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Abstract: The important parts of a transformer, such as the core, windings, and insulation materials,
are in the oil-filled tank. It is difficult to detect faults in these materials in a closed area. Dissolved Gas
Analysis (DGA)-based fault diagnosis methods predict a fault that may occur in the transformer and
take the necessary precautions before the fault grows. Although these fault diagnosis methods have
an accuracy of over 95%, their validity is controversial since limited data are used in the studies. The
success rates and reliability of fault diagnosis methods in transformers, one of the most important
pieces of power systems equipment, should be increased. In this study, a hybrid fault diagnosis
system is designed using DGA-based methods and Fuzzy Logic. A mathematical approach and
support vector machines (SVMs) were used as decision-making methods in the hybrid fault diagnosis
systems. The results of tests performed with 317 real fault data sets relating to transformers showed
accuracy of 95.58% using a mathematical approach and 96.23% using SVMs.

Keywords: transformers; dissolved gas analysis; fuzzy logic; support vector machine; hybrid

1. Introduction

According to research conducted by the Conseil International des Grands Réseaux Elec-
triques (CIGRE), the annual failure rate of power transformers is 0.53% [1]. Failure to provide
electrical energy as a result of transformers being out of service due to faults will lead to great
economic losses [2]. For this reason, the uninterrupted operation of power transformers is vital
for energy continuity [3]. In the case of faults in transformers, some gases occur due to electrical
and thermal effects. DGA-based methods detect the fault by analyzing these gases [3–5]. Kalinda
et al. [5] used the Rogers Ratio Method (RRM), International Electrotechnical Commission (IEC)
Ratio Method (IRM), and Duval Triangle Method (DTM) together with Artificial Neural Net-
works (ANN) in their studies. They obtained high accuracy with the model supported by
ANN. An interface was also developed in the Matlab environment in this study. Lin et al. [6]
developed a combined model using the RRM, IRM, Doernenburg Ratio Method (DRM), and
Key Gas Method (KGM). The model was tested with 101 data sets and reached 93.8% accuracy.
Ghoneim et al. [7] proposed a prediction model based on gas concentrations using 386 data
sets. The proposed model predicted failures with an accuracy of 71.5%. In the analysis of Siada
et al. [8], the success rates of the KGM, DRM, RRM, IRM, and DTM were 86.7%, 57%, 50%,
51.7%, and 88%, respectively. Using these methods with Fuzzy Logic (FL), they then predicted
eight faults correctly. Guardado et al. [9] obtained success rates ranging from 87% to 100%
using ANN for five fault diagnosis methods with 33 data sets. Apte et al. [10] increased the
success rates of the RRM and IRM methods by using these methods together with FL. Ghoneim
et al. [11] proposed a fault prediction model by combining the DTM, RRM, and IRM methods
with a mathematical approach. The model predicted faults with 85.2% accuracy in 386 data sets.
Ibrahim et al. used the neural pattern-recognition technique on 446 data set samples to diagnose
transformer fault types and obtained 92.8% accuracy [12]. Xing et al. used a deep learning neural
network (DLNN) to detect the health status of power transformers. A total of 335 case data sets
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from 12 transformers located in a substation in Wuhan, China, and 42 case data sets collected
from reference sources were used. An accuracy of 95.18± 0.81 was obtained when the DLNN
method was used in the determination of transformer health status [13]. Li et al. proposed
a fault diagnosis model for transformers that contains adaptive synthetic oversampling, the
reconstructed data method, and an improved deep coupled dense convolutional neural network.
The IEC TC 10 data and collected data were used as the test data. The accuracy of the proposed
fault diagnosis model reached 94.05% [14]. Ricardo Manuel Arias Velasquez was able to detect
partial discharge with 97.55% accuracy, thermal error with 93.10% accuracy, and remaining
life of the transformer with 85.88% accuracy through his method that used soft techniques
such as a support vector machine (SVM) and tree models (TM) [15]. Hua et al. set up three
error diagnostic models based on multiclass relationship vector machines (MRVMs), multiclass
support vector machines (MSVMs), and Back Propagation Neural Networks (BPNN). They
also used Particle Swarm Optimization (PSO) to increase the accuracy of these models. They
achieved 88.60% diagnostic accuracy with the created algorithm [16].

Although high success rates have been achieved in most of the studies in the literature,
these studies were carried out with a small data set. In studies with large data sets, predic-
tions could not be made with high accuracy. In this study, the KGM, Simplified IEC Method
(SIM), and DTM methods were preferred and combined with FL instead of the DRM,
RRM, and IRM methods that have achieved low success rates. Fuzzy-based fault diagnosis
models were tested with 317 data sets from IEC TC 10 Data Base, TEIAS (Turkish Electricity
Transmission Corporation), references [7,8]. The proposed hybrid system processes the
results of the FL-based KGM, DTM, and SIM methods with a mathematical approach or
SVMs and is able to achieve fault prediction with higher accuracy. In Section 2, the DGA
fault diagnosis methods are explained. The application of FL to prediction methods is
represented in Section 3. Section 4 clarifies the details of the fault diagnosis methods used
in the hybrid system. The test results of the proposed hybrid systems are given in Section 5.
Section 6 summarizes and discusses the findings.

2. DGA-Based Fault Diagnosis Methods

Electrical and thermal faults cause the release of hydrogen (H2), methane (CH4),
ethane (C2H6), ethylene (C2H4), acetylene (C2H2), carbon monoxide (CO), and carbon
dioxide (CO2) gases in transformer oil. The amounts of these gases released through
the deterioration of transformer oil or cellulose paper are expressed as PPM (Part Per
Million) [2,7]. The IEEE C57.104-2019 [17] and IEC 60599:2015 [18] standards are used to
analyze gases occurring in electrical and thermal faults in transformers. These standards
explain fault types and DGA fault diagnosis methods in detail.

2.1. KGM—Key Gas Method

The KGM uses the individual concentrations of the six fault gases (H2, CH4, C2H6,
C2H4, C2H2, CO) to detect transformer faults. These six gases, referred to as Total Com-
bustible Gas (TCG), occur if there is a fault in the transformer’s oil. Additionally, the
KGM is one of the best methods for determining the normal situation of a transformer
through DGA using the absolute amount of TCG. Table 1 shows the relationship between
the amount of gas produced and the fault [18].

Table 1. Key Gas Method [17].

Key Gas Fault Type Typical Proportions of Generated TCG

(C2H4) Thermal mineral oil Predominantly C2H4 with smaller proportions of C2H6, CH4, and H2. Traces of C2H2 at very high
fault temperatures.

(CO) Thermal mineral oil and cellulose Predominantly CO with much smaller quantities of H2 Gases. Predominantly C2H4 with smaller
proportions of C2H6, CH4, and H2.

(H2) (PD) Predominantly H2 with small quantities of CH4 and traces of C2H4 and C2H6.

(H2, C2H2) (Arcing) Predominantly H2 and C2H2 with minor traces of CH4, C2H4, and C2H6. CO is also present if
cellulose is involved.
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Table 2 shows the typical gas concentration values observed in power transform-
ers [18].

Table 2. Typical gas concentration values [18].

Key Gas [PPM]

Hydrogen (H2) 50–150
Methane (CH4) 30–130

Carbon monoxide (CO) 400–600
Acetylene (C2H2)
Ethylene (C2H4) 60–280
Ethane (C2H6) 20–90

Carbon dioxide (CO2) 3800−14,000

2.2. DTM—Duval Triangles Method

This method predicts DGA data through a graphical representation. Duval’s triangle
has seven fault zones, as shown in Figure 1. It uses the concentrations of relative % values
of CH4, C2H2, and C2H4 at the sides of the triangle. The triangle’s coordinates can be
calculated using Equations (1)–(3) [19].

%C2H2 = 100 · x/(x + y + z) (1)

%C2H4 = 100 · y/(x + y + z) (2)

%CH4 = 100 · z/(x + y + z) (3)

x = (C2H2), y = (C2H4), and z = (CH4) in ppm.
These relative % values are the coordinates of the DGA point in the Duval triangle [17–19].
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Figure 1. Coordinates and fault zones of the triangle.

D1 and D2, shown in Figure 1, represent high and low energy arcs, partial discharge
(PD), T1, T2, and T3 thermal faults at various temperatures, and DT, a mixture of arc and
thermal faults [19]. According to the relative percentages of the gases, lines are drawn
from all three sides of the triangle parallel to the side reference lines. The region where the
intersection of these lines is located is the fault prediction of the DTM [20].
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2.3. SIM—Simplified IEC Method

This method interprets faults using the ratios of gases to each other [21,22]. The rules
for this method are given in Table 3 and are defined in IEC-60599-2015 [18]. According to
Table 3, if the CH4/H2 ratio is less than 0.2, the fault is PD. If another C2H2/C2H4 ratio is
higher than 0.2, the fault is an arc; otherwise, it is a thermal fault.

Table 3. Simplified scheme of interpretation [18].

Case C2H2/C2H4 CH4/H2

PD <0.2
Arc >0.2

Thermal <0.2

3. Application of Fuzzy Logic to Fault Diagnosis Methods

Fault diagnosis methods give unclear or inaccurate results in some cases. For this
reason, FL has been applied to fault diagnosis methods. The application of FL to the KGM,
SIM, and DTM diagnosis methods was performed using LabVIEW Fuzzy System Designer
(LFSD) tools. Figure 2 shows the Fuzzy Logic structure used in the study.
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Figure 2. Fuzzy Logic flow chart.

The amount of gases, the ratio of the amounts to each other, and the percentages of the
relative ratios were used as input information (C2H2/C2H4 and CH4/H2 gas amounts for
the SIM; H2, CH4, C2H2, C2H4, C2H6, and CO gas amounts and their relative percentages
for the KGM; and %CH4, %C2H4, and %C2H2 for the DTM). The triangle, gaussian, and
trapezoid functions are determined by a trial-and-error method and used as membership
functions. The limits of the input membership functions are determined according to the
limit values of the diagnostic methods. Since the limits of the input values are not case
parameters, they can be applied to all cases regardless of transformer values. As can be
seen in Figure 3, the output membership function is formed to represent the thermal fault,
partial discharge, arc fault, and out of code states. The rule base was created according to
the rules of the DGA-based fault diagnosis methods used. Mamdani was chosen as the
inference method, and Mean of Max was chosen as the defuzzification method.
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The Fuzzy Logic-based SIM (FSIM), Fuzzy Logic-based KGM (FKGM), and Fuzzy
Logic-based DTM (FDTM) methods were checked with 317 data sets, and accuracy rates of
92.11%, 88.64%, and 94.64%, respectively, were obtained. According to Table 4, the FDTM
created with the DTM gave the most accurate results by making 98.675% and 92.308%
accurate predictions for thermal faults and arc faults, respectively, while the FKGM is
shown to be superior to other models with 95.65% accuracy for PD faults. While the FSIM
obtained successful results for thermal and arc faults, it showed the lowest performance
in PD faults. In Table 4, “AI” indicates the ‘Accuracy Index’ parameter of each method
according to the fault.

Table 4. Accuracy index values.

Thermal PD Arc

Method Accu. Cases Inaccu. Cases AITH Accu. Cases Inaccu. Cases AIPD Accu. Cases Inaccu. Cases AIARC

FKGM 138 13 91.391% 22 1 95.65% 121 22 84.615%
FSIM 147 4 97.351% 18 5 78.26% 127 16 88.811%

FDTM 149 2 98.675% 19 4 82.61% 132 11 92.308%

4. Hybrid Condition Monitoring System (HCMS)

In this study, two different Hybrid Condition Monitoring Systems (HCMSs) are pro-
posed that use an FL-based mathematical approach and SVM to make predictions with high
accuracy. Both hybrid systems have advantages over each other. The hybrid system, which
classifies with a mathematical approach, was designed only in the LabVIEW environment.
On the other hand, the system that classifies with an SVM provided higher accuracy after
being designed in the LabVIEW and Matlab environments.

4.1. The HCMS with a Mathematical Approach

The proposed HCMS is a hybrid system that uses the combination of FL and a math-
ematical approach to predict with high accuracy. This system analyzes the results of the
FL-based FKGM, FSIM, and FDTM fault diagnosis models with a mathematical approach
and makes fault predictions. Figure 4 shows a flow chart of the system.
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The operation of the three-step model, whose flow diagram is given in Figure 4, starts
with the user entering the gas quantities. In Step 1 specified in the diagram, whether or
not there is a fault in the transformer is determined using the FKGM. If there is no fault,
the next sections are not passed and the normal operational information of the transformer
is given as output. If there is a fault, it is passed to Step 2, where the FKGM, FSIM, and
FDTM methods are used for analysis. The probability of each fault according to the relevant
method is known as ‘discrete error probability’ and is calculated by Equation (4)–(12) [23].
‘AI’ values are given in Table 4. The ‘x’ value is the fault output of the FL-based models in
the LabVIEW program. Step 3 aims to find error probabilities and choose the largest one.
After calculating the discrete error probabilities, the ‘integrated probabilities’ of each fault
are calculated in Step 3 according to Equations (13)–(15) [23]. The most probable fault as a
result of the calculation will be the output of the hybrid model.

f th
KGM(x) =


AITh, x = Thermal
1− AIPD, x = PD
1− AIArc, x = Arc

(4)

f th
SIM(x) =


AITh, x = Thermal
1− AIPD, x = PD
1− AIArc, x = Arc

(5)

f th
DTM(x) =


AITh, x = Thermal
1− AIPD, x = PD
1− AIArc, x = Arc

(6)

f pd
KGM(x) =


1− AITh, x = Thermal

AIPD, x = PD
1− AIArc, x = Arc

(7)

f pd
SIM(x) =


1− AITh, x = Thermal

AIPD, x = PD
1− AIArc, x = Arc

(8)

f pd
DTM(x) =


1− AITh, x = Thermal

AIPD, x = PD
1− AIArc, x = Arc

(9)

f arc
KGM(x) =


1− AITh, x = Thermal

1− AIPD, x = PD
AIArc, x = Arc

(10)

f arc
SIM(x) =


1− AITh, x = Thermal

1− AIPD, x = PD
AIArc, x = Arc

(11)

f arc
SIM(x) =


1− AITh, x = Thermal

1− AIPD, x = PD
AIArc, x = Arc

(12)

fThermal = f th
KGM(x) · f th

SIM(x) · f th
DTM(x) (13)

fPD = f pd
KGM(x) · f pd

SIM(x) · f pd
DTM(x) (14)

fArc = f arc
KGM(x) · f arc

SIM(x) · f arc
DTM(x) (15)

The hybrid system in which the mathematical approach was used was developed in
LabVIEW, and the GUI shown in Figure 5 was created for user convenience.
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4.2. HCMS with an SVM

The other recommended HCMS is a hybrid system that combines FL and SVMs.
The system classifies the results of the Fuzzy Logic-based FKGM, FSIM, and FDTM fault
diagnosis models with an SVM and makes fault predictions.

wTxi + b ≥ 1− ξi, yi = 1
wTxi + b ≥ −1 + ξi, yi = −1

ξi ≥ 0, ∀i

(16)


min ‖w‖

2

2 + C
n
∑

i=1
ξi

yi(wTx + b) ≥ 1− ξi
ξi ≥ 0

(17)

For data that cannot be classified linearly using a SVM, the extreme plane should
satisfy the inequalities in Equation (16), and the best extreme plane is found with the
inequalities in Equation (17). The ξi slack variable shows examples of misclassification. C
is the penalty parameter, which is a positive number. Classification performance depends
on how the penalty parameter is set.

In addition, for data that cannot be classified linearly, the kernel function is used to
move the data to the high-dimensional feature space, and the best extreme plane here is
determined by Equation (18). The radial basis kernel (Equation (19)) is one of the most
commonly used kernel approaches in SVMs. With the width of the σ expression, the best
value is selected in all iterations [24,25].

f (x) = sgn(
m

∑
i=1

αiyiK(xi, xj) + b) (18)

K(xi, xj) = exp(−‖x− y‖2

2σ2 ) (19)

STPRtool (statistical pattern recognition toolbox), developed in the Matlab environ-
ment by Franc and Hlavac [26], was used to develop SVM for the classification of FKGM,
FSIM, and FDTM fault diagnosis results. A one-versus-one approach was used in this
study for the multi-classification application of SVMs, which is a binary classifier. Half of
the 317 data sets were used as training data, and the other half were used as test data.
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5. Results

A hybrid system was designed by using the KGM, SIM, and DTM, which are basic
Dissolved Gas Analysis methods that were developed to diagnose the condition of oil-type
transformers. The performance of the system was tested with 317 data sets from IEC TC
10 Data Base, TEIAS [7,8]. Table 5 shows the data of some faulty transformers and the
results obtained from the mathematical approach we designed.

Table 5. Output examples of the HCMS with a mathematical approach *.

Data from Faulty Transformers HCMS Results

Real
Fault H2 CH4 C2H2 C2H4 C2H6 CO CO2 FSIM FDTM FKGM OUTPUT

1 Thermal 1 27 1 4 49 53 254 ARC Thermal Thermal Thermal
2 Thermal 48 610 - 10 29 1900 970 Thermal PD Thermal Thermal
3 Thermal 40,000 400 6 600 70 800 218 Thermal Thermal PD Thermal
4 Thermal 150 22 11 60 9 - - Thermal Thermal ARC Thermal
5 PD 9340 995 7 6 60 60 620 ARC PD PD PD
6 PD 40,280 1069 1 1 1060 1 - PD PD PD PD
7 PD 26,788 18,342 - 27 2111 704 - Thermal PD PD PD
8 PD 106 4 0 1 2 - - PD Thermal PD PD
9 Arc 2510 202 1730 208 139 - - PD Arc Arc Arc

10 Arc 169 38 5.8 6.5 48.5 - - Arc Arc PD Arc
11 Arc 17 42 20 12 192 - - Arc Arc Thermal Arc
12 Arc 522 50 27 23 8 672 2294 PD Arc Thermal Arc

* Inaccurate predictions are shown in red and accurate predictions are shown in green.

Table 6 shows the prediction accuracy of the HCMS with a mathematical approach.
The HCMS showed high performance, with 303 accurate fault predictions out of 317 total
faults.

Table 6. Performance of the system with a mathematical approach *.

Thermal PD Arc

Method True False Accu. True False Accu. True False Accu. Total Accuracy

FKGM 138 13 91.39% 22 1 95.65% 121 22 84.62% 88.64%
FSIM 147 4 97.35% 18 5 78.26% 127 16 88.81% 92.11%

FDTM 149 2 98.68% 19 4 82.61% 132 11 92.31% 94.64%
HCMS 150 1 99.34% 21 2 91.30% 132 11 92.31% 95.58%

* The final output performances of the HCMS with mathematical approach are given in green.

The HCMS with an SVM showed a performance level of 96.23%. Table 7 shows the
prediction accuracy of the HCMS with an SVM.

Table 7. Performance of the system with an SVM *.

Thermal PD Arc Total Accuracy
Thermal 76 0 0

PD 1 10 0
Arc 1 4 67

Accuracy 97.44% 71.43% 100% 96.23%
* The green cells show the number of accurate predictions. The cells highlighted in red show in which class the
error was mistakenly predicted.

6. Conclusions

DGA is used to detect incipient faults in power transformers. Many DGA-based
applications have been made for the diagnosis of faults. In the literature, there are two
different methods: classical fault diagnosis methods and intelligent fault diagnosis models.
Classical fault diagnosis methods are the methods in which gases dissolved in transformer
oil are used as direct input and are specified by the relevant standards. The diagnostic



Energies 2023, 16, 1151 9 of 11

accuracy of these methods is low. Today, there is no method that has been made with
sufficient and reliable data sets and so has reached very high accuracy. The innovation in
the proposed hybrid approach aims to achieve high accuracy in transformer fault estimation
while overcoming the challenge of developing a comprehensive framework. In this study,
a hybrid fault diagnosis system was designed using DGA-based methods and Fuzzy Logic.
To operate independent of case values, the inputs of Fuzzy Logic are the outputs of basic
DGA methods. A mathematical approach and support vector machines (SVMs) were used
as decision-making methods in the hybrid fault diagnosis systems. The effectiveness of
the proposed method was tested with 317 data sets obtained from the IEC TC 10 database
provided by TEIAS. The results of tests performed with 317 real fault data sets from
transformers indicate that the mathematical approach attained 95.58% accuracy and the
system with an SVM attained 96.23% accuracy. The method we propose in this study
increased the reliability and accuracy of fault diagnosis. In addition, this paper provides
detailed information for future research on transformer fault analysis. It may act as a
reference or guide when performing detailed diagnosis associated with a particular type of
transformer fault.
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Abbreviations

f th
KGM (x) Discrete probability of a thermal fault with the FKGM model

f th
SIM(x) Discrete probability of a thermal fault with the FSIM model

f th
DTM(x) Discrete probability of a thermal fault with the FDTM model

f pd
KGM (x) Discrete probability of a PD fault with the FKGM model

f pd
SIM(x) Discrete probability of a PD fault with the FSIM model

f pd
DTM(x) Discrete probability of a PD fault with the FDTM model

f arc
KGM (x) Discrete probability of an arc fault with the FKGM model

f arc
SIM(x) Discrete probability of an arc fault with the FSIM model

f arc
DTM(x) Discrete probability of an arc fault with the FDTM model

AITh Accuracy Index of thermal faults
AIPD Accuracy Index of PD faults
AIAr Accuracy Index of arcing faults
fThermal Integrated probability of a thermal fault (13)
fPD Integrated probability of a PD fault (14)
fArcing Integrated probability of an arcing fault (15)
KGM Key Gas Method
SIM Simplified IEC Method
DTM Duval Triangle Method
FKGM Fuzzy Logic-based KGM
FSIM Fuzzy Logic-based SIM
FDTM Fuzzy Logic-based DTM
FL Fuzzy Logic
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HCMS Hybrid Condition Monitoring System
LFSD LabVIEW Fuzzy System Designer
T1 Thermal fault in mineral oil and/or paper below 300 ◦C
T2 Thermal fault in mineral oil and/or paper above 300 ◦C
T3 Thermal fault above 700 ◦C
PD Partial discharge of the cold plasma (corona) type
D1 Low-energy discharges
D2 High-energy discharges
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