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Abstract—Hybrid classification methods based on consensus
from several data sources are considered. Each data source is at
first treated separately and modeled using statistical methods.
Then weighting mechanisms are used to control the influence
of each data source in the combined classification. The weights
are optimized in order to improve the combined classification
accuracies. Both linear and nonlinear optimization methods are
considered and used in classification of two multisource remote
sensing and geographic data sets. A nonlinear method which
utilizes a neural network gives excellent experimental results. The
hybrid statistical/neural method outperforms all other methods
in terms of test accuracies in the experiments.

I. INTRODUCTION

DATA FUSION [1] for classification of remote sensing
and geographic data from multiple data sources is a very

challenging research problem. Typically, the multisource data
now not only include spectral data but also, for example,
forest maps, ground cover maps, radar data and topographic
information such as elevation and slope. It is desirable to use
all of these data to extract more information and achieve higher
accuracy in classification.

The major methods proposed in data fusion are based on
statistical methods [2]–[4], neural networks [5]–[7], Dempster-
Shafer theory [4], [8], and fuzzy logic [9]. Here we will
concentrate on the statistical and neural network methods and
the combination of those approaches.

Several statistical methods have been used in the past to
classify multisource remote sensing data. Conceptually, the
simplest method is the stacked-vector approach in which a
compound vector with components from all of the data sources
is found and processed using the conventional statistical clas-
sification techniques in the same manner as data from a single
source. This method is very straightforward and works very
well if the data sources are similar and the relations among
the variables are easily modeled [10]. However, the method is
not applicable when the various sources cannot be described
by a common model, e.g., the multivariate Gaussian model.
Another drawback is that when the multivariate Gaussian
model is used, the computational cost grows as the square
of the total number of variables and becomes prohibitive if
the total number of variables is large.
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Another approach is to divide the data into subsets of
sources and then analyzes each subset [11]–[13]. In this
approach, the data are subdivided in such a way that variation
within each subdivision is minimized or eliminated based on
some of the subdividing variables.

Still another method is ambiguity reduction where the data
are classified based on one or more of the data sources, the
results of the classification are assessed, and other sources are
then used to resolve the remaining ambiguities. The ambiguity
reduction can be achieved by logical sorting methods [14].
Another method close to ambiguity reduction is the layered
classifier (tree classifier) applied in [15]. This approach has
the advantage that it treats the data sources separately but has
the shortcomings that design of the classifier is very dependent
on the analyst’s expertise and knowledge of the data. Also,
as in the ambiguity reduction method, different groupings or
orderings of the sources may produce different results [16]. In
[17] a knowledge-based method for multisource classification
has been proposed but such methods can be very heuristic.
Woodcock et al. [18] have also proposed a method using
mapping systems that resemble knowledge based systems.

Supervised relaxation labeling has been used to merge data
from multiple sources [19]. This method, like other relaxation
methods, tries to develop consistency among a collection of
observations by means of an iterative numerical diffusion
process.

It is important to develop general methods which can be
used to classify complex data sets containing multispectral,
topographic and other forms of geographic data. Solberget al.
[20] has used a Markov Random Field model for multisource
classification of remotely sensed data. Related to this problem,
Solberg et al. [3] has proposed statistical techniques for
multitemporal data by allowing changes in the identities of
the classes and by considering the class-dependent likelihood
of changes. Benediktsson and Swain [2] have proposed the use
of consensus theory which is a general approach that can be
used for any type of data. In their approach the contribution
of each expert needs to be weighted. No optimal way of doing
that has been proposed.

Neural networks have shown promise in data fusion of
multisource data. Benediktssonet al. [5] used backpropagation
successfully and compared their results to statistical methods.
Wan and Fraser [6] have proposed a method which can be used
for data fusion, multitemporal classification, and contextual
classification. Carpenteret al. [7] have proposed the use of
ART neural networks in classification of multisource data.

The advantage of neural network methods is that no prior
statistical information is needed about the input data. This
is very important, since the whole multiple source data set
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is usually very difficult to model by statistical methods [5].
However, when a sufficiently accurate statistical model can
be determined, statistical methods should outperform neural
networks in terms of classification accuracies. In multisource
classification it is relatively easy to model each source indi-
vidually. In this paper, statistical methods are used to model
the individual sources. Then, some type of scheme is used
to combine the source specific classifications. This is done
by the combination of statistical consensus theory and neural
networks. The goal of statistical consensus theory is to get
a consensus among experts. Here, an individual expert bases
his opinion on a specific data source. The neural networks
are then used to obtain the consensus among the experts, i.e.,
the neural networks optimize the consensus with respect to
classification accuracy.

The paper is organized as follows. First, consensus theory is
reviewed. Then, weight selection schemes in consensus theory
are discussed in Section III. Experimental results for two
multisource and geographic data sets are given in Section IV.
Finally, conclusions are presented in Section V.

II. CONSENSUSTHEORY

Consensus theory [2], [21]–[25] is a well-established re-
search field involving procedures with the goal of combining
single probability distributions to summarize estimates from
multiple experts (data sources) with the assumption that the
experts make decisions based on Bayesian decision theory.
Consensus theory is closely related to the method of stacked
generalization [26] where outputs of experts are combined in
a weighted sum with weights which are based on the individ-
ual performance of the experts. In most consensus theoretic
methods each data source is at first considered separately. For
a given source an appropriate training procedure can be used
to model the data by a number of source-specific densities that
will characterize that source [2]. The data types are assumed
to be very general. The source-specific classes or clusters are
therefore referred to as data classes, since they are defined
from relationships in a particular data space. In general there
may not be a simple one-to-one relation between the user-
desired information classes and the set of data classes available
since the information classes are not necessarily a property of
the data. In consensus theory, the information from the data
sources is aggregated by a global membership function, and the
data are classified according to the usual maximum selection
rule into the information classes. The combination formula
obtained is called a consensus rule.

Consensus theory can be justified by the fact that a group
decision is better in terms of mean square error than a decision
from a single expert (data source). To show this, let us define
an indicator function

if occur
if does not occur

where is an information class. Now it is needed to find an
estimate, , of the “best” probability that minimizes the mean
square error (summed over all’s)

where is a compound vector consisting of
observations from all the data sources,is the number of
data sources, is an observation from a single
data source ( can be a vector if the corresponding data
source makes a multidimensional observation), and is
the probability of . Differentiating with respect to
and setting the result equal to zero gives

The solution to the above equation is which
implies that the group probability is optimal for
classification in the mean square sense.

Although the above justification for consensus theory exits,
it is important to note that this justification does not place
any constraints on the choice of the consensus rule (global
membership function), and consequently several consensus
rules have been proposed in the literature. Probably the most
commonly used consensus rule is the linear opinion pool
(LOP) (see Fig. 1) which has the following (group probability)
form for the information class if data sources are used:

(1)

where is a source-specific posterior probability and
’s are source-specific weights which control

the relative influence of the data sources. The weights are
associated with the sources in (the global membership
function for the LOP) to express quantitatively the goodness
of each source [22].

The linear opinion pool has a number of appealing proper-
ties. For example, it is simple, yields a probability distribution,
and the weight reflects in some way the relative expertise
of the th expert. Also, if the data sources have absolutely
continuous probability distributions, the linear opinion pool
gives an absolutely continuous distribution. In using the linear
opinion pool, it is assumed that all of the experts observe the
input vector . Therefore, (1) is simply a weighted average of
the probability distributions from all the experts and the result
is a combined probability distribution.

The linear opinion pool, though simple, has several weak-
nesses [21]; e.g., it shows dictatorship when Bayes’ theorem
is applied, i.e., only one data source will dominate in making
a decision. It is also not externally Bayesian (does not obey
Bayes’ rule). The reason it is not externally Bayesian is that the
linear opinion pool is not derived from the joint probabilities
using Bayes’ rule. Another consensus rule, the logarithmic
opinion pool (LOGP), has been proposed to overcome some
of the problems with the linear opinion pool. The logarithmic
opinion pool can be described by

(2)

or

(3)

where are weights which should reflect the good-
ness of the data sources and is the global membership
function for the LOGP.
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Fig. 1. Schematic diagram of a linear opinion pool.

The logarithmic opinion pool differs from the linear opinion
pool in that it is unimodal and less dispersed. Also, the
logarithmic opinion pool treats the data sources independently.
Zeros in it are vetos; i.e., if any expert assigns ,
then . This dramatic behavior is a drawback if the
density functions are not carefully estimated. The logarithmic
opinion pool is externally Bayesian, but it is computationally
more complicated than the linear opinion pool.

III. W EIGHT-SELECTION SCHEMES

The previous section focused on consensus rules, but the
weight selection schemes for these rules were not addressed.
The weight-selection schemes in consensus theory should
reflect the goodness of the separate input data sources, i.e.,
more influence in the decision making should be given to
data sources that contribute to higher accuracy. There are
at least two potential weight selection schemes. The first
scheme is a classical scheme, i.e., to select the weights such
that they weight the individual data sources but not the
classes within the sources, e.g., use reliability measures which
rank the data sources according to their goodness (heuristic
weight-selection scheme). These reliability measures might be,
e.g., source-specific classification accuracy of training data,
overall separability or equivocation [2]. Another version of
the classical scheme is the equal weighting method, i.e., all
the sources are weighted equally.

The second scheme is to choose the weights such that they
not only weight the individual data sources but also the classes
within the sources. This scheme consists of defining a function

where contains source-specific posteriori discriminative
information and corresponds to the source-specific weights
in (1) and (3).

If is linear, the combined output response,, can be
written in matrix form as

where is a matrix containing the discriminative outputs of
the consensus theoretic classifier andcontains all the weights
(see Fig. 2). Assuming that has full column rank, the above
equation can be solved for using the pseudo-inverse of or
a simple linear delta rule. In order to find the optimal weights
for the case is linear, we define

...

where are matrices ( is the number
of training samples, and is the number of information
classes). Each row of represents an output vector for the
th data source. The matrices are ,

representing the weights for theth data source. If
is the desired output for the whole classification problem, we
have

where is an unknown matrix, and its least square estimate
is sought by minimizing the squared error:

(4)

The solution for in (4) can usually be obtained by
using the pseudo-inverse of , i.e.,

(5)

where is the transpose of , and is the
pseudo-inverse of which exists if is nonsingular.
In the case that is not of full column rank, this solution
becomes ill-conditioned. In that case one can use dummy
augmentation to make a full column rank matrix in a
higher dimensional space and then solve the problem. There
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Fig. 2. Schematic diagram of a linearly optimized LOP.

are at least two other suboptimal methods for solving this
optimization problem.

The first method is to use sequential formulas to compute
the optimal [27]. Let the th row vector of the matrix
be and the th row of the matrix be ; then can be
calculated iteratively using the formula

where is the least squares estimate of . The initial
conditions to the sequential formula are and

, where is a positive large number.
The second method for solving the least squares error

problem is to choose unitary which minimizes
[28]. We compute

where and tr returns the trace of its
argument matrix. If

is a singular value decomposition (SVD) of then

where is a unitary matrix and is the th
singular value of its argument matrix. This sum is maximized
when all , i.e., when .

In the case when is nonlinear, a neural network can
be used to obtain a mean square estimate of the function.
Here, the consensus theoretic classifiers with equal weights

Fig. 3. Schematic diagram of a LOP optimized by a neural network.

TABLE I
TRAINING AND TEST SAMPLES FOR INFORMATION CLASSES

IN THE EXPERIMENT ON THE COLORADO DATA SET

can be considered to preprocess the data for the neural
networks. Then, the neural network learns the mapping from
the source-specific posteriori probabilities to the information
classes. Therefore, the neural network is used to optimize the
classification capability of the consensus theoretic classifiers
(see Fig. 3). If is the desired output for the whole
classification problem, the process can be described by the
equation

(6)

The update equation for the weights of the neural network is

where is a learning rate and is the gradient with respect
to .

IV. EXPERIMENTAL RESULTS

Experiments were conducted on two multisource remote
sensing and geographic data sets with different characteristics.
Both data sets were from forest areas but the class-conditional
information in one data set (Anderson River data) were much
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TABLE II
TRAINING ACCURACIES IN PERCENTAGE FOR THECLASSIFICATION METHODS APPLIED TO THE COLORADO DATA SET

more difficult to model statistically than for the other (Col-
orado data). In the experiments it was investigated how
the difficulty with statistical modeling affected the weight
selection schemes for the different consensus rules. The results
of the experiments are discussed below.

A. Experiment 1: Colorado Data Set

Classification was performed on a data set consisting of the
following four data sources [5], [10], [15]:

1) Landsat MSS data (four spectral data channels).
2) Elevation data (in 10-m contour intervals, one data

channel).
3) Slope data (0–90in 1 increments, one data channel).
4) Aspect data (1–180in 1 increments, one data channel).

Each channel comprised an image of 135 rows and 131
columns, and all channels were spatially co-registered. The
area used for classification is a mountainous area in Colorado.
It has ten ground-cover classes which are listed in Table I. One
class is water; the others are forest types. It is very difficult
to distinguish among the forest types using the Landsat MSS
data alone since the forest classes show very similar spectral
response [5], [10], [15]. Reference data were compiled for the
area by comparing a cartographic map to a color composite
of the Landsat data and also to a line printer output of each
Landsat channel. By this method 2019 reference points (11.4%
of the area) were selected comprising two or more homoge-
neous fields in the imagery for each class. Approximately 50%
of the reference samples were used for training, and the rest
were used to test the classification methods.

Three statistical methods were used to classify the data: the
minimum Euclidean Distance (MED) classifier [19], the linear
opinion pool (LOP), and the logarithmic opinion pool (LOGP).
For the LOP and LOGP, ten data classes (corresponding to
the information classes in Table I) were defined in each data
source. The multispectral remote sensing data sources were
modeled to be Gaussian but the topographic data sources
were modeled by Parzen density estimation [30] with Gaussian
kernels. In this experiment, some of the class-conditional prob-

ability density functions were relatively sharp. Consequently,
zero class-conditional probabilities were obtained for some
information classes in (1) and (3). Therefore, the veto property
in (3) was sure to play a role in the consensus theoretic
classifications in the experiment.

Several different weighting schemes were tried for the LOP
and LOG. These weighting schemes were: 1) equal weights;
2) heuristic weights based on reliability measures [10]; 3)
optimal linear weights; and 4) optimal nonlinear weights
based on (6). For the optimal nonlinear weights, two and
three layer conjugate-gradient backpropagation (CGBP) neural
networks [31] were utilized with different numbers of hidden
neurons (0, 15, 25, 35, and 45 hidden neurons). For each
implementation, the neural networks were trained six times
with different initializations. Then, the average accuracy for
these six experiments was computed.

The CGBP algorithm with two and three layers was also
trained on the same data with different numbers of hidden
neurons (0, 15, 30, and 45 hidden neurons). Each version of the
CGBP network was also trained six times with different ini-
tializations and the overall average accuracies were computed
in each case.

The overall classification accuracies for the different meth-
ods are summarized in Tables II and III. In the tables the
average result for the best implementation of the neural
network-based methods is shown in each case. There the LOP
and LOGP were both optimized by the CGBP with 30 hidden
neurons. Also, the following heuristic weights were used for
the LOP in (1): Landsat MSS: 1.0, elevation data: 0.4, slope
data: 0.4, and aspect data: 0.4. The heuristic weights for the
LOGP in (3) were: Landsat MSS: 1.0, elevation data: 0.6, slope
data: 0.6, and aspect data: 0.6. For the consensus theoretic
methods that utilize optimal linear weighting, the weighting
was determined by the pseudo-inverse method in Section III.

From Table II (training data) it can bee seen that the CGBP
with 40 hidden neurons is the most accurate classification
method both in terms of average (over the classes) and
overall (over the samples) training accuracies. As expected,
the MED classifier did not achieve high accuracies. For the
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TABLE III
TEST ACCURACIES IN PERCENTAGE FOR THECLASSIFICATION METHODS APPLIED TO THE COLORADO DATA SET

Fig. 4. Colorado data: Training accuracies as a function of the number of iterations for the consensus theoretic methods optimized by the CGBP. Results
with and without hidden neurons are displayed for each consensus rule.

consensus theoretic methods, the LOPG optimized with CGBP
achieved the highest overall and average training accuracies.
The overall training accuracies obtained by the best LOP (also
optimized by CGBP) were approximately 8% lower than the
ones achieved by the LOGP. Both CGBP optimized versions
of the consensus theoretic methods achieved significant im-
provements over their equally weighted versions. In the case
of the LOP optimized by the CGBP, the training accuracy was
improved by more than 15% but for the CGBP-optimized-
LOGP it increased by over 12%.

In Table III (test data) it can be seen that the CGBP opti-
mization increased the test accuracies of the equally weighted
LOP by nearly 16% but the equally weighted LOGP by
almost 6%. The CGBP optimized versions of the consensus
theoretic classifiers were the most accurate classifiers con-

sidered in terms of classification accuracy of test data. The
results for these methods were similar in terms of overall
test accuracies but the LOGP achieved higher average test
accuracies (classification accuracy for class 9 is the major
cause for this difference). The LOP and LOGP with CGBP
optimization outperformed both versions of the neural network
classifiers in terms of overall and and average test accuracies.
This indicates the significant result that the discriminative
information provided by equally weighted consensus theo-
retic classifiers are effective preprocessors for neural net-
works.

In Figs. 4 and 5 the overall accuracies for the CGBP
optimized consensus theoretic classifiers are shown with both
zero and 30 hidden neurons. There it is seen that the hidden
neurons are more important in the neural network optimization
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Fig. 5. Colorado data: Test accuracies as a function of the number of iterations for the consensus theoretic methods optimized by the CGBP. Results
with and without hidden neurons are displayed for each consensus rule.

of the LOGP than the LOP. This comes as no surprise since the
LOGP, in contrast to the LOP, is a nonlinear consensus rule.

B. Experiment 2: Anderson River Data Set

The data used in the second experiment, the Anderson River
data set, are a multisource remote sensing and geographic
data set made available by the Canada Centre for Remote
Sensing (CCRS) [32]. This data set is very difficult to classify.
The imagery involves a 2.8 2.8 km forestry site in the
Anderson River area of British Columbia, Canada. The area
is characterized by rugged topography, with terrain elevations
ranging from 330 m to 1100 m above sea level. The forest
cover is primarily coniferus, with Douglas fir predominating
up to approximately 1050 m elevation, and cedar, hemlock
and spruce types predominating at higher elevations [32]. Six
data sources were used:

1) Airborne Multispectral Scanner (AMSS) with 11 spec-
tral data channels (ten channels from 380 to 1100 nm
and one channel from 8 to 14m).

2) Steep Mode Synthetic Aperture Radar (SAR) with four
data channels (X-HH, X-HV, L-HH, L-HV).

3) Shallow Mode SAR with four data channels (X-HH,
X-HV, L-HH, L-HV).

4) Elevation data (one data channel, where elevation in
meters pixel value).

5) Slope data (one data channel, where slope in degrees
pixel value).

6) Aspect data (one data channel, where aspect in
degrees pixel value).

The AMSS and SAR data were detected during the week
of July 25 to 31, 1978. Each channel comprises an image of

TABLE IV
TRAINING AND TEST SAMPLES FOR INFORMATION CLASSES

IN THE EXPERIMENT ON THE ANDERSONRIVER DATA

256 lines and 256 columns. All of the images are spatially
co-registered with pixel resolution of 12.5 m.

There are 19 information classes in the ground reference
map provided by CCRS. In the experiments, only the six
largest ones were used, as listed in Table IV. Here, training
samples were selected uniformly, giving 10% of the total
sample size. All other known samples were then used as test
samples.

Four statistical methods were used to classify the data:
the MED, the Gaussian maximum likelihood method (ML),
LOP, and the LOGP. For the LOP and LOGP six data
classes (corresponding to the information classes in Table IV)
were defined in each data source. The AMSS and SAR data
sources were modeled to be Gaussian but the topographic data
sources were modeled by Parzen density estimation [30] with
Gaussian kernels. The Anderson River Data is very difficult
to model [33], and, therefore, few class-conditional source-
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Fig. 6. Anderson river data: Training accuracies as a function of the number of iterations for the methods that utilize the CGBP.

Fig. 7. Anderson river data: Test accuracies as a function of the number of iterations for the methods that utilize the CGBP.

specific probabilities were zero by the probabilistic modeling.
Consequently, the veto property of (3) was not a problem for
these data.

The same weighting schemes for the LOP and LOGP were
used as in the experiment on the Colorado data. For the
nonlinear versions, two and three layer CGBP neural networks
were utilized with different numbers of hidden neurons (0, 15,
25, 35, and 45 hidden neurons). As in experiment 1, the neural
networks were trained six times with different initializations.
Then, the average of these six experiments was computed.

As in the experiment on the Colorado data, the CGBP algo-
rithm with two and three layers was trained on the data with
different numbers of hidden neurons (0, 15, 30, and 45 hidden
neurons). Each version of the CGBP network was trained
six times with different initializations and the overall average
accuracies were computed in each case (see Figs. 6 and 7).

The overall classification accuracies for the different meth-
ods are summarized in Tables V (training) and VI (test). In
the tables the average result for the best implementation of
the neural network based methods is shown in each case. The
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TABLE V
TRAINING ACCURACIES IN PERCENTAGE FOR THECLASSIFICATION METHODS APPLIED TO THE ANDERSONRIVER DATA SET

TABLE VI
TEST ACCURACIES IN PERCENTAGE FOR THECLASSIFICATION METHODS APPLIED TO THE ANDERSONRIVER DATA SET

following heuristic weights were used for the LOP: AMSS:
1.0, SAR steep mode data: 0.8, SAR shallow mode data: 0.8,
Elevation data: 1.0, Slope data: 1.0, and Aspect data: 1.0. The
heuristic weights for the LOGP were: AMSS: 1.0, SAR steep
mode data: 1.0, SAR Shallow Mode Data: 1.0, Elevation data:
0.0, Slope data: 0.0, and Aspect data: 0.0. The pseudo inverse
method of Section III was used as the optimal linear weighting
for the consensus theoretic methods.

In Tables V and VI, the conventional classification methods,
the MED and ML showed different characteristics. The MED
was not acceptable in terms of classification accuracies, but
the ML accuracies were relatively good, especially considering
that the data are not Gaussian. From the results in Tables V
and VI it is clear that the LOGP optimized with a neural
network outperformed all other methods in terms of overall
and average training and test accuracies. It is noteworthy that
the CGBP optimization increased the overall accuracies of the
equally weighted LOGP by approximately 12% (training) and
6% (test), and the LOGP with nonlinearly optimized weights

outperformed easily the best single stage neural network classi-
fiers both in terms of training and test accuracies. In contrast,
the CGBP optimized LOP only gave comparable results to
the single stage CGBP with 30 hidden neurons. However, the
CGBP optimized LOP improved significantly (between 23%
and 30%) on the LOP result with equal weights in terms
of average and overall accuracies of training and test data.
Also, the best CGBP optimized LOP results were achieved
with 0 hidden neurons where the best CGBP optimized LOGP
results were reached with 45 hidden neurons. These results
are not surprising since the LOP is a linear combination of
posterior probabilities but the LOGP is nonlinear. Therefore,
a multilayer neural network is needed for the optimization of
the LOGP.

V. CONCLUSION

Hybrid statistical/neural network classification has been
proposed. The approach is based on using a neural network
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as an optimizer for statistical methods which use consensus
from several data sources in classification. Two consensus
rules were considered: The linear opinion pool (LOP) and
the logarithmic opinion pool (LOGP). The LOGP optimized
by conjugate gradient backpropagation outperformed all other
classification methods used, both in terms of overall and aver-
age test accuracies. The results suggest that the discriminative
information provided by the equally weighted LOGP can be
effective preprocessors for neural networks.

The LOGP is nonlinear and, therefore, a neural network
with at least one hidden layer was needed for the optimization
of that consensus rule. In fact, the LOGP can be very difficult
to optimize because of its veto property. In this respect, the
data in experiments 1 and 2 had different characteristics. The
Colorado data in experiment 1 had relatively sharp probability
density functions. This meant that several probabilities with
the value zeros were encountered and, thus, the logarithm of
those values approached minus infinity when (3) was used. In
contrast, this was not a problem for the LOP. Consequently,
in experiment 1 only similar accuracies were achieved for
the LOP and LOGP when optimized by the CGBP. On
the other hand, the Anderson River data in experiment 2
are extremely difficult to model. Therefore, few 0 class-
conditional probabilities were achieved in that experiment
since the class-conditional densities were overlapping. For the
Anderson River Data, the LOGP became easier to optimize
and, consequently, the LOGP optimized by the CGBP easily
outperformed the LOP.

Overall, the optimization of the LOP and LOGP worked
well. As expected, the accuracies obtained with heuristic
weights improved on the accuracies with equal weights, but
improvement was again achieved with the optimal linear
weights. However, the CGBP optimization was clearly the best
in terms of accuracies in both experiments. Based on the results
in the paper, the proposed hybrid statistical/neural network
consensus theory has potential to be applied successfully for
many difficult classification and data fusion problems.
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