty and Bram, 1.964; Wılde and Belghtler, 1967) alter the gradient of $F(\underline{x})$ at constraint boundaries, so that a modified steepest-descent manamazation can be employed. The constrannts are only requared to be convex.

When the search reaches the boundary of a nonlanear constrannt, the negatuve graduent vector is projected onto a plane tangent to the constrannt boundary at that point (Fig. 2.II). A move in thas negative projected-gradient darection results in an mfeasible point which must be moved onto the constraint boundary. For linear constrannts the gradient projection is onto the constralnt boundary Itself, a modified steepest-descent move results in a feasible point. For the case of simple range constraints,

$$
\begin{equation*}
a_{1} \leq x_{1} \leq b_{1} \quad(1=1, \cdots, n) \tag{2.47}
\end{equation*}
$$

there is a simplafied method for obtaining the projected gradıent. This has been ancorporated anto the optamum gradient procedure and as described by McGhee (1967).

Fig. 2.ll The gradient projection method at the boundary of a nonlinear constraint.

2.8.2 Created Response-Surface Method

The created response-surface method (Faacco and McCormick, 1964, 1963, Saaty and Bram, 1964; Wilde and Beaghtler, 1967) as based on the definition of a modified objective function:

$$
\begin{equation*}
\Phi(\underline{x}, x)=F(\underline{x})+r \sum_{i=1}^{m} 1 / \phi_{1}(\underline{x})(x>0) \tag{2.48}
\end{equation*}
$$

Note that for any $r>0$, $\Phi(x, r)$ increases rapadly as \underline{x} moves toward a constrant boundary $\left(\phi_{1}(\underline{x}) \rightarrow 0\right)$. The technique selects values of r from a monotone decreasing sequence and optimazes $\underline{\underline{x}}(\underline{x}, x)$ for each value of r. Thus, the constrained minimızation problem is converted into a sequence of unconstramed manimizations. If the optimum point of $F(\underline{x})$ is on the boundary, the manimum of $\bar{\Phi}(\underline{x}, r)$ approaches the boundary as $r>0$. In order to have $\Phi(\underline{x}, r)$ well-behaved neax the boundary, it is requared that $F(x)$ and each of $\varnothing_{1}(\underline{x})$ be continuously twace differentiable and $\Phi(\underline{x}, r)$ be stractly convex for each r.

Fiacco and McCormıck (1964) hare used the created response-surface technaque wath the optamum gradıent method (Section 2.2) and Newton's method (Section 2.4) for minamizing $\Phi(\underline{x}, r)$. Box (1965) reports that the Fletcher-Powell-Davidon method (Section 2.3) also has been employed successfully with thas technaque.

2.8.3 Penalty Functions

An optimization problem subject to constraints can be converted anto a single unconstramed one by modafying the criterion function with the addition of penalty functıons, $p_{1}\left(\varnothing_{1}\right)$ (Korn and Korn, 1968).

$$
\begin{equation*}
\Phi(\underline{x})=F(\underline{x})+\sum_{1=1}^{m} c_{1} p_{1}\left(\phi_{1}\right) \tag{2.49}
\end{equation*}
$$

where $c_{1}>0$ and

$$
p_{i}\left(\phi_{1}\right)=\begin{array}{cc}
h_{1}\left(\phi_{1}\right) & \phi_{I}>0 \\
0 & \phi_{1} \leq 0
\end{array}
$$

and where $h_{I}\left(\varnothing_{I}\right)$ is a strictly monotone increasing function of \varnothing_{1}. For \underline{x} in the feasible region $R, \underline{\Phi}(\underline{x})=F(\underline{x})$, but as x moves outside R, $\Phi(\underline{x})$ is made to ancrease rapidly. During the optimization x is allowed to violate the constraints, but such a move is penalized by a large value of the modified craterıon functions. Note that here, in contrast to the created response-surface method, the minamum of Φ (x) as found only once. The simplacity of this approach us offset by disadvantages in certain situations. It may be that $F(\underline{x})$ as undefined for x outside R--for example, $x_{1}<0$ where x_{1} is a length or a spring constant. In such a case we maght redefine $\bar{\Phi}(\underline{x})$

$$
\begin{array}{cc}
\underline{\underline{\sigma}}(\underline{x})= & \underline{x} \in R \\
K+\sum_{1=1}^{m} c_{1} p_{I}\left(\phi_{I}\right) & \underline{x} \notin R \tag{2.50}
\end{array}
$$

where $K \geq F(x)$ for x on the constrant boundary. In exther case, unless $F(\underline{x})$ as known analytacally and $h_{1}\left(\varnothing_{1}\right)$ can be chosen carefully, $\Phi(\underline{x})$ and/or $1 t s$ derıvataves wall be discontanuous at the boundaxies. Thas as detrimental to search algorithms, such as the conjugate direction methods, wath quadratac convergence properties.

2.8.4 Restrict to Feasible Region

For durect search methods and random methods anequalıty constraints may be handled by simply restricting X to the feasible region R. Before any step Δx ls made, the values of the proposed new point \underline{x} are checked, and if any constraints are violated, a different point is chosen. The search can be made to move very close to the boundary If the step saze Δx is reduced until no constrant as vaolated. The simplicity of this scheme makes direct and random search methods attractuve for problems where the optamum may lie close to or on a constrant boundary.

2.9 A Comparison of Methods and Some Remarks

Whale most of the techmiques dascussed an thas chapter are designed to locate local minamum poants, the enganeer $1 s$ usually seekang the best of these, the global
optimum. If the value of $F(\underline{x})$ at the global optimum, F^{*}, is known, the optimizing algorithm can automatically escape from local manama with $F>F t$ by expanding the search about the local manimum or jumpang to a new startang point. For the more difficult case in which F^{*} is unknown, local minnma must be detected and the values of $F(x)$ compared. Automatıc search for the global optımum may be inefficient, and interaction by the operatox could be valuable.

The value of easy anteractaon between the operator and the algorathm has been recognized by Bohlang and Chernals (1965) and Carlson (1967). Displays of the performance of the system being optimized and anformation concerning the progress of the search help the engineer to gain anslght anto the behavaor of the system. Wath thas information and has own experience he may be able to help guide the search toward a solutzon, by changing parameters of the optimization strategy or selecting different startlng polnts. Bohling and Chernak point out that anformation about the system gained during the optimızation may be more valuable than the rinal solution. The opportunnty for this kind of muteraction has made hybrid computatıon attractive for optımızataon. However, dasplay systems anterfaced with small digutal computexs or time-shared computers are making easy unteraction possible with all-digltal optimizations as well (Korn, 1969).

The cholce of a parameter optimzzation method for a specific problem should be guided by the computing equipment avalable, what $1 s$ expected about the nature of the criterion function--a smooth or arregular landscape, noisy or noise-free--and the number of parameters. If the time to measure the craterion function as relatavely long, then the computatıonal effort requared by complex methods wall not increase the optimization tame appreciably. But if the tume to evaluate $F(\underline{x})$ as small compared to the time for calculations, as in the case of a high-speed analog machine anterfaced to a manccomputer without floatıng-point hardware, then a simple durect search method or random search may be faster, even though ut as less efficient an terms of function evaluations. For very arregular craterion functıons derıvatıves may not exist at some points, and the cholce of a perturbation step size for deravative measurement as dafficult. Too large a step suze gives a poox approximation for a derıvatıve at a point; a step size too small may cause problems due to accuracy limıtatzons \quad m computing $F(\underline{x})$. Nouse can cause large exrors in derivative measurement. For problems wath many parameters the results of Rastrigin (1963), Gurin and Rastrigin (1965), and Schumer and Steiglitz (1968) Indicate that the creeping random methods are lakely to requare ferer functaon evaluations. In addition, for large n the computation times for creeping random search methods do not ancrease as rapıdly as for
algorıthms requarıng matrix manıpulatıons. Korn and Kosako (1970) have successfully employed a creepang random algorithm in a 200-parameter functional-optimızation problem.

If the criterion function is smooth, or if derivataves can be obtanned wathout using the perturbataon method, the conjugate dzrection algorzthms appear to be the most effacient and most relable. The extremely rapad convergence of Newton's method $\left[\underline{\Delta x}=-A^{-1} g(\underline{x})\right]$ from favorable starting points u of offset by the computational effort for calculation of A^{-1} and the tendency of the algorathm to diverge. When gradient measurements are easily obtained, the Fletcher-Powell-Davidon algorithm is superior. Thas conclusion as based on the results of Box (1966) for a series of test functıons and the results of Barta and Trushel (1969), who found the F-P-D algorithm more efficient than the Fletcher-Reeves algorithm in solvjng optamal control problems via the Maxımum Prancaple. Lasdon et al. (1967) found the $F-\mathrm{R}$ algorathm far superior to a steepest descent scheme for simılar optamal control problems. The calculations for the $F-R$ algorithm are simpler than for the $F-P-D$ method, while the latter requares fewer function evaluations. A comparison of Partan with the conjugate direction algorithms is difficult, because there $1 s$ a lack of published data for the performance of Partan on test functions and practical
problems which have been solved by the conjugate-durection algorithms. Wilde and Beightler (1967) found the F-P-D algorithm more efficient in manimizang Rosenbrock's function. If the gradient of F as not readily obtained, Powell's conjugate-darection method wathout gradients appears to be the most efficient (Fletcher, 1965; Box, 1966). Although no published data have appeared for Zangwall's modaracatzon of Powell's method, the author has found the two to be roughly equavalent in manımazang Rosenbrock's function.

For the case of arregular criterion functions with discontanuous deravataves and possibly measurement noxse, durect search methods, creeping random search and stochastic approximation are more practical. The directsearch and creepang random search algorithms decide on the next step Δx simply by comparang function values at different points rather than using function differences to calculate precise search directions and step sizes. Again, there is a lack of comparative data from which to judge the relatave merits of the vaxious direct-search and creeping random algorithms. But the theoretical and practical results obtained for the creeping random algorithms make a strong case for this method as an efficient and relable technıque. For nolsy craterion functaons the stochastac approximation algorithms have the attractive feature of convergence as the number of steps tends to anfanaty, but
more results for test functions and practical problems are requared to andicate how quickly they reach a reasonable neighborhood of the optimum.

The most obvious conclusion from a study of parameter optimization methods is that no one technique is best sulted for all types of problems. An algorıthm designed to be capable of manamızing all types of criterion functaons wall probably be aneffacient for the majoraty of induridual functions. It seems necessary to be axmed wath a raxiety of technıques un order to attack efficiently a problem with a completely unknown cxiterion function. Some optimization software packages, including AESOP (Hague and Glatt, 1968) and GOSPEL (Huelsman, 1968), have been developed. Such a batiery of algorithms, coupled with a computer system having easy operator-machine interaction, could comprise a fruztful approach to the solutzon of a varıety of paxameter optımazatıon problems.

CHAPTER 3

OPTIMIZATION IN THE PRESENCE OF NOISE

The problems of optamazang a nolsy criterion function have been poanted out in Chapter 2. Thas chapter considers the evidence from the literature and some experimental results leading to the development of a strategy for optimmzing noisy criterion functions (Sections 3.1 and 3.2). Constraints and the problem of estimating the criterion function are discussed in Sections 3.3 and 3.4. A specific optımızation algorıthm for the example problem treated $\nsim n$ this study as described in Chaptex 4.

3.1 The Cholce of a Strategy

From the discussion of search methods an Chapter 2, the strategies best surted for noisy optimization appear to be stochastic approximation, direct search, and random search. However, the powerful convergence properties of the conjugate-darection methods also seem to warrant an unvestigation of therr effucuency un the presence of nolse. The only results known for gradient algorithms on a nolsy function are those of Guxin and Rastrigin (1965), who concluded that a steepest-descent method is inferior to a cxeeping-random-search algoxıthm. It was felt that a
conjugate-direction algorithm unvolving no gradient measurements but only linear minamazations maght still perform well in the presence of nouse.

The algorithm developed by Zangwall (1967) combined with a quadratac-interpolation method for the Innear minimizations was programmed in FORTRAN for the PDP-9 computex. Gaussian nozse was added to the craterion function, with the standard deviation chosen as a fraction of the value of $F(\underline{x})$. The observed function values are

$$
\begin{equation*}
f(\underline{x})=F(\underline{x})+[\sigma \cdot F(\underline{x})] z \tag{3.1}
\end{equation*}
$$

where z is a Gaussian random variable with zero mean and unat variance, and σ as the coefficient speczfyang the standard deviation of the nozse added to $F(\underline{x})$. The algorıthm was applied to two test functions with given starting polnts, as follows

$$
\begin{align*}
& F(\underline{x})=\sum_{1=1}^{n} x_{1}^{2}, o_{\underline{x}}=(1,1, \ldots 1) \tag{3.2}\\
& F(\underline{x})=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}, o_{\underline{x}}=(-1.2,1)
\end{align*}
$$

After each linear minimization the (nolsy) function value as compared to $F_{\text {man }}=10^{-4}$; if $f(\underline{x})<F_{\text {min }}$, the search is ended. Zangwall's algorithm also terminates the search if n successive manimizations in the coordinate darections lead to no improvement--an indication that the gradient is zero.

To minimize the quadratic function (3.2) for $\sigma=0 ., 9$ and 20 runction evaluations were requared for $\mathrm{n}=2$ and $\mathrm{n}=4$, respectively. For $\sigma=0.1$ and $\mathrm{n}=2,5$ of 20 traals fazled to converge, because observation errors resulted un a false undzcation of zero gradıent. For the 5 successful trials, an average of 18 function evaluations were requared. For $n=4$, there were no fallures an 10 trials, and an average of 74 function evaluations were requared. For large n, there $1 s$ less chance of nolsy observations leading to n successive coordinate minnmizations wath no improvement.

For Rosenbrock's function (3.3), 135 evaluatıons were required to converge for $\mathrm{F}_{\mathrm{man}}=10^{-4}$ and $\sigma=0$. However, no convergence could be obtanned for noase levels as small as $\sigma=$.01. Again, the algorithm termınated prematurely due to a zero-gradient andication.

These results indicate that for Zangwll's algorithm to be effectuve un the presence of nolse, the premature terminations due to false zero-gradient indications would have to be eliminated, and/or the linear-minimization
algorithm would have to be improved. One possibility would be to use a stochastic-approximation algorithm, such as Kushner's (1963), for the lanear search.

Modification of thas algorithm was abandoned, and a creeping-xandom-search strategy was chosen for this study. The reasons for this selection are summarızed here.

1. Unless the varıance of the measurement nozse 15 very small, estimating the gradıent of $F(\underline{x})$ by small perturbations is impractical. Gurin and Rastrigun (1965) have shown a random search algorıthm to be more effectave than steepest descent m the presence of noxse.
2. While stochastic approximation algorithms have the attractuve feature of guaranteed convergence as the number of optamazang steps tends to infinnty. actual progress toward the optamum may be slow.
3. Creeping random search has been found effectave in optimazing very "irregulax" parameter landscapes (Maybach, 1966a, Stewart et al., I967; Kavanaugh et al., 1968, Bekey et al., 1966).
4. The results of Rastrigin (1963) and Schumex and Steiglıtz (1968) indicate that creeping random search $1 s$ especially effectuve for problems whth many parameters.
5. Creeping-random-search algorithms permit the use of a "vector-valued" criterion function (Stewart et a1., 1967).
6. Constraunts are easily handled by sumply restructIng trial steps to the feasible reglon of parameter space.
7. The comparatively modest computations requared for random search algorıthms can be programmed easliy
small digatal computer. This results in a fast digital program, which is better sulted for operatıon wath a hagh-speed analog machmne.

3.2 A Random-Search Algorithm for Nozsy Cxiterion Functions

For the class of problems considered in thas study, the parameter vector x consists of the dustribution constants introduced in Sectıon l.1. It is assumed that each system parameter p_{1} is Gaussian wath mean μ_{1} and varıance σ_{1}^{2}, so that x appears as a columm vector ($\mu, \underline{\sigma}$).

$$
\begin{equation*}
\underline{x} \equiv(\underline{\mu}, \underline{\sigma}) \tag{3.4}
\end{equation*}
$$

We also assume constrants of the form

$$
\begin{align*}
a_{1} & \leq p_{2} \leq b_{1} \\
\sigma_{1} & \geq c_{1}\left|\mu_{1}\right| \geq 0 \tag{3.6}\\
(\ldots & =1,2, \ldots, n / 2)
\end{align*}
$$

These are dascussed an Section 3.3.
To axrive at an effectave search proceduxe for
nolsy criterion functions, a basic creepang-random-search algorithm as combined with a strategy for averaging measurements of the criterion function so as to reduce the nouse variance. The observations of the criterıon function are represented by

$$
\begin{equation*}
f(\underline{x})=F(\underline{x})+v \tag{3.7}
\end{equation*}
$$

whexe $F(\underline{x})$ is the true value of the criterion function, and v us a zero-mean random varabale. Our estamate of $F(x)$ wall be denoted by $\vec{f}(\underline{x})$. At a point x observations of the function are averaged until the varıance of $\bar{f}(\underline{x})$, denoted by s^{2}, $1 . s$ less than some specified value. (A sequential estımation scheme for this is described in Sectıon 3.4.) Before discussing the strategy for choosing s^{2}, the creeping random algoxathm as described.

Figure 3.1 illustrates a basic creeping-randomsearch algorıthm, which searches for a local mınimum. (In the following paragraphs, numbers enclosed by brackets, [], refer to corresponding numbers in the flow diagrams.) Exploratory steps, $\Delta \underline{\mu}$ and $\Delta \underline{\sigma}[1]$, are random in magnitude and direction. When the criterion function estimate $\overline{\mathrm{I}}$ at an exploxatory poant is an improvement over the current optimum value $\left(\overline{\mathrm{f}}<\overline{\mathrm{f}}_{\mathrm{o}}\right)$ [2], the centex of the search is moved to the corresponding new point [3]. Followang some integral number, $L F$, of consecutave fallures, the search range is then reduced [4], and after LF fallures with mınamum search range, the algorıthm is finıshed [5]. Other features of the algorathm may be noted:

1. The random parameter perturbations, $\Delta \mu_{1}$ and $\Delta \sigma_{1}$, are chosen from a uniform distribution, which has a variance proportional to the current optimum value of μ_{1}. For most problems this method of choosing the variance of the perturbations appears

Fig. 3.l Flow diagram for the basic creeping-randomscarch algorathm.

Fig. 3.I-Continued
more logical than having a fixed parameterperturbation variance. In the latter case, the same perturbation, $\Delta \mu_{I}$, can represent a very large or a very small percentage change an the parameter value, depending on the current optimal value of μ_{2}. For the same reason, the standard deviations σ_{2} are expressed in the program as percentages of the corresponding mean values.
2. The algorıthm employs absolute positıve blasing [6] and absolute negatıve biasing [7] as descrabed in Section 2.6.
3. During the optimazation the program keeps track of both the previous optimum point ($\underline{\mu}_{00}, \underline{\sigma}_{o O} ; \bar{f}_{o O}$) [3] and the point with the smallest function value since the last success $\left(\underline{\mu}_{+}, \underline{\sigma}_{+} ; \overline{\mathrm{f}}_{+}: \overline{\mathrm{f}}_{0}<\overline{\mathrm{f}}_{+}<\overline{\mathrm{f}}_{1}\right.$, where i andexes all of the other fanlure ponnts since the last success) [8 and 9]. Saving these values has no effect on the basic creeping-randomsearch algorzthm, but they wall be used in the overall strategy described below.

To implement the creeping-random-search method, the variance s^{2} allowed in the estimate \bar{f} of F, must be specified. Let us assume that the optimization must be accomplished wath some number N of criterion function observations. If s^{2} is chosen to be small, then there will
be few errors in deciding whether a trial step is a success or failure, an spıte of the nolse, but we wall be able to take only a small number of trual steps. For a large value of s^{2}, more trial steps are possible, but many of our success-fallure decisions are lakely to be exroneous. In particular, the situation pactured an Fig. 3.2 may result. The optimızation has proceeded to the point ${ }^{\prime} x$, at whach the estamate $\vec{f}\left({ }^{\prime} x\right)$ as unusually moxsy. From this ponnt, at Is difficult to find a successful step; enther another unusually nolsy observation will have to occur, whach may require many trials, or else a large trial step toward x^{*} must be generated. These considerations suggest that the chonce of the varıance s^{2} as an amportant one in determinIng the success of the optimization.

If the starting point for the search is in a
"smooth" region of the craterion surface where there as an apprecıable gradient, the creepang-random-search algorithm can progress well, even when the varıance of $\overline{\mathrm{f}}$ ıs large. Thus, in the anitial search our estimates of F are allowed to be rather coarse. If many exploratory-step farlures occur consecutively, andicating that the search has encountered a ridge, entered a region of small gradient, or (later in the search) approached the optimum, then the estimation algorithm should be made to reduce the variance of \bar{x}

Fig. 3.2 A creeping random search in a region of small gradient for a nozsy criterion function.

The flow diagram for the algorithm is shown in Fig. 3.3. The "matial search" is executed with coarse estimates of $F(\underline{\mu}, \underline{\sigma})$. When LF consecutave trial steps result In no improvement, the algorithm proceeds to the "final search" [I]. At this point, a better estimate of $F\left(\underline{\mu}_{0}, \underline{\sigma}_{0}\right)$ Is computed [2]. More observations are taken at the poant ($\underline{\mu}_{0}, \underline{\sigma}_{0}$) untıl the varıance of the estımate \bar{f}_{0} ls less than or equal to $s_{o}^{2}\left(s_{o}^{2}<s^{2}\right)$. The recalculation of \bar{r}_{0} is designed to avoid the type of difficulty illustrated in Fig. 3.2. In general, note that whenever a more accurate estimate of $F(\underline{u}, \underline{\sigma})$ is computed, previous observations at ($\mu, \underline{\sigma}$) are utilized, thus saving computer time. Following the recalculation of \bar{f}_{0}, the algorithm proceeds by the followang steps:

1. $\overline{\mathrm{f}}_{\mathrm{o}}$ is compared to the previous optimum $\overline{\mathrm{f}}_{\mathrm{OO}}$, in case the move from ($\underline{\mu}_{00}, \underline{\sigma}_{00}$) to ($\underline{\mu}_{0}, \underline{\sigma}_{0}$) was exroneous [3].
2. The minimum of $\overline{\mathrm{f}}_{0}$ and $\overline{\mathrm{f}}_{\mathrm{OO}}$ us also compared to the "best" of the fallures (\bar{f}_{+}), un case a very nolsy observation at $\left(\underline{\mu}_{0}, \underline{\sigma}_{0}\right)$ had resulted in rejecting an umproved point [4].
3. After the manimum of $\overline{\mathrm{f}}_{\mathrm{O}}, \overline{\mathrm{f}}_{00}$, and $\overline{\mathrm{r}}_{\mathrm{F}}$ is determined and labeled \vec{f}_{0}, the creeping random algorithm as contınued [5]. For trıal steps ($\left.\underline{\mu}_{0}+\Delta \underline{\mu}, \underline{\sigma}_{0}+\Delta \underline{\sigma}\right)$ the variance of $\overline{\mathrm{f}}$ is stall only requared to be less than s^{2}. But if an mprovement is indicated,

Fig. 3.3 A flow dagram for the optimization algorithm.

Fig. 3.3-- Continued A flow diagram for the optimization

Fig. 3.3--Contınued A flow diagram for the optimazation algorithm.

Fig. 3.3-- Continued $\frac{\text { algorithm. flow diagram for the optimization }}{\text { for }}$
$\left(\overline{\mathrm{f}}<\overline{\mathrm{F}}_{\mathrm{o}}\right), \overline{\mathrm{f}}$ l.s recalculated and agann compared to $\bar{f}_{0}[6]$. Thas strategy allows for a greater number of traal steps to be taken.
4. Following $K F$ successive fallures in the final search, the search range is reduced [7], and the algorithm returns to recalculate \bar{f}_{0} again.
5. When KF consecutive fallures occur wath so ${ }_{0}^{2}$ at its minimum value ($\mathrm{s}_{\mathrm{m} \ldots \mathrm{n}}^{2}$), the seaxch is terminated [8].

In order to use this random-search method, a starting point $\left(\underline{\mu}_{0}, \sigma_{0}\right)$, starting and minimum values of the search range, and values for $\mathrm{LF}, \mathrm{KF}, \mathrm{s}^{2}, \mathrm{~s}_{0}{ }^{2}$, and $\mathrm{s}_{\min }^{2}$ must be specified. In the absence of any prior knowledge of the nature of the craterion function, $1 t$ ls likely that unatial chozces for these values may result $u n$ an inefficient search. It is felt that a solution to this problem lies in a provision for communicatzon between the search algorithm and the operator. Such a facilaty for interaction with the computing system employed for thas study as descrabed in Section 4.3.

3.3 Constraints, Modeling the Distributions of the System Parameters

The constrannts on the system parameters p_{2} and the dıstribution constants σ_{1} are specifaed by the inequalataes (3.5) and (3.6). The constrannts on p_{1} may arase from desagn lamats set by the enganeer or from considerations of
realizabilaty of the physical system beang modeled. Fox example, $I f p_{i}$ is the mass of a flywheel, the desugn engineer may place an upper lamıt on p_{1}, and physical. realizability requires $p_{1} \geq 0$. The constraints on σ_{2} may be necessary in a sutuation where it is known that production tolerances cannot be held below a certain percentage of the design values $\mu_{\text {I }}$.

In the form of (3.5), the constraints on the $p_{i}{ }^{\prime}$, are anconvenient to enforce. After values of μ and $\underline{\sigma}$ for a trial step are selected by the optimazation program, many values of P_{I} are generated \ln order to estimate $F(\underline{\mu}, \sigma)$. Checking each value of p_{2} is time consuming. Furthermore, if, after many observatıons of the criterion function, a value of p_{1} valates the constrannts, new values of μ and σ must be selected and the estimation of $F(\mu, \sigma)$ begun again. To avord this waste of computer time, the constraints of (3.5) are replaced by

$$
\begin{align*}
& \mu_{1}-r \sigma_{1} \geq a_{2} \\
& \mu_{1}+r \sigma_{1} \leq b_{2} \tag{3.8}
\end{align*}
$$

For $r=3$, only 0.27% of the sample values of a Gaussian random variable will violate the constraints of (3.5) when $\mu_{1}-r \sigma_{I}=a_{I}$ and $\mu_{1}+r \sigma_{I}=b_{I}$. WIth thas form of the constramnts, feasible values of μ and σ may be selected before the estimation of $F(\mu, \sigma)$ as begun.

Pseudo-Gaussian samples for the random vaxiables p_{1} are generated by adding and normalazing ten uniformlydistributed random numbers from a hardware random-nomse generator interfaced to the digıtal computer (Belt, 1969). This provides for deviations from the mean as large as 5.5 . We mntroduce negative correlation into oux randomparameter sample (Korn, 1966) by selecting ${ }^{2} p_{1},{ }^{4} p_{1}, \ldots$, ${ }^{n} p_{1}$ with deviations about μ_{1} which are equal and opposite to the deviations of ${ }^{1} p_{1},{ }^{3} p_{1}, \ldots,{ }^{n-1} p_{1}$, ュ.e.,

$$
k+1 p_{1}=\mu_{1}-\left({ }^{k} p_{1}-\mu_{1}\right) \quad(k=1,3,5, \ldots, n-1)
$$

This ensures that the sample mean is equal to μ_{1}, and time us saved, sunce only $n / 2$ pseudo-Gaussian random numbers are generated.

Although the anequalıtıes (3.8) are a practical way of enforcing constrannts on almost all of the $p_{1}{ }^{\prime}$, values of p_{z} which violate (3.8) must still be accommodated by the analog machane used to estrmate $F(\mu, \underline{\sigma})$. Thus, all values of p_{z} are lamated to the range of the analog computer to produce a new random varıable $p_{ı}{ }^{\prime}$.

I m.u. If $p_{\mathrm{I}}>1 \mathrm{~m} \cdot \mathrm{u}$.

$$
\begin{equation*}
p_{1}^{\prime}=-1 \mathrm{~m} \cdot \mathrm{u} \cdot \text { دf } \mathrm{p}_{1}<-1 \mathrm{~m} \cdot \mathrm{u} \tag{3.9}
\end{equation*}
$$

p_{i} otherwase
where $1 \mathrm{~m} . \mathrm{u}$. denotes one machone unnt for the analog computer. In general, the lımıted random varıable p_{1} ' will
have a new mean μ_{I}^{\prime} and standard deviation σ_{I}^{\prime} different from μ_{I} and σ_{1}. The effect on μ_{1} Is most severe if p_{I} is Iamıted on only one side of the distrabution. If b_{1} corresponds to I machine unit, as shown in Fig. 3.4, all values of $p_{1}>\mu_{1}+r \sigma_{1}$ wall be set equal to 1 machane unit. The effect on σ_{1} is greatest when p_{1} is limited on both sides of the distribution, a_{I} and b_{I} correspond to -1 m.u. and $1 \mathrm{~m} \cdot \mathrm{u}$. respectively (Flg. 3.5). The effects of these two cases of limıting are calculated in Appendix A, and results are shown in Table 3.l. For the problem described an Chapter $4, a_{1}=0$ and $b_{i}=1$ m.u. The values of μ_{1} and σ_{1} (satasfyang the constraints) which result in maximum σ_{1} are $\mu_{1}=0.5 \mathrm{~m} . \mathrm{u}$. and $\sigma_{1}=.5 / 3 \mathrm{~m} . \mathrm{u}$. For this worst case and for $r=3, \mu_{1}^{\prime}=\mu_{1}-.00051 \mathrm{~m} . \mathrm{u}_{1}=\mu_{1}-$.0051 volts for the ± 10 volt range of ASTRAC-II. Thas 5 mv. worst case error is approxamately equal to the accuracy of setting the values of p_{1}^{\prime} by the digıtal-analog converters on ASTRAC-II. The worst case error an the standard deviation σ_{1} Is approxımately 0.13%.

3.4 Sequential Estimation of $F(\mu, \sigma)$

The criterion function $F(\underline{\mu}, \underline{\sigma})$ as estamated from observations denoted by $f(\mu, \sigma)=F(\mu, \sigma)+v$, where v ıs a zero-mean random varıable. An unbıased estimate of F based on n observations is

$$
\begin{equation*}
n_{f}=\frac{1}{n} \sum_{x=1}^{n} l_{f} \tag{3.10}
\end{equation*}
$$

Fig. 3.4 The Gaussian density function lamıted at one end.

Fig. 3.5 The Gaussian density function limated at both ends.

Table 3.1 The effects of limating a Gaussian random variable.

r	μ^{\prime}	σ^{\prime}
Lamıtang at $r \sigma$ at one end of a Gaussian distribution		
1	$\mu-.0833 \sigma$. 8667σ
2	$\mu-.0312 \sigma$. 97946
3	$\mu-.00308 \sigma$. 9987σ
4	$\mu-.00010 \sigma$. 99997σ
Limiting at ro at both ends of a Gaussian distribution		
1		$.7183 \sigma$
2		. 95946
3		. 99750
4		. 99990

The sample variance

$$
\begin{equation*}
n^{n} s^{2}=\frac{1}{n-1} \sum_{1=1}^{n}\left({ }^{2} f-n^{n}\right)^{2} \tag{3.11}
\end{equation*}
$$

is an unbiased estimate of Var\{f\}. If f has a Gaussian distrabutzon then

$$
\begin{equation*}
\frac{\left(n^{(\underline{f}}-F\right) \sqrt{n}}{n_{S}}=t_{n-1} \tag{3.12}
\end{equation*}
$$

where t_{n-1} has the Student-t distribution with $n-l$ degrees of freedom. Thıs allows us to make a confidence statement about our estamate of F. Before sampling, we can state that the probabilıty that our estamate ${ }^{n} \bar{f}$ will differ from F by some amount less than d is given by

$$
\begin{equation*}
P\left[\left|n_{\bar{f}}-F\right| \leq d\right]=1-\alpha \tag{3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
d=\frac{{ }^{n} S t_{n-1 ; \alpha / 2}}{\sqrt{n}} \tag{3.14}
\end{equation*}
$$

and $t_{n-1 ; \alpha / 2}$ is the value of the Student-t varıable such that

$$
\int_{t_{n-1 ; \alpha / 2}}^{\infty} \phi(z) d z=\alpha / 2
$$

(\varnothing is the density function for the Student-t variable with n-l degrees of freedom). To use this statement in deciding
the number of observations to make for our estimate, samples of f are taken until ${ }^{n} S / \sqrt{n}$ is small enough so that $\left({ }^{n_{S}} t_{n-1} ; \alpha / 2\right) / \sqrt{n} \leq d$.

In order to umplement such a sequential estimation scheme, it $u s$ convenıent to have recursive estimates of $\underset{f}{n}$ and ${ }^{n} S^{2}$ rather than performang the summations of Eqns. (3.1.0) and (3.11) after each observation. Recurrence relations axe glven by Korn (1966). Lei ${ }^{n} S^{2}=\frac{n-1}{n}{ }^{n} S^{2}$.

$$
\begin{gather*}
n \bar{f}=n-1 \bar{f}+\frac{1}{n}\left({ }^{n} f-n-1-\bar{f}\right) \tag{3.15}\\
n_{s}{ }^{2} \approx n^{n-1}{ }_{s}^{2}+\frac{1}{n}\left[\left(n_{f}-n_{f}\right)^{2}-n_{s} n^{2}\right] \tag{3.16}
\end{gather*}
$$

 these relations requires a division by n, which may be time consumang when floatıng-poant or double-precision fixedpoint arıthmetıc is necessary to obtann accurate estimates. Deardorff and Trimble (1968) replace the division by n by a division by a power of two to obtain the so-called "stableaveragang" algoxithm.

$$
\begin{equation*}
n_{\hat{f}}={ }^{n-1} \hat{f}+\frac{1}{2^{N_{n}}}\left({ }^{n_{f}}-{ }^{n-1} \hat{f}\right)\left(2^{N_{n}-1}<n \leq 2^{N_{n}}\right) \tag{3.17}
\end{equation*}
$$

This algorathm $1 . s$ considerably faster than Eq. (3.15), because the division can be accomplished by a simple shift operation in a binary computer. However, N
$2^{n} \leq n$ for all n, so that the varıance of ${ }^{n} \hat{f}$ is greater
than the varıance of ${ }^{n-f}$ (the mınimum-varıance linear unbiased estimate of the expected value of f).

The vara ance of the "stable-averagnong" estumate can be reduced by modifyung the choice of N_{n} so that 2^{N} is more nearly equal to n (Whate, 1970). The modified estamate is defined by

$$
\begin{equation*}
n^{n_{1}}={ }^{n-1} \widetilde{x}+\frac{1}{2^{M}}\left({ }^{n} f-^{n-1} \widetilde{x}\right)\left(2^{M_{n}-1} \leq n^{M_{n}}\right) \tag{3.18}
\end{equation*}
$$

The method of unzquely determinang M_{n} is most easily shown by a flow dıagram ($\mathrm{FIg}_{\mathrm{g}}$. 3.6) . Table 3.2 lısts the resulting sequences $\{n\},\left\{2^{N}\right\},\left\{2^{N}\right\}$. It is seen that thas method of choosing the power of two in Eq. (3.16) yaelds a divisor closer to the mdeal value n than Eq. (3.17), and the ancreased time needed to generate M_{n} rather than N_{n} as small. Whate (1970) shows that for $n \geq 100$ only about 5% more observations are required wath the modified algorithm (3.18) to reduce the standard devalation of $n_{\tilde{f}}$ to that of $n \underset{f}{n}$ jin Eq. (3.15). Thas should be compared wath 15-20 per cent moxe observations required with the "stable averagang" estimate ${ }^{n} \hat{f}$. The improvement appears modest, but represents a very substantıal saving an cases where $E\{f\}$ must be estimated many times at best possible speed.

Fig. 3.6 Flow diagram for the shaft operation in Eq. (3.18).

Table 3.2 Dıvisors used an the three recursive estimation algorithms.

n	$2^{N_{n}}$	2^{M}
1	1	1
2	2	2
3	4	2
4	4	4
5	8	4
6	8	4
7	8	8
8	8	8
9	1.6	8
-	-	-
-	-	
-		
12	16	8
13	16	16
-	-	
-	-	
$\dot{\square}$	$\stackrel{*}{*}$	
17	32	16
-	.	
-	-	
-	-	-

CHAPTER 4

AN OPTIMIZATION EXPERIMENT

In 1959, McGhee and Levine (1964) studied the problem of the determanation of optimum production tolerances for a hypothetical radar-homing massile. Their experıment was performed before fast analog-digital hybrad computers were generally avallable. An analog computer was used to simulate flights of massiles having production varlations in two guidance-unlt parameters, a gain K and a time constant T, which were modeled as Gaussian random variables with means μ_{K} and μ_{T} and variances σ_{K}^{2} and σ_{T}^{2}. Values of μ_{K} and μ_{τ} were selected prior to the simulation and were held constant durang their experments. For sixteen combinatıons of values of σ_{K} and σ_{τ}, an average performance andex (the probabilaty of hitting a target) was estimated by Monte-Carlo simulation. A digatal computer then performed a quadratic regression analysis on these data in order to arrive at an expression for the hat probability as a function of σ_{K} and σ_{τ}. Surprisingly, it was found that for σ_{τ} equal to 20% or 30% of μ_{τ}, ancreasing σ_{K} from 10% of μ_{K} to 20% caused an ıncrease in the hit probability, Thus, the popular assumption that performance

Is degraded by increasing production tolerances is not
always valid.
Thas chapter discusses the simulatıon and optimızation of a slmilar massile system. In thas experament the mean values, μ_{K} and μ_{T}, are optimized simultaneously with the variances, σ_{K}^{2} and σ_{τ}^{2}.

4.1 A Radar-Homang Missile Problem

 hypothetical radar-homing missile. In the diagram we consuder a small change $\delta \underline{v}$ an the massile velocity vector \underline{v}. For a small angle $\delta r,|\underline{v}+\underline{v}| \approx|\underline{v}|=\mathrm{v}_{\mathrm{m}}$. The acceleratıon normal to \underline{v} is

$$
\begin{equation*}
v_{m} \frac{d r}{d t}=v_{m} \dot{r} \tag{4.1}
\end{equation*}
$$

or

$$
\begin{gather*}
\ddot{\mathrm{y}}=\mathrm{v}_{\mathrm{m}} \dot{\mathrm{r}} \\
\dot{\mathrm{y}}(\mathrm{t})=\int_{0}^{t} \mathrm{v}_{\mathrm{m}} \dot{r}(s) \mathrm{ds}-\mathrm{v}_{\mathrm{m}} r_{o} \tag{4.2}
\end{gather*}
$$

Equation (4.2) describes the kinematacs of the massile. For a small angle σ,

$$
\begin{equation*}
\sigma=\arctan \frac{\mathrm{y}}{\mathrm{v}_{\mathrm{c}} \mathrm{~T}} \approx \frac{\mathrm{y}}{\mathrm{v}_{\mathrm{c}} \mathrm{~T}} \tag{4.3}
\end{equation*}
$$

$$
\begin{aligned}
\mathrm{y} & =\text { missile position normal to inıtıal line of sught (ft.) } \\
\mathrm{v}_{\mathrm{c}}= & \text { mıssile-to-target closing velocıty (ft./sec.) } \\
\mathrm{T}= & \text { time to go untıl impact (sec.) } \\
r= & \text { angle between mıssile velocity vector and inıtial line } \\
& \text { of sht (rad.) } \\
\sigma= & \text { true lane of sight angle } \\
\underline{v}= & \text { mıssile velocity vector } ;|\underline{v}|=v_{m}(f t . / s e c .)
\end{aligned}
$$

Fig. 4.I The motion of the massale an a plane.

The lane-of-sight angle σ as used by the guidance unit to steer the massile toward the target, as shown in the block diagram of Fig. 4.2. The guidance-unıt output is a commanded turning rate \dot{r}_{c}, and the missile aerodynamics produce an actual turning rate \dot{r}. At time $t=0$, the missile is given a random heading angle, $r(0)=r_{0}$, which is chosen from a Gaussian distribution with zero mean and a standard deviatıon of 0.1 radians. At $t=t_{f}=7$. sec, the missile position normal to the initial line of sight, y, is measured. If $\left|y\left(t_{f}\right)\right| \leq=30$. ft., we say that the missile has hit the target. The line-of-sight angle σ ls corrupted by wideband radar-tracking noıse with $\wp(0)=.0155 \mathrm{deg} .{ }^{2} / \mathrm{Hz}$, where $\bar{\rho}(\omega)$ is the two-sided power spectral density. The navigation gain, K, and the prancıpal missile filterang time constant, τ, are assumed to be Gaussian with mean μ_{K} and variance σ_{K}^{2}, and Gaussian with mean μ_{τ} and varıance σ_{τ}^{2}, respectuvely. The problem is to choose the values of μ_{K}, μ_{T}, σ_{K}, and σ_{T} which maximize the probabilıty of hitting the target.

In the notation of Chapter 1 , the system parameters are $p \equiv(K, \tau)$, and the distribution constants are $\underline{x}=$ $\left(\mu_{K}, \mu_{\tau}, \sigma_{K}, \sigma_{T}\right)$. The performance index is given by:

Fig. 4.2 Radar-homıng massile navigating in a plane.

The average performance andex is the hit probability

$$
\Psi=\mathrm{E}\{\mathrm{~J}\}=\text { probabulity of a hit. }
$$

Sınce a cost function $1 s$ not $1 n c l u d e d$ for this problem, the criterion functaon simply equals the average performance andex

$$
F(\underline{x})=\Psi=\text { probab } \perp l _t y \text { of } a \mathrm{~h} \mu t .
$$

The nequalıty constrants are:

$$
\begin{aligned}
& \mathrm{K} \geq 0 \\
& \tau \geq 0 \\
& \sigma_{K} \geq c_{K}\left|\mu_{K}\right| \geq 0 \\
& \sigma_{T} \geq c_{\tau}\left|\mu_{\tau}\right| \geq 0
\end{aligned}
$$

K and τ must be greater than zero for the system to be stable. Positıve values of c_{K} and/or c_{τ} may be used to determane the best performance obtainable when production varıatıons are allowed in K and/or τ.

4.2 The Simulation

Figures 4.3 and 4.4 show the analog computer diagram and control logic for the simulation. The time scale is, given by

$$
t=\frac{1}{250 \times 10^{-6}} t^{\prime}
$$

where t is the problem time $\left(0 \leq t \leq t_{f}=7\right.$. sec) and t^{\prime} is the computer time $\left(0 \leq \mathrm{i}^{\prime} \leq 1.75 \mathrm{msec}\right)$. Thas allows for

Guydance

Aerodynamzes

Fig. 4.3 Analog computer dıagram of the radar-homing
missile simulation.

Kinematics

Steepest-descent davision curcuat
Fig. 4.3-Continued Analog computer diagram of the radarhomang massile simulataon.

Hat-miss decasion curcuat

Fig. 4 3--Continued Analog computer diagram of the radarhoming missile simulation.

Fag. 4.4 Control logic for the simulation.
solution rates of 500 runs per second. The digital inputs, α_{K} and α_{τ}, to the multiplying D / A converters provide the following ranges for K and τ.

$$
\begin{aligned}
& 0 \leq K \leq 6 \\
& 0 \leq \tau \leq 1.3 \mathrm{sec}
\end{aligned}
$$

The awkward division by $v_{c}{ }^{T}$, which approaches zero together with the numerator $y(t)$ as t approaches t_{f}, is implemented by a very fast steepest-descent curcuit (Maybach, 1966b). Potentiometers p_{1} and p_{2} compensate for the fact that the actual divisor $1 s \mathrm{v}_{\mathrm{c}} \mathrm{T}+\beta$, where $\beta=3$. volts. This constant is added to manntann a reasonably large input to the quarter-square multiplıers, whıch are less accurate for small inputs.

A missile-fixing simulation is begun with a random anatial condition x_{o}. At $t=t_{f}$, the track-hold carcuit holds $y\left(t_{f}\right)$, which is compared to $\pm d$ by the two comparators. The $1 \mu f$ capacitor and the summing amplafıer constatute a d.c. blocking circuit for filtering out drıft voltages. The comparator outputs are gated and applied to a read-in gate on the analog-digital interface for hit-miss detection by the dagatal computer. The antegrators are controlled by a logic signal \hat{R} (Fig. 4.4). Thas is essentially the normal compute-reset sagnal (R) modified for automatac resetting at the occurrence of an overload or upon a command from PDP-9 by way of the control regaster. The
track-hold logic signal \hat{S}_{2} is S_{2} augmented by a provision for specifylng the track mode with PDP-9 at an overload conditaon and during adle periods. Simulations are Initrated by Free Pulse \#2. The end of a simulation is signaled by Flag I, which is raised upon the occurrence of an overload or at the completion of the 1.75 msec COMPUTE period. If an analog computer overload occurs durang a simulation, that simulation is regarded as a miss.

Usually overloads occur for parameter values and/or an anitial condition which would result in a mass. It is possible, however, for an overload to occur even during a simulation whach would result in a hit; $1 n$ thas case, assignting a mass is erroneous. If ℓ such errors are made In a hat-probability estamate of N simulations, the error in probabilaty is $\Delta p=-2 \ell / \mathbb{N}$. The optimization program allows three overloads per 1024 simulations before volding the estimate of the hat probabllity. Thus, the worst-case error is gaven by $\Delta \mathrm{p}=-.0059$.

4.3 The optimazation

The basic optimazation strategy has been discussed an Section 3.2. A modification and some additional features are described here.

Sance the criterion function for the example problem Is a probabilaty p, and separate runs are considered to be statistically independent, the variance of an estimate of p

Is known a priorn. Let our estimate of p be given by

$$
\begin{equation*}
\overline{\mathrm{f}}=\frac{1}{\mathrm{~N}} \sum_{I \pm 1}^{N} I_{f} \tag{4.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& 1 \text { if }\left|y\left(t_{f}\right)\right| \leq 30 . f t . \\
& \mathrm{I}_{\mathrm{f}}= \\
& 0 \text { otherwise }
\end{aligned}
$$

fhas a binomial distribution with mean p and variance $p(1-p) / N$. For $N p$ and $N(I-p)$ both at least 5, the distribution may be approximated reasonably as Gaussian (Hahn and Shapiro, 1967). Then, we can make the following probabalaty statement concerning our estimate of p :

$$
p\left[|\bar{f}-p| \leq \sqrt{\frac{p(I-p)}{N}} z_{\alpha / 2}\right]=1-\alpha
$$

where

$$
\int_{z_{\alpha / 2}}^{\infty} \not(z) d z=\alpha / 2
$$

and $\phi(z)$ is the standardized Gaussian density function (zero mean, unat varıance). Table 4.l lısts values of the confidence-menterval half-wadth as a function of p and N for $\alpha=0.05$. In the optimization program for the example problem (Fig. 4.5), the variance of our estimate of p is controlled by adjustang N. Otherwase, the strategy is the same as discussed an Section 3.2. In order to estimate the
$\begin{array}{ll}\text { Table } 4.1 & \begin{array}{l}\text { Confıdence-mnterval half-widths, } \\ \text { for } \alpha=.05\end{array} \\ \frac{p(1-p)}{N} \\ z_{\alpha / 2}\end{array}$,

Number of	sımulations, N	Hat probabılıty, p		
		0.1	0.25	0.5
	128	. 0520	. 0750	. 0866
	256	. 0367	. 0530	. 0613
	512	. 0260	. 0375	. 0433
	1.024	. 0184	. 0255	. 0306
	2048	. 0130	. 0187	. 0216
	4096	. 00919	. 0133	. 0153
	8192	. 00649	. 00915	. 0108

Fig. 4.5 A flow diagram for the optimazation algorithm.

Fig. 4.5-- Contanued A flow diagram for the optimization

Fig. 4.5-- Continued A flow diagram for the optimazation

Fig. 4.5-- $\frac{\text { Continued }}{\text { algorithm. A flow diagram for the optimization }}$
hit probabılity for the final optimal parametexs within approximately $\pm .01$ for the worst case of $p_{0}=0.5$, the maximum number of simulations per estimate ($\mathrm{N}_{\max }$ in Fig. 4.5) was chosen as 8192.

In order to find a reasomable startang point for
the creeping random algorıthm, an anltıal pure-random search is provided. The criterion function is estimated at some specifled number of polnts chosen from a distrabution which as unnform over the entıre parameter space. The point wath the largest estimate of the function is returned for use as a starting point for the creeping random search Alternatively, the operator may specify any startang point hamself.

An optimization study involving searches from several startang points, each requirıng five to ten manutes, may take an hour or more of computing time in spite of the fast analog computatıons. In this case, up to two million computer runs could be made. For this reason, malfunction or drift of an analog computer component should be detected before a large amount of spurlous data is collected. For this purpose a "benchmark test" is included in the optimization program. Upon loading the program and begannang an optimization, the criterion function is measured at a point $\left(\mu_{B}, \underline{\sigma}_{B}\right)$. Durıng subsequent optimızations, the program periodically returns to the same point and reevaluates the criterion function. If an estimate $\bar{f}\left(\underline{\mu}_{B}, \underline{\sigma}_{B}\right)$ differs from
the original measurement by an amount which causes the rejection of the hypothesis that the crıterion function is unchanged, the operator $2 s$ notified by a message on a cathode-ray-tube display console (CRT), as shown in Fig. 4.6. For the benchmark tests, 8192 simulations are used to estimate the criterion function. Let \bar{f}_{1} be the estimate of the hat probability p_{1} at the initial benchmark evaluation, and let $\overline{\mathrm{f}}_{2}$ and p_{2} be the estimate and the hit probability at some later test. We want to test the hypothesus $H_{0}: p_{1}=p_{2}=p \cdot \bar{f}_{1}$ and \bar{f}_{2} are approximately Gaussian with mean p_{1} and varıance $p_{1}\left(1-p_{1}\right) / n$, for $I=1,2$ and $n=8192$. Under the hypothesis H_{0}, the distrabution of $\overline{\mathrm{f}}_{1}-\overline{\mathrm{f}}_{2}$ is approximately Gaussian with zero mean and variance $2 p(1-p) / n$, and the followng probabılıty statement applies:

$$
\begin{equation*}
P\left[\left|\overline{\mathrm{f}}_{1}-\overline{\mathrm{f}}_{2}\right| \leq \sqrt{\frac{2 p(1-p)}{-n}} z_{\alpha / 2}\right]=1-\alpha . \tag{4.5}
\end{equation*}
$$

Since p as unknorin, the variance $2 p(1-p) / n$ is replaced by the sample varzance.

$$
\begin{equation*}
P\left[\left|\vec{f}_{1}-\bar{f}_{2}\right| \leq \sqrt{\frac{\overline{\mathrm{F}}_{1}\left(1-\overline{\mathrm{f}}_{1}\right)+\overline{\mathrm{f}}_{2}\left(1-\overline{\mathrm{f}}_{2}\right)}{n}} z_{\alpha / 2}\right]=1-\alpha \tag{4.6}
\end{equation*}
$$

(The new statistic has a Student-t distribution, but is approximately Gaussian for large n.) Equation (4.6) is used to test the hypothesis H_{o} at the 0.95 level of significance.

Fig. 4.6 CRT output for a benchmark test fazlure.
4.4 Operation of the Optimization Program

This section briefly describes the procedure for
performang an optimization and the facilaty for operatorprogram intexaction.

The differential equations for the simulation are patched on ASTRAC-II's analog and digital patchbays. ASTRAC-II 1s placed $1 n$ the SINGLE RUN mode, whach allows for inataation of compute periods on command from the PDP-9 by way of the lankage patchbay.

After the digital program is loaded from magnetac tape into core memory, the program enters a "command mode," and the followang andex is dusplayed on the CRT.

1. Read input data
2. Display input data
3. Began optimızation

The operator can select the desired mode of operation by typang the corresponding andex number on the CRT keyboard. Typing a "l" results in a display of an andex to the program varıables which must be assigned values by the operator:
l. M, the number of system parameters.
2. MODE, a number specifying one of three operating modes: O--a single evaluation of the crıterion function for specified parameter values; I--the creeping-random-search algorathm; 2--the unaformrandom search.
3. NSHIFT, a number specifying the anttial searchrange for the creeping-random search.
4. MAXS, a number specifyang the minimum search-range for che creeping-random search.
5. NRAN, the number of criterion function evaluations for the unnform-random search.
6. LF, the number of consecutive falluxes allowed in the 1 nitial search (Fıg. 4.5) .
7. KF, the number of consecutıve faxlures allowed in the final search (FIg. 4.5).
8. N, the number of ASTRAC-II runs per function evaluation for trial steps.
9. MAXN, the maxımum number of runs per function evaluation in the final search (Fig. 4.5).
10. NPRTNT, the number of trial steps between CRT printouts of the progress of the optimızation.
11. PMIN(I), PMAX(I), the mınimum and maximum allowable values for the system parameters $\left(a_{1}\right.$ and b_{1} in Eq. [3.5]).

SLIM(I), the lower bound on the percentage standard deviatzons of the parameters (c_{1} un Eq. [3.6]).
12. $U(I), S(I)$, unıtıal values of μ_{1} and σ_{1}.
13. UB(I), $S B(I)$, values for the "benchmark" parameters. Displayed on the CRT screen below the index is a request for the operator to type the number correspondang to the anput varıable he wishes to enter. When the number is
typed, the screen is cleared, and the input varıable name followed by an "equal" sugn is dasplayed. The operator then types an the value for the \quad nput varıable. When the value is read by the computer, the input data index is displayed agazn. After the $u n p u t$ data have been entered, the operator may return to the command mode by typung a special-code $S(\uparrow S)$. For verıfıcataon of the anput data. the operator can type a "2" while in command mode to obtann a CRT dusplay of the data. Typing a "3" in the command mode inftıates an optımization according to the specified value of MODE (No. 2 above).

As the optimizatıon proceeds, the CRT dasplays the number of steps taken, the number of these steps resulting In an amprovement of the criterion function, and the parameter values and criterion function value at the current optımal point (Fıg. 4.7). A summary of the optimızation 1. s dısplayed upon completzon (Fıg. 4.7).

The operator can affect the course of the optimization by communicating wath the algorithm through accumulator swatches. Whale the search proceeds, he can control the search range, hold any parameters constant while the program contanues to optamaze wath respect to the other parameters, suppress the fallure counters (K or L) in order to remain un one part of the search, request any CRT output duplicated in hard copy by a Teletype, or request a texminatıon of the search. This kind of algorathm-operator

a. Inztial search.

b. Beganning of the final search.

Fag. 4.7 CRT displays during the optamazation.

c. End of the search.

Fig. 4.7--Continued
interaction can provide the engineer with insught into the behavior of the system and mıght enable him to speed the search for the optimum.

In the inverest of execution speed, the programs for estimating the criterion function and for the optimization were written in MACRO-9, the PDP-9 assembly language. Input-output routines were programmed in FORTRAN. The program-interrupt facılıty enables efficıent use of computang tame by allowang the dagatal computer to perform computations durang ASTRAC-II's compute perıod. While one simulation is under way, the PDP-9 averages the results of the previous simulation and selects the random parameter values and anıtıal conditions for the next simulation.

4.5 Experiments and Results

Contours of constant hat probabalıty are shown an
Figs. 4.8 and 4.9. Results are expressed in terms of scaled parameter values, $K^{\prime}=K / 6$. and $T^{\prime}=T / I \cdot 3$, which are in the range (0,1). In Fig. 4.8 , contours are plotted as a function of the scaled parameter mean values for $\sigma_{K}{ }^{\prime}=\sigma_{\tau},=0$. The maxımum hit probabılıty, $p_{0} \approx .750$, occurs at approxımately $\left(\mu_{K}, \mu_{\tau}, \sigma_{K}:, \sigma_{\tau}\right)=(0.42,0.22$, $0.0,0.0)$. In Fig. 4.9, the contours are plotted aganst the dispersions σ_{K}, and σ_{τ}, for $\mu_{K},=0.42$ and $\mu_{\tau},=0.22$. For the optimal parameter values, Fig. 4.10 shows sample trajectories wath and wathout the radar-tracking nozse.

Fig. 4.8 Contours of constant hat probabilıty as a function of μ_{K}, and μ_{T}, (mean values of unknown parameters).

Fig. 4.9 Contours of constant hit probabilıty as a function of σ_{K}, and σ_{τ}, (dispersions of unknown parameters).

b. Trajectories wathout nolse.

Vertacal: massale position normal to line of sight, $y / 400$, I volt/cm; horizontal: problem time, $t^{\prime}, 0.2 \mathrm{msec} / \mathrm{cm}$.

Fig. 4.lo The effect of radax-tracking noise on the missile trajectories.

In order to study the effectaveness of the optimizatıon strategy, searches were begun from preselected starting points as well as from pounts chosen by the pure-random search. The results of these searches are summarızed in Tables $4.2-4.5$. Wıth $N_{\text {max }}=8192$, a 95% confidence-interval half-width for the hit-probability estimate is approximately $\pm .01$. Thus, for optimızations wathout constraints on σ_{K} or σ_{τ}, searches yielding an "optimal" point with $\bar{f}<.74$ are considered fallures. An asterisk precedes the data for these searches.

Searches were begun from the point ($\mu_{K_{1}}, \mu_{\tau_{1}}$, $\left.\sigma_{K}, \sigma_{T},\right)=(0.9,0.6,0.0,0.2)$ wב.th $L F=20$ and $K F=40 \mathrm{ln}$ order to study the behavior of the algorıthm as a function of N, the number of simulations used to estimate p at trial points (Table 4.2).

This starting point is in a region where the gradient of the criterion function $1 s$ small; nolse in the estimates of the hit probability can easily obscure the gradient. Note that for the successful searches, the ranges of the final values of μ_{τ}, and σ_{T}, are much larger than the ranges of μ_{K}, and σ_{K}. . Thas behavior as to be expected from the shape of the contours in Figs. 4.8 and 4.9. In general, as N decreases, so do the average number of simulations and the computer time per optamızation while the number of unsuccessful searches increases. An excepthon us the case of $N=64$, where the average numbex of

Table 4.2 Data for automatic optamizations from the $\left.\begin{array}{l}\text { starting poınt }\left(\mu_{K}, \mu_{\tau}, \sigma_{K}, \sigma_{\tau}\right) \\ 0.2)\end{array}\right)=(0.9,0.6,0.0$, 0.2).

$$
L F=20 \quad \mathrm{KF}=40 \quad \mathrm{~N}_{0}=4096 \quad \mathrm{~N}_{\max }=8192
$$

N	\bar{f}_{0}	μ_{K},	μ_{τ},	σ_{K},	σ_{τ},	$\begin{aligned} & \text { Trıal } \\ & \text { steps } \end{aligned}$	$\begin{aligned} & \text { ASTRAC-II } \\ & \text { runs } \end{aligned}$
64	.741	. 450	. 169	. 005	. 067	174	234000
	. 750	. 421	. 253	. 028	. 128	187	177000
	. 744	. 406	. 268	. 015	. 172	174	213000
	*. 715	. 429	. 371	. 024	. 038	146	133000
,	*. 739	. 438	. 217	. 010	. 227	151	248000
	*. 706	. 431	. 393	. 023	. 234	117	119000
	*.716	. 412	. 367	. 011	. 148	161	237000
	.742	. 421	. 265	. 014	. 121	208	375000
					Average:	165	217000
Average tume $=7 \mathrm{~min} 23 \mathrm{sec} \quad$ der							
128	.748	. 407	. 212	. 014	. 010	240	267000
	*.707	. 428	. 440	. 006	. 120	157	118000
	. 751	. 427	. 259	. 020	. 111	132	136000
	*. 672	. 457	. 784	. 010	. 073	115	117000
	*. 738	. 427	. 247	. 029	. 130	148	165000
	*.733	. 424	. 300	. 017	. 066	127	135000
	. 754	. 422	. 203	. 011	. 113	174	120000
	*. 688	. 436	. 513	. 026	.193	1.52	105000
					Average:	156	145000
Average time $=5 \mathrm{man} 0 \mathrm{sec}$							
256	. 752	. 425	. 239	. 019	. 054	167	189000
	. 747	. 431	. 269	. 003	. 020	173	211000
	*.721	. 424	. 393	. 024	. 034	149	176000
	. 740	. 420	. 277	. 035	-142	140	109000
	*.719	. 429	. 367	. 029	. 220	119	117000
	*.705	. 419	. 402	. 018	. 151	142	114000
	. 756	. 422	.194	. 005	. 056	229	345000
	. 748	. 413	. 226	. 040	. 109	195	497000
					Average:	140	198000

Average time $=6 \mathrm{mmn} 36 \mathrm{sec}$

Table 4.2-Continued

$512 \begin{array}{ll} \\ & \\ & *\end{array}$. 416	. 208	. 039	. 077	210	216000
	. 4111	. 245	. 015	. 145	162	212000
	. 424	. 504	. 004	. 061	120	146000
	. 413	. 317	. 009	. 296	141	182000
	. 435	. 209	. 021	. 152	222	229000
	. 421	. 214	. 009	. 043	202	220000
	. 422	. 254	. 026	. 121	154	183000
	. 437	. 214	. 046	. 020	159	165000
				Average:	171	185000
Average time $=6 \mathrm{man} 20 \mathrm{sec}$						
$1024 \begin{array}{rl} \\ & .745 \\ & .747 \\ & .739 \\ * & .732 \\ & .745 \\ & .758 \\ & .740 \\ & .743\end{array}$. 425	. 286	. 028	. 052	111	152000
	. 435	. 199	. 017	. 112	137	186000
	. 421	. 282	. 028	. 195	125	201000
	. 422	. 309	. 028	. 169	169	304000
	. 426	. 307	. 007	. 176	226	393000
	. 414	. 245	. 010	. 034	238	359000
	. 41.2	. 189	. 009	. 198	125	200000
	. 421	. 323	. 020	. 166	169	230000
				Average:	162	246000
Average time $=8 \mathrm{~min} 23 \mathrm{sec}$						
$\begin{array}{r}2048 \\ \\ \\ \\ * \\ * \\ .76151 \\ \\ \\ \hline .756\end{array}$. 419	. 305	. 003	. 223	257	650000
	. 422	. 267	. 002	. 065	133	331000
	. 424	. 363	. 005	. 298	112	237000
	. 420	. 231	:002	. 075	$\underline{209}$	424000
				Average.	178	447000
Average time $=15 \mathrm{man} 3 \mathrm{sec}$						

simulatıons and computer tame ancreases. This $1 s$ caused by the relatıvely large variance in the estimates of hat probability for trial steps in the final search. The "nolsy" estımates lead to many false indications of amprovements an the hat probabılaty; each andication of an umprovement is followed by a reevaluation requiring many simulations. From the data of Table 4.2, It was decided that the best compromise between performance of the algorathm and computex time occurred for $N=512$. This value was used for the remander of the study.

Table 4.3 shows results for searches begun from the point $\left(\mu_{K}, \mu_{\tau}, \sigma_{K}, \sigma_{\tau},\right)=(0.5,0.9,0.3,0.0)$. Th1s is a particularly difficult startang poant, because here the search must clumb a narrow ridge, whıch has steep sides and a very small slope in the direction or the optimum. In order to have the search reach the optamum, it was necessary to increase LF and KF, the number of consecutive failures allowed in the inatial and final searches.

To illustrate a more practical method for locating the optimum, the algorithm was next started from the best point chosen from the pure-random search descrabed above. Estimates of p based on 512 simulations were calculated for 45 random points. Data for the creeping random searches are llsted in Table 4.4. Note that the two unsuccessful searches stopped at poants on the ridge.

Table 4.3 Data for automatic optamizatıons from the starting point $\left(\mu_{K}, \mu_{\tau},, \sigma_{K}, \sigma_{\tau}\right)=(0.5,0.95$, $0.3,0.0$).

$$
N=512 \quad N_{0}=4096 \quad N_{\max }=8192
$$

	$\bar{f}_{\text {o }}$	μ_{K},	μ_{τ}	σ_{K} '	σ_{T};	Trial steps	$\begin{aligned} & \text { ASTRAC-II } \\ & \text { runs } \end{aligned}$
$\begin{aligned} & \mathrm{LF}=20 \\ & \mathrm{KF}=40 \end{aligned}$							
	*. 694	. 421	. 519	. 004	. 107	133	117000
	*. 698	. 415	. 497	. 019	. 030	140	161000
	*.681	. 447	. 706	. 026	. 059	129	131000
- *	*.683	. 449	. 675	. 015	. 046	139	155000
					Average:	135	147000
Average time $=5 \mathrm{man} 4 \mathrm{sec}$							
$\mathrm{LF}=40$							
$\mathrm{KF}=40$							
	. 751	. 419	. 222	. 010	.173	215	249000
	*.720	. 430	. 434	. 005	. 243	144	142000
	. 753	. 409	. 245	. 022	. 01.6	187	208000
	*.725	. 434	. 374	. 001	. 215	$\underline{204}$	171000
					Average:	- 187	197000
Average time $=6 \mathrm{mmn} 35 \mathrm{sec}$							
$\mathrm{LF}=60$							
$\mathrm{KF}=30$							
	*. 739	. 41.9	. 255	. 025	. 268	187	224000
	. 764	. 427	. 209	. 005	. 005	294	287000
	*. 684	. 460	. 752	. 003	. 043	202	205000
	. 762	. 415	. 239	. 013	. 044	160	1. 40000
	*.705	. 424	. 51.1	. 025	. 004	$\underline{265}$	238000
					Average:	: 222	219000
Average tame $=7 \mathrm{mzn} 28 \mathrm{sec}$							

Table 4.4 Data for automatic optimizations from starting pounts chosen by the pure-random search.

$$
\mathrm{LF}=20 \quad \mathrm{KF}=40 \quad \mathrm{~N}=512 \quad \mathrm{~N}_{\mathrm{o}}=4096 \quad \mathrm{~N}_{\max }=8192
$$

\bar{f}_{0}	μ_{K},	$\mu_{\text {T }}{ }^{\text {, }}$	$\sigma_{K}{ }^{\text {' }}$	$\sigma_{\tau}{ }^{\prime}$	Trial steps	$\begin{aligned} & \text { ASTRAC-II } \\ & \text { runs } \end{aligned}$
. 748	. 420	. 223	. 048	. 003	121	143000
*.721	. 424	. 423	. 014	.165	112	129000
. 754	. 419	. 205	. 001	. 048	123	175000
. 747	. 432	. 201	. 019	. 143	111	160000
. 747	. 416	. 187	. 002	. 022	154	165000
. 756	. 422	. 223	. 012	. 138	213	266000
*.723	. 425	. 381	. 001	. 258	147	163000
. 753	. 424	. 228	. 014	. 106	181	255000
				Average:	143	172000
Average time $=5 \mathrm{~min} 55 \mathrm{sec}$						

A pure-random search followed by the creeping-random-search algorıthm was applied to optimizations wath lower-bound constraints on σ_{K}, and σ_{τ}, (Table 4.5). Thas is intended to model a situation where it is known that holding production tolerances below a certann level is very difficult and/or costly. Note that a lower bound on σ_{K}, causes an increase in the optimal mean value μ_{K}. For the case of $\sigma_{K}, \geq .2$ and $\sigma_{T^{\prime}} \geq .2$, the maximum hit probabılaty appears to be about 0.625 . This should be compared with a value of 0.600 for the poant $\left(\mu_{K},, \mu_{\tau}, \sigma_{K}, \sigma_{\tau},\right)=(0.42,0.22$, 0.2,0.2) an Fig. 4.9.

Optimazations wexe performed with several other combinations of lower-bound constraints on σ_{K}, and σ_{T}, as well as with equalıty constraints on σ_{K}, and σ_{τ}, In no case, however, was it observed that increasing σ_{K}, or σ_{T}, resulted in an increase in the hit probability. It is belaeved that McGhee and Levine's observation of the hit probabilıty uncreasing as σ_{K}, is increased is a result of holding μ_{K}, and μ_{T}, constant, instead of locatang new optimal values.

From the results for this example problem, it could be concluded that production variations in the gain K wall have a signifacant effect on the hit probability, while large variations in T degrade the performance only slightly. Also, for lower bounds on σ_{K}, and σ_{τ}, the mean value μ_{K}, must be increased to obtann optimal performance. Note that

Table 4.5 Data for automatic optimizations with lower bound constraints on σ_{K}, and σ_{T},

$$
\mathrm{LF}=20 \quad \mathrm{KF}=40 \quad \mathrm{~N}=51.2 \quad \mathrm{~N}_{\mathrm{O}}=4096 \quad \mathrm{~N}_{\text {max }}=8192
$$

	\bar{f}_{0}	μ_{K},	μ_{T},	σ_{K} t	σ_{τ},	Trial steps	$\begin{aligned} & \text { ASTRAC-II } \\ & \text { runs } \end{aligned}$
$\sigma_{\mathrm{K}} \geq 0.1$							
	. 700	. 441	. 268	. 113	. 243	120	164000
	. 708	. 473	. 172	. 101	. 004	150	232000
	. 707	. 432	. 282	. 101	. 043	131.	179000
	.706	. 457	. 187	. 104	.094	148	198000
					Average:	137	193000
Average tame $=6 \mathrm{mmn} 26 \mathrm{sec}$							
$\sigma_{K} \geq .2$							
$\sigma_{T} \geq$. 2	670°						
	. 610	. 458	. 174	. 217	. 233	123	154000
	. 613	. 479	. 182	. 208	. 297	115	176000
	. 623	. 461	. 206	. 206	. 236	149	195000
	.618	. 488	. 228	. 208	. 248	149	191000
	. 628	. 487	. 194	. 203	. 222	J. 75	224000
	. 624	. 501	. 221	. 205	. 200	125	198000
	. 631	. 451	. 186	. 205	. 212	158	212000
	. 631	. 456	. 187	. 201	. 251	199	215000
					Average:	149	191000
Average tame $=6 \mathrm{man} 32 \mathrm{sec}$							

thas latter effect us revealed by the simulation of relatively laxge random varıations in K; it would not be predicted from a small perturbation analysis.

CHAPTER 5

CONCLUSIONTS AND DISCUSSION

Abstract

In spite of the very large number of system simulations required for the optimazation of the example problem, it is belleved that thas hybrid-computer approach to the optimization of systems with random parameters is a feasable one $1 f$ a fast digitally controlled analog computer ıs avaılable. Certannly, the large number of simulatıons demonstrates that an all-dıgıtal optımızatıon of a dynamical system with random parameters by the Monte Carlo method would be mmpractacal at thas time.

It maght be noted that the type of criterion function optimızed in the example (a probability) is one requiring a very large number of simulations in order to obtaın a reasonable criterıon-functıon estimate. For example, $\neq f$ the hıt probabılıty is 0.5 , our estımate 15 approximately Gaussian with mean 0.5 and standard deviation $1 / 2 \sqrt{n}$, where n is the number of simulations used for the estimate of p. Then 100 simulations are required just to obtain an estimate with a standard deviation which is 10% of the mean. Criterion-function measurements for other types of problems may well have a more favorable slgnal-tonoise ratio.

With a computing speed of approximately 500 simulatıons pex second, typucal optimxzation times were on the order of 6-7 mınutes for the 4 -parameter example problem Simulated on ASTRAC-II. For a commercially-avallable machine capable of about 200 simulatıons per second, a typical optimization time of about 16 manutes does not appear prohibltave. The results of Schumer and Steaglitz (1968) Indicate that function evaluations (and computer tame) should be expected to increase lunearly as a function of the dimension of the parameter space.

The data presented an Chapter 4 were for completely automatic optimızation in order to evaluate the effectaveness of the search algorithm. Operator-program interaction can save much computer time and provide more ansight into the nature of the system. The automatic search is, horvever, the most important factor an devising an effective optimization system.

Parameter optimazation an the presence of noise is surely an area requiring furthex research. The creeping-random-search algorithm described here is effectave but wants umprovement. The addution of a scheme for buasing the search in the durection of past successful steps should speed the progress along a ridge (Mytchell, 1964; Matyas, 1965, Rastrigin, 1967).

Two other approaches to "nousy" parameter optimızation maght be anvestıgated. The digital computer is idle
for much of the time during the antegration of the differential equations on the analog machine. For the problem solved here, some of this time was used to generate parameter values for the next simulation. The opportunity for using this "ıdle tame" would be increased with commercially-avaılable hybrid computers, which have analog machines with slower computing speeds than ASTRAC-II and, typically, faster floatang-point arıthmetic than the PDP-9. Durang this time, the digatal machine maght make use of previous criterıon-function measurements an order to fit a second-order regression surface to the criterion function, as brıefly descrıbed \ln Section 2.4. If a measurement of the criterion function at the manimum point of the regression surface $1 s$ an amprovement over the current best point obtained by the creepung random search, the center of the search could be placed at the new polnt. Computing the regression surface and solving for the mınimum point would, practically speaking, require floating-point computatıons. Another possible approach to optimuzing noxsy criterion functions is to combine the conjugate-gradient algorithm of Powell (1964) or Zangrill (1967) wath a stochastıc-approximation method for the one-dimensional. minimlzatuons. It may not be necessary to locate the manima along the search durections whth great accuracy; Harkins (1964) has noted that wath the Partan method,
convergence could be improved by inaccuracies an determanung these minuma.

APPENDIX A

THE EFFECTS OF LIMIJTING A GAUSSIAN RANDOM VARIABLE

Let the random variable X be Gaussian wath mean μ and variance σ^{2}. The distribution function for X is given by

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(z) d z \\
& =\int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-(z-\mu)^{2} / 2 \sigma^{2}\right] d z
\end{aligned}
$$

We "lımıt" the random varıable X at $+r \sigma$ and at $\pm r \sigma(x>0)$ and show how the mean and variance of X are changed by these two limıtang operations.
A.1 Limıting at $+r \sigma$

Wathout loss of generalaty, we can assume $\mu=0$.
Let the new random variable U be given by

$$
\begin{aligned}
& X=\begin{array}{l}
\text { for } X \leq r \sigma \\
r \sigma \\
\text { for } X>r \sigma
\end{array}
\end{aligned}
$$

The distribution function for U is given by

$$
F(u) \text { for } u<r \sigma
$$

$$
G(u)=
$$

$$
1 \quad \text { for } u \geq r \sigma
$$

The expected value of U us

$$
\begin{align*}
E\{U\} & =\int_{-\infty}^{\infty} u d G(u) \\
& =\int_{-\infty}^{r \sigma} u f(u) d u+r \sigma \int_{r \sigma}^{\infty} f(u) d u \\
& =\frac{-\sigma \exp \left(-r^{2} / 2\right)}{\sqrt{2 \pi}}+r \sigma \int_{r \sigma}^{\infty} f(u) d u \tag{A.1}
\end{align*}
$$

The variance of U is

$$
\begin{aligned}
\operatorname{Var}\{U\} & =E\left\{(U-E\{U\})^{2}\right\} \\
& =E\left\{U^{2}\right\}-[E\{U\}]^{2} \\
& =\int_{-\infty}^{r \sigma} u^{2} f(u) d u+(r \sigma)^{2} \int_{r \sigma}^{\infty} f(u) d u-[E\{U\}]^{2}
\end{aligned}
$$

A. 2 Limxting at $\pm r o$

Again we assume $\mu=0$. Let V be gaven by

$$
V=\begin{aligned}
& -r \sigma \text { for } X<-r \sigma \\
& \mathrm{X} \text { for }-r \sigma \leq X \leq r \sigma \\
& r \sigma \text { for } X>r \sigma
\end{aligned}
$$

The distrabution function for V is given by

$$
H(v)=\quad \begin{aligned}
& 0 \text { for } v<-r \sigma \\
& \mathrm{~F}(\mathrm{v}) \text { for }-r \sigma \leq \mathrm{v}<\mathrm{r} \sigma \\
& 1 \text { for } \mathrm{v} \geq r \sigma
\end{aligned}
$$

Since the limatang operation u s symmetric about the mean,

$$
\begin{equation*}
E\{V\}=E\{X\} \tag{A.3}
\end{equation*}
$$

The variance of V is

$$
\begin{align*}
& \operatorname{Var}\{v\}=E\left\{v^{2}\right\}-[E\{v\}]^{2} \\
&=E\left\{v^{2}\right\} \\
&=(r \sigma)^{2} \int_{-\infty}^{-r \sigma} f(v) d v+\int_{-r \sigma}^{r} v^{2} f(v) d v+(r \sigma)^{2} \int_{r \sigma}^{\infty} f(v) d v \\
&= \int_{-r \sigma}^{r \sigma} v^{2} f(v) d v+2(r \sigma)^{2} \int_{r \sigma}^{\infty} f(v) d v \\
&= \sigma^{2}\left\{I+2\left[\left(r^{2}-1\right) \int_{r \sigma}^{\infty} f(v) d v-\frac{r \exp \left(-r^{2} / 2\right)}{\sqrt{2 \pi}}\right]\right\} \tag{A.4}
\end{align*}
$$

Equations (A.I)-(A.4) give the means and variances of the lamıted random variables U and V as functions of r and σ. Table 3.1 lists the numerıcal values for $r=1,2$, 3 , and 4.

REFERENCES

Adams, R. J., and A. Y. Lew
1966 "Modıfıed Sequentıal Random Search Using a Hybrid Computer, "University of Southern Calıfornia, Electrical Engineering Department Report, May, 1966.

Beckman, F. S.
1960 "The Solution of Lanear Equations by the Conjugate Gradient Method, " Mathematıcal Methods for Digital Computers, A. Ralston and H. F. Wilf (Eds.), Waley, New York, 1960.

Bekey, G. A.
1964 "Optimization of Multiparameter Systems by Hybrid Computer Techniques, "Simulation, vol. 3 , no. 2 and no. 3, 1964.

Bekey, G. A., and W. J. Karplus
1968 Hybrad Computatıon, Wıley, New York, 1968.
Bekey, G. A., and R. B. McGhee
1964 "Gradient Methods for the Optamızation of Dynamac System Paxameters by Hybrad Computation, "Computing Methods in Optimazation Problems, A. V. Balakrishnan and L..W. Neustadt (Eds.), Academıc, New York, 1964.

Bekey, G. A., M. H. Gran, A. E. Sabroff, and A. Wong
1966 "Parameter Optimazation by Random Search Using Hybrid Computer Technaques," AFIPS Conference Proceedings, vol. 29, 1966.

Belt, J. E.
1969 "A Random Nolse Generator for a Digutal Computer, " M.S. Thesis, Department of Electrical Enguneering, University of Arızona, 1969.

Birta, L. G., and P. J. Trushel
1969 "A Comparative Study of Four Implementations of a Dynamıc Optimization Scheme," Simulation, vol. 13, no. 2, 1969.

Blum, J. R.
1952 MMultıdımensional Stochastic Approximation -
Methods," Annals of Mathematical Statistics,
vol. 23, pp. 462-466, 1952.
Bohling, D., and J. Chernak
1965 "A Hybrid Computer Technzque for Optimization, " Simulation, vol. 5, no. 4, 1965.

Bohling, D., and L. A. O'Neall
1970 "An Interactuve Approach to Tolerance Analysus," IEEE-TC, vol. C-19, no. 1, 1970.

Box, M. J.
1965 "A New Method of Constraıned Optimization and a Comparison with Other Methods," The Computer Journal, vol. 8, no. l, 1.965.

1966 "A Comparison of Several Current Optimazation Methods, and the Use of Transformations in. Constrained Problems," The Computer Journal, vol. 9, no. $1,1966$.

Brooks, S. H.
1958 "A Discussion of Random Methods for Seeking Maxima," The Computer Journal, vol. 6, no. 2, 1958.

Brooks, S. H., and M. R. Mackey
1961 "Optimum Estimation of Gradient Direction an Steepest Ascent Experıments," Byometrics, vol. l7, no. I, l961.

Buehler, R. J., B. V. Shah, and O. Kempthorne
1964 "Methods of Parallel Tangents," Optimization Technıques, Chemıcal Engıneering Progress Symposium Serıes, vol. 60, 1964.

Carlson, A. M.
1967 "A Partan Optimızation Program," PCC Report, Princeton Computation Center, Electronics Assoclates, Inc., Princeton, New Jersey, August 18, 1967.

Carnahan, B.
1966 "Optimization Methods--A Review and Some Example Applıcatıons," Computers in Engıneerıng Design Education, Unıversity of Michıgan, March, 1966.

Carroll, C. W.
1961 "The Created Response Surface Technique for Optimizing Nonlunear Restrazned Systems," Operations Research, vol. 9, no. 2, 1961.

Chang, S. S. L.
1961 Synthesis of Optimum Control Systems, McGrawHyll, 1961 .

Davidon, W. C.
1959 "Varıable Metrıc Method for Minımızation," AEC Research and Development Report Anl-5990, December, 1959.

Deardorff, J. E., and C. R. Trimble
1968 "Calıbrated Real-Tıme Signal Averagıng," Hewlett-Packard Journal, April, 1968.

Dvoretsky, A.
1956 "On Stochastic Approximation," Proceedings Third Berkeley Symposium on Mathematical Statistics and Probabilıty, J. Neyman (Ed.), Universıty of Calıfornia Press, 1956.

Favreau, R. R., and R. G. Franks
1958 "Statıstıcal Optimızation," Proceedings Second Internatıonal Analog Computer Conference, 1958.

Fiacco, A. V., and G. P. McCormack
1964 "Computational Algorithm for the Sequential Unconstrained Minzmazation Technique for Nonlınear Programming, "Management Scıence, vol. 10, pp. 360-366, 1964.

1968 Nonlinear Progxamming: Sequential Unconstrained Minımızatıon Technıques, Wıley, New York, 1968 .

Flezscher, P. E.
1966 "Optimızation Techniques," Chapter 6 in System Analysus by Digutal Computer, F. F. Kuo and J. F. Kaiser (Eds.), Wıley, New York, 1966.

Fletcher, R.
1965 "Function Minımızation without Derıvatıves--A Review, " The Computer Journal, vol. 8, pp. 33-41, 1965 。

Fletcher, R., and M. J. D. Powell
1963 "A Rapidly Convergent Descent Method for Minimızation, " The Computer Journal, vol. 6, no. 2, July, 1963.

Fletcher, R., and C. M. Reeves
1964 "Function Minamazation by Conjugate Gradients," The Computer Journal, vol. 7, pp. 149-154, 1964.

Forsythe, G. E., and T. S. Motzkin
1951 "Acceleration of the Optimum Gradient Method," Bulletin of the American Mathematical Society, vol. 47, pp. 304-315, 1951.

GュIbert, E. G.
1967 "A Selected Bibluography on Parameter Optimization Methods Suıtable for Hybrıd Computatıon," Simulation, vol. 8, no. 6, 1967.

Gonzalez, R. S.
1969 "An Optimızation Study on a Hybrad Computer," M.S. Thesis, Department of Electrical Engıneerung, The Unaversity of Arızona, 1969.

Gurin, L. S., and L. A. Rastrigın
1965 "Convergence of the Random Search Method in the Presence of Noise," Automation and Remote Control, vol. 26, pp.1505-1511, 1965.

Hague, D. S., and C. R. Glatt
1968 "An Introduction to Multivariable Search Technıques for Parameter Optimızation (and Program AESOP), " NASA CR-73200, Aprı1, 1968.

Hahn, G. J., and S. S. Shapıro
1967 Statustical Models In Engıneering, Wiley, New York, 1967.

Hampton, R. L. T.
1968 "Survey of Stochastic Approximation and Its Applications," Term Paper, Department of Electrical Engineering, The Unıversity of Arzzona, January, 1968 .

Harkins, Alvin
1964 "The Use of Parallel Tangents in Optimazation," Optimızatıon Technıques, Chemıcal Engıneering Symposium Series, vol. 60, 1964.
Hestenes, M. R.', and E. Stiefel
1952 "Method of Conjugate Gradients for Solving Linear Systems," Journal of Research, National Bureau of Standards, vol. 59, pp. 409-436, 1952.

Heydt, G. T.
1969 "Random Search Using Hyperconacal Search Regions," Ph. D. Thesis Proposal, Purdue Unıversity, February, 1969.

Hooke, R., and T. A. Jeeves
1958 "Comments on Brooks' Discussion of Random Methods," Operatıons Research, vol. 6, no. 6, 1958.

1961 "Direct Search Solution of Numerical and Statastical Problems," Journal of the Assoczatıon of Computing Machinery, vol. 8, no. 2, 1961.

Huelsman, L. P.
1968 "GOSPEL--A General Optimization Software Package for Electrıcal Network Design," Dept. of Electrical Enganeering, The University of Arızona, 1968.

Janac, Karel
1967 "Parameter Optimization of Dynamic Systems," Presented at the Fifth International Conference AICA, Lausanne, September, 1967.

1969 "Adaptıve Stochastıc Approxımatıons," Electronzc Associates, Inc., Pranceton, New Jersey, 1969.

Karnopp, D. C.
1963 "Random Search Technıques for Optimization Problems," Automatica, vol. I, pp. lll-lil, 1963.

Kavanaugh, W. P., E. C. Stewart, and D. H. Brocker
1968 "Optamal Control of Satellate Attıtude Acquisition by a Random Search Algorithm on a Hybrid Computex," Proceedıngs Sprang Jount Computex Conference, 1968.
Kıefer, J., and J. Wolfowntz
1952 "Stochastıc Estimation of the Maxımum of a Regression Function," Annals of Mathematical Statistics, vol. 23, pp. 462-466, 1952.

Kopp, R. E.
1967 "Computational Algorıthms in Optamal Control," Research Department, Grumman Aırcraft EngineerIng Corp. Bethpage, New York, 1967.

Korn, G. A.
1966 Random-Process Simulation and Measurements, McGraw-Hall, New York, 1966.

1969 "Project DARE Differential Analyzer REplacement by On-lane Digital Simulation, " Proceedangs Fall Joint Computer Conference, 1969 .

Korn, G. A., and T. M. Korn
1964 Electronic Analog and Hybrıd Computers, McGrawHill, New York, 1964 .

1968 Mathematical Handbook for Scientists and Engineers, McGrari-Hı11, New York, 1968 .

Korn, G. A., and H. Kosako
1970 "A Proposed Hybrıd-Computer Method for Functional Optımızation," IEEE-TC, vol. C-19, no. 2, 1970.

Kushner, H. J.
1963 "Hall Climbing Methods for the Optimazation of Multiparameter Noıse Disturbed Systems," Journal of Basuc Engineerıng (Transactions of the ASME), vol. 85, series D, no. 2,1963 .

Lasdon, L. S., S. ${ }^{\circ}$ K. Mitter, and A. D. Waren
1967 "The Conjugate Gradient Method for Optimal Control Problems, " IEEE-TAC, vol. AC-12, no. 2, 1967.

Lavi, A., and T. P. Vogl (Eds.)
$1966 \frac{\text { Recent Advances in Optimazation Technıques }}{\text { Wiley, New York, } 1966 \text {, }}$
Leon, A.
1964 "A Comparison Among Eight Known Optimization Procedures," Internal Working Paper No. 20, Space Sciences Laboratory. University of Calıfornia, Berkeley, August, 1964.

Matyas, J.
1965 "Random Optimization," Automation and Remote Control, vol. 26 , no. $2,1965$.

Maybach, R. L.
1966a "Solution of Optimal Control Problems on a HzghSpeed Analog Computer," Simulation, vol. 7, no. 5, 1966.

Maybach, R. L.
1966b "Generation of Inverse Functions by the Method of Steepest Descent, "Annales de l'Assoclation Internationale pour le Calcul Analogique, vol. VIII, no. 4, 1966.

McGhee, R. B.
1967 "Some Parameter Optimazation Technıques," Chapter 4.8 in Digital Computer User's Handbook, Melvin Klerer and G. A. Korn (Eds.), McGrawHall, 1967.

McGhee, R. B., and A. Levane
1964 "Determanation of Optimum Production Tolerances by Combined Analog-Digatal Computation," Simulation, vol. 3, no. 5, 1964.

Matchell, B. A.
1964 "A Hybrıd Analog-Digital Parameter Optimızer for ASTRAC-II, " Proceedıngs Spring Jount Computer Conference, 1964.

Munson, J. K., and A. I. Rubin
1959 "Optamization by Random Search on the Analog Computer," IRE-TEC, vol. EC-8, no. 2, 1959.

Nelder, J. A., and R. Mead
1965 "A Simplex Method for Function Manamization, " The Computer Journal, vol. 7, no. 4 , 1965.

Pearson, J. D.
1968 "On Varıable Metrac Methods of Minamization, " RAC-TP-302, Research Analysis Corp., McClean, Virganza, May, 1968.

Powell, M. J. D.
1964 "An Efficient Method of Finding the Minimum of a Function of Several Variables Wıthout Calculatıng Derıvatıves, " The Computer Journal, vol. 7, pp. 155-162, 1964.

Rastrıgin, L. A.
1963 "The Convergence of the Random Search Method in the Extremal Control of a Many Parameter System, " Automation and Remote Control, vol. 24, pp. 1337-1342, 1963.

1967 Random Search in Optimization Problems for Multıparameter Systems, Aur Force Systems Command, Foreign Technology Division, August, 1967.

Robbins, H., and S. Munro
1951 "A Stochastic Approximation Method," Annals of Mathematical Statustics, vol. 22, pp. 400-407, 1951 .

Rosen, J. B.
1960 "The Gradient Projection Method for Nonlinear Programmang, Part I, Linear Constraints," SIAM Journal, vol. VIII, no. $1,1960$.

1961 "The Gradient Projection Method for Nonlinear Programmang, Part II, Nonlanear Constrants," SIAM Journal, vol. IX, no. 4, 1961.

Rosenbrock, H. H.
1960 "An Automatic Method for Finding the Greatest or Least Value of a Function," The Computer Journal, vol. 3, no. 3, 1960.

Saaty, T. L., and J. Bram
$1964 \frac{\text { Nonlınear Mathematics, McGraw-Hıll, New York, }}{1964 .}$
Schumer, M. A., and K. Stelglitz
1968 "Adaptıve Step Size Random Search," IEEE-TAC, vol. AC-13, no. 3, 1968.

Shah, B. V., R. J. Buehler, and O. Kempthorne
1964 "Some Algorithms for Minimizang a Function of Several Variables," Journal of SIAM, vol. 12, pp. 74-92, 1964.

Spang, H. A., III
1962 "A Review of Manamızation Techniques for Non-. linear Functions," SIAM Review, vol. 4, no. 4, 1962.

Spendly, W., G. R. Hext, and F. R. Hamsworth
1962 "Sequential Applications of Simplex Designs in Optimızation and Evolutionary Operation," Technometrics, vol. 4, no. 4, 1962.

Stewart, E. C., W. P. Kavanaugh, and D. H. Brocker
1967 "Study of a Global Search Algorithm for Optimal Control," Presented at the Fifth International Congress AICA, Lausanne, 1967.

Swann, W. H.
1964 "Report on the Development of a New Direct Search Method of Optimization," Imperial Chemical Industries Ltd., Central Instrument Laboratory Research Note 64/3, 1964.

Whate, R. C.
1970 "A Fast Digital-Computer Method for Recursive Estimation of the Mean," to be published, IEEE= TC, 1970.

Wilde, D. J.
1964 Optımum Seekıng Methods, Prentace-Hall, Englewood Cliffs, New Jersey, 1964.

Walde, D. J., and C. S. Beaghtler
1967 Foundations of Optimzzation, Prentice-Hall, Englewood Cliffs, New Jersey, 1967.

Zangwill, W. I.
1967 Minimizing a Function Without Calculating Derıvatıves, "The Computer Journal, vol. 10, no. 3, 1967.

