
sensors

Article

Hybrid Continuous Density Hmm-Based Ensemble
Neural Networks for Sensor Fault Detection and
Classification in Wireless Sensor Network

Malathy Emperuman 1 and Srimathi Chandrasekaran 2,*

1 School of Information Technology and Engineering, Vellore Institute of Technology, Vellore,

Tamil Nadu 632014, India; e.malathy@vit.ac.in
2 School of Computing Science and Engineering, Vellore Institute of Technology, Vellore,

Tamil Nadu 632014, India

* Correspondence: csrimathi@vit.ac.in

Received: 2 December 2019; Accepted: 23 January 2020; Published: 29 January 2020
����������
�������

Abstract: Sensor devices in wireless sensor networks are vulnerable to faults during their operation

in unmonitored and hazardous environments. Though various methods have been proposed by

researchers to detect sensor faults, only very few research studies have reported on capturing the

dynamics of the inherent states in sensor data during fault occurrence. The continuous density

hidden Markov model (CDHMM) is proposed in this research to determine the dynamics of the state

transitions due to fault occurrence, while neural networks are utilized to classify the faults based

on the state transition probability density generated by the CDHMM. Therefore, this paper focuses

on the fault detection and classification using the hybridization of CDHMM and various neural

networks (NNs), namely the learning vector quantization, probabilistic neural network, adaptive

probabilistic neural network, and radial basis function. The hybrid models of each NN are used

for the classification of sensor faults, namely bias, drift, random, and spike. The proposed methods

are evaluated using four performance metrics which includes detection accuracy, false positive rate,

F1-score, and the Matthews correlation coefficient. The simulation results show that the learning

vector quantization NN classifier outperforms the detection accuracy rate when compared to the

other classifiers. In addition, an ensemble NN framework based on the hybrid CDHMM classifier is

built with majority voting scheme for decision making and classification. The results of the hybrid

CDHMM ensemble classifiers clearly indicates the efficacy of the proposed scheme in capturing the

dynamics of change of statesm which is the vital aspect in determining rapidly-evolving instant faults

that occur in wireless sensor networks.

Keywords: wireless sensor network; sensor faults; neural networks; classification of faults; hidden

Markov model

1. Introduction

Wireless sensor networks (WSN) are widely deployed in various applications such as environmental

monitoring, transportation, health care and industrial automation [1]. These applications utilize large

numbers of wireless sensor nodes to measure the parameters of interest with energy and computational

constraints [2]. Recent sensor networks have the capability to handle huge data like image or visual

sensing, which is in turn integrated with the cloud to enhance the capability of the internet of things

(IOT) [3]. Furthermore, the WSN has been implemented in mission critical applications like body

sensor networks, security, space, underwater communication, and military [4,5]. Often, critical sensor

networks are installed in harsh, inaccessible, and uncontrolled environments, which may affect the

sensor performance and cannot be attended immediately. Normally, sensors get affected due to the

Sensors 2020, 20, 745; doi:10.3390/s20030745 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-9794-9786
https://orcid.org/0000-0002-1146-4447
http://dx.doi.org/10.3390/s20030745
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/20/3/745?type=check_update&version=3

Sensors 2020, 20, 745 2 of 23

surrounding environment and various malfunctions within the sensor nodes [6,7]. Hence, faults in

sensor nodes can create substantial loss of network failures and may even affect the economy of the

concerned application [8]. Furthermore, fault data also affects the bandwidth and energy consumption

of the network. Therefore, sensor fault detection is an important process, and it is essential for all

wireless sensor networks [9]. Fault detection and diagnosis can improve the reliability of sensor

networks and enhance its bandwidth of operation. There are various techniques as reported in recent

research surveys related to fault detection and diagnosis in sensor networks [10–13]. Incidentally, it is

worth noting that while choosing fault detection methods, care should be taken to reduce the energy

consumption and ease of integration with the existing networks. On the other hand, the quality of

service of the fault detection should not be compromised to ensure the effective detection of faults.

Upon successful detection or diagnosis of faults, the node can be removed or inactivated. Hence, the

data from other nodes are re-routed with alternative nodes in order to sustain the network life.

Depending on the appropriate application and domain of sensor network system, each sensor

node can contain single or multiple sensors with supporting processor and wireless communication

systems [14]. Faults may occur either in the hardware or software of a node, and they are classified as

hard and soft faults. The hard faults represent the complete damage of hardware of the sensor whereby

the component/device is unable to communicate with other devices. In soft faults, on the other hand,

the node is in active mode but communicates erroneous readings to the central or neighboring nodes.

Often, the node get damaged at various levels and stages such as during sensing, processing, storing,

or actuation. The general sources of failure may be attributed to calibration error, hardware failure,

hostile environment, very low battery, and link failure [8]. Based on the timing, faults are divided

into three major categories, namely permanent, intermittent, and transient. Among these, transient

faults are difficult to detect since the occurrence is only for a brief period i.e., on the millisecond to

nanosecond scale. Transient faults are further subdivided as random faults and spike faults. These

faults are particularly important in mission critical sensor networks. As an example, in the body sensor

network, the data from the sensors that are installed internally and externally to the human body

are very critical in deciding the health condition of the concerned human being [15]. Therefore, it is

evident that the detection of faults in these types of the sensor networks with high accuracy is currently

very important.

A typical WSN that uses clustering-based data communication with the base station is shown in

Figure 1 and the same structure of the network is taken up for research in this study and analysis. Here,

we propose the continuous density hidden Markov model (CDHMM), which is well studied in several

mechanical and electrical applications. However, the research work based on CDHMM in WSN has

not yet been studied in detail for fault detection since there was no requirement. Recently, in the critical

wireless sensor network and more specifically in health monitoring systems, such implementations

have started receiving specific focus and attention from the research community under the WSN

category. For these networks, very low level faults and more so transient responses are required to be

detected at the nascent stages itself to ensure the reliability of network. Hence, this proposed works

aims at assessing the dynamics of the sensor fault based on the optimized hidden state transitions,

which is in fact reflective of the inherent changing dynamics of the faults in the sensors. In addition,

hence, a comprehensive diagnostic system has been taken up in this study which utilizes a hybrid

CDHMM-Neural Network implementation wherein the dynamics of the fault is obtained from HMM

while the classification of the faults is carried out by ensemble NN systems.

Sensors 2020, 20, 745 3 of 23

Figure 1. A typical wireless sensor networks (WSN) uses clustering technique for data communication

from nodes to cloud.

1.1. Objective and Problem Statement

The main objective of the paper is to detect the permanent, intermittent, and transient sensor

faults with better accuracy, as compared to existing techniques which suffer from the limitation of

poor recognition due to the dynamic nature of faults. Therefore, a hybrid CDHMM with an ensemble

of NNs, namely learning vector quantization (LVQ2), probabilistic neural network (PNN), adaptive

probabilistic neural network (APNN) and radial basis function neural network (RBF) to detect and

classify various faults in sensor node has been implemented. Further, to arrive at a credible and

unbiased decision on the category of faults, a majority voting scheme is proposed.

1.2. Contributions

Unique contributions in this research study are summarized as follows:

1. Hybridization of continuous density HMM with NNs is the first of its kind proposed for the

detection and classification of sensor faults in a WSN.
2. CDHMM is specifically used to determine the state transition of sensor data during faults. Based

on the detection of such transitions, classification of faults and percentage of fault data, even the

prediction of a sensor lifetime can be carried out more precisely.
3. When CDHMM is combined with NNs, the classification efficiency can be increased; even a low

level of fault that occurs in the sensor data can exhibit a considerable change in the state transition.

Besides, this can also detect the mixture of faults for different percentages of fault rates.

The second section focuses on the related works on sensor faults in WSN, with a detail discussion

on the limitations in each technique. The third section introduces the continuous density HMM

followed by various neural networks. The fourth section proposes the framework for fault detection

and classification of different sensor faults. The fifth section discusses the results and analysis of

various algorithms for different types of faults with varying fault rate percentage.

2. Related Works

Fault detection techniques have been first proposed for identifying machine and control system

faults. The various faults that are studied in the machines are bias, drift, gain, precision degradation,

complete failure, and constant output with noise. These faults are entirely different from those of

Sensors 2020, 20, 745 4 of 23

faults that occur in the wireless sensor network [16]. Over the past few decades, artificial neural

networks, support vector machine and k-nearest neighbor have been used for fault detection in

machine applications [17]. These techniques have been successfully implemented for rolling fault

detection and other machine control applications. However, it is evident that sensor fault detection

necessitates complex techniques which are capable of including the dynamics of the network. Thus, the

fault detection techniques which have been used to detect faults in machines are modified according

to the requirement in sensor networks and implemented for the diagnosis of faults in the WSN.

The two important categories of faults in WSN are data centric and system faults. Data centric

faults include spike, outlier, stuck-at, high noise, or variance. On the other hand, system view

faults are namely calibration, connection or hardware, low battery, environment out of range, and

clipping. These faults are elaborately discussed along with fault duration, pattern, and their impact

on the sensor data [8]. Fault detection in WSN is basically classified as centralized, distributed, and

hybrid approaches [18]. In the centralized approach, a computationally powerful node with large

memory capacity with uninterrupted power supply is used for the fault detection and classification

in the network. The implementation of this approach is complex but the accuracy of the detection

is high when compared to distributed and hybrid approaches. In the centralized approach, [19] a

proposed machine learning technique like the naive Bayes framework is used to find out the end

to end transmission delay to determine the hardware faults in sensor nodes. Likewise, gradient

based forwarding protocol is proposed to determine the node failures due to high data rates [20].

Similarly, Support Vector Machine (SVM) learning is reported in distributed learning in WSN and it

has demonstrated the capability to exhibit better performance while scaling the network [21]. The

SVM technique has also been used in the distributed technique for the classification and detection of

sensor faults [22]. The SVM is also observed to adapt based on various kernel functions for nonlinear

classification. SVM has been used to define a decision function and implement in the cluster head to

detect the fault sensor. This approach has been used only to classify the fault or non-fault sensorm, not

the types or dynamics of the fault.

In [23], authors proposed a simple technique to detect the fault sensor. Here, a threshold

value was used to distinguish between the false and true data. This approach cannot be utilized

for mission critical network, since this simple method may result in misclassification for low level

of faults. In [24], used a belief function-based decision fusion method for detecting faults in the

WSN. Four classification techniques are proposed to enhance the performance of the belief function

fusion approach. This method cannot capture the dynamics of the individual sensor faults. In [25], a

distributed algorithm was proposed that considered response time and detection accuracy in fault

detection in addition to the required quality of service (QOS). The Bayesian model for classification

and Pareto optimization to attain the required QOS was studied. The reduced data accuracy with

this method restricted the use in critical sensor networks. Authors in [26], proposed an automated

fault detection method using feed forward NNs which were trained by the hybrid Meta heuristic

algorithm. This model was not suitable for instant or transient fault diagnosis since the fault state

transition could not be captured with the NNs alone. In [27], used a semi-supervised method for the

fault detection in WSN using pattern classification. As an estimator, posterior probability was used to

find the normal or faulty nodes. Both online and offline fault detection could be performed with the

proposed method. However, data accuracy with this approach may not meet the requirements of the

critical sensor network.

In continuation to the distributed approach, [28] proposed the Neyman–Pearson test to detect

the faults such as random faults, stuck at non-zero, stuck at one and stuck at zero in the sensor

nodes. The faults of a sensor can be detected based on the neighboring sensor node data. Thus,

the accuracy of the fault detection depends on the characteristics of neighbor nodes. Therefore, this

technique results in error if the neighbor nodes get affected by faults. In [29], very simple statistical

methods such as the Kuiper test and the autoregressive model are used for detection of sensor health.

These statistical methods require a larger number of neighboring nodes data to determine the faulty

Sensors 2020, 20, 745 5 of 23

sensor node. Likewise, [30] proposed the directional diagnosis method to detect the faults in the

network or node. The detection was done with high accuracy by repeatable information probing and

reasoning of fault. The authors in [31–33], proposed probability-based fault detection approach which

used the transmission time of the packet from the sensor node, the incremental probe scheme, and the

probabilistic inference model. Data aggregation used the Markov chain controller model, and pattern

classification used a neighbor hidden conditional random field method to detect the fault sensor node.

These methods, however, could not find the number of faults and types of faults in the network.

In [34], proposed a novel method for fault detection using a sequence-based detection method.

They used the fletcher checksum algorithm and path planning to decrease the distance taken by

the data to reach its destination. The network failure could be determined using the continuous

path changes and also by using control messages to find the health of the concerned node. Further,

comparison-based approaches have been proposed by [35,36], which pertain to the distributed fault

detection method. This is implemented by neighbor sensor correlation and reactive fault detection

using temporal and spatial correlation. These approaches do not function when the node starts to

move. They are primarily based on the neighbor node data, and if the neighbor sensor moves away

from the range, then the detection gives an error reading.

In [37], fault sensor data detection is done in the cloud using clustering of WSN which increases

the fast detection of error in sensor data and improves the detection accuracy. This approach is scalable

to any topology of networks, and the detection is focussed within the spatial and temporal data sets.

Therefore, the time it takes for detection of any amount of error can be drastically reduced. In [38], the

detection of a sensor fault is done by the distributed approach with clustering of nodes. Determination

of sensor fault is done by verifying the table associated with the neighbor sensor nodes. Also, the false

alarms are mitigated by using time redundancy and therefore the instant false does not create a false

alarm. The cluster-based method depends more on the efficiency of the cluster formation.

The soft computing method proposed by [39] reported the recurrent neural network to detect

the faults using the neighbor’s data. [40] used principal component analysis with the neural network

to determine the soft fault. [41] reported the fault detection using fuzzy inference system with its

neighbor to detect the transient and permanent faults. These methods have drawbacks when the nodes

are dynamic, resulting in inaccurate low level fault detection, and increased scalability of the network.

The centralized approaches have good detection accuracy compared to the distributed technique,

but the implementation of the centralized system needs more computation power. In order to utilize

both merits, a hybrid approach is proposed where the algorithm is implemented both in the cluster

node and in each sensor node. In [42], the authors reported a hybrid distributed fault detection method

using a mobile sink. It detects the fault in both the hardware and software of the sensor network.

The detection of fault is accomplished by the cluster head, and it updates the status of each node in

the network. This information is further used by the administrator to find out the fault in the sensor

node. The main drawback of this method is the delay in detection due to the error in the path planning

that determines the performance of the algorithm. The above-mentioned limitations can be overcome

by proposing a hybrid method where the state transition of the fault data is captured by the hidden

Markov model and the classification is carried out by neural networks.

3. Proposed Approach

In this section, we propose a centralized approach, where the HMM is hybridized with NNs, and

is implemented in each cluster head of the networked sensors as shown in Figure 1. Although the

energy and computation requirement for the proposed method is high, the requirement of low level

fault detection in the critical sensor network is indispensable. Further, the recent sensor nodes are

computationally powerful with less energy consumption. In this work, we detect only the individual

sensor faults rather than the network faults. However, the same proposed method can be used for

network fault detection using time correlation (inbuilt in the HMM) and space correlation which

can be easily implemented using any one of the methods listed in [43]. Once the fault is detected,

Sensors 2020, 20, 745 6 of 23

the data can be loaded onto the cloud or server for further processing and intimation. Thus, the

proposed hybridized HMM with NNs is practically viable, and can be implemented in the online

detection of faults in the networks which is the ultimate requirement for implementation in a real

time environment. The rationale behind the formulation and implementation of hybridized NNs with

CDHMM is attributed to its ability to correlate parameters related to the dynamics of state changes, its

capability to associate with the effects of memory propagation during state transitions, its capacity to

associate sequence similarity relationships, and its inherent capability to predict time-series sequences.

These features are obviously necessitated in order to capture the transient and intermittent fault

occurrences in wireless sensor nodes. In addition, the dynamics of the fault characteristics exactly

matches with the proposed hybrid models. Thus, the preceding merits succinctly justify the selection

of CDHMM and augur well for its suitability in implementing with specifically chosen NNs for the

detection of faults in a sensor node.

3.1. Hidden Markov Model

In this research, a five-state HMM is adopted and the same is shown in Figure 2, where

the top layer represents a Markov process which is the hidden process, while the bottom layer

shows the observable states that depends on the hidden states. In this case, the hidden five states

S = S1, S2, S3, S4, S5 are connected with the output observable states as O = O1, O2, O3, O4, O5 using

transition probability matrix ‘A’. HMM is best described based on four parameters, namely the hidden

states, initial, transition, and emission probability. If the observation is continuous in nature, then

the continuous density HMM is formulated as λ = (A, B, Π), where Π and ‘B’ are the initial and the

emission probability distribution respectively. Incidentally, it is worth mentioning that the appropriate

choice of the type of HMM at the nascent stage and during the design phase of HMM formulation

depends on the complexity of the problem, signal processing requirements and applications [44].

The procedure adopted during the implementation of continuous density HMM is indicated in

Algorithm 2. In step 3, a minimum distance algorithm is used to cluster the data for training the dataset.

The algorithm is primarily a minimum distance metric strategy (Euclidean), utilized to determine the

adjacent datasets relative to various junction of intra-cluster and inter-cluster dataset. This is used to

realize an optimum common crossing vector that act as the centers denoting the dataset. The various

steps followed in the implementation of the minimum distance algorithm is shown in Algorithm 1.

Figure 2. A five-State hidden Markov model (HMM) process.

Sensors 2020, 20, 745 7 of 23

CDHMM is a three-layered stochastic process. The first level, which is related to the choice of

the next state, is the same as in the structure with discrete HMM. Although the second and the third

levels are identical to the choice of emission symbol with discrete HMM, the second level of CDHMM

includes the choice of the mixture density by mixture coefficient. The selection of the output vector by

the Gaussian density is the third and last level. Therefore, the classification and training algorithms

have to be altered accordingly, although there are few changes in the classification algorithm i.e., the

modified probability densities have to be replaced. The Baum–Welch/Viterbi training algorithms are

invoked to obtain the optimized state transition labels and the corresponding estimate of the optimized

B matrix value. However, the disadvantage of this model may be attributed to its high computational

effort. This aspect is attributed to the evaluation of multiple Gaussian distribution mixture densities

which may result into a number of parameters, resulting in instabilities.

Algorithm 1 Procedure to cluster the data using minimum distance algorithm for training the data set.

1: Consider ‘n′ as number of classes and ‘k′ as feature vectors
2: For the initial sample, prefer the first ‘n′ of ‘k′

3: In order to populate ‘n′ classes, assign feature vectors to the nearest sample
4: Give index i|k|=n to nominate x(k) associate to class ’n’.
5: Estimate the cluster size with s[n] and increase (s[n] = s[n] + 1) and go to Step 3
6: Retrieve the new centers by averaging the feature vectors in each of the class
7: Assign a[m] [n] = 0, here ‘m′ is the component of class ‘n′ and x[m][k] is mth component of x(k)
8: For each class ‘n’, assign the averages
9: Get the sum of the component values for every ‘m′ and realize the mean cluster ‘n′.

10: If there is no change in class or iteration not completed, then goto Step 7 or Step 3 respectively

Algorithm 2 Procedure to implement continuous density HMM.

1: Input hidden states(S),Clusters(TN),Windows(tuples)
2: Read the sensor data
3: Clustering using minimum distance algorithm (see Algorithm 1)
4: Obtain Π, A, B

5: for k = 1,...,N do

6: Determine Πk, When S1 = 1

7: Πk =
Number of Occurance

Number of training Observation

8: for m = 1,...,N do

9: Determine akm, When St = k and St+1 = m

10: akm = Number of Occurance for t(St = k and St+1 = m)
Number of Occurance for t (St = k)

11: endfor

12: endfor

13: Compute Mean Vector µk and Covariance Matrix Vk

14: µk= 1
Nk

∑
n
k=1 Ot, Ot ǫ k

15: Vk= 1
Nk

∑
n
k=1 (Ot − µk)

T (Ot − µk), Ot ǫ k

16: for m = 1,...,N do
17: for k = 1,...,N do
18: Compute A-posterior observation probability density bk(ot)

19: bk(ot)=
1

(2π)µ/2(vm)1/2 exp[−1
2 (Ot − µk)V

−1
m (Ot − µk)

T]

20: endfor

21: endfor

22: Compute state optimized likelihood using Viterbi algorithm

Sensors 2020, 20, 745 8 of 23

3.2. Learning Vector Quantization Neural Network

Learning vector quantization (LVQ) is a supervised version of vector quantization developed

by Kohonen which fundamentally utilizes labelled input data and is based on a competitive

(winner-takes-all) learning strategy. The basic LVQ approach is quite intuitive. It is based on a

standard trained self organizing map (SOM) with input vectors x and weights/Voronoi vectors wj.

The main objective of the LVQ1 network is to find the appropriate output unit that is closest to the

input vector. If x is the training vector (x1, xi, xn) and wc is the weight vector for the jth

output unit (w1j,wij,wnj) belonging to different classes, then the weights move away from the

input vector [45]. For each training input vector x, the jth output is obtained so that the Euclidean

distance ‖x − wj‖ between the input vector and weight vector for the jth output unit is minimized.

Simultaneously, the weight vector wj for the jth output unit is updated.

if

T = cj, then (1)

wj(new) = wj(old) + α[x − wj(old)] (2)

if

T 6= cj, then (3)

wj(new) = wj(old)− α[x − wj(old)] (4)

T = class for the training vector

x = training vector

wj = weight vector

cj = class represented by jth output unit

However in LVQ2, learning weights are updated by using two codebook vectors, mi and mj,

which are taken as the two nearest neighbors of the training vector x. This concept does not form a

part of the strategy in LVQ1. In this case, mi belongs to correct class and mj belongs to the wrong class.

Furthermore, in LVQ2 the vectors mi and mj are updated only when x should be located within a zone

called a “window” of relative width w if min
(

di
dj

,
dj

di

)

>s, where s= 1+w
1−w . The complete procedure to

implement LVQ2 is given in Algorithm 3.

Algorithm 3 Procedure to implement learning vector quantization (LVQ-2).

1: Prepare reference vectors , weight vectors wj and learning rate (α)
2: while (stopping condition false) do
3: for every training input vector x do steps 4 to 7
4: Discover the jth output for each training input vector where Euclidean distance ‖x − wj‖ should

be minimum, renew weight vector wj

5: If the class defined for training vector is equal to the class represented by jth output unit, then

wj(new) = wj(old) + α[x − wj(old)]

6: else wj(new) = wj(old)− α[x − wj(old)]
7: endfor

8: endWhile
9: Repeat the above procedure for each instance in training dataset by decreasing the learning rate.

3.3. Probabilistic Neural Network

A probabilistic neural network (PNN) is predominantly a classifier which can map any input

pattern to carry out multiple classifications of categories. Basically, PNN is an implementation of a

statistical algorithm called the kernel discriminant analysis in which the operations are organized

using four different layers, namely input layer, pattern layer, summation layer, and output layer [46].

The architecture of the probabilistic neural network is shown in Figure 3. According to the classification

Sensors 2020, 20, 745 9 of 23

theory, if the probability density function (PDF) of each of the populations is known, then an unknown,

X, belongs to class “i” if:

fi(X) > f j(X), ∀j 6= i (5)

PNN incorporates with Bayesian method for decision-making along with a non-parametric

estimator to achieve the probability density function (PDF). Algorithm 4 shows the procedure to

implement the PNN.

In a population, the PDF for a single sample is given by

1

σ
w

(

x − xk

σ

)

(6)

where, x = unknown input,

xk = kth sample,

w = weighting function,

σ = smoothing parameter.

Probability density function for a single population is given by,

1

nσ

n

∑
k=1

w

(

x − xk

σ

)

(7)

When Gaussian function is used as an activation function then the PDF becomes

g(x) =
1

nσ

n

∑
k=1

e
− (x−xk)

2

σ2 (8)

PNN is one among a few significant powerful statistical classification techniques which when

compared to the multilayer feed forward NN, outperforms the latter due to its rapid training speed and

operational behavior of the hidden layer with functionally effective kernel functions. Even though PNN

has some minor weaknesses related to the requirement of large memory capability in fast classification,

the advantages of the PNN is that it encompasses the capability to train many orders of magnitude

faster than the multi-layer feed forward NN, its ability to provide mathematically acceptable confidence

levels during discrimination, its built-in strength to handle the effect of outliers etc.

Figure 3. Architecture of probabilistic neural network.

Sensors 2020, 20, 745 10 of 23

Algorithm 4 Procedure to implement Probabilistic Neural Network (PNN).

1: For every individual training input vector X(i), where i=1,2,3. n, repeat steps 2 to 5
2: Generate pattern unit Pi
3: Assign weight vector to pattern unit Pi as

Wi = X(i)
4: Connect pattern unit to summation unit
5: If X(i) matches with class 1, then associate pattern unit Pi to summation unit U1 else associate to

U2
6: At the pattern layer, enumerate Gaussian function values for every class by using the following

equation

gi(x)= 1√
2πσ2

e
−||x−xj ||2

2σ2

7: The input vectors that belong to same class is summed in the summation unit

fi(x) = ∑
n
i=1 gi(x)

8: With the help of ’f’ values the output layer makes the decision to assign classes for the input

vectors.

9: If fi(x) ≥ f j(x) , then x belong to class 1 else x belong to class 2.

3.4. Adaptive Probabilistic Neural Network

It is evident from previous sections that the construction of PNNs for dynamic events is

challenging when compared to stationary events. For designing PNNs for the Bayes-optimal

decision surfaces (dynamical in nature), it is required to select a smoothing parameter and a learning

sequence. This sequence should satisfy conditions that are exemplary for the stochastic approximation

scheme [47].

The adaptive probabilistic neural network (APNN) is a basic variant of the probabilistic neural

network (PNN). It provides a feasible mechanism to vary the smoothing parameter σ or the variance

parameter within a particular class node, while the PNN uses the common variance parameter for all

the classes. Based on computing an average distance, σ=g.dave is determined by the Euclidean distance,

whereby PNN employs different values of σ for each class among feature vectors. It is important

to note that “g” now serves as the tuning (free) parameter and can be adjusted to suit appropriate

density of datasets. Moreover, APNN uses a simplified formula of PDF which obviates the necessity

for normalization, so that a considerable amount of computation is reduced.

3.5. Radial Basis Function Neural Network

Radial basis function (RBF) neural network implements a supervised learning strategy and can be

realized as single or multilayer networks either in linear or non-linear fashion. If the bias function is

used as a non-linear model in RBF network then it can expand its hidden layer by one or more. Usually

RBF consists of three layers, namely the input, hidden, and output layer. The input layer consists of

k0 source nodes, whereas k0 is the dimensionality of the input vector X. The hidden layer units are

also known as radial centers, which provide a set of functions that constitute an arbitrary basis for the

input vectors. Radial centers are represented by the vectors, namely c1, c2, . . . , ch. Inside the hidden

layer unit, the input vectors are transformed into nonlinear functions whereas the hidden unit vectors

are transformed as linear functions to the output layer. In such a case the dimension of each radial

center for a ’n’ input network is n*1. If the input vector ki lies in the respective field then the center

would activate cj, and by using proper choice of weights its target output is given by

y = Σφjwj, φ = φ(‖ x − cj ‖) (9)

When the Gaussian function is used as the radial bias function then the computational unit present

in the hidden layer of the network is given by

Sensors 2020, 20, 745 11 of 23

φ(z) = e
−z2

2σ2 (10)

σ is a measure of width of the jth Gaussian function with center cj. The activation function of the

hidden unit layer computes the Euclidean distance between the input vector and the center of that unit.

4. Fault Detection and Classification Framework

The process of the detection and classification of the sensor faults using CDHMM with NNs is

summarized as follows:

1. Raw data, from a sensor node in the wireless sensor network, is pre-processed to remove any

anonymous data.
2. The fault injection is carried out on the raw data using the established models for various faults.
3. The fault data is fed as the input for CDHMM with the number of hidden states, the number of

clusters and the windows defined initially.
4. The transition matrix from the CDHMM is presented as the input to all the classifiers one at

a time.
5. The output of the classifiers are compared and the best overall outcome of the classifier

is determined based on an appropriately chosen voting scheme (Byzantine or majority

voting strategy).

The proposed scheme of hybrid CDHMM with NNs is shown in Figure 4.

Figure 4. Proposed framework for the detection and classification of sensor faults.

Sensors 2020, 20, 745 12 of 23

5. Experimental Results and Analysis

In this section, the evaluation of the proposed hybrid classifiers is carried out on the real time

data set provided by Intel Berkeley research Lab [48]. There are 54 nodes installed in the laboratoryin

total, recorded from 28th February to 5th April 2004. The acquisition of data had been previously

carried out for every 31 seconds from the Mica2Dot sensors along with the topology information.

This data had been collected using the TinyDB query processing system which was built on the TinyOS

platform. The location of various nodes is shown in Figure 5. The data set contains light, temperature,

humidity, and voltage values which had been recorded over the period of a month. In this research,

only temperature and light data of one of the nodes (located at (12.5, 26), see Figure 5) was utilized for

fault analysis. The reason for choosing, among a large set of parameters, only these two parameters is

attributed to the strong correlation between them at a particular instant of time.

The implementation of hybrid CDHMM with NNs adopts a three-level model. The details of the

steps that were followed for the evaluation are shown in Figure 4. The primary aim of this research

is to detect and classify the time dependent faults that are due to both discrete or continuous types.

The bias and drift faults are considered as continuous faults, while the spike and random faults are

characterized as discrete faults. The first step of the detection is to prepare the dataset according to the

requirements of the algorithm. All the proposed algorithms are realized in MATLAB 9.6. The proposed

NNs have been both verified and validated thoroughly before obtaining the appropriate choice of

optimal hyper-parameters. In each case, detailed analyses based on raw datasets were taken up and

two major validation techniques, the k-fold method and the one-hold-one out method, were performed.

Figure 5. Typical wireless sensor nodes arrangement [48], where wireless sensor nodes are depicted

with symbol in ’Blue’ and corresponding node number.

In this research, five case studies were taken up for detailed analysis wherein the data sets were

organized into two categories, the normal and varying percentage of sensor faults. The dataset was

composed of raw light and temperature feature data with an array size of 40 rows by 60 columns.

Therefore, a dataset of 2400 data without any fault was prepared. Subsequently, bias, drift, random,

and spike fault were introduced on the raw data using the algorithm as discussed in [49]. The methods

followed for modeling the fault data were well proven and adopted by various researchers around the

globe [50,51]. Figure 6a,c, shows the raw signal of temperature and light. Figure 6b,d, depicts injected

random faults in temperature and light. The rate of fault injection started from 10% to 50% with a

step size of 10 percent for all the four types of faults. A total of 2400 sets of data were prepared for

the performance analysis of the algorithm for each fault type. In each dataset, 2
3 of the datasets were

utilized for training while the rest of the data were taken up for testing. The first level of the model

involved obtaining the fault detection state which comprised of CDHMM, and the outputs were state

transition matrix “A” and probability density matrix “B”. In the second stage, the optimized values of

Sensors 2020, 20, 745 13 of 23

the B matrix obtained from the Viterbi algorithm were presented as the input to the next stage which

comprised of various neural networks to classify the different faults. In each classifier, the kernel was a

Gaussian function, resulting in a group of NNs called ensemble classifiers [52]. The performance of the

classifiers could be determined using the four evaluation parameters, namely detection accuracy (DA),

false positive rate (FPR), F1-Score, and Matthews correlation coefficient (MCC). Finally, based on an

appropriately-chosen voting scheme, the best classifier was determined. To ensure credible validation

and reliability of the proposed hybrid CDHMM-NN system, the fault detection techniques were

executed repeatedly for obtaining consistent results, and average values were considered for analysis.

0 2000 4000 6000 8000 10000
14

16

18

20

22

24

26

28

30

32

34

Te
m

pe
ra

tu
re

 (o C
)

Time (min)

(a) Raw temperature

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

Te
m

pe
ra

tu
re

 (o C
)

Time (min)

(b) Temperature with fault

0 2000 4000 6000 8000 10000

0

200

400

600

800

1000

Li
gh

t (
lu

x)

Time (min)

(c) Raw light

0 2000 4000 6000 8000 10000

0

500

1000

1500

2000

2500

Li
gh

t (
lu

x)

Time (min)

(d) Light with fault

Figure 6. Temperature and light data with and without fault.

The detection accuracy (DA) [18] is defined as

DA =
Number of faulty observation detected

Total number of faulty observation
(11)

The DA should be higher for an excellent classifier and it denotes the accuracy of the detection

of the algorithm. The DA for all the NNs with various faults was determined. The false positive

rate (FPR) [18] measures the number of non-faulty data detected as faulty with the total number of

non-faulty data. It is defined as follows:

FPR =
Number of Nonfaulty data detected as faulty

Total number of Nonfaulty data
(12)

Matthews correlation coefficient (MCC) [18] determines the accuracy of the algorithm and it is

defined as below.

MCC =
Tp × Tn − Fp × Fn

√

(Tp + Fp)(Tp + Fn)(Tn + Fp)(Tn + Fn)
(13)

Sensors 2020, 20, 745 14 of 23

where True Positive (Tp) shows the correctness of detection of number of data that are faulty. True

Negative (Tn) is defined as the detection of number of non-faulty data as non-faulty. False Positive (Fp)

is defined as detection of non-faulty as faulty. On the other hand, False negative (Fn) is defined as the

detection of faulty data as non-faulty. When the MCC is near to + 1, it means the detection is accurate.

MCC can be categorized as excellent, moderate and weak based on the values. If MCC is of +0.7 or

higher, it can be considered as excellent, from +0.4 to +0.69, it can categorized as good and from +0.30

to +0.39 it is moderate. When it reaches +0.20 to +0.29, it is considered as weak.

The F1-Score [13] is used to measure the performance of the classifier based on false positive and

false negative values. It is defined as follows.

F1-Score =
2 × Precision × Recall

Precision + Recall
(14)

where,precision = TP/(TP + FP) deals with the accuracy of the detection and recall = TP/(TP + FN) is

defined as the measure of determining the particular node as faulty or non-faulty.

5.1. Analysis on Capturing the Dynamics of Sensor Faults with CDHMM

Since the major focus of this research is on devising a unique mechanism to ascertain and capture

the dynamics of sensor fault by implementing CDHMM, the findings of variation in the state transitions

unique to various types of sensor faults are depicted in Figure 7. Here, the transition in the sensor fault

is estimated, described and optimized by the probability density function (PDF) of hidden state labels

of the CDHMM. Figure 7a shows the PDF for raw data of temperature and light whereas Figure 7b

depicts the PDF for random fault with 10% fault rate.

0

0.1

0.2

0.3

0.4

0.5

P
ro

b
ab

ili
ty

 D
en

si
ty

 F
u

n
ct

io
n

0 5 10 15 20 25 30
Data Sets

(a) Normal data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

b
ab

ili
ty

 D
en

si
ty

 F
u

n
ct

io
n

0 5 10 15 20 25 30
Data Sets

(b) Random fault with 10 % fault rate

Figure 7. Dynamics of the sensor faults.

It can be noted clearly that the signature patterns of the optimized B-Matrix for the normal and

fault data are distinct. Likewise, for various types or percentage of faults, significant and unique

variations of patterns can occur. It is also evident from Figure 7a,b that there are significant changes in

the PDF values in the data bin between 0 to 10 and from 15 to 25 bins while the values of B-matrix

are very similar in the region of data bins between 10 to 15. This clearly demonstrates the strength of

CDHMM as a tool in capturing the dynamics of the time sequence data in wireless sensors. These PDFs

are then provided to ensemble classifiers to classify the faulty and non-faulty data.

5.2. Detection Accuracy and False Positive Rate Analysis

In CDHMM, based on repeated experimentation, iteration value is fixed as 1000. The detection

accuracy and false positive rate of various faults are plotted in Figures 8 and 9.

Sensors 2020, 20, 745 15 of 23

10 20 30 40 50
20

30

40

50

60

70

80

90

100

D
et

ec
tio

n
A

cc
ur

ac
y

Fault Probability

 LVQ2
 APNN
 PNN
 RBF

(a) Bias

10 20 30 40 50
20

30

40

50

60

70

80

90

100

D
et

ec
tio

n
A

cc
ur

ac
y

Fault Probability

 LVQ2
 APNN
 PNN
 RBF

(b) Drift

10 20 30 40 50
10

20

30

40

50

60

70

80

90

100

D
et

ec
tio

n
A

cc
ur

ac
y

Fault Probability

 LVQ2
 APNN
 PNN
 RBF

(c) Spike

10 20 30 40 50
10

20

30

40

50

60

70

80

90

100

D
et

ec
tio

n
A

cc
ur

ac
y

Fault Probability

 LVQ2
 APNN
 PNN
 RBF

(d) Random

Figure 8. Detection accuracy of various faults with different neural networks (NNs).

The DA and FPR are determined for different NN classifiers and for different percentage of faults.

In Figure 8a, DA is plotted for bias fault and it can be noted that DA for LVQ2 is constant for all

percentages of faults whereas APNN showed lower accuracy at smaller fault rates, but performance

was better at higher percentages of faults. On the other hand, RBF and PNN did not perform well

for higher percentages of faults. In Figure 8b, the LVQ2 and APNN were found to achieve better

accuracy compared to RBF and PNN. In Figure 8c, except RBF, all other classifiers demonstrated strong

performance. In Figure 8d, for random faults, the LVQ2 and PNN display a high accuracy compared

to APNN and RBF. From the aforementioned discussions, it is clear that the DA for LVQ2 was almost

constant for all faults compared to other NNs. It is also evident from the analysis that for the lower

extent of faults, either LVQ2 or PNN could be preferred. The reasons for the erroneous response of

APNN and RBFNN may be attributed to the aspects summarized.

1. Though the APNN comprises a separate variance parameter for each category (class) of defect

pattern, it is evinced from this study that the variance parameter displayed a tendency of peaked

nature of the Gaussian kernel so as to ensure meaningful separation of hyper-boundaries for

classes that are very similar in its patterns.
2. The values of the spread parameter (variance parameter) pertaining to each class resulted in very

small values, indicating the nature of the peaked distribution of datasets for each class. This aspect

invariably led to overlapped nature of classes and hence arguably higher misclassification rates.
3. On the other hand, the rudimentary version of the RBFNN tried to circumvent the limitations of

the backpropagation NN by ensuring learning of weights which then proceeds to obtain a linear

separable model to reach the target output. However, the performance of the NN did not indicate

considerable improvement in its classification accuracy. This may be attributed to the need for the

appropriate choice of centers during the training phase.

The Figure 9a depict the characteristics of LVQ2 for different fault probability and it is considerably

strong compared with the other three NNs. The FPR for both PNN and RBF at lower and higher fault

Sensors 2020, 20, 745 16 of 23

rates did not demonstrate satisfactory results. Further, APNN exhibited a poor performance for lower

percentages of fault. In Figure 9b, except RBF, all other NNs such as LVQ2, PNN, and APNN detection

performed well for all percentage of faults. In Figure 9c, FPR is plotted for spike fault where LVQ2

obtained zero misclassifications for all percentage of faults. This shows the exceptional characteristic

of LVQ2 in the precise classification of faults. Incidentally, PNN and APNN exhibit the same variation

trend for all probabilities. However, the RBFNN shows a lower accuracy for lesser percentage of faults,

and at 30% the performance is almost same as other NNs. However, for higher fault rates, the FPR is

within an acceptable limit. In Figure 9d, for random faults, the LVQ2 and PNN are perfectly constant

for any percentage of faults, while other NNs eschewed themselves differently for the increase of

fault percentage. From these observations, it is clear that the FPR for LVQ2 performance is the best in

comparison with other NNs.

10 20 30 40 50
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Fa
ls

e
Po

si
tiv

e
R

at
e

Fault Probability

 LVQ2
 APNN
 PNN
 RBF

(a) Bias

10 20 30 40 50
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ls

e
Po

si
tiv

e
R

at
e

Fault Probability

 LVQ2
 APNN
 PNN
 RBF

(b) Drift

10 20 30 40 50
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e
Po

si
tiv

e
R

at
e

Fault Probability

 LVQ2
 APNN
 PNN
 RBF

(c) Spike

10 20 30 40 50
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e
Po

si
tiv

e
R

at
e

Fault Probability

 LVQ2
 APNN
 PNN
 RBF

(d) Random

Figure 9. False Positive Rate of various faults with different NNs.

The erroneous performance of the RBF may be attributed to the similarity in structure with that

of the PNN which also considers a Gaussian-like kernel for estimation of densities and utilizes the

variance for describing the distribution of datasets pertaining to the appropriate class. Though the

NN is a supervised learning-based architecture, since functionally a similar structure of mathematical

formulation and computation is utilized, it is evident that the results of classification accuracy was

quite similar to that of the PNN variants considered in this research study.

The average detection accuracy and false positive rate for various NNs of all faults are plotted in

Figure 10. These can be determined by averaging the detection accuracy and the false positive rate for

all fault probability for each fault. The performance of various NNs can be easily comprehended from

the bar graphs in Figure 10a,b. In Figure 10a, LVQ2 and PNN performed better than RBF and APNN

in detecting accurately the faults. On the other hand, detection by APNN is almost constant for all

the faults. Similarly, RBF is better for higher fault rates compared to lower cases. From Figure 10b,

it is evident that LVQ2 did not detect any non-faculty data as a faulty type i.e., the false detection

had almost zero misclassifications for LVQ2. It is also evident that for all transient or instant faults

Sensors 2020, 20, 745 17 of 23

the PNN could be used as an alternate to LVQ2. For constant fault, APNN may be selected in place

of LVQ2. Similarly, the performance of RBFNN was observed to be only just average for any type

of faults. Table 1 shows the consolidated detection performance of various classification techniques.

In terms of ranking, it is summarized that LVQ2 is the most preferred, followed by the PNN, APNN,

and RBFNN classifiers.

Bias Drift Spike Random
0

20

40

60

80

100

A
ve

ra
ge

 D
et

ec
tio

n
A

cc
ur

ac
y

 LVQ2
 APNN
 PNN
 RBF

(a) Average Detection Accuracy

Bias Drift Spike Random
0.00

0.05

0.10

0.15

0.20

0.25

A
ve

ra
ge

 F
al

se
 P

os
iti

ve
 R

at
e

 LVQ2
 APNN
 PNN
 RBF

(b) Average False Positive Rate

Figure 10. Average detection accuracy and average false positive rate of various NNs for all faults.

Table 1. Detection performance of various classification techniques.

Techniques Average DA Average FPR

LVQ2 98.66 % 0.005
APNN 81.69 % 0.07
PNN 87.99 % 0.047
RBF 76.58 % 0.193

It is evident that for large values of the smoothing parameters there are more misclassifications,

which is obvious due to the nature of the density of the overlapped data because of various types of

sensor faults taken up for study. However, with reduced values of smoothing parameters, substantial

improvement in classification accuracy is evinced. These aspects are observed in the detailed analysis

of both PNN as well as APNN. In the case of APNN with variation in “g”, it is observed that

unique smoothing values resulted in better class discrimination. It is also observed that for the best

performance of APNN, having more training sets which could provide appropriate class representative

vectors would yield enhanced classification rates.

5.3. F1-Score and Matthews Correlation Coefficient Analysis

In this subsection, we analyze the F1-Score and Matthews correlation coefficient for various faults

at 10% and 50% fault rates. These two fault rates are chosen to analyze the performance of various

hybrid CDHMM-NNs during low and high fault occurrence in a sensor node. Figures 11a and 12a

shows F1-Score for all NNs at minimum and maximum percentage of faults. The comparison of these

two characteristics reveals a similar trend follows for both LVQ2 and PNN. The characteristics are

almost constant for all faults and values; also, it lies within the acceptable limit in both percentages of

faults. Even the APNN and RBF give better performances and the least percentages of faults. On the

contrary, while the percentage of fault increases, APNN performs well for bias and random fault,

whereas negative trend in drift fault. On the contrary, RBF performs to a moderate level for bias and

spike faults, while for drift and random, the performance does not meet the requisite expectations.

Figures 11b and 12b shows MMC values for all NNs at a minimum and maximum percentage of faults.

From the comparison, the LVQ2 performance is constant for all faults, and PNN is next to LVQ2 and its

trend also lies within the acceptable limit for all percentages of fault. However, APNN performs well

for bias and random fault at 50 % fault, while for lower level faults it shows moderate performance.

Sensors 2020, 20, 745 18 of 23

At the same time, RBF performs to an acceptable level for bias and spike faults whereas in drift and

random types, the performance did not meet the expectations at both lower and higher percentage of

faults. Table 2 shows the performance of all the NNs for all faults at 10% and 50% fault rate. These

coefficients are determined by repeated simulation of fault data for various algorithms. In this research,

the LVQ2 shows an excellent performance compared to all other NNs. Furthermore, the performance

of PNN is par with LVQ2 at lower percentage of faults.

Bias Drift Spike Random
0

20

40

60

80

100

F1
-S
co

re

 LVQ2
 APNN
 PNN
 RBF

(a) F1 Score

Bias Drift Spike Random
0.0

0.2

0.4

0.6

0.8

1.0

M
C
C

 LVQ2
 APNN
 PNN
 RBF

(b) MCC

Figure 11. F1-Score and MCC value of various NNs for all faults at 10 % fault rate.

Bias Drift Spike Random
0

20

40

60

80

100

F1
-S
co

re

 LVQ2
 APNN
 PNN
 RBF

(a) F1 Score

Bias Drift Spike Random
0.0

0.2

0.4

0.6

0.8

1.0

M
C
C

 LVQ2
 APNN
 PNN
 RBF

(b) MCC

Figure 12. F1-Score and MCC value of various NNs for all faults at 50 % fault rate.

Table 2. MCC of various classification techniques at 10 % and 50% fault rate.

Techniques MCC(10%) MCC(50%) Performance

LVQ2 0.95 0.96 Excellent
APNN 0.61 0.71 Good
PNN 0.93 0.78 Good
RBF 0.57 0.52 Moderate

Though the LVQ2 does not directly utilize the Gaussian kernel, the inherent structure of obtaining

the distance vector through the operator ǫ in LVQ2 provides a window (range) for the association of

similar classes to particular classes during training. Hence, structurally similar types of NNs have

been taken up in this research for carrying out meaningful and cogent analyses. For lower values of

ǫ the density of data with a peaked variance is observed. The tendency of data displayed a peaked

distribution for ǫ. When there is substantial overlap in the signal (fully or partially overlapped),

this may be attributed to the dynamic nature of normal or abnormal fault analyses.

Normally, in order to improve the classification accuracy, the number of iterations in the algorithm

is increased. However, this would not be a convincing strategy for the improvement of detection.

This is attributed to the fact that the traditional mean square error-based algorithms may not result in

Sensors 2020, 20, 745 19 of 23

global minima during the training phase. Therefore, in our research, the iteration values have been

optimized to be 1000 throughout the analysis of all fault classifications.

5.4. Ensemble Classifier-Based Majority Voting Decision

In this subsection, the research analysis has been consolidated to ascertain the classification

accuracy of various CDHMM-NN, and to determine the classification capability of an ensemble

classifier for different percentage of faults using the majority and Byzantine voting systems which are

appropriate for the hybrid CDHMM-NNs taken up for detailed studies. The total training and testing

datasets considered for each percentage of fault is 60. For HMM-RBF, the tuning parameters α and

η are fixed as 0.06 and 0.06 respectively. In HMM-PNN, σ is taken as 0.1, while in HMM-APNN, g

is taken as 0.9 whereas in HMM-PNN, σ is fixed as 0.6. It is worth mentioning that these values are

optimized after multiple iterations, and they are fixed as constant for all percentage of faults. Based

on detailed analyses carried out on gamut of faults encountered in sensor input datasets, few major

findings are summarized:

1. It is evident from Table 3, that for all versions of CDHMM-NN classifier systems that with

increasing percentage of faults in the dataset, better classification accuracy of the hybrid classifiers

have been observed. This aspect is obvious since unique features that describe the nature of faults

are exhibited in the case of higher density estimates of such datasets. Though in this study and

implementation a common value of the tunable parts of the NN (variance parameter, ǫ, η) has

been utilized for assessing the role played by the Gaussian kernel in creating hyper-boundaries

during the training phase, appropriate tweaking of the free parameter led to much more enhanced

results than the outcome indicated in Table 3.
2. Though for the dataset taken up during the training phase in this research work resulted into

superior classification capability of LVQ2 as compared to other NNs, it is to be noted that for large

real-time datasets (with substantially varying background noise) the decision based on only LVQ2

will not be the best strategy as more training, input validation studies etc. would be essential

before arriving at a meaningful decision. It clearly indicates that the decision based on LVQ2 as a

single NN alone would be insufficient for obtaining a comprehensive decision.
3. Another interesting aspect is on the role played by the Gaussian kernel utilized as the common

underlying activation function in the ensemble classifier system. It is observed that similar types

of misclassifications have been reported during detailed studies based on various faults, and

the nature of data distribution and the density function resulted in the sharp nature of Gaussian

distribution functions for each class. This aspect is made evident from the few significant changes

in the misclassification of a few of the input datasets.
4. The ensemble classifier performed considerably well in the case of the hybrid CDHMM-NN

classifier system which utilizes the majority voting scheme, while the Byzantine voting scheme

which utilizes a more conservative procedure for decision-making displayed inferior results.

Sensors 2020, 20, 745 20 of 23

Table 3. Classification accuracy of hybrid continuous density hidden Markov model (CDHMM)-NN

ensemble classifier system with different voting schemes.

Type of Dataset
Classification Accuracy of CDHMM-NN Classifier System (%) Accuracy of Ensemble Classifier

HMM-LVQ2 HMM-APNN HMM-PNN HMM-RBF M.Voting(%) B.Voting(%)

Bias Fault
10% 96.67 75 95 76.67 95 76.67
20% 98.33 81.67 95 70 95 81.67
30% 100 70 98.33 61.67 98.33 70
40% 96.66 93.33 90 61.67 93.33 90
50% 98.33 83.33 95 78.33 95 83.33

Drift Fault
10% 98.33 83 96.67 73.33 96.67 83
20% 96.67 83.33 88.33 88.33 88.33 83.33
30% 100 83.33 100 91.67 100 91.67
40% 100 83.33 90 91.67 91.67 90
50% 98.33 65 81.67 50 81.67 65

Spike Fault
10% 100 83 98.33 78.33 98.33 83
20% 96.67 83.33 98.33 88.33 98.33 88.33
30% 100 88.33 100 80 100 88.33
40% 100 81.67 55 68.33 81.67 68.33
50% 96.67 80 88.33 45 88.33 80

Random Fault
10% 100 75 100 73.33 100 75
20% 100 76.67 100 93.33 100 93.33
30% 100 88.33 98.33 80 98.33 88.33
40% 100 79 50 91.67 91.67 79
50% 98.33 86.67 41.67 76.67 86.67 76.67

6. Conclusions

A hybrid CDHMM with NN was implemented to detect and classify the faults such as bias,

random, drift, and spike. The dataset consisted of temperature and light, while pre-processing and

injection of fault from 10% to 50% was carried out before it was presented to the CDHMM. The

probability density function from CDHMM was given as input for training and testing data to carefully

chosen classifiers, namely LVQ2, PNN, APNN, and RBFNN. The performance of various classifiers

were compared in terms of detection accuracy, false positive rate, F1-score and Matthews Correlation

Coefficient. The results showed that the hybridized CDHMM with LVQ2 turned out to be the best

machine learning algorithm for determining the instant changes in the sensor data due to the effect of

various faults. Although LVQ2 performed well for most of the faults, the other NNs showed better

performance for unique and specific faults. Therefore, the results showcased in this work were most

appropriate for the selection of NN for hybridization with CDHMM for a particular fault. Hence, the

proposed method is best suited for a time-critical wireless sensor network, where the detection of

faults is essential instantly, yet with substantial reliability. Further, this research work reports detailed

studies based on only one major kernel, i.e., Gaussian kernel. Although the Gaussian kernel is the most

common and popularly utilized kernel function when the nature of distribution of data is random,

other distribution functions with kernels such as elliptical, Laplacian, Cauchy etc. could provide better

representation of the data. These hybridized CDHMM and NNs can be extended to a few possible

aspects in WSN sensor fault detection:

1. Prognosis and prediction of remaining useful life and ageing characterization of the sensors could

be possibly attempted using HMM and other methods such as bath-tub distribution functions,

Weibull distribution, and other higher order statistical measures.
2. Online detection of faults can be implemented with this hybridized algorithm in a real-time

environment. However, challenges related to training speed in utilizing the HMM may

Sensors 2020, 20, 745 21 of 23

be attempted by taking up alternative algorithms (for maximum likelihood estimation and

optimization of transition states).
3. From the perspective of the training and implementation of more parsimonious sets of centers for

NN training, advanced algorithms that optimize and provide reasonably good representative

centers that ensure compact training sets may aid one in reducing the time during the training

phase, specifically in on-line fault detection.

Author Contributions: M.E. conceived the core idea of the proposed work and S.C. helped in achieving the end
results. All authors have read and agreed to the published version of the manuscript.

Funding: There was no external funding for this work.

Acknowledgments: Both the authors are willing to acknowledge the support rendered by S. Venkatesh, School of
Electrical Engineering, Vellore Institute of Technology, in the technical discussion on HMM and various NNs.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yick, J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 142–149.

[CrossRef]

2. Anisi, M.H.; Abdullah, A.H.; Razak, S.A. Energy-efficient and reliable data delivery in wireless sensor

networks. Comput. Netw. 2013, 19, 495–505. [CrossRef]

3. Merezeanu, D.; Vasilescu, G.; Dobrescu, R. Context-aware control platform for sensor network integration in

IoT and cloud. Stud. Inform. Control 2016, 25, 489–498. [CrossRef]

4. Xu, F.; Ye, H.; Yang, F.; Zhao, C. Software Defined Mission-Critical Wireless Sensor Network: Architecture

and Edge Offloading Strategy. IEEE Access 2019, 7, 10383–10391. [CrossRef]

5. Munir, A.; Antoon, J.; Gordon-Ross, A. Modeling and analysis of fault detection and fault tolerance in

wireless sensor networks. ACA Trans. Embed. Comput. Syst. 2015, 14, 1–43. [CrossRef]

6. Chudzikiewicz, A.; Bogacz, R.; Kostrzewski, M.; Konowrocki, R. Condition monitoring of railway track

systems by using acceleration signals on wheelset axle-boxes. Transport 2018, 33, 555–566. [CrossRef]

7. Chudzikiewicz, A.; Bogacz, R.; Kostrzewski, M. Using acceleration signals recorded on a railway vehicle

wheelsets for rail track condition monitoring. In Proceedings of the 7th European Workshop on Structural

Health Monitoring, EWSHM 2014—2nd European Conference of the Prognostics and Health Management

(PHM) Society Nantes, France, 8–11 July 2014; pp. 167–174.

8. Ni, K.; Ramanathan, N.; Chehade, M.N.H.; Balzano, L.; Nair, S.; Zahedi, S.; Kohler, E ; Pottie, G.; Hansen, M.;

Srivastava, M. Sensor network data fault types. ACM Trans. Sens. Netw. 2009, 5, 1–29. [CrossRef]

9. Nagaraju, S.; Gudino, L.J.; Tripathi, N.; Sreejith, V.; Ramesha, C.K. Mobility assisted localization for mission

critical Wireless Sensor Network applications using hybrid area exploration approach. J. King Saud Univ.

Comput. Inf. Sci. 2018. [CrossRef]

10. Raposo, D.; Rodrigues, A. ; Silva, J.S.; Boavida, F. A Taxonomy of Faults for Wireless Sensor Networks.

J. Netw. Syst. Manag. 2017, 25, 591–611. [CrossRef]

11. Mehmood, A.; Alrajeh, N.; Mukherjee, M.; Abdullah, S.; Song, H. A survey on proactive, active and passive

fault diagnosis protocols for WSNs: Network operation perspective. Sensors 2018, 18, 1787. [CrossRef]

[PubMed]

12. Warriach, E.U.; Tei, K.; A comparative analysis of machine learning algorithms for faults detection in wireless

sensor networks. Int. J. Sens. Netw. 2017, 22, 1–13. [CrossRef]

13. Noshad, Z.; Javaid, N.; Saba, T.; Wadud, Z.; Saleem, M.Q.; Alzahrani, M.E.; Sheta, O.E. Fault detection in

wireless sensor networks through the random forest classifier. Sensors 2019, 7, 1568. [CrossRef] [PubMed]

14. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E.,Wireless sensor networks: A survey. Comput. Netw.

2002, 38, 393–422. [CrossRef]

15. Salem, O.; Liu, Y.; Mehaoua, A.; Boutaba, R. Online Anomaly Detection in Wireless Body Area Networks for

Reliable Healthcare Monitoring. IEEE J. Biomed. Health Inf. 2014, 18, 1541–1551. [CrossRef] [PubMed]

16. Gao, M.; Jiang, S.; Pan, F. Fault detection for time-delayed networked control systems with sensor saturation

and randomly occurring faults. Int. J. Innov. Comput. Inf. Control 2018, 14, 1511–1525.

http://dx.doi.org/10.1016/j.comnet.2008.04.002
http://dx.doi.org/10.1007/s11276-012-0480-x
http://dx.doi.org/10.24846/v25i4y201610
http://dx.doi.org/10.1109/ACCESS.2019.2890854
http://dx.doi.org/10.1145/2680538
http://dx.doi.org/10.3846/16484142.2017.1342101
http://dx.doi.org/10.1145/1525856.1525863
http://dx.doi.org/10.1016/j.jksuci.2018.04.008
http://dx.doi.org/10.1007/s10922-017-9403-6
http://dx.doi.org/10.3390/s18061787
http://www.ncbi.nlm.nih.gov/pubmed/29865210
http://dx.doi.org/10.1504/IJSNET.2017.084209
http://dx.doi.org/10.3390/s19071568
http://www.ncbi.nlm.nih.gov/pubmed/30939764
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1109/JBHI.2014.2312214
http://www.ncbi.nlm.nih.gov/pubmed/25192567

Sensors 2020, 20, 745 22 of 23

17. GLu, S.; Zhou, P.; Wang, X.; Liu, Y.; Liu, F.; Zhao, J. Condition monitoring and fault diagnosis of motor

bearings using undersampled vibration signals from a wireless sensor network. J. Sound Vib. 2018, 414, 81–96.

18. Muhammed, T.; Shaikh, R.A. An analysis of fault detection strategies in wireless sensor networks. Wirel.

Networks 2017, 78, 267–287. [CrossRef]

19. Lau, B.C.P.; Ma, E.W.M.; Chow, T.W.S. Probabilistic fault detector for Wireless Sensor Network. Expert Syst.

Appl. 2014, 41, 3703–3711. [CrossRef]

20. Huang, P.; Chen, H.; Xing, G.; Tan, Y. SGF: A state-free gradient-based forwarding protocol for wireless

sensor networks. ACM T. Sens. Netw. 2009, 5, 14. [CrossRef]

21. Kim, W.; Stankovic, M.S.; Johansson, K.H.; Kim, H.J. A distributed support vector machine learning over

wireless sensor networks. IEEE Trans. Cybernetics 2015, 11, 2599–2611. [CrossRef]

22. Zidi, S.; Moulahi, T.; Alaya, B. Fault detection in wireless sensor networks through SVM classifier.

IEEE Sens. J. 2018, 340–347. [CrossRef]

23. Haque, S.A.; Rahman, M.; Aziz, S.M. Sensor anomaly detection in wireless sensor networks for healthcare.

Sensors 2015, 17, 8764–8786. [CrossRef]

24. Javaid, A.;Javaid, N.; Wadud, Z.; Saba, T.; Sheta, O.E.; Saleem, M.Q.; Alzahrani, M.E. Machine learning

algorithms and fault detection for improved belief function based decision fusion in wireless sensor networks.

Sensors 2019, 19, 1334. [CrossRef] [PubMed]

25. De Paola, A. and Lo Re, G. and Milazzo, F. and Ortolani, M. QoS-aware fault detection in wireless sensor

networks. Int. J. Distrib. Sens. Netw. 2013, 9, 165732. [CrossRef]

26. Swain, R.R.; Khilar, P.M.; Dash, T. Multifault diagnosis in WSN using a hybrid metaheuristic trained neural

network. Digit. Commun. Netw. 2018. [CrossRef]

27. Zhao, M.; Tian, Z.; Chow, T.W.S. Fault diagnosis on wireless sensor network using the neighborhood kernel

density estimation. Neural Comput. Appl. 2019, 31, 4019–4030. [CrossRef]

28. Panda, M.; Khilar, P.M. Distributed Byzantine fault detection technique in wireless sensor networks based

on hypothesis testing. Comput. Electr. Eng. 2015, 48, 270–285. [CrossRef]

29. Jin, X. ; Chow, T.W.S. ; Sun, Y. ; Shan, J. ; Lau, B.C.P. Kuiper test and autoregressive model-based approach

for wireless sensor network fault diagnosis. Wirel. Netw. 2015, 21, 829–839. [CrossRef]

30. Gong, W.; Liu, K.; Liu, Y. Directional Diagnosis for Wireless Sensor Networks. IEEE Trans. Parallel Distrib. Syst.

2015, 26, 1290–1300. [CrossRef]

31. Artail, H.; Ajami, A.; Saouma, T.; Charaf, M. A faulty node detection scheme for wireless sensor networks

that use data aggregation for transport. Wirel. Commun. Mob. Comput. 2016, 95, 1956–1971. [CrossRef]

32. Tang, P.; Chow, T.W.S. Wireless Sensor-Networks Conditions Monitoring and Fault Diagnosis Using

Neighborhood Hidden Conditional Random Field. IEEE Trans. Ind. Inf. 2016, 12, 933–940. [CrossRef]

33. Zhao, J.; Qu, S. The fuzzy nonlinear enhancement algorithm of infrared image based on curvelet transform.

Procedia Eng. 2011, 15, 3754–3758. [CrossRef]

34. Kamal, A.R.M.; Bleakley, C.J. ; Dobson, S. Failure detection in wireless sensor networks: A sequence-based

dynamic approach. ACM Trans. Sens. Netw. 2014, 10, 1–29. [CrossRef]

35. Mahapatro, A. ; Khilar, P.M. Online distributed fault diagnosis in wireless sensor networks. Adv. Intell.

Syst. Comput. 2013, 71, 1931–1960. [CrossRef]

36. Sharma, K.P.; Sharma, T.P. rDFD: Reactive distributed fault detection in wireless sensor networks. Wirel. Netw.

2017, 23, 1145–1160. [CrossRef]

37. Yang, C.; Liu, C.; Zhang, X.; Nepal, S.; Chen, J. A time efficient approach for detecting errors in big sensor

data on cloud. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 329–339. [CrossRef]

38. Nitesh, K.; Jana, P.K. Distributed fault detection and recovery algorithms in two-tier wireless sensor networks.

Int. J. Commun. Netw. Distrib. Syst. 2016, 16, 281–296. [CrossRef]

39. Moustapha, A.I.; Selmic, R.R. Wireless sensor network modeling using modified recurrent neural networks:

Application to fault detection. IEEE Trans. Instrum. Meas. 2008, 57, 981–988. [CrossRef]

40. Zhu, D.; Bai, J.; Yang, S.X. A multi-fault diagnosis method for sensor systems based on principle component

analysis. Sensors 2010, 10, 241–253. [CrossRef]

41. Khan, S.A.; Daachi, B.; Djouani, K. Application of fuzzy inference systems to detection of faults in wireless

sensor networks. Neurocomputing 2012, 94, 111–120. [CrossRef]

42. Chanak, P.; Banerjee, I.; Sherratt, R.S. Mobile sink based fault diagnosis scheme for wireless sensor network.

J. Syst. Softw. 2016, 119, 45–57. [CrossRef]

http://dx.doi.org/10.1016/j.jnca.2016.10.019
http://dx.doi.org/10.1016/j.eswa.2013.11.034
http://dx.doi.org/10.1145/1498915.1498920
http://dx.doi.org/10.1109/TCYB.2014.2377123
http://dx.doi.org/10.1109/JSEN.2017.2771226
http://dx.doi.org/10.3390/s150408764
http://dx.doi.org/10.3390/s19061334
http://www.ncbi.nlm.nih.gov/pubmed/30884880
http://dx.doi.org/10.1155/2013/165732
http://dx.doi.org/10.1016/j.dcan.2018.02.001
http://dx.doi.org/10.1007/s00521-018-3342-3
http://dx.doi.org/10.1016/j.compeleceng.2015.06.024
http://dx.doi.org/10.1007/s11276-014-0820-0
http://dx.doi.org/10.1109/TPDS.2014.2308173
http://dx.doi.org/10.1002/wcm.2661
http://dx.doi.org/10.1109/TII.2016.2537758
http://dx.doi.org/10.1016/j.proeng.2011.08.703
http://dx.doi.org/10.1145/2530526
http://dx.doi.org/10.1007/s11277-012-0916-8
http://dx.doi.org/10.1007/s11276-016-1207-1
http://dx.doi.org/10.1109/TPDS.2013.2295810
http://dx.doi.org/10.1504/IJCNDS.2016.076654
http://dx.doi.org/10.1109/TIM.2007.913803
http://dx.doi.org/10.3390/s100100241
http://dx.doi.org/10.1016/j.neucom.2012.04.002
http://dx.doi.org/10.1016/j.jss.2016.05.041

Sensors 2020, 20, 745 23 of 23

43. Abbasi, A.A.; Younis, M. A survey on clustering algorithms for wireless sensor networks. Comput. Commun.

2007, 30, 2826–2841. [CrossRef]

44. Saihi, M.; Zouinkhi, A.; Boussaid, B.; Abdelkarim, M.N.; Andrieux, G. Hidden Gaussian Markov model

for distributed fault detection in wireless sensor networks. Trans. Inst. Meas. Control 2018, 40, 1788–1798.

[CrossRef]

45. Fausett, L. Fundamentals of Neural Networks: Architectures, Algorithms and Applications, 1st ed.; Pearson

Education: Tamil Nadu, India, 2004; pp. 187–192.

46. Timothy, M. Practical Neural Network Recipies in C++; Morgan Kaufmann: San Fransisco, CA, USA, 1993.

47. Bose, N.K.; Liang, P. Neural Network Fundamentals with Graphs, Algorithms and Applications; McGraw-Hill Inc.:

New York, NY, USA, 1995.

48. Intel Lab Data. Available online: http://db.csail.mit.edu/labdata/labdata.html (accessed on 13 June 2019).

49. De Bruijn, B.; Nguyen, T.A.; Bucur, D.; Tei, K. Benchmark datasets for fault detection and classification in

sensor data. In Proceedings of the 5th International Conference on Sensor Networks, Orlando, FL, USA,

30 October–2 November 2016; pp. 185–195.

50. Wang, Z.M.; Song, G.H.; Gao, C. An isolation-based distributed outlier detection framework using nearest

neighbor ensembles for wireless sensor networks. IEEE Access 2019, 7, 96319-96333. [CrossRef]

51. Titouna, C.; Naït-Abdesselam, F.; Khokhar, A. DODS: A Distributed Outlier Detection Scheme for Wireless

Sensor Networks. Comput. Netw. 2019, 161, 93–101. [CrossRef]

52. Paolanti, M.; Romeo, L.; Liciotti, D.; Pietrin, R.; Cenci, A.; Frontoni, E.; Zingaretti, P. Person re-identification

with RGB-D camera in top-view configuration through multiple nearest neighbor classifiers and neighborhood

component features selection. Sensors 2018, 18, 10. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.comcom.2007.05.024
http://dx.doi.org/10.1177/0142331217691334
http://db.csail.mit.edu/labdata/labdata.html
http://dx.doi.org/10.1109/ACCESS.2019.2929581
http://dx.doi.org/10.1016/j.comnet.2019.06.014
http://dx.doi.org/10.3390/s18103471
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Objective and Problem Statement
	Contributions

	Related Works
	Proposed Approach
	Hidden Markov Model
	Learning Vector Quantization Neural Network
	Probabilistic Neural Network
	Adaptive Probabilistic Neural Network
	Radial Basis Function Neural Network

	Fault Detection and Classification Framework
	Experimental Results and Analysis
	Analysis on Capturing the Dynamics of Sensor Faults with CDHMM
	Detection Accuracy and False Positive Rate Analysis
	F1-Score and Matthews Correlation Coefficient Analysis
	Ensemble Classifier-Based Majority Voting Decision

	Conclusions
	References

