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Abstract

In recent times a growing interest has arose on the development of data-driven techniques to avoid the employ of

phenomenological constitutive models. While it is true that, in general, data do not fit perfectly to existing models, and

present deviations from the most popular ones, we believe that this does not justify (or, at least, not always) to abandon

completely all the acquired knowledge on the constitutive characterization of materials. Instead, what we propose here is,

by means of machine learning techniques, to develop correction to those popular models so as to minimize the errors in

constitutive modeling.

Keywords Machine learning · Data-driven computational mechanics · Plasticity · Model learning

Introduction

Plenty of effort has been dedicated throughout history to

create very accurate models. As an example, the reader may

think about all different models formulated, for instance,
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in hyperelasticity. These include the classical Saint-Venant,

Neo-Hookean, Ogden [1], Arruda and Boyce [2], Holzapfel

and Gasser [3], to name but a few. Another field in

which plenty of constitutive models have been developed is

plasticity, where we can highlight the classical models by

Tresca, Von Misses [4] or Hill [5], among others.

However, we also know that no model is perfect:

it is always subjected to certain limiting hypothesis,

experimental noise, etc. Indeed, even if you could calibrate a

model perfectly well, no guarantee is given that for another

set of experiments, different from the calibration ones, the

model is going to provide you a perfect result.

It has been argued that constitutive models are of a lower

epistemic level than other, more fundamental, equations.

This last group includes equilibrium and compatibility, for

instance. This reasoning is at the origin of the so-called

data-driven computational mechanics approach. In essence,

this approach tries to substitute phenomenological, always

imperfect models by experimental data. These techniques

employ a variety of methods to determine, in essence,

the stress tensor corresponding to a given strain state.

Thus, for instance, works by M. Ortiz and coworkers

employ nearest neighbor interpolation [6, 7], while in

[8–12] the authors employ different manifold techniques

to define the constitutive manifold of a given material,

i.e., a low-dimensional representation of the constitutive

equation based solely on data. Liu and coworkers [13]

employ clustering techniques, while Montans et al. employ
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spline approximation to the strain density functional in a

hyperelastic context [14, 15].

These approaches can be embedded in an even more

general context. Several works have been devoted to unveil

governing equations from data [16–18]. These may include

laws in the form of partial differential equations, for

instance [19–21].

The main aim of this work is to provide an alternative

route by enhancing or correcting existing, well-known,

models with information coming from data, thus performing

a sort of data-driven correction. In this first work a special

effort is put on the correction of plastic yield functions,

while work in progress adresses more complex scenarios

involving hardening and damage.

The proposed data driven correction technique is

conceptually simple. Imagine that our departure point is a

given, well-known parametric model M(p). It is important

to keep in mind that we are looking for an enhancement

or correction of the previous model based on the available

experimental results. Therefore, a discrepancy model D(c),

which applies to the first model, needs to be defined. So to

speak, reality, R, is approximated as

R = M(p) + D(c)
∣

∣

p
,

where p represents the set of parameters governing the

model and c represents the set of parameters needed to

define the necessary correction.

Since our measurement capabilities will in general be

constrained to some experimentally observable quantities,

both our objective reality and the correction to the model

will be restricted to these experimental settings. In other

words,

R
∣

∣

s
≈ M(p) + D(c)

∣

∣

p,s
.

It is worth to mention that the way we define the

observables s could have an important impact over the

calibration of the set of correction parameters, c. We assume

that a set of experiences is defined such that the entire

parametric space c could be determined.

The outline of the paper is as follows. In Section “Problem

statement” we present the developed methodology with the

help of a toy problem. Section “Reconstruction of the error

response surface by sparse sampling” introduces a sparse

sampling technique able to describe the error surface with a

minimum number of control points. In Section “Numerical

results” the numerical results are presented, showing the

performance of the proposed methodology.

Problem statement

In the present work, we will try to capture the plastic yield

function of a particular material with the help of a well

known plasticity model and try to develop the necessary

corrections based on data. Recall that a plastic yield function

can be seen as a hypersurface living in the stress space, σ ∈

R
6. Typically, this surface is parameterized using a finite

set of parameters (p) given by the physics-based model,

M(p). Moreover, it will depend also on the correction or

discrepancy model D(c). Therefore, our reality R, in the

Fig. 1 Different views of Barlat

Yld2004-18p plastic yield

function. Color map represents

the value of τxy



form of a general, yet unknown, plastic yield function, can

be written as

R = FY (σ ; p, c) = 0.

For the sake of simplicity and ease of representation,

but without loosing generality, we will constraint ourselves

to the plane stress hypothesis. Therefore, our plastic

yield function is defined in a three dimensional space

corresponding to the three active stress components, σxx ,

σyy , and τxy . This three-dimensional stress state is easily

expressed in spherical coordinates as

σxx = R(α, β) cos(α) sin(β),

σyy = R(α, β) sin(α) sin(β),

τxy = R(α, β) cos(β),

since the plastic yield function is often a convex closed

surface. Here, R(α, β) defines the radius in spherical coor-

dinates for any possible angle. Therefore, a parameterization

R(α, β; p) directly determines the shape of FY .

Let us assume that reality, R, is perfectly described by a

Barlat Yld2004-18p yield function [22, 23], shown in Fig. 1,

so that R = FB
Y . Assume that this model has never been

defined, so that we need to approximate reality —known

indirectly through experimental results— by employing a

well-known, yet inexact model. For this purpose we have

chosen a quadratic Hill plastic yield function

M(p) = F
H
Y (σxx, σyy, τxy; F,G,H,N)

= Fσ 2
yy + Gσ 2

xx + H(σxx − σyy)
2 + Nτ 2

xy − σ 2
0 .

As it can be noticed, this yield criterion presents a

parameterization based on four coefficients, i.e., |p| = 4

and p = {F,G,H,N}.

Both Hill’s and Barlat’s models have been chosen to

represent a well-known model that does not fit exactly to

reality, and to govern the reality, respectively. This choice

purely arbitrary, and its sole purpose is to show that a

model can effectively be corrected so as to fit experimental

evidence.

Figure 2 depicts the shape of a quadratic Hill yield

criterion with F = 2.1, G = 1.8, H = 0.7, and N = 1.9.

As it can be noticed, convexity is fulfilled and it defines a

smooth closed surface in the stress space.

The discrepancy model D(c) is assumed to provide a

correction to the Hill model so as to satisfy the Barlat

Yld2004-18p model, from which the (synthetic) experimen-

tal data were obtained. To construct this discrepancy model,

in the absence of any knowledge about the sought Bar-

lat model, we chose to employ an as general as possible

parameterization. We defined a set of eight control points

distributed along the plane τxy = 0 —corresponding to a bi-

axial experiment—, plus another degree of freedom relative

to the maximum shear points defined along the line σxx = 0,

σyy = 0 —thus giving a pure shear experiment—. Hence,

|c| = 9. Obviously, more control points could be added, if

more precision is sought. The method does not present any

limitation in this sense.

Interpolation between all degrees of freedom is done by

means of natural neighbor interpolation, which provides C1-

continuous shape functions, except from the data points,

where it is simply continuous [24]. Figure 3 depicts the

Fig. 2 Different views of the

quadratic Hill plastic yield

function. Color map represents

the value of τxy . F = 2.1,

G = 1.8, H = 0.7 and N = 1.9

were taken



Fig. 3 Perturbed quadratic Hill

plastic yield function by moving

only one degree of freedom of

D(c). Color map represents the

magnitude of the perturbation.

F = 2.1, G = 1.8, H = 0.7,

and N = 1.9

sensitivity of perturbing one degree of freedom in D(c) on

the quadratic Hill yield function. Note that the maximum of

the perturbation is achieved where the degree of freedom is

placed and the magnitude is smoothly decreasing towards

the original yield surface.

Remark Convexity of the resulting corrected yield surface

can be enforced by generating many points on the corrected

yield surface and then considering their convex hull.

A general expression for the error caused by the adoption

of a corrected poor model (in this case represented by Hill’s

criterion) with respect to the experiments could be

Es(c) =

|s|
∑

s=1

∫

ts

∫

xs

||εs
M+D

(x, t, c) − ε
s
R

(x, t)||dxdt,

where xs is the region of the solid in which measurements

are performed and ts represents the time interval of duration

of the experiment. In this particular case, we chose to

measure the error in the strain field, but we could have done

it with the displacement field as well. It is worth noting that,

at this stage, if the poor model is already calibrated, the only

parametric space that could vary is the one related to the

discrepancy model, c.

Reconstruction of the error response surface
by sparse sampling

Sparse approximation in high-dimensional spaces

The objective of this procedure is to build a response

surface for the error ES(c) so as to characterize the

parametric space based on the existing set of experiments.

Once the response surface is built, the global minimum of

the error response surface will provide the point c in the

parametric space which is closest to reproduce the set of

experiments.

Since the reference solution is known—it is provided by

Barlat’s model—it can be convenient to use it to check if

our minimization problem in the kinematic variables also

implies a good correction in the model. Certainly, this good

correction is closely related with the good definition of the

experiments.

At this point, several options could be adopted to

reconstruct this response surface. Even though any non-

structured interpolation technique based on Delaunay

triangularization can be used, it will suffer when the

dimensionality of the parametric space increases. In this

particular case, a non-linear sparse identification technique

called Sparse Proper Generalized Decomposition (s-PGD)

is used [25]. s-PGD strongly relies on the separation of

variables to circumvent the problem of high dimensional

spaces. Indeed its main objective is to capture the whole

response surface using as few points as possible.

In brief, the s-PGD technique seeks to obtain a sparse

regression of a parametric function—in our case, Es(c)—by

assuming a separate representation of the sought regression,

say ℓ(c),

∫

I

w∗(c) [ℓ(c) − Es(c)] dc,

where I represents the phase space in which c evolves and

w∗ a suitable test function.



The main ingredient of the s-PGD technique relies on the

assumption of a separate form for the sought approximation,

i.e.,

ℓ(c) ≈ ℓM(c) =

M
∑

k=1

Xk
1(c1)X

k
2(c2) · · · Xk

nparam
(cnparam).

This type of separate approximation has been tested in up

to one hundred dimensions without any major difficulty, nor

need of supercomputing facilities. The interested reader can

consult [26] for more details.

In turn, the test function w∗ is chosen as formed by a sum

of Dirac delta functions collocated at the sampling points,

w∗(c) = ℓ∗(c)

P
∑

i=1

δ(ci),

where ci represents one of the P sampling points in the para-

metric space. Of course, if we are looking for a new term k

in the separated representation, the test function will look like

ℓ∗(c) = (Xk
1)∗(c1)X

k
2(c2) · · · Xk

nparam
(cnparam)

+Xk
1(c1)(X

k
2)∗(c2) · · · Xk

nparam
(cnparam) + . . .

+Xk
1(c1)X

k
2(c2) · · · (Xk

nparam
)∗(cnparam).

The precise form of the approximating functions Xk
j (cj )

is found by resorting to a greedy algorithm followed by

a fixed point linearization scheme, since we look for the

precise form of products of functions, thus leading to a

non-linear problem. To avoid Runge’s phenomenon, that is,

spurious oscillations in the approximated one-dimensional

functions based on data-points that do not correspond

to the Gauss-Lobatto-Chebyshev ones, interpolation based

on kriging is retained.The interested reader will find

every detail of the s-PGD methodology in [25]. Kriging

possesses some interesting features. Since it is based on the

fundamental assumption of data being Gaussian, it provides

an easy filtering of noise, by giving the best linear unbiased

prediction of the intermediate values.

Line search in high-dimensional spaces

The s-PGD algorithm provides a set of one-dimensional

functions or, more commonly, modes which are able to

reproduce a given function ℓ in the high dimensional space

when they are combined as

ℓ(c1, c2, . . . , cD) =

M
∑

k=1

D
∏

d=1

Xk
d(cd).

Function ℓ is stored in a separated format, which

has demonstrated to be very convenient in terms of

memory consumption. However, sometimes the local

extremes of ℓ are required, as in this case. Even if

the simplest option could be to reconstruct the response

surface ℓ(c1, c2, . . . , cD) in the high dimensional space, the

memory requirements will increase exponentially with the

dimensionality of the problem. In other words, if each mode

is approximated by means of a finite element mesh of, say,

10 degrees of freedom, a problem defined in dimension D

implies to store 10D nodal values.

In this case, we made an adaptation of the so-called

line search minimization algorithm so that the consequent

search directions coincide with the cartesian axes, thus

exploiting the separated representation format.

Let us assume that the i-th dimension is going to be mini-

mized. Consequently, the other coordinates are freezed at

some value within their correspondent intervals of defini-

tion, i.e., ĉd for d �= i. By doing that, the problem reduces

to a minimization problem in a one dimensional space:

ĉi = min
ci

M
∑

k=1

⎛

⎝

D
∏

d �=i

Xk
d(ĉd)

⎞

⎠ Xk
i (ci).

When this minimization problem is finished, the search

direction is updated to dimension i = i + 1, repeating the

same procedure. When the ĉd coordinates do not change

noticeably after one iteration for each dimension, the line

search algorithm is finished.

To sum up the properties of the cartesian line search:

– There is no need to reconstruct the function

ℓ(c1, c2, . . . , cD) in the high dimensional space,

circumventing memory issues related to the storage.

– The global minimization problem is transformed into

a set of one-dimensional minimization problems which

are very efficient because all minimization directions

coincide which the directions in which the solution has

been separated.

– There is no guarantee that the obtained minimum is the

global minimum of the function. In order to circumvent

that problem, the algorithm is initialized at different

starting positions, selecting the final point that presents

the lower value of the function. This problem may

appear in functions living in a high-dimensional space

which do not have a certain level of regularity.

Numerical results

Squared coupons

Test description

Two different quadratic Hill criterions have been used as

a starting point in our discrepancy model. The first one,

M(p1), is defined by F1 = 2.1, G1 = 1.8, H1 = 0.7

N1 = 1.9, while the second one, M(p2) is defined by

F2 = 2.3, G2 = 2.0, H2 = 0.8 N2 = 1.7. While



Fig. 4 Different views of

M(p1) plastic yield function.

The color map represents the

mismatch between the M(p1)

criterion and the Barlat

Yld2004-18p, and thus

R − M(p1) = D, the objective

function to be captured by our

discrepancy model.

EFY
(M(p1)) = 1.57

M(p1) is already quite close to Barlat’s criterion, with

an error EFY
(M(p1)) = 1.57, the second one presents

an error EFY
(M(p2)) = 24.9. This could correspond, so

to speak, to the case of a poorly calibrated poor model.

Figure 4 depicts the point-wise difference between the

M(p1) criterion and the Barlat Yld2004-18p projected on

the M(p1) surface. Figure 5, in turn, presents the same error

for the model M(p2).

Regarding the set of experiments s necessary to calibrate

the discrepancy model, we have chosen to use a set of simple

tests in a coupon of size � = [0, 1] × [0, 1]. These will be

defined by the following set of boundary conditions,

ux(0, y) = 0,

uy(x, 0) = 0,

σ (1, y)n = t1,

σ (x, 1)n = t2.

Hence, varying both tractions t1 and t2, different regions of

the stress space inside the coupon are explored. Indeed, 40

Fig. 5 Different views of

M(p2) plastic yield function.

The color map represents the

point-wise difference between

the M(p2) criterion and the

Barlat Yld2004-18p.

EFY
(M(p2)) = 24.9
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Fig. 6 Error in the reconstruction Es(M(p1)+D; c) using half of the

points in the data base for training

different experiments have been included in order to create

Es(c), so that |s| = 40.

Construction of the error response surfaces

In order to build the response surfaces Es(M(p1); c) and

Es(M(p2); c), 1000 simulations, randomly sampling the

parametric space c, have been accomplished for each model

M(p1) and M(p2). Each realization in the parametric

space follows a uniform distribution from [−0.1, 0.1] in the

M(p1) case and [−0.15, 0.15] in the M(p2) case, since we

expect the need for a major correction.

As can be noticed in Fig. 6 the obtained response surface

for M(p1) presents around 8% of mean relative error. This

error could be decreased easily if more sample points are

added to the s-PGD algorithm.

Error minimization and obtention of the sought correction

Once the response surface has a continuous and separated

representation, the minimum is searched by employing a

line search in each one of the separated directions. The

initial point at which the line search algorithm is started

is changed randomly to ensure the global character of the

minimum.

Figure 7 shows the error when the yield surface M(p1)

is corrected with the obtained discrepancy model. Note

that the final reconstructed error EFY
(M(p1) + D), has

been reduced with respect to the EFY
(M(p1)) error,

passing from 1.57 to 1.27. This is equivalent to a 19% of

improvement thanks to the data driven correction for this

particular case.

Figure 8 shows the error when the yield surface M(p2) is

improved with the data driven correction. In this particular

case, the final reconstructed error EFY
(M(p2) + D) has

been reduced as well from 24.9 to 4.63. Therefore, some

81% of improvement has been obtained in this particular

case.

Coupon subject to bending loads

In this example a bar with both ends clamped, in which

a uniform vertical negative distributed load is acting along

both top and bottom sides.

Figure 9 (top) shows the cumulated strain error between

Barlat’s and Hill’s M(p2) yield functions. The bottom

Fig. 7 Different views of

M(p1) + D plastic yield

function. The color map

represents the mismatch between

the M(p1) + D criterion and

the Barlat Yld2004-18p.

EFY
(M(p1) + D) = 1.27



Fig. 8 Different views of

M(p2) + D plastic yield

function. The color map

represents the mismatch between

the M(p2) + D criterion and

the Barlat Yld2004-18p.

EFY
(M(p2) + D) = 4.63

figure shows the error between Barlat’s and the corrected

Hill’s yield functions. As it can be noticed, the error in

the strain field is reduced when considering the correction.

However, this error does not vanish, since the correction

does not reproduce perfectly well Barlat’s criterion for the

considered sampling. It asymptotically decreases, however,

when more data points are considered.

In light of the results, the importance of data driven

corrections is higher when the model is less accurate, since

few data produce important improvement.

Conclusions

In recent times a lot of attention has been paid to

the development of machine learning techniques able to

unveil governing equations from data. This is specially

important for constitutive equations that, unlike other more

epistemologically sound equations—like equilibrium, for

instance—are often phenomenological and inexact. Their

precise expression is found by data fitting, leading very

often to poor fitting to the experimental results.

Fig. 9 Cumulated strain error between Barlat’s and Hill’s models (top) and between Barlat’s and Hill’s plus data correction (bottom)



Unlike previous approaches, we believe that it is

important not to discard all the existing knowledge

concerning constitutive equations (particularly plastic yield

functions, for which an extensive corps of literature exists).

Instead of learning models from scratch, we believe that it

will be much more efficient and appealing to try to correct

existing models in light of the obtained experimental results

and the observed discrepancies.

In this paper we have developed a method for the

correction of plasticity models with the help of experimental

data that makes use of sparse identification techniques

in high-dimensional spaces. Particularly, we employ the

sparse-PGD method [25], that has rendered excellent results

for the examples considered herein. In order to circumvent

the problem of approximating a function in the high

dimensional space, it is important to make use of adequate

interpolation techniques, which are able to provide us with

a reasonable estimation of the response surface.

Noteworthy, results obtained numerically from a Barlat

Yld2004-18p yield function were approximated by assum-

ing a Hill model and then obtaining, in a completely

automated fashion, a suitable correction.

The presented method paves the way for the development

of a completely general, hybrid constitutive modeling

methodology for the obtaining of accurate constitutive

models by summing up the best of both worlds: all the

experience accumulated in the last century with constitutive

modeling of solids and the best of machine learning.
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