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Abstract – Concentrated solar power (CSP), or solar thermal power, is an ideal technology to 
hybridize with other energy technologies for power generation. CSP shares technology with 
conventional power generation and can be readily integrated with other energy types into a 
synergistic system, which has many potential benefits including increased dispatchability and 
reliability, improved efficiency, reduced capital costs through equipment sharing, and the 
opportunity for flexible operation by alternating between energy sources, which can lead to 
improved overall efficiency through synergy of the different energy sources. Another advantage 
of CSP technology is the ability to readily store via thermal energy storage (TES), making the 
intermittent solar resource dispatchable. A review of CSP hybridization strategies with coal, 
natural gas, biofuels, geothermal, photovoltaic (PV), and wind is given. An overview of different 
configurations for hybridizing CSP with these other energy sources is also provided. Hybridized 
CSP plants present different types and levels of synergy, depending on the hybrid energy source, 
the location of the plant, the CSP technology used, and the plant configuration. Coal, natural gas, 
and biofuel hybrids with CSP present many opportunities to inject solar heat at various 
temperatures. These combustible fuels provide reliability, dispatchability, and flexibility but are 
not entirely renewable solutions (with the exception of biofuels). Geothermal, wind, and PV 
hybrid designs with CSP can be entirely renewable, but lack some of the benefits of hydrocarbon 
fuels. Effective geothermal-CSP hybrid designs require low temperature operation where 
efficiency is limited by the power cycle. Wind-CSP and PVT (photovoltaic/thermal) lack 
dispatchability, but have other advantages. The pursuit of ideal CSP hybrid systems is an 
important research topic as it allows for further development of CSP technologies while 
providing an immediate solution that increases the use of solar power.  
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1. Introduction  
Large-scale integration of solar energy into the electric grid presents some major 

technical challenges. As an intermittent energy source, solar energy requires either energy 
storage or fuel-based backup power so that it can provide dispatchable power (i.e., power that is 
available on demand). Solar photovoltaic (PV) technologies are promising for power generation, 
particularly with falling costs in recent years. However, because of their variable power output, 
widespread adoption of photovoltaics without storage may lead to grid reliability issues [1], 
which means that fast-ramping (and often inefficient) peaking fossil fuel technologies must be 
used as a backup source of power generation [2]. Alternatively, expensive battery technology 
may be used to increase the reliability and dispatchability of the grid.   

Concentrated solar power (CSP) offers specific benefits as a renewable energy source due 
to the ability to readily incorporate energy storage. CSP, also known as solar thermal energy, 
involves heating a working fluid using concentrated sunlight. The heated fluid can then be used 
with conventional power generation equipment (i.e., turbines, generators, etc.) to produce 
electricity. The use of solar heat as an energy source in CSP makes low-cost energy storage 
feasible as heat can be readily stored with thermal energy storage (TES), which requires heating 
of a storage material and containing it in an insulated tank. CSP is also advantageous because of 
its amenability to hybridization. Aside from the thermal energy collection, the balance of a CSP 
plant may use conventional power generation equipment, making it easy to combine with other 
energy sources in ways that are synergistic, including the following:  

• Reduced capital costs by sharing equipment between multiple energy sources  
• Increase in dispatchability by combining renewable energy with dispatchable energy  
• Increase in capacity utilization of power generation equipment  
• Increase in reliability  
• Opportunity for flexible operation  
• Synergies between technologies enhanced by design and operation optimization  

Realizing these benefits requires consideration of the hybrid energy source, hybrid plant 
configuration, solar collector technology selected, location, and many others. Economics and 
technical feasibility play a key role in selecting the best technologies for hybridization [3]. 
Peterseim et al. classified CSP hybrid systems by the synergies with the hybrid energy source. 
Lightly synergistic hybrid systems share minimal infrastructure and the operation of the two 
energy sources are not dependent on each other. Medium hybrid synergies occur when the 
components of the two systems are physically connected and share major equipment (such as a 
steam turbine). In light and medium synergistic systems, the CSP component plays a minor role 
and cannot operate without the hybrid host components to generate power; the hybrid host on the 
other hand, can operate independently of the CSP technology. Generally, these systems have a 
low solar share (the fraction of energy supplied by solar energy) as the solar heating is purely 
supplemental. Strongly synergistic hybrids share major equipment and have a higher solar share, 
making the CSP component more critical to plant operation [4].   

Hybridization can take competing energy technologies and make them complementary. 
However, realizing the benefits of hybridization requires careful consideration of the technical 
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feasibility as well as the economic and environmental benefits of a proposed system. The 
purpose of this review article is to highlight different energy sources with which CSP may be 
hybridized and provide an overview of the possible hybrid configurations, with advantages and 
disadvantages discussed. These energy sources include coal, natural gas, biofuels, geothermal 
energy, solar PV, and wind energy.   

2. Hybridization with Coal  
Hybridization of solar thermal power with coal has many benefits. Coal is an abundant, 

prevalent, and low-cost energy source. It therefore presents many opportunities to retrofit with 
supplemental solar thermal energy. Coal power plants have multiple points for injecting solar 
heat, such as boiler feedwater pre-heating, direct steam generation, boiler air pre-heating, and 
solvent regeneration in post-combustion CO2 removal [5]. Coal also provides a dispatchable fuel 
source to ensure reliability, while solar thermal energy can reduce the plant’s overall CO2 
emissions [6]. Hybridizing with coal can reduce the overall CSP plant cost, with one study 
indicating that a hybrid plant would only be 72% of the cost of a stand-alone solar plant and 
would generate over  25% more electricity [7].   

2.1. Solar Steam Generation  

Perhaps the most obvious choice for integrating solar energy into coal-fired power 
generation is steam generation for a typical Rankine cycle. Zhang et al. explored a dual source 
boiler configuration, where a molten-salt-based power tower is used in parallel with a coal-fired 
boiler to supplement its heat. Their design (shown in Figure 1) showed a relatively low solar 
fraction (defined as the fraction of energy provided to the power cycle by solar) with a maximum 
of 6.11%, but demonstrated high solar-to-electric efficiency of 27.8% [9], whereas a typical 
stand-alone parabolic trough plant may achieve approximately 15-20% efficiency. Boiler steam 
can also be augmented with direct steam generation (where steam is created directly in the solar 
collector) from a linear (parabolic trough or linear Fresnel) or point concentrator (central receiver 
or parabolic dish) system [8]. Using an indirect configuration, with solar heat collected by 
parabolic trough to heat an oil heat transfer fluid, Zhai et al. developed an algorithm to determine 
the best location to deliver solar heat, depending on the amount of energy available at a given 
time. They also conducted a genetic-algorithm-based optimization study to determine the optimal 
design of the plant, including configurations with and without TES. Results showed a tradeoff 
between energy reduction (quantified by coal savings) and cost, indicating that economics still 
favor coal utilization over solar when a reduction in carbon emission is not incentivized [11]. A 
study by Wang et al. explored the use of solar heat augmentation of a coal power plant for 
temperatures ranging from 140 to 391 °C. The steam generation configuration produced steam 
and electricity in parallel to the coal-fired unit at a solar-to-electric efficiency of 22.7%. This 
configuration used a heat transfer fluid (presumably a thermal oil) to provide heat for a steam 
generator via a heat exchanger [12].   
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Figure 1: A dual-source boiler configuration with a molten-salt-based power tower used in parallel with 

coalfired heat to produce steam [9].  

Solar steam generation to augment coal power is a promising method to efficiently extract 
solar energy. The well-developed parabolic trough solar collector technology is typically limited 
to temperatures below 400 °C, which limits the efficiency of the power cycle. By hybridizing 
with coal, solar heat can be collected and used for steam generation at these temperatures, but 
can rely on coal combustion to achieve superheat temperatures in excess of 500 °C to increase 
the steam cycle’s efficiency. One of the technical challenges of this concept is that the addition 
of solar-generated steam to existing coal boilers may cause imbalances in the steam cycle. For 
example, a high percentage of the steam delivered by solar would cause the coal-firing rate to 
decrease and would limit the coal-generated steam. The decrease in coal-firing would result in 
less heat available for superheating. Because of these issues, the solar fractions proposed in the 
literature are generally quite small (less than 10%). Achieving higher solar fractions, therefore, 
will require innovative new designs (such as that shown in Figure 1 [9]) where the location of 
heat delivery in the steam cycle can be changed via the combustion gas bypass, depending on the 
conditions and the amount of solar heat available.   

2.2. Solar-Aided Boiler Feedwater and Air Pre-Heating  
Another means of adding solar heat to a coal plant is by pre-heating the boiler feedwater 

(see Figure 2). Compared to solar steam generation in a solar-coal hybrid, the literature is more 
replete with studies on boiler feedwater preheating. This configuration allows for heat to be 
collected at lower temperatures, which reduces the solar field heat losses that are proportional to 
temperature, and can avoid the use of phase change in the solar collector (direct steam 
generation) or an HTF-to-steam heat exchanger. The use of solar boiler feedwater preheating in a 
coal plant would have the effect of increasing the power output of the plant, as feedwater 
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preheating would likely otherwise be done by extracting valuable steam from the turbines to mix 
with the feedwater, which in turn decreases the power output. This method results in lower 
thermal losses in the collector field by operating it at a lower temperature (near or below 300 °C). 
Coal combustion in the boiler is then used to create superheated steam and ensure a more 
efficient steam cycle. One of the benefits of this configuration is that coal combustion can be 
used to provide system flexibility to help the plant maintain stability under fluctuating solar 
energy availability or transient demand and may not require large storage systems. A study by 
Wu et al. determined that the optimal storage capacity for this configuration was only 0.5 hours 
[13]. Although a short storage duration was deemed optimal in this study, other studies have 
indicated that TES, combined with an oversized solar field, can be used to increase the solar 
fraction of the plant [14].   

Studies on solar-aided boiler feedwater preheating have demonstrated an improved 
solarto-electricity efficiency, when compared to stand-alone plants. An investigation by Zhao et 
al. demonstrated that a boiler feedwater pre-heating configuration resulted in a 21.2% solar-
toelectricity efficiency, as compared to 19.4% in a stand-alone solar thermal plant [15]. Using a 
similar configuration for boiler feedwater preheating with parabolic trough technology, Hong et 
al. reported a similar increase in efficiency, going from 18% in a stand-alone solar plant to 21% 
in a plant hybridized with coal. Hybridization also increased the plant capacity factor slightly 
from 22.3% to 23.8%. Presumably, the capacity factor would be much higher if the plant were 
operated in coal-only mode at night [16]. A later study showed solar-to-electricity efficiency as 
high as 27.3% for the hybrid configuration as compared to 25.9% for a solar-only plant [17], 
although Zhai et al. reported lower solar-to-electric efficiencies of 13.6% in a similar 
configuration [18]. Feng et al. explored direct steam generation for a solar-aided power 
generation system with coal, where the solar-produced steam was combined with turbine 
extraction steam and used for boiler feedwater pre-heating. The study explores injecting the 
steam at different stages of extraction and finds that net solar thermal efficiencies up to 28.5% 
are possible [10].   

Injecting solar heat for boiler feedwater pre-heating can be done at different temperatures 
and pressures. A study by Wang et al. determined that high pressure boiler feedwater heating was 
more efficient at 24.1% (solar-to-electric) than when done at low pressure (11.4%) [12]. The 
highest efficiency reported in the literature for solar-aided boiler feedwater pre-heating was 
40.3% by Yan et al., who explored several different configurations and plant sizes with solar 
acting in both power-boosting or fuel-saving mode [20]. In addition to increasing the efficiency 
and the capacity factor solar levelized cost of electricity (LCOE) can be minimized by optimizing 
the plant design [19]. It should be noted that evaluation methods for determining solar-to-electric 
efficiency and the solar contribution to hybrid solar/coal plants vary, so results should not always 
be taken at face value, but should be examined in the context of the method the authors use for 
determining efficiency and solar contribution [21].   
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Figure 2: A schematic demonstrating the use of a parabolic trough solar field to provide boiler feedwater 

preheating to a coal boiler. Components are labeled as follows: A-Coal-fired boiler; B-High-pressure steam  
turbine; C-Mid-pressure steam turbine; D-Low-pressure steam turbine; E-Generator; F-Condenser; 

GCondensate pump; H-Low-pressure feed-water heater; I-Drain pump; J-Deaerator; K-High-pressure pump;  
L-Valve; M-High-pressure feed-water heater; N-parabolic trough collectors; O-Solar feed-water heater; 

PWater-oil heat exchanger. Available from [22].  

Another boiler preheating concept that has been investigated uses circulating particles to 
collect solar heat at higher temperatures (over 500 °C) in a central receiver configuration. Using 
this heat collection methodology to pre-heat air as an additional heat source in a coal-fired boiler, 
Prosin et al. reported solar-to-electric efficiencies of up to 22.3% when the air is heated to 540 °C 
and recirculated to the receiver [23].   
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Figure 3: Power tower with solid particle receiver concept to pre-heat the boiler air in a solar/coal hybrid 

[23].   

  Both preheating concepts (air and feedwater) can demonstrate higher solar-to-electric 
efficiencies than stand-alone CSP plants. One of the key reasons these concepts are more 
efficient is because they collect solar heat at lower temperatures (thereby reducing heat losses on 
the solar collector), while relying on coal combustion to generate higher temperature heat for 
steam generation and superheating. This reliance limits the solar fraction of the plant, with 
studies indicating a maximum instantaneous solar fraction of 30% (as seen in Table 1) and an 
annual solar fraction generally expected to be much lower than that (absent an oversized solar 
field and a TES system). This concept, therefore, may present an effective method to harvest 
solar energy, but which may be limited in the scale at which it is able to be collected.   

2.3. Solar-Aided Post-Combustion CO2 Capture  

Post-combustion carbon capture processes, if/when developed on a large scale will 
present another opportunity to integrate solar heat into coal power systems. A predominant 
technology in CO2 removal uses an absorber/stripper combination [24]. In this configuration, the 
power plant flue gas is fed to an absorber column where a solvent, normally monoethanolamine 
(MEA) is used to absorb CO2 from the stream. The CO2-rich solvent stream is then sent to a 
stripper column, where heat is used to drive the absorbed CO2 from the liquid, which regenerates 
the solvent so that it can be recycled back to the absorber column [25,26]. Because of the heat 
required to regenerate the solvent, this process requires additional energy, which typically would 
come from extracting steam from the plant’s turbines. This is viewed as an energy penalty to the 
power plant and is estimated to be around 20% of the plant’s total power output [27–30]. Solar 
thermal energy has been identified as a potential source for this heat requirement and has the 
benefit of removing CO2 from the environment using a renewable source of energy. This 
methodology has been proven to be effective, as Wang et al. experimentally demonstrated nearly 
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75% CO2 removal using solar-assisted post-combustion CO2 removal technology [31]. An 
indepth review of solar-assisted carbon capture is given in [32].   

One benefit of using solar thermal heat in the CO2 removal process is that it does not 
require high temperatures. Linear solar energy collection technologies (parabolic trough and 
Fresnel) are generally sufficient. Zhao et al. demonstrated that solar thermal heat at temperatures 
below 300°C can be effectively used for solvent regeneration in post-combustion CO2 removal 
(see Figure 4). The study found that a solar-to-electric efficiency of up to 27% can be achieved, 
using the saved power from the coal plant as a surrogate for power actually generated from the 
solar thermal technology [33]. Wang et al. proposed solar heat collection at 145 °C for solvent 
regeneration in a CO2 removal system. Temperatures that low could also be achieved using a 
non-concentrating, evacuated tube solar collection system [12], which could result in lower 
capital costs.   

Proposing a hybrid system that includes coal, natural gas, and solar thermal, Brodrick et 
al. completed an optimization study that used steam extraction from a natural gas combined cycle 
plant augmented with solar-generated steam to provide heat for solvent regeneration used in 
post-combustion CO2 removal from coal power plant flue gas. They concluded that high natural 
gas prices are required for the inclusion of solar thermal heat to be a viable economic option [34]. 
Carapellucci et al. studied the use of CSP technology to provide an additional energy source for 
CO2 removal from a coal-fired power plant. In their study, a 100 MWe coal plant would require 
65.7 MWth for solvent (MEA) regeneration, which would normally be supplied by extracting 
steam from a turbine, and would result in reduced power consumption of the plant from 100 to 
79.1 MWe. Their study concluded that CSP could supply up to 80% of this parasitic load and 
reduce the heat rate of the plant by 12% [35]. In a techno-economic assessment of solarassisted 
post-combustion carbon capture (SPCC), Qadir et al. determined that a carbon price of 
$44/tonne-CO2 would be required to make SPCC plants economical compared to conventional, 
non-carbon capture plants, with solar fractions of up to 80% being economically feasible in some 
areas under these circumstances [36].   

Thermal energy storage can also be integrated into the carbon capture process to ensure a 
higher solar fraction [37]. An economic and policy study showed that the combination of a 
$25/tonne-CO2 with a $35/MWhe would make this technology economically viable in some areas 
[38]. The economics of this methodology can become quite complex and rely on a number of 
different factors including fuel prices, equipment prices, age of the plant, policy factors, and 
available subsidies [39].   
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Figure 4: Post-combustion CO2 removal from a coal-fired power plant using solar heat [33].  

Another synergistic benefit in using solar thermal heat for CO2 removal is that the 
addition of post-combustion carbon capture technology and solar thermal technology would each 
represent retrofits to existing coal-fired power plants that could be completed simultaneously. 
The addition of this combined technology would presumably have less impact on the existing 
coal plant operation, as it would only need connection to the flue gas stream from the plant. Like 
preheating, solar thermal heat for CO2 removal increases the power output of the plant by 
lessening the need to extract heat from elsewhere (e.g., from the steam turbines) and presents an 
opportunity to utilize lower temperature solar heat.   

2.4. Solar-Aided Coal Gasification with Combined Cycle  

  Integrated gasification combined cycle (IGCC) power plants combine the efficiency 
benefits of a combined cycle power plant with an abundant fuel source in coal. In a gasification 
process, a carbonaceous fuel (coal, petroleum coke, biomass, etc.) undergoes only a partial 
oxidation (unlike full oxidation in a combustion process) by being exposed to a limited amount 
of oxygen in a high-temperature and high-pressure environment. This exothermic reaction 
produces a CO and H2 syngas, which can be used in a variety of ways (e.g., hydrogen production 
[40], chemical production, conversion to liquid fuels via gas-to-liquids process, etc.) [41–43]. In 
the case of IGCC, the syngas is combusted in a gas turbine with the waste heat recovery used to 
run the steam cycle [44]. In addition to the efficiency of using a combined cycle rather than a 
simple steam cycle, IGCC has several other environmental benefits including pre-combustion 
removal of harmful pollutants [45]. Because gasification processes require a heat source that is 
usually provided by partial consumption of the carbonaceous fuel itself, it can be augmented with 
solar thermal power to reduce the fuel consumption and make the process more environmentally 
friendly [37,46–51].    
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Ng and Lipiński performed a thermodynamic analysis of an integrated gasification and 

combined cycle power plant, which was hybridized with solar thermal energy as a heat source 
[52]. Their configuration (shown in Figure 5) uses solar heat in two locations: direct heating of 
the gasification reactor at 1077 °C (by power tower, STR in Figure 5) and steam production in 
the solar steam generator (SSG) at 100 °C (by parabolic trough). Compared to a conventional 
coal-fired Rankine cycle power plant, CO2 emissions are reduced by 47% using this 
configuration. An alternative configuration by Ozturk and Dincer uses a molten-salt-based power 
tower to generate steam for the coal gasifier with the syngas fueling an IGCC [53]. This 
multigeneration system includes syngas storage and simultaneously produces hydrogen, hot 
water, heating and cooling. Shrivastava and Prabu took the concept of solar-augmented coal 
gasification for power production one step further. One of their proposed configurations uses 
solar-generated steam for underground coal gasification. The produced syngas is then burned and 
undergoes heat exchange with a CO2 stream that is used in a super-critical Brayton cycle to 
produce electricity. A separate solar field is used to pre-heat the CO2 stream. Their design uses 
81.5 MW of solar heat compared to 279.3 MW of coal heat. Including an energy penalty for 
carbon capture and storage, the system has a net thermal efficiency of 32.9% [54].   
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Figure 5: Process flow diagram for a solar-assisted integrated gasification and combined cycle process. STR = 

solar thermal reactor (gasifier), HEX = heat exchanger, SSG = solar steam generator, CC = combined cycle 

[52].  
2.5. Summary of Solar/Coal Hybrids  

  The various methods for combining CSP with coal are presented in Table 1, which 
summarizes critical details of some of the studies (those that explicitly contain the majority of 
information used for comparison). Hybridizing coal plants with CSP has several key advantages 
including the fact that coal has historically been an abundant and low-cost fuel source, and there 
are many opportunities for retrofitting existing coal plants with solar. As a combustible fuel 
source, coal provides reliability and dispatchability for solar and studies have demonstrated 
higher solar-to-electric efficiency for solar. One of the key disadvantages of CSP-coal hybrids, 
however, includes the fact that many existing coal plants are relatively old, which may create an 
equipment age mismatch if the plants were to be retrofitted with solar. Coal plants approaching 
their end of life may make an incremental investment in CSP uneconomical.   

Table 1: A summary of CSP-coal hybrid systems.  
Configuration  Solar  

Collection 

Temp.  

Collector 

Type  
Solar heat 

collection 

fluid  

Solar 

fraction  
Solar-

toelectricity 

efficiency  
Solar Steam Generation   

Molten salt power tower with 
storage produces steam in 
parallel with coal boiler [9]  

571 °C +  Power 
Tower  

Molten Salt 
(binary 
nitrate)  

6.1%  
(max)  

27.8%   

Direct steam generation in 
line focus receiver for high 
pressure superheated steam 
production [8]  

500 °C  Line Focus  Direct Steam 
Generation  

-  38-45%  

Direct steam generation in 
central receiver for high 
pressure superheated steam 
production [8]  

565 °C  Central 
Receiver  

Direct Steam 
Generation  

-  38-45%  

            
Feedwater Preheating   

PT solar field with VP1 used 
for boiler feedwater 
preheating [15]  

267 °C  Parabolic 
Trough  

Therminol 
VP1  

-  21.2%  
(max)  

PT solar field with  
Dowtherm A used for boiler 
feedwater pre-heating [16]  

292 °C  Parabolic 
Trough  

Dowtherm A  -  21%  
(annual)  

PT solar field with  
Dowtherm A used for boiler 
feedwater pre-heating [17]  

292 °C  Parabolic 
Trough  

Dowtherm A  -  27.3%  
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PT solar field with thermal 
oil used for boiler feedwater 
pre-heating [20]  

260 °C  
(max)  

Parabolic 
Trough  

Thermal Oil  10.3%  
(max)  

40.3%  
(max)  

Direct steam generation in 
parabolic trough combined 
with turbine extraction steam 
for BFW pre-heating [10]  

398.1 °C  Parabolic 
Trough  

Direct Steam 
Generation  

-  28.5%  

Thermal oil-heated in PT for  
BFW Pre-heating [18]  

387 °C  Parabolic 
Trough  

Thermal Oil  5.77%  13.6%  

Thermal oil heated in PTC 
for BFW pre-heating [13]  

283 °C  Parabolic 
Trough  

Thermal Oil  -  21%  
(annual)  

PTC used to heat Thermal oil 
for LP BFW pre-heating [12]  

140 °C  Parabolic  
Trough  
(or 
evacuated 
tube)  

Thermal Oil  ~30%  
(max)  

11.4%  

PTC used to heat Thermal oil 
for HP BFW pre-heating  
[12]  

282 °C  Parabolic 
Trough  

Thermal Oil  ~29%  
(max)  

24.1%  

Air Preheating  
Boiler air pre-heating with 
solid particle receiver [23]  

540 °C  Power 
tower  

Air with 
ceramic 
particles  

7.8%  22.3%  
(max)  

Gssification  
Power tower that makes steam 
for coal gasification  
[53]  

650 °C  Power 
Tower  

Molten Salt  -  -  

Direct heating of gasification 
reactor before combined 
cycle [52]  

1077 °C  Power  
Tower +  
Parabolic  
Trough  

Reactant 
gases (steam/  
CO2) +  
Direct Steam  
Generation  

31% (max)  -  

Parabolic trough makes 
steam for gasification and 
pre-heats CO2 [54]  

142.9 °C  
(steam) /  
198.9 °C  
(CO2)  

Parabolic 
Trough  

Direct steam 
generation / 
supercritical  
CO2  

22.6%  -  

CO2 Capture  
PTC used to heat Thermal oil 
for solvent regeneration in 
CO2 capture [12]  

145 °C  Parabolic 
Trough/ 
evacuated 
tube  

Thermal Oil  ~29%  
(max)  

15.3%  

PT solar field with VP1 to 
provide heat to stripper in 
post-combustion CO2 
separation [33]  

295 °C  Parabolic 
Trough  

Therminol 
VP1  

27.6%  27%  
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3. Hybridization with Natural Gas  
Natural gas has been labeled as a transition fuel because it provides the reliability, low 

cost, and dispatchability of fossil fuels, but has much lower CO2 emissions than coal due to the 
low carbon-to-hydrogen ratio of its molecular structure (predominantly CH4). Like coal, there are 
many different ways that natural gas power generation technology can be hybridized with 
concentrated solar power technology.   

3.1. Solar-Aided Gas Turbines  
Because gas turbines operate at significantly higher temperatures than steam turbines, 

injecting heat via solar requires higher temperatures (typically above 1000 ℃), which presents 
some technical challenges on the collector end. However, by replacing high temperature heat that 
is typically delivered by natural gas, the solar-aided gas turbine concept has the potential to 
achieve high solar shares, whereas other configurations, such as solar steam generation on the 
back end of a combined cycle plant, will always rely on the fossil fuel as the primary heat source.  
Gas turbine power generation utilizes the Brayton cycle and typically operates as an open 
system, where atmospheric air is compressed, heated by the combustion of natural gas (or 
another gaseous fuel), and exhausted through a turbine that produces mechanical power, which is 
then converted to electricity by a generator. The operational flexibility provided by gas turbines 
makes them valuable to pair with a variable energy source, such as solar thermal energy [55]. 
The ability for flexible operation is the result of adjustable natural gas flow and air flow via inlet 
guide vanes which allow the turbine operation to adjust to variable solar conditions [56]. Solar 
heat would typically be added to the cycle post-compression and pre-combustion, where the use 
of fuel combustion can assure that the system can reach adequate operating temperatures, 
regardless of the amount of sunlight available at a particular time.   

Thermal energy storage can also be used to increase the solar fraction of the plant. Cost 
effective TES can be achieved in a packed-bed configuration with a storage efficiency of up to 
88% [57]. TES in this (or a similar) configuration can dramatically improve the solar fraction of 
the plant as it allows for a larger solar multiple with the excess energy being stored for later use 
[58].   

The direct use of solar energy for a Brayton cycle power plant operation, where the air 
stream is directly heated by a solar receiver, typically requires the use of a pressurized receiver, 
as the best opportunity to add solar heat is generally post-compression. This generally requires 
much higher temperatures than Rankine cycle operation. The concept has been proven at MW 
scale. The Solugas receiver in Spain reached outlet temperatures of over 800 °C with a 
temperature increase of over 500 °C in the solar collector [59]. The Solugas system also uses gas 
combustion to bring the gas temperature up to 1150 °C at a nominal operating pressure of 9 bar 
[60]. Using a micro gas turbine concept with a parabolic dish, Semprini et al. explored several 
different turbine operating strategies in hybrid mode and compared this to stand-alone mode. 
Their hybrid design used a pressurized air solar receiver to heat pre-combustion air with a 
combustion chamber being used to supply any necessary additional heat. For a 30 MWe design, 
hybrid operation increases the overall efficiency (annual) from 15.9% in stand-alone mode to 
19.0% in hybrid mode with one particular operating strategy. The same operating strategy 
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increases the capacity factor from 29.2% to 43.5%. One conclusion from their study is that, 
because the plant is designed to accommodate solar heat, it is advisable to limit the fuel-burning 
hybrid operation only to sunlight hours, as fuel-only mode at night has too high operational costs 
[61].   

Aichmayer et al. proposed using multiple solar parabolic-dish-powered micro gas 
turbines in parallel with the hot exhaust gas from each being combined and fed to a heat recovery 
steam generator (HRSG) to produce steam for a steam cycle. This combined cycle concept 
demonstrated high solar shares (66.4% nominal and 32.0% annual), but was prohibitively 
expensive with LCOEs more than double that of a larger, centralized plant [62]. This concept 
may have other benefits, such as modularity, however, to make it advantageous in certain 
circumstances. The same authors also explored simple cycle operation of solar dish / micro gas 
turbine systems with recuperation. Two configurations (shown in Figure 6) were explored: (a) 
the use of a pressurized receiver for direct heating of the gas stream and (b) an atmospheric 
receiver and combustor to indirectly heat the stream via heat exchange. Although the focus of the 
research was on the design of the receivers themselves, the system was also analyzed and 
predicted an overall efficiency of nearly 30% [63]. In addition to the receiver design, the 
combustor design in solar-heated gas turbines is also important, as conventional combustors have 
not been designed to accept high temperature inlet conditions [64] and rigorous modeling of the 
combustor via computational fluid dynamics (CFD) or other methods can be beneficial [65,66]. 
In a similar work, a pressurized, dish-based solar receiver with a micro gas turbine studied by 
Ragnolo et al. predicted an overall efficiency of 29.6% [67].   

  
	 (a)  (b)  

Figure 6: Solar / gas turbine configurations using (a) a pressurized receiver (post heat recuperation) and (b) 

an atmospheric receiver that re-heats the exhaust air to supplement heat recuperation  [63].   

The efficiency of solar-heated simple cycle gas turbines can also be increased with heat 
recuperation where the waste heat from the flue gas is used to pre-heat the air prior to entering 
the solar heater section [68]. A study on the use of a falling particle receiver for air heating in this 
configuration predicted overall efficiencies of up to 35.3% [69].  Santos et al. concluded that 
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using recuperation results in fuel savings of up to 11.7% in summer months, while this number is 
significantly lower in the winter months (4%) [70].  

  
Figure 7: A recuperated solar gas turbine [68].  

Mokheimer et al. proposed a solar heated (power tower) gas turbine system that would 
heat air to nearly 1000 °C using a gas turbine for power production. An HRSG is then used to 
produce steam in a cogeneration setting, although the steam conditions were suitable for 
additional power generation via combined cycle. This configuration demonstrated an 
instantaneous solar share of 74.2% and an annual solar share of 31.5% [71].  

Another option for solar and natural gas hybrid gas turbines is to use an externally-fired 
gas turbine. This re-emerging technology was thoroughly reviewed by Al-attab and Zainal and 
has some benefits for solar thermal power generation including the ability to use a closed 
Brayton cycle by firing the fuel separately from the cycle gas stream and using a heat exchanger 
to deliver the heat [72]. Olivenza-León et al. proposed a closed Brayton cycle that uses an 
atmospheric receiver that transfers heat to the pressurized stream via heat exchanger [73]. A 
separate combustion-heated exchanger in series is used to increase the temperature further. This 
thermodynamic cycle is predicted to provide overall efficiencies of up to 37.8%. This 
configuration may also be ideal for using supercritical CO2, rather than air as a working fluid so 
that higher gas-volume ratios can be achieved to reduce compressor power consumption [74].   

Unlike the coal-CSP hybrid concepts discussed previously, CSP used for air heating in a 
gas turbine has the potential to be the primary energy source with hybrid concepts having the 
potential to achieve high solar fractions, at least during peak sunlight hours of the day. However, 
because gas turbines require very high temperatures (typically greater than 1000 °C) to achieve 
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an adequate cycle efficiency, solar receivers must push the limits of currently available 
technology if they are able to effectively reach these operating temperatures. The use of natural 
gas to add additional heat to ensure adequate temperatures, therefore, can be an effective 
hybridization concept as it maximizes the benefit of solar heat while using the combustible fuel 
to ensure a high cycle efficiency.   

3.2. Steam Injection Gas Turbines with Solar  
Another way to increase the power output from a gas turbine is by directly injecting 

steam into the combustor. Using this technology, known as a steam injection gas turbine (STIG), 
the gas turbine’s heat input can be supplemented with steam, which typically would be generated 
by heat exchange with the turbine’s flue gas in an HRSG. Hybridization with solar thermal 
energy involves supplementing or replacing the steam with steam generated by concentrated 
solar energy (see Figure 8). STIG technology is advantageous to hybridize with concentrated 
solar heat because it offers a lower temperature option for solar thermal heat, as the supplemental 
steam does not have to be injected at gas combustion temperatures, but can rather be injected 
near the steam’s saturation temperature, which is on the order of 200-300 °C, depending on the 
compression ratio of the gas turbine [75]. STIG technology can therefore use linear 
concentrators, such as parabolic trough or linear Fresnel [76], which tend to be simpler, less 
expensive, and more commercially proven than point concentrators (dish or central receiver). 
One disadvantage of this technology is that the solar share is limited to well below 100%, as the 
power cycle relies on the combustion of a fuel to heat the gas.   

  
Figure 8: Layout of the solar STIG cycle. Available from [75].   

Livshits and Kribus performed thermodynamic simulations of the STIG cycle at varying 
steam-to-air ratios, gas turbine pressure ratios, and turbine inlet temperatures to determine the 
total cycle efficiency and solar fraction in each scenario. Their results show that the overall 
conversion efficiency peaks at a steam-to-air ratio of 0.14-0.25 in each scenario with a maximum 
efficiency of 54.1%. In their study, they demonstrated that high solar fractions require a high 
steam-to-air ratio, as the solar heat can only be delivered to the cycle in the steam. The 
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incremental efficiency of the solar heat decreased approximately linearly with increasing solar 
fraction [75]. Selwynraj et al. conducted several studies to evaluate solar STIG, specifically for 
locations in India. Their results showed increasing exergetic efficiency with increasing steam-
toair ratio, with peak performance around 54% [77], with a separate economic analysis showing 
an LCOE of the solar component of energy ranging from $0.29-0.4/kWh (USD) [78]. A later 
study considered both constant and variable power modes of operation and found that the annual 
solar share could be as high as 41.7%, depending on the location and plant design. This study 
showed improved economic results with the solar LCOE of $0.11-0.27/kWh [79,80]. Polonsky et 
al. used a similar configuration to determine the annual performance of the solar hybrid STIG 
cycle, finding a higher annual solar share of 33% if the cycle is operated in variable power mode 
compared to 31% in constant power mode [81]. Polonsky and Kribus conducted a 
simulationbased study highlighting the benefits of using thermal energy storage to enhance the 
solar share of the solar hybrid STIG cycle. Their design, which used PCM-based storage, showed 
solar shares of over 35% annually. They also demonstrated that adding four hours of storage 
increases the plant’s capacity factor by 50% [76]. An alternative STIG configuration uses solar 
thermal heat to power a methane steam reforming reaction to produce an upgraded stream of 
syngas (with H2 and CO as the desired products). The syngas stream, however, still contains 
unreacted steam which is then introduced into the gas turbine (with added methane), qualifying 
as a STIG cycle [82,83]. This configuration is shown in Figure 11 and is discussed further in the 
Solar Methane Steam Reforming section.   

These studies show that solar fractions of up to 40% annually may be achievable, 
although that has yet to be demonstrated commercially. One of the key limitations of solar STIG 
is that the solar share will be limited, as this particular configuration requires combustion of a 
fuel, with the solar supplied heat augmenting the process. However, because the solar heat is 
used to augment existing steam generation and injection technologies, retrofitting a plant with 
solar-generated steam would require minimal modifications to the power block itself. Because 
combined cycle power plants are a more efficient use of gas turbine technology than simple cycle 
plants, perhaps the solar STIG concept could be effectively used in conjunction with solar steam 
turbines in a combined cycle configuration for maximum benefit.   

3.3. Solar Steam Turbines  
As the most prevalent CSP technology to date is parabolic trough, the use of steam 

turbines in a hybrid system is more common in the literature. Typically, these plants are built 
with stand-alone operation in mind, but would generally require a fuel source as a backup. 
However, the idea of designing and operating the plants in hybrid mode is becoming more 
prevalent.   

Niknia and Yaghoubi investigated hybridizing an existing pilot-scale parabolic trough 
plant using a fossil fuel (natural gas or coal-fired auxiliary boiler) while also expanding the solar 
capacity with a new collector field. Dynamic simulations over the course of a year showed a 
maximum solar fraction of about 63% in June, which decreases to about 18% in January [84]. 
Peterseim and Veeraragavan explored a hybrid operation using a molten salt-based central 
receiver configuration to heat steam at 280 bar to 545 °C and natural gas to boost the temperature 
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to 620 °C. This was compared to a next-generation molten salt stand-alone system to heat the 
steam to 620 °C in a single step. The results showed a slight improvement in net efficiency of  
0.3%, but an identical LCOE. The main factor in this study was not hybridization, but rather the 
benefits of going to a supercritical steam cycle, as compared to a sub-critical steam cycle [85]. 
Gobereit et al. proposed using a power tower with a falling particle receiver to heat up ceramic 
particles. These particles are then used in a heat exchanger to generate steam for Rankine cycle 
power generation. A back-up heater (presumably natural gas) is used to ensure reliable operation 
[86]. Mokheimer et al. proposed designs using parabolic trough and linear Fresnel collectors to 
produce steam in parallel with an HRSG at the back end of a gas turbine system (shown in Figure 
9). The steam production was intended for cogeneration, but was produced at conditions suitable 
for combined cycle operation. Their results show high overall efficiencies near 85% (overall 
cogeneration efficiency) [71].   

  
Figure 9: A cogeneration system using supplemental heat supplied by a linear Fresnel solar collection system  

[71].  

Studies by Powell and Edgar highlighted the value of TES for increasing the solar share 
of a parabolic trough with natural gas plant. Their research showed that the solar share can be 
increased from 47.6% to 70.1% by adding 8 hours of storage [87,88]. A follow on study using 
dynamic optimization to minimize the fuel usage while providing a constant thermal load 
showed that by allowing flexible hybrid operation, where the portion of the load provided by 
natural gas can fluctuate to accommodate optimal plant performance, the solar heat collected in a 
24-hour period increases by 9% on a sunny day and 49.5% on an intermittently cloudy day 
[89,90]. The major conclusion of this work was that hybrid operation with a combustible fuel 
adds additional flexibility to the system, which can allow the solar portion of the plant to operate 
at its most efficient conditions. The combination of TES with hybridization changes the 
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optimization problem so that the plant can use additional degrees of freedom to achieve an 
optimal solution over time, rather than for a single instance [91,92].   

Steam cycle technology using solar heat is most similar to the prevalent technology for 
stand-alone CSP plants, but in hybrid configurations, may not be the most effective use of the 
combustible fuel with which CSP is hybridized, as Rankine cycle power generation is generally 
less efficient than combined cycle. For that reason, the integrated solar combined cycle has 
become an increasingly popular idea in research and development.   

3.4. Integrated Solar Combined Cycle  

Integrated solar combined cycle (ISCC) plants represent a concept that has been around 
since the 1990s and an effective way to take advantage of the efficient combined cycle 
technology with the benefits of carbon-free solar power. Combined cycle power plants use gas 
turbine technology to power an open Brayton cycle with the waste heat recovered in an HRSG to 
power a steam cycle. The combined efficiency of these two power cycles is generally well over 
50% and it has become a technology of choice for new power plants because of its low cost, 
efficiency, and relatively low emissions due to using a low-carbon fuel (natural gas). ISCC plants 
seek to improve this technology by integrating solar heat into the bottoming steam cycle. This 
configuration has the benefit of combining proven and efficient fossil fuel technology with the 
well-developed linear solar concentrator systems. Behar et al. gave a thorough review of ISCC in 
[93] and Okoroigwe and Madhlopa reviewed power-tower-specific ISCCs [94].   

The ISCC configuration reduces costs of solar thermal power by 35-40% compared to 
stand-alone CSP technology [95] and can provide a significant solar fraction [96]. Manente et al. 
explored several configurations for ISCC with collector technologies including parabolic trough, 
linear Fresnel, and central receiver (power tower). The study explored six different 
configurations with both direct steam generation in the field and steam generation via heat 
exchange with a secondary heat transfer fluid (Therminol VP1 and molten salt), as well as 
multiple heat injection points into the steam generation operation. Their results determined that 
the most exergetically efficient configuration was parabolic trough using Therminol VP1 with an 
efficiency of 61.7%. The other designs, however, were not far behind with the least efficient 
(linear Fresnel with direct steam generation) achieving an exergetic efficiency of 58.7%. The 
linear Fresnel technology proved to have the lowest build costs, coming in at $1204/kWe [97]. 
Solar parabolic trough technology for steam generation may be done with minimal equipment 
modifications to conventional natural gas combined cycle technology [98]. Direct steam 
generation via linear concentrating technology has proven to have much potential to make a 
significant contribution to the energy needs of solar-rich areas [99].   

The HYSOL plant design (shown in Figure 10) uses a molten salt-based power tower 
system with a two tank thermal energy storage system to deliver heat to a steam cycle. The 
design also uses a gas turbine’s effluent stream as an additional heat source for the molten salt 
loop [100,101]. The intent of the plant is to use a bio-derived gas for combustion in the gas 
stream so that the plant can approach 100% renewable energy utilization [102].   
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Figure 10: Graphical representation of the HYSOL plant [100].  

3.5. Solar Methane Steam Reforming  
Solar methane steam reforming (MSR) uses an endothermic chemical reaction to convert 

methane and steam to syngas (carbon monoxide and natural gas), which has an approximately 
27% higher heating value than natural gas [103]. The reaction stores thermochemical energy and 
can make a good heat sink for a solar thermal process.   

𝐶𝐻$ + 𝐻&𝑂()) + ℎ𝑒𝑎𝑡 ⇌ 𝐶𝑂 + 𝐻& 

When combined with power generation, the solar heat can be used to upgrade the fuel source and 
represents another potentially useful way to hybridize solar heat with natural gas. The syngas can 
be used to produce useful chemicals, such as methanol, or can serve on the front end of a 
conventional natural gas combined cycle [104].   

Bianchini et al. proposed a natural gas / CSP hybrid where a parabolic trough collector 
field is used to provide heat for the MSR reaction to produce syngas. This solar-upgraded gas 
stream is then combusted in a gas turbine (see Figure 11 for a simplified process schematic, 
available from [82]). One of the key design and operational concerns with this configuration is 
the reaction temperature of the MSR reactor, which has a dramatic impact on the MSR reactor 
efficiency. Temperatures in excess of 600 °C are needed for the reaction to proceed at an 
appreciable rate (with a conversion of approximately 40% predicted at this temperature) [83]. De 
Falco et al. proposed an indirectly heated solar MSR reactor that uses a proven molten salt 
technology (also heated by parabolic trough). The solar heat is collected at 550 °C with an MSR 
reaction temperature of 500 °C, which results in methane conversion below 11% [105]. The 
higher temperatures required for high conversion may justify the exploration of higher 
temperature solar collection technologies as they become more commercially viable. For central 
receiver designs, von Storch et al. explored various types of solar air receivers for indirectly 
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heating an MSR reactor. Their proposed design would heat air up to 950 °C and achieve MSR 
temperatures of up to 935 °C, where a higher reaction conversion would be achieved [106].   

  
Figure 11: Solar methane steam reforming with gas turbine configuration for power production [82].   

3.6. Summary of solar/natural gas hybrids  
A summary of various configurations of solar/natural gas hybrid systems from the 

literature is given in Table 2. This table does not include all studies, but only those where most of 
the pertinent summary information is readily available.   

Natural gas has a much lower carbon-to-hydrogen ratio than other fossil fuels. It is also 
quite abundant in North America due to recent advances in hydraulic fracturing technology, 
which has caused its price to fall to very low levels in recent years. Natural gas also has a high 
energy density and is easily transportable via pipeline. For these reasons, natural gas power 
production is becoming quite popular for newly constructed plants. Perhaps the most promising 
hybridization opportunities for CSP, therefore, are with natural gas. As effective high 
temperature TES technologies are developed, solar/natural gas plants could perhaps be 
constructed in such a way as to transition from relying mostly on natural gas to relying mostly on 
solar thermal energy with the gradual expansion of the solar field and storage system. This 
strategy could result in reasonably economic hybrid systems with the flexibility to eventually 
become very near carbon free, while taking advantage in the near-term of the obvious benefit of 
dispatchability that natural gas would provide.   

Table 2: A summary of CSP-natural gas hybrid systems  
Configuration  Solar  

Collection 

Temp.  

Collector 

Type  
Solar heat 

collection 

fluid  

Solar  
Fraction  

Solar-

toelectricity 

efficiency  

Air Heating for Gas Turbine       

Power tower pre-heats air at front 
end of GT with HRSG for 
cogeneration [71]  

~1000 °C  Central 
receiver  

Air  74.2% 
(31.5% 
annual)  

-  
(~85%  
cogen.)  
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Multiple dish and MGTs in parallel 
combine outlet air streams to HRSG 
for steam cycle [62]  

900 °C  Parabolic 
dish  

Air  66.4%  
(max),  
32.0%  
(annual)  

-  
(38.2% 
power 
block)  

Parabolic dish with micro gas 
turbine in simple-cycle mode [61]  

900 °C  Parabolic 
dish  

Air  52.590.7%  
(annual)  

16.818.4%  
(annual)  

Dish used to directly heat air for 
recuperated gas turbine with 
pressurized receiver [63]  

900 °C  Parabolic 
dish  

Air  68.7%  -  
(29.1 % 
overall)  

Dish used to indirectly heat air for 
recuperated gas turbine with 
atmospheric receiver [63]  

780 °C  Parabolic 
dish  

Air  99.5% (at 
peak)  

-   
(23.4%  
overall)  

Solar and combustion heat used in 
series to heat closed Brayton cycle 
via HX [73]  

800 °C +  Central 
receiver  

Air  ~37%  -   
(37.8%  
overall)  

Steam Injected Gas Turbine (STIG)  
Solar-aided HRSG generated steam 
for injection into GT combustor [75]  

238.1 °C  Parabolic 
trough / 
linear 
Fresnel  

Direct 
steam 
generation  

48.9%  
(max)  

15-24%  

Solar-aided HRSG generated steam 
for injection into GT combustor  
[81]  

~200 °C  Parabolic 
trough  

Direct 
steam 
generation  

31-33%   
  

22-26% 
(annual)  

Solar-aided HRSG generated steam  
(with latent TES) for injection into  
GT combustor [76]  

200-280  
°C  

Parabolic 
trough  

Direct 
steam 
generation  

35.2% 
(annual)  

20.1% 
(annual)  

Solar-aided HRSG generated steam 
for injection into GT combustor  
[79])  

202.2 °C  Parabolic 
trough  

Direct 
steam 
generation  

9.341.7%  
(annual)  

11.217.1%  
(annual)  

Integrated Solar Combined Cycle (ISCC)  
PTC with DSG supplements HRSG 
for cogen [71].   

-  Parabolic 
trough  

Direct 
steam 
generation   

69.9% 
(24.7% 
annual)  

-   
(~86% 
cogen)  

Linear Fresnel collector with DSG 
supplements HRSG for cogen [71].  

-  Linear 
Fresnel  

Direct 
steam 
generation  

70.7%  
(23.9%  
(annual)  

-   
(82% 
cogen)  

HYSOL molten salt power tower 
provides steam for Rankine. GT 
effluent gas also used for molten 
salt heating [100,107]  

550 °C  Central 
receiver  

Molten  
salt  

45%  -   
(52% gas- 
toelectric)  

Aux. boiler produces saturated steam 
in parallel with solar loop. Solar 
used for superheating [84]  

313 °C  Parabolic 
trough  

Therminol  
VP1 and  
Behran Oil  

~63% in 
June,  
~18% in  
Jan.  

-  
(20-42% 
overall)  
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Power tower/molten salt with gas to 
reach supercritical steam conditions  
[85]  

700 °C  Central 
receiver  

High temp 
molten  
salt  

-  -   
(43.2%  
overall)  

Parabolic trough with oil in ISCC 
[97]  

393 °C  Parabolic 
trough  

Therminol 
VP1  

12.8%  29.7%  

Parabolic trough with molten salt in 
ISCC [97]  

454 °C +  Parabolic 
trough  

Molten  
salt  

12.8%  29.2%  

Power tower with molten salt in 
ISCC [97]  

565 °C  Central 
receiver  

Molten  
salt  

12.8%  27.5%  

Linear Fresnel with DSG in ISCC 
[97]  

454 °C  Linear 
Fresnel  

Direct 
steam 
generation  

12.8%  26.8%  

Methane Steam Reforming        

MSR reaction occurs in parabolic 
trough. Syngas used for gas turbine 
power generation [83]  

600 °C  Parabolic 
Trough  

Steam 
reforming 
reactants/ 
products  

-  -  

  

4. Hybridization with Biofuels  
As hybridization of solar thermal energy with fossil fuels has demonstrated good 

synergies, hybridization with bio-fuels exhibits many of the same benefits (i.e., renewable energy 
with combustible fuel to improve flexibility and reliability), but has the potential to provide 
100% renewable energy [108]. A life cycle assessment by Miguel and Corona showed that most 
of the environmental damage caused by a hybrid solar thermal/fossil fuel plant is caused by 
burning the fuel, rather than in plant construction. Most of the negative impact is removed, 
however, if the fossil fuel is replaced with biogas or biomethane as the hybrid fuel source [109]. 
CSP can be combined with a number of different biomass sources including: forestry residues, 
bagasse, stubble, wood waste, and refuse-derived fuels [110]. CSP can also be used as a 
supplemental heat source in the production of hydrogen [111,112] or liquid biofuels for 
transportation [113,114]. The production of syngas or liquid transportation fuels using solar 
thermal energy as an input source is actually a storage mechanism, which has many benefits 
including the ability to store energy long-term as high temperatures do not have to be maintained 
[115]. Because biofuels are another combustible fuel, the solar/biofuel hybrids have similar 
configurations as solar/natural gas hybrids.   

4.1. Solar Steam Generation  
Peterseim et al. explored a number of CSP/biomass hybrid technologies to determine 

which combinations of technologies were best economically and environmentally. In these 
configurations, the CSP technology is used to generate steam (at identical conditions) in parallel 
with a biomass boiler system. According to this study, the best combination in terms of 
efficiency and environmental benefits is a power tower system using direct steam generation 
combined with a biomass gasification system, which shows a peak net efficiency of 33.2%. The 
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best system in terms of economics, however, is a linear Fresnel CSP system with direct steam 
generation in conjunction with a fluidized bed biomass boiler. This combination still has a high 
efficiency (32.5%) and has an investment cost that is 69% lower than a stand-alone CSP system 
[116]. Biomass combustion can also be used to superheat steam produced from a parabolic 
trough plant to increase steam temperatures and the power block efficiency. One study showed 
that doing this can increase the solar-to-electric efficiency by up to 10.5%, while decreasing the 
investment cost by up to 23.5% [117]. Coelho et al. studied the use of a power-tower-based air 
heater that is used in an HRSG to generate steam. Biogas or syngas is then used in HRSG duct 
burners to supplement the heat. The study explored multiple sources of biofuel including wood 
gasification, refuse-derived fuel pellets, biogas from a wastewater anaerobic digester, and biogas 
from a landfill. They found that the most economical option was the wastewater anaerobic 
digester with an internal rate of return (IRR) of 11% [118].   

Hybridization of CSP with biogas from agro-livestock and municipal waste has 
demonstrated some economic potential [119], with some configurations using dish-based 
concentrated PV technology with biogas [120]. Peterseim et al. conducted a techno-economic 
assessment of a solar/biomass fired system where a power tower with molten salt (and three 
hours of storage) produced steam in parallel with a biomass-fired boiler. Their results indicated 
an investment cost 43% lower than a stand-alone CSP plant [121]. Biofuel and solar thermal 
hybrids in district energy systems can make effective utilization of low grade heat using an 
organic Rankine cycle [122], which may include waste heat recovery used for district heating 
[123]. The intent of the HYSOL plant discussed previously is also to run on bio-derived natural 
gas [100,101,107].   

  
Figure 12: The use of a solar power tower to pre-heat air for a HRSG in a biogas/syngas-based steam cycle 

power plant [118].  
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4.2. Solar Gasification of Biofuels  
As with coal gasification, solar-aided gasification of biomass has become an increasingly 

popular research topic. Gasification of biomass via high temperature solar thermal processes can 
achieve theoretical solar-to-chemical efficiencies of up to 50% [124]. Gasification of biomass 
requires a heat source. Typically, the heat source is partial combustion of the biomass itself. 
Using CSP as an alternative heat source, the biomass feedstock can be preserved so that more 
syngas is produced [125,126]. Syngas can also be used to provide additional heat to a solarheated 
HRSG to produce steam for a Rankine cycle power plant [118]. Solar heat can also be used to 
generate low temperature steam for biomass gasification [127].   

Gupta et al. proposed a catalytic combustion system that uses syngas (resulting from 
biomass gasification) as a supplemental fuel to help regulate CSP plant output during intermittent 
solar availability. According to their experimental study, this type of combustion system is ideal 
to pair with CSP processes because it exhibits stable operation, a high turn-down ratio (up to 
1.67), and quick start up [128]. Energy and exergy analysis of a similar system shows that 
thermal efficiencies of up to 36.5% can be achieved [129]. Solar-aided biomass gasification can 
also be hybridized with coal as a third energy source with the syngas used to make liquid fuels 
with the tail gas used to produce electricity [130]. One of the key issues of biomass gasification 
using a directly heated solar reactor is effective heat distribution throughout the reactor to ensure 
efficient gasification. The development of such systems requires careful design, simulation, and 
testing [131,132].   

Tanaka et al. explored a combination of the IGCC and ISCC concepts. Their design uses 
biomass gasification to produce syngas that is combusted in a gas turbine. The waste heat is then 
recovered in an HRSG, which is also used to supplement solar-generated steam from a molten 
salt power tower plant. Efficiencies (solar-to-electric) of over 20% are achieved in this 
configuration and the power output of the plant is increased [133]. A similar study shows that the 
marginal efficiency of biomass-to-electricity can be increased by over 6% when adding solar 
[134]. Liu et al. compared two possible configuration schemes for integrating high temperature 
solar heat (via power tower) with biomass gasification and combined cycle. The first concept 
used a solar-heated biomass gasifier to produce syngas, which was then used in combined cycle 
operation. This configuration was referred to as solar-gasification combined cycle (SGCC) and 
was compared to another configuration referred to as solar hybrid combined cycle (SHCC), 
where a power tower is used to heat air (post compression) with supplemental heat coming from 
syngas generated from a biomass gasifier. This thermodynamic study showed that the SGCC was 
more efficient both overall (29.4% annual efficiency) and in terms of solar-to-electricity (18.5% 
annual efficiency) [135]. These concepts are shown schematically in Figure 13.   
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Figure 13: SGCC and SHCC concepts proposed by Liu et al. [135].  

4.3. Solar-Aided Biomass Gasification with Multi-Generation  
In addition to electricity and fuels production from biofuel/solar thermal systems, 

multigeneration systems, that simultaneously produce multiple useful commodities have been 
explored using this hybrid combination. Zhang et al. studied a solar-assisted tri-generation 
system that produces electricity, chilled water, and hot water and uses biomass gasification as the 
primary heat source. In this configuration a parabolic trough system (operating at 350 °C) is used 
to produce steam for the biomass gasifier. The waste heat from the gasifier’s syngas stream is 
used to produce domestic hot water. The syngas is then burned in an internal combustion engine 
to produce electricity with the waste heat from this stream recovered in an absorption chiller to 
make chilled water. The use of multi-generation in this configuration results in a very high 
overall energy efficiency of 77.4%, while the electrical efficiency is 17.8% [136]. As 
multigeneration hybrid-source systems may have multiple combinations of technologies, 
optimization around the plant design can be a valuable endeavor to determine which components 
should be included and how that impacts the overall costs [137,138].   

High temperature solar-heated gasification of biomass can also be used for cogeneration 
of useful chemical products and electric power. Bai et al. studied a system that uses a power 
tower configuration to directly heat a biomass gasification reactor to 1000-1500 K. The resulting 
syngas is ultimately used in the synthesis of methanol, with the un-reacted gas used in a 
combined cycle power plant to produce electricity. Multi-generation allows the system to achieve 
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high energy efficiencies of over 56% [139,140]. A benefit of producing stable chemical product 
from multi-generation systems is that this configuration would not require co-location with a heat 
sink (industrial or residential) to make beneficial use of the otherwise wasted thermal energy.   

  
Figure 14: A schematic diagram of a multi-generation system that uses solar thermal gasification of biomass to 

simultaneously produce methanol and power [140].  

4.4. Summary of Solar/Biofuel Hybrids  
A summary of the performance metrics from various studies on solar/biofuel hybrid 

systems is given in Table 3. Solar/biofuel hybrids have many of the same benefits as solar 
hybrids with natural gas and coal, however, the overriding benefit is that these systems have the 
potential to be 100% sustainable. While still providing reliable, dispatchable power.   

Table 3: A summary of CSP-biofuel hybrid systems  
Configuration  Solar 

collection 

temp.  

Collector 

type  
Solar 

fraction  
Solar heat 

collection 

fluid  

Solar-

toelectricity 

efficiency  
Solar/Biofuel Steam Generation   

Biomass-fired boiler and 
MoltenSalt/Power tower boiler used 
in parallel for steam generation in 
steam cycle [121]  

540 °C  Central 
receiver  

23.9% 
(annual)  

Molten Salt  -  
(33.4 % 
overall)  

Biomass used to superheat steam 
after being generated by parabolic 
trough plant [117]  

393 °C  Parabolic 
trough  

-  Thermal Oil  27.5%  

Biomass furnace and PT with 
thermal oil used to supply heat to  

305 °C  Parabolic 
trough  

9%  Thermal Oil  -  
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ORC with waste heat providing 
district heating [123]  

    (16%  
overall 
electric)  

Power tower used to pre-heat air. 
Syngas/biogas used for HRSG 
duct burning [118]  

700 °C  Central 
receiver  

Up to 
50%  

Air  11%  

Solar/Biofuel Gasification  
IGCC using biomass shares HRSG 
with molten salt power tower 
system  
[133]  

565 °C  Central 
receiver  

-  Molten Salt  20%  

Power tower Solar biomass gasifier 
makes syngas for IGCC [135].   

877 °C  Central 
receiver  

19.0%  Gasification 
reactants/ 
products  

21.3% 
(18.5% 
annual)  

Power tower air heater heats air for 
combustor. Biomass gasifier in 
parallel makes syngas. Combined 
cycle operation [135]  

877 °C  Central 
receiver  

19.0%  Air  17.3% 
(15.1% 
annual)  

Solar/Biofuel Gasification with Multi-Generation  
PT Solar collector makes steam for 
biomass gasification with cogen of 
chilled water and hot water [136]  

350 °C  Parabolic 
trough  

8.6%  -  -  
(17.8%  
overall)  

Biomass gasification reactor heated 
by power tower. Products used for 
methanol synthesis and power 
production via combined cycle 
[140]  

727-1227  
°C  

Central 
receiver  

-  Gasification 
reactants/ 
products  

-   
(56.1%  
overall)  

5. Hybridization with Geothermal  
Another hybrid energy source that can be coupled with solar thermal is geothermal 

energy. Like solar/biofuel combinations, solar/geothermal has the potential for purely renewable 
energy systems. Geothermal heat is somewhat dispatchable and provides some reliability for the 
system. However, geothermal heat tends to be of lower grade and typically requires heat 
exchange from the geothermal brine available in the well water to generate steam, or more 
commonly, to an organic working fluid, which vaporizes at lower temperatures and is more 
suitable for the low temperatures encountered with geothermal energy. It is not uncommon for 
systems to utilize low grade geothermal or low grade solar thermal heat using an organic 
Rankine cycle [141,142]. Another common utilization of low grade solar/geothermal heat in 
studies is in cogeneration systems (or multi-generation systems) where the power production 
plant is co-located with other heat sinks that are better suited to take advantage of this lower 
grade heat.   

5.1. Solar-Geothermal Electricity Production  
In a technical and economic analysis of a solar-geothermal hybrid utilizing an organic 

Rankine cycle for four sites (two in California and two in Italy), Astolfi et al. found LCOEs 
between 145 and 280 €/MWh (2010 currency values). One key finding of their study was a 
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drastic increase in the capacity factor when hybridizing CSP with geothermal. Capacity factors 
increased from 99-253% for the four locations studied [143]. Ayub et al. conducted a similar 
study using lower temperature CSP and geothermal heat with an organic Rankine cycle, although 
with a low solar fraction of 7%. Their findings showed that hybridization reduced LCOE by only 
2%, whereas optimization of a geothermal only plant reduced LCOE by 8% [144]. Ghasemi et al. 
demonstrated the use of optimization to exploit synergies of a hybridized geothermal/CSP 
system. Their study showed that by optimizing, an increase of up to 3.4% in second-law 
efficiency compared to the combined efficiency of a stand-alone solar and a stand-alone 
geothermal system. In this configuration, solar thermal energy is used in parallel with geothermal 
energy and is used to heat part of the working fluid [145]. Zhou performed a parametric study on 
both sub-critical and super-critical organic Rankine cycles in solar/geothermal hybrid plants. 
This study showed that a hybrid plant would produce 15% and 19% more power annually for a 
sub-critical ORC and super-critical ORC, respectively, than two stand-alone plants [146].   

An alternative to low temperature organic Rankine cycles is to upgrade the geothermal 
fluid directly with CSP by using a solar field and steam turbine in series with the geothermal 
wells, as demonstrated in a study by Lentz and Almanza [147]. A parametric study conducted by 
Zhou et al. highlighted strong synergies between CSP and geothermal systems, reporting up to 
23% reduction in LCOE when hybridizing versus stand-alone CSP [148]. This configuration may 
present some issues in using the geothermal brine as the working fluid, such as corrosion and 
limited performance [146] or scaling on process equipment due to the brine’s high silica content 
[149]. In the case of using the geothermal brine directly in CSP, these issues must be considered 
and mitigated to ensure a long plant lifetime.   

  
Figure 15: A solar / geothermal hybrid system using an organic Rankine cycle for power production [146].  

5.2. Solar-Geothermal Multi-Generation  

As another method for boosting the overall efficiency of solar/geothermal hybrid systems, 
many studies have considered these systems in the context of a district energy system, where 
some of the lower grade heat can be used for other purposes beyond electricity. Al-Ali and 
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Dincer performed exergy and energy analysis on a multi-generational solar-geothermal hybrid 
system (shown in Figure 16). The system proposed in this work does not merely produce 
electrical energy, but utilizes co-location with industrial and building district energy networks to 
provide space heating, industrial heating, hot water, and cooling in addition to electric power. 
This proposed system utilizes geothermal heat produced at 190 °C and solar thermal heat 
produced at 395 °C in conjunction with multiple energy loops (including two organic Rankine 
cycles) to deliver multiple forms of energy. This study found that energy efficiency increases 
from 16.4% to 78% when going from single-generation (electricity production only) to 
multigeneration, as the multi-generation system takes much better advantage of low grade heat 
from geothermal energy [150]. This configuration could be beneficial due to the high efficiency 
of multi-generation, but would require co-location of a solar thermal resource, a geothermal 
resource, and heat sinks that can effectively utilize each energy stream. Calise et al. performed a 
dynamic simulation of a CSP/geothermal hybrid in a multi-generation energy system. In this 
case, the system not only provides electricity via a geothermal and solar thermal heat supplied 
organic Rankine cycle, but also heat, cooling, and fresh water via desalination by distillation to a 
small community. The study found electricity production costs in the range of 0.1475-0.1722 
€/kWh with the added benefit of producing many other forms of valuable energy and fresh water  
[151]. Ezzat and Dincer reported that by considering solar/geothermal hybrids in a  
polygeneration district energy system, the overall efficiency increases by a factor of roughly five 
when compared to a geothermal power generation process by itself [152]. Ghosh and Dincer 
demonstrated that a polygeneration system can also have multiple sources of heat and considered 
a solar-geothermal-wind hybrid polygeneration system that produced multiple useful 
commodities [153].   

Similar studies on solar/geothermal multi-generation systems use non-concentrating solar 
collectors in the form of flat plate [154,155] or solar photovoltaic/thermal (PVT) collectors [156] 
to provide lower grade district energy systems. Even with non-concentrating solar collectors, 
however, some of these systems are still able to produce electricity for combined heat and power 
systems via organic Rankine cycles [157,158].   
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Figure 16: The multi-generation solar-geothermal hybrid system proposed by Al-Ali and Dincer [150].  

5.3. Summary of solar/geothermal hybrids  
Studies on solar/geothermal hybrid systems are summarized in Table 4. One of the key benefits 
of hybridizing solar and geothermal energy is that each source is carbon-free. There are also 
some synergies between the two energy sources. While geothermal energy can be thought of as 
dispatchable, it is generally low temperature (and therefore, low grade) heat. Solar thermal 
energy, on the other hand, can be collected at high temperatures, which can enhance the 
efficiency of the combined system. Absent long-term TES for the solar component (i.e., over 
eight hours of storage), an integrated solar/geothermal system will still have a low capacity 
factor. Such a system will require a way to use the lower grade geothermal heat when high 
temperature solar heat is not available to upgrade it. Multi-generation systems with multiple heat-
injection points have been proposed. Co-locating these various heat sinks may be difficult, 
however, as the solar resources is generally best in isolated areas where there is an abundance of 
land, while the multi-generation system requires another heat sink (e.g., buildings or industrial 
processes) in close proximity to effectively use the heat.   

Table 4: A summary of CSP-geothermal hybrid systems  
Configuration  Solar 

collection 

temp.  

Collector 

Type  
Solar heat 

collection 

fluid  

Solar  
Fraction  

Solar-

toelectricity 

efficiency  
Solar/Geothermal Electricity Production      

Solar HX used in series after 
geothermal HX for ORC [143]  

170-200  
°C  

Parabolic 
Trough  

Therminol 
55  

28.3- 
50.2%   

8.5-9.4%  
(annual)  
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Geothermal brine HX used in 
parallel with solar HX for ORC  
[144]  

170-200  
°C  

Parabolic 
Trough  

Therminol 
VP1  

7%  7.8%   

Geothermal brine vaporizer 
used in parallel with solar 
vaporizer with geothermal 
preheating for ORC [145]  

182 °C  
(max)  

Parabolic 
Trough  

Therminol 
VP1  

-  17.9%   

Solar superheater used in series 
with geothermal vaporizer for  
ORC [146]  

390 °C  
(max)  

Parabolic 
Trough  

Therminol 
VP1  

29.3- 
70.4%  

6.2-13.6%   

Direct use of brine in with solar 
and geothermal in series and in 
parallel (two different configs) 
[147]  

-  Parabolic 
Trough  

Direct 
steam 
generation   

-  -   
(70% 
thermal)  

Solar superheater used in series 
with geothermal vaporizer in 
ORC [148]  

390 °C  
(max)  

Parabolic 
Trough  

Therminol 
VP1  

68%  
(breakeven)  

-   
(12.36% 
overall 
exergy)  

Solar/Geothermal for Multi-Generation  
Multi-generation system with 
solar and geothermal producing 
power in parallel via ORC and 
simultaneous production of 
cooling, and heating [150]  

395 °C  Parabolic 
Trough  

Therminol 
VP1  

-  -  
(22%  
thermal)  
  

Solar HX used in series with 
geothermal HX to heat oil for 
ORC. Cooling, heating, and 
water also produced [151]  

150-200  
°C  

Parabolic 
Trough  

Dowtherm 
A  

9.60%  -   
(11.6%  
overall)  

Recycled solar heat from 
thermal oil used to re-heat 
geothermal brine; includes 
multi-gen of water (with wind 
power for pumping), cooling, 
and heating [153]  

350 °C  Parabolic 
Trough  

-  -  -  
(36.7%  
overall)  

Solar thermal heat used to 
reheat geothermal brine for 
power production; includes 
multi-gen of drying, heating, 
and cooling [152]  

396.1 °C  Parabolic 
trough or 
linear 
Fresnel  

Dowtherm 
A  

-  -  
(69.6%  
overall)  

Solar steam generation in series 
with geothermal pre-heating – 
district/industrial heat is 
recovered after turbine via HX 
[159]  

-  Parabolic 
Trough  

Direct 
steam 
generation  

-  7-11%  
(overall 
electrical)  
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Solar thermal and geothermal 
heat used in separate ORCs – 
includes simultaneous 
production of process heat 
[160]  

320 °C  Parabolic 
Trough  

Therminol 
VP1  

-  -  
(54.7%  
overall)  

6. Hybridization with Photovoltaics  
Another common technology for hybridization with solar thermal is solar photovoltaic 

energy. Although both of these technologies use the same energy source (i.e., the sun), the 
combination of the two actually presents some fairly strong synergies. Photovoltaic cells can 
demonstrate varying performance with cell temperature, with higher temperatures resulting in 
degraded performance both in terms of efficiency and overall power output, as Figure 17 
demonstrates for single-crystalline PV cells [161]. Because of these relationships, solar cells are 
generally designed to be cooled, either actively or passively [162] to keep them near their most 
efficient operating point.   

  
	 (a)  (b)  

Figure 17: Degrading performance of single-crystalline silicon photovoltaic cells with temperature. Output 

power vs. voltage is shown in (a) with varying temperature. Maximum output power is shown vs. 

temperature in (b). Available from [161].   

Instead of simply cooling the PV cells, cogeneration utilizes the otherwise wasted thermal 
energy, which can be utilized to increase the overall efficiency of the cell. This has given rise to 
photovoltaic thermal (PVT) solar collectors. Recent and comprehensive reviews of this hybrid 
technology are given by Makki et al. [163] and Michael et al. [164]. Because this technology 
generally uses PV for power generation and solar thermal energy predominantly for low 
temperature thermal applications (less than 100 °C), this technology is fundamentally different 
from the other hybrids considered here, which utilize CSP predominantly for power generation. 
Therefore, PVT technologies are not covered comprehensively here. However, a brief overview 
of the methods for exploiting synergies in photovoltaic and solar thermal technologies is given. 
Makki et al. classify PVT technologies by their heat extraction mechanism into five categories: 
air-based, liquid-based, heat pipe-based, PCM-based, and thermoelectricbased [163]. Air and 
liquid-based PVT collectors have small channels at the back end of the PV cells (as shown in 
Figure 18), so that a fluid can flow through and absorb the excess heat generated, which has the 
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effect of both cooling the PV cell to improve its efficiency and providing another source of 
energy, such as space heating [165–168] or water heating [169,170].   

  

Figure 18: Schematic diagram of a PVT module used for water heating. Available from [170].   

  Heat pipes can also be used to remove heat from PVT modules. Heat pipes have high 
thermal conductivity as they use the evaporation and condensation of a fluid for efficient heat 
transfer. At the evaporator end, a heat source (which would be solar energy in the case of PVT) is 
used to evaporate the fluid, which then travels to the condensor side of the heat pipe (the heat 
sink), where the fluid is condensed and carried back to the evaporator by gravity, capillary 
action, or another means [171]. PVT modules with heat pipes have been proposed for 
applications such as district heating [172], or water heating for buildings [173].   

  
Figure 19: The structure of a heat pipe. Available from [171].   

Phase change materials (PCMs) can also be integrated into PVT modules. PCMs use the 
energy stored in the phase change of a material to store energy. PVT technology combined with 
PCMs can be used for thermal energy storage with solar heat pumps [174,175] or directly in 
buildings [176,177] to temporally shift the utilization of solar thermal energy. Thermoelectric 
generators (TEGs) can also be used to harvest the residual thermal energy from PV modules. A 
thermo-electric module is a solid-state semiconductor device that directly converts thermal 
energy into electrical energy using a phenomenon called the Seebeck effect, which is when an 
electromotive force is created by differing voltages caused by temperature differences in 
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different materials [163,178]. Variations of designs employing PVT with TEGs may be better 
able to utilize the full solar spectrum than PV systems alone [179].   
  PVT technology essentially uses the principle of waste heat recovery to increase the 
overall efficiency of photovoltaic modules by finding other uses for the thermal heat that is 
generated from the sun. In the survey by Makki et al., thermal efficiencies as high as 63.7% were 
reported [163]. When combined with the effect of increasing the PV performance by removing 
heat which degrades its performance, PVT technologies show a lot of promise.   

7. Hybridization with Wind  
Because wind power generation technology is so different from conventional thermal 

generation technology that CSP is founded upon, opportunities to hybridize CSP with wind are 
less prevalent in literature. These hybrids would be considered weak hybrids as the CSP and 
wind technologies are typically only coupled at the grid level. Still, the combined power 
generation profiles of wind and CSP can provide benefits, such as a better fit for consumer 
demand [180] or improved grid stability [181]. A study by Vick and Moss showed that CSP was 
a match with wind farms to meet the electrical demand in the Texas Panhandle and they 
proposed a mix of 67% wind with 33% CSP (6 hours of TES) to meet the electrical demand for 
that area. Although the hybrid was more expensive (on an LCOE basis) than a pure wind farm, it 
had better ability to meet peak demand than a pure wind farm [180]. Similarly, Reichling and 
Kulacki found that wind power had lower cost overall in a Minnesota case study, but electrical 
load matching favored the hybrid combination of wind and CSP [182]. Petrakopoulou et al. 
evaluated the ability of a CSP and wind farm hybrid to autonomously provide power to an island. 
This configuration again consists of hybridization at the grid level, but may have some additional 
synergy in co-locating the two technologies, such as reduced capital costs for transmission, due 
to the small size of the area served. This study found that the combination of technologies 
required battery storage on the wind farm side and TES on the CSP side with 48% of the power 
coming from the CSP [183]. Ghosh and Dincer explored using a solar-wind-geothermal hybrid 
system for multi-generation of electricity, cooling, water purification, process drying, and space 
heating. The purpose of the wind power in this study was to power a water pump for reverse 
osmosis, while the solar was used in power generation [153].   

One key benefit of CSP with wind is its capability to store energy at a low cost using 
TES, which has the effect of helping to stabilize the grid by providing a semi-dispatchable power 
source. Thermal storage is such a benefit to CSP as a technology, that its direct use has also been 
proposed for use with wind to provide a stabilized power output [184], as shown in Figure 20. 
Although this configuration does not use solar, it does provide a rare example of the use of CSP 
technology to enhance wind power with hybridization at the component level, rather than 
electrically at the grid level only.   
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Figure 20: A wind power with TES configuration proposed by Okazaki et al. Available from [184].  The 

details of the studies on CSP-wind hybrids is shown in Table 5. Most studies of wind/CSP hybrids 

only demonstrate hybridization at the grid level, so the synergies between the two technologies 

are generally weak.   

Table 5: A summary of CSP-wind hybrid systems  
Configuration  Solar 

collection 

temp.  

Collector 

type  
Solar heat 

collection 

fluid  

Solar 

fraction  
Solar-to- 

electricity 

efficiency  
CSP and wind hybridization at 
grid level [182]  

-  Parabolic 
trough  

-  -  14%  
(annual)  

CSP and wind hybridization at 
grid level [180]  

400 °C  Parabolic 
trough  

Therminol 
VP1  

-  16%  
(annual)  

CSP and wind hybridization at 
grid level [183]  

380 °C +  Parabolic 
trough  

Therminol 
VP1  

48%  
(annual)  

22.9%  

Wind used for water pumping 
in reverse osmosis system in 
solar-geothermal-wind hybrid 
multi-generation [153]  

350 °C  Parabolic 
trough  

-  -  -  
(36.7%  
overall)  

8. Conclusion  
The advantages and disadvantages of various CSP hybrids are presented in Table 6. 

Hybridization of CSP with other energy sources has many advantages, but in some instances, 
hybridization may hinder CSP technology. CSP-wind hybrids (at least those configurations 
covered here), for example, don’t have much synergy and are only considered hybrids in that the 
use of their outputs are planned together. While each technology has merit, it generally doesn’t 
make much sense to combine them at the component level. CSP-geothermal hybrids have the 
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potential to be an all-renewable option with dispatchability, although the low temperature power 
cycles required by geothermal severely limit the efficiency of the combined system. The overall 
efficiency can be improved by finding other uses for the low temperature heat, although the 
locations with adequate solar thermal resources, geothermal resources, and multiple low 
temperature heat sinks may be scarce. PVT technology has many positives and is an outlier in 
this context as it doesn’t rely on solar thermal technology for power generation and may not be 
appropriate for centralized power generation, which would require co-location of a large plant as 
well as a useful heat sink for low temperature thermal energy. While this hybrid has many 
benefits, it does not inherently enhance dispatchability as both technologies (PV and solar 
thermal) still rely on an intermittent solar resource.   

  Hybridizing CSP with hydrocarbons has several benefits including enhanced 
dispatchability from the ability to combust fuel on demand. Using fossil fuels in a hybrid 
configuration prevents the system from being purely renewable and emission free, but may 
actually enhance the system’s ability to harvest solar energy if the hybrid is designed to get 
higher efficiency by exploiting the synergies of the two forms of energy. Hybridization with 
biofuels has the potential for dispatchability and purely renewable generation, but would rely on 
cost-effective and abundant sources of biofuels. An ideal CSP-hybrid system would satisfy the 
following:  

• Increases the efficiency of CSP component compared to stand-alone plant  
• Reduces the LCOE of the CSP component compared to stand-alone plant  
• Allows for flexible operation to achieve optimum performance  
• Uses reliability of other energy source to achieve high capacity factor  
• Can accommodate scalable solar field to achieve high solar share  
• Achieves lower emissions compared to a hydrocarbon-based plant  

There are many hurdles to achieving large-scale renewable power generation with cost 
competitiveness being chief among them. In the immediate future, adoption of renewable 
generation technologies at large scale will require adequate fossil fuel backup on the electric grid 
to account for fluctuations in renewable energy availability. Because the solution is currently a 
mix of many different energy technologies at the grid level, it makes sense to explore synergistic 
hybrids at the plant level that can enhance the overall efficiency and increase the usage of 
variable energy sources like solar energy. Further, hybridization will enable earlier and deeper 
penetration of renewable energy sources into the energy market.  
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Table 6: A summary of the advantages and disadvantages of hybridizing CSP with other energy sources.   
  Advantages  Disadvantages  
Coal  • Uses common, low cost linear 

concentrator technologies  
• Can retrofit existing coal plants  
• Low cost, abundant fuel  
• Many possible injection points for 

solar at different temperatures  
• Coal provides dispatchability  
• Capital cost savings from shared 

equipment  

• High emission fuel  
• Equipment age mismatch may 

be  
issue for retrofit  

• Efficiency limited by Rankine 
cycle power block  

• High temp. gasification needs 
tech. development  

Natural 

Gas   
• Low cost, abundant fuel  
• Low emission fuel  
• Many possible configurations  
• Many possible injection points for 

solar at different temperatures  
• Efficient ISCC operation possible  
• NG provides dispatchability  
• Capital cost savings from shared 

equipment  

• High temperature solar 
technology still needs 
development  

• Efficient ISCC has relatively 
low solar share  

Biofuels  • Potential for purely renewable power 
generation  

• Many possible configurations  
• Many possible injection points for 

solar at different temperatures  
• Biofuel provides dispatchability  
• Capital cost savings from shared 

equipment  

• Limited biofuel availability may 
require other fuel sources  

• High temp. gasification needs 
tech. development  

Geothermal  • Potential for purely renewable power 
generation  

• Geothermal provides some  
dispatchability  

• Utilizes low temperature, low cost 
solar collectors  

• Opportunities for multi-generation to 
improve efficiency  

• Capital cost savings from shared 
equipment  

• Limited to low temperature, 
inefficient power cycles  

• Multi-generation systems 
require co-location of solar, 
geothermal, and multiple heat 
sinks  

• Geothermal brine can cause 
corrosion and scaling issues on 
solar equipment  

Photo- 
voltaic  

• Beneficial use of otherwise wasted 
thermal energy  

• Thermal heat removal increases PV 
efficiency  

• Requires heat sink for thermal 
energy  

• Energy source not dispatchable  

Wind  • Potential for purely renewable power 
generation  

• Different energy availability profiles 
provides some reliability  

• Energy sources not dispatchable  
• Little synergy at equipment level 

as hybridization is generally 
only at grid level  

• No capital cost savings from 
shared equipment  



41  
  

8.1. Future Research Directions  
Solar thermal energy for power generation has its share of challenges, both in research 

and in deployment of existing technology. Hybrid configurations that exploit synergies of solar 
thermal energy with other sources have the potential to provide both reliable and renewable 
power. These configurations should consider the overall efficiency of the plant so that, in cases 
where a combustible fuel is used, the fuel usage is minimized. Ideally these configurations would 
also be flexible, both in design and operation. From a design standpoint, designing plants so that 
the solar collector field can be expanded over time to provide an ever-increasing solar fraction 
would have many advantages. This type of plant could be technically and economically feasible 
at low solar fraction in the near future, but would also have the potential to become a nearly 
entirely renewable source of power as storage technology improves in the future. On the 
operation side, a plant with the ability to operate in a flexible mode (transitioning seamlessly 
between energy sources), has the potential to be optimized and further exploit synergies between 
the energy sources. Because solar energy is so variable, intelligent operation of a plant that 
maintains reliability while also pursuing optimality is a critical research area.   

  

Acronyms  
CSP  Concentrated solar power  
DSG  Direct steam generation  
HRSG  Heat recovery steam generator  
HTF  Heat transfer fluid  
IGCC  Integrated Gasification Combined Cycle  
ISCC  Integrated Solar Combined Cycle  
LCOE  Levelized cost of electricity  
ORC  Organic Rankine cycle  
PCM  Phase-change material  
PVT  Photovoltaic thermal   
SPCC  Solar-assisted post-combustion carbon 

capture  
STIG  Steam injected gas turbine  
TEG  Thermoelectric generator  
TES  Thermal energy storage  

  

Definitions  
Capacity factor or capacity utilization factor  The fraction of power supplied by a plant 

relative to its maximum capacity  
Cogeneration  A plant that simultaneously produces electric 

power and usable heat  
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Direct steam generation  A method of solar heat collection where steam 
is generated directly in a solar collector  

Multi-generation or polygeneration  A plant that simultaneously produces electric 
power and other useful products such as heat, 
cooling, chemicals, or purified water  

Overall efficiency  The total efficiency of the plant with both 
solar and other inputs  

Power Tower or Central Receiver  A type of concentrated solar power plant 
where an array of flat mirrors concentrate 
sunlight at a single point, typically on top of a 
tower  

Solar multiple  The amount of solar energy available relative 
to the amount required for full-capacity power 
production in the power block.   

Solar share or solar fraction  The fraction of the total energy to the plant 
that is supplied by solar  

Solar-to-electric efficiency  The marginal efficiency of the plant when 
adding solar power  

Stand-alone plant  A plant that relies on a single energy source  
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