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Hybrid Control of Induction Motors via
Sampled Closed Representations

Bernardino Castillo-Toledo, Stefano Di Gennaro, Alexander G. Loukianov, and Jorge Rivera

Abstract—In this paper, a controller for induction motors is
proposed. A continuous feedback is first applied to obtain a
discrete-time model in closed form. Then, on the basis of these
exact sampled dynamics, a discrete-time controller ensuring speed
and flux modulus reference tracking is determined, making use
of the sliding mode technique. The resulting controller is hence
hybrid, in the sense that it contains both continuous and discrete-
time terms. It is shown how to implement such a hybrid controller
using the so-called exponential holder, which is the only device to
be implemented analogically, together with an analog integrator.
Moreover, a discrete-time reduced-order observer is designed for
rotor fluxes and load torque estimation. The performance of the
proposed controller is finally studied by simulation and experi-
mental tests.

Index Terms—Exponential holder, induction motors (IMs),
sampled closed form, sliding mode control.

I. INTRODUCTION

INDUCTION motors (IMs), due to the characteristics of
their nonlinear dynamics, constitute an interesting test bed

for the synthesis of advanced control laws. Moreover, IMs are
widely used in industrial applications. Some of the reasons of
their success are their simple mechanical construction, their
low maintenance requirements, and the lower cost compared
to other devices, such as dc or stepper motors. Starting from
the pioneering work of [6], field-oriented control has become
a classical technique for IM control, which involves nonlinear
state transformation and feedback for the asymptotic decou-
pling of the rotor velocity and flux modulus [12]. More recently,
various nonlinear control design approaches have been consid-
ered to improve the performance. Active research areas include
input–output feedback linearization [27], passivity [19], [44],
adaptive backstepping [25], [42], and sliding modes [11], [24],
[39], [40], [43], [45], [48], among others.
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The implementation of control laws designed for these de-
vices is nowadays generally made in discrete time. In fact,
the recent advancements in digital microprocessor technology
have rendered cheaper, simpler, and more flexible the discrete-
time implementation of controllers designed using continuous
time techniques. The main problem here is the degradation of
the expected performance, due to the fact that the design of the
control law is not made using the sampled dynamics of the
system. It is worth noting that the determination of an appro-
priate sampling period and the evaluation of its influence on
the continuous controller performance are important issues, and
presently, a well-recognized methodology to deal with these
aspects has not been established yet.

This problem has motivated in the last decades the work
of various researchers, with the aim of improving the control
performance by designing the controller directly on the basis
of the digital model (see [37], [38], and the references therein).
Once the digital model has been obtained, various important
issues regarding the controller performance can be faced, such
as parameter variations, observer design, determination of the
sampling period, modeling of the actuator’s dynamics, etc.
Clearly, the quality of the solutions given in this way depend on
the accuracy of the digital model. In this regard, unfortunately,
the problem of sampling continuous time systems is not trivial.
In fact, in general, a sampled closed representation of the
sampled dynamics does not exist; whereas for linear systems,
a sampled model in closed form can be easily obtained [4], for
nonlinear systems in general, the sampled data representations
are given in the form of infinite series [28], [29], [33], [34], [37].
Hence, in practice, one uses truncated models of desired ap-
proximation [13], [18]. This difficulty motivates the following
possible solutions:

1) the design of the control law in the continuous time
setting and its implementation by means of zero-order
holder;

2) the use of much simpler discretization methods, such as
those due to Euler (backward or forward), Tustin, etc.,
and the design of the control law in the digital setting.

The first solution has the drawback of possible poor perfor-
mance of the resulting sampled controller. In order to recover
this performance, a multirate control approach can be pursued,
see [31] and its application to synchronous motors [35], [36] or
to rigid spacecraft [15]. The second solution [13] has the disad-
vantage that the accuracy of the resulting approximate discrete-
time system decreases as the sampling period increases.

An alternative to these approaches is presented in [16]
and [32], where an original hybrid control methodology is
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presented. First, a continuous control puts the system in a
finite discretizable form, and then, a discrete control satisfies
the control objectives. An advantage of obtaining an exact
discrete-time model is that the sampling period to be used in
the implementation of the control law can be high, at least
theoretically. Other aspects, such as actuators, data acquisition,
intersampling behavior, etc., limit in practice its value. Clearly,
this methodology can be applied, provided that the continuous
control can be applied by means of analog devices. In this
sense, the resulting controller is hybrid, because it applies a
continuous control plus a digital one. It is evident that this is
the critical point of this methodology. In fact, if the control
can be applied only in discrete time, the continuous control
has to be sampled, so that, eventually, the system is not in a
closed form.

Following this idea, in this paper, we will show how to
implement for IMs a continuous control which puts the system
in a form so that a sampled closed representation does exist. We
will show that, in this continuous control, the sampled values
of the variables, necessary to implement the control, appear
along with an exponential term, usually called exponential
holder. The latter is the only item to be implemented via an
analog device, easily realizable, together with an analog inte-
grator. In a certain sense, the exponential holder and the analog
integrator represent the “minimum requisites” that have to be
implemented analogically. Once the sampled data representa-
tion in closed form of the IM dynamics has been obtained, we
design a digital controller necessary to impose the control spec-
ifications, i.e., for rotor angular velocity and rotor flux square
modulus tracking. A discrete-time reduced-order observer is
then designed to avoid the measurement of load torque and rotor
flux, the latter achievable by Hall sensors, quite imprecise and
expensive to place within the motor.

Hence, analogously to the case of finite discretizability [16],
[32], we need to determine first a continuous feedback in order
to obtain a closed representation of the sampled dynamics. It
will be shown that, in our case, such a closed form can be
obtained by means of a simple control. The resulting system
is then characterized by the dynamics of fluxes and currents
which are linear in appropriate coordinates. Using the solutions
of these dynamics, the derivation of the discrete-time equations
for rotor angular position and velocity is then possible.

This paper is organized as follows. In Section II, the contin-
uous time IM model is briefly reviewed and the exact sampled
dynamics of the IM are derived. In Section III, a discrete-time
sliding mode control for rotor angular velocity and rotor flux
square modulus tracking is designed. To remove the hypothesis
of rotor flux and load torque measurements, a reduced discrete-
time observer is proposed in Section IV. Moreover, the practical
implementation of the proposed controller by means of an
exponential holder are discussed. Section V presents some
simulation and experimental results. Final comments conclude
this paper.

II. SAMPLED DYNAMICS OF IMs

In the following, a sampled version of the dynamics of an
IM will be determined. Under the assumptions of equal mutual

inductance and linear magnetic circuit, the IM model in the
stator reference frame (a, b) is given by [27]

φ̇r = − αφr + pω�φr + αLmIs

İs = αβφr − pβω�φr − γIs +
1

Lσ
u

ω̇ = μIT
s �φr −

1
J

T

θ̇ = ω (1)

where θ and ω are the rotor angular position and velocity,
respectively, T is a bounded load torque, J is the rotor moment
of inertia

φr =
(

φr,a

φr,b

)
Is =

(
is,a

is,b

)
u =

(
ua

ub

)

are the rotor flux vector, the stator current vector, and the control
input voltage vector, respectively, and

α =
Rr

Lr
β =

Lm

LσLr
γ =

1
Lσ

(
L2

m

L2
r

Rr + Rs

)

Lσ = Ls −
L2

m

Lr
μ =

3
2

pLm

JLr
� =

(
0 −1
1 0

)
.

Here, Ls, Lr, and Lm are the stator, rotor, and mutual in-
ductances, respectively, Rs and Rr are the stator and rotor
resistances, and p is the number of pole pairs. It is worth noting
that � represents the anticlockwise rotation operator of π/2.

The following assumption, acceptable when T varies slowly
with respect to the electrical dynamics [45], will be instrumen-
tal for deriving the sampled model of the motor dynamics.

(H1) : The load torque T can be approximated by a signal
C which is piecewise constant over the sampling
period δ. �

In order to obtain sampled dynamics of the system dynamics
(1) in closed form, in the spirit of [16] and [32], let us consider
first the following feedback:

u = uf (t) + epθ�vk, uf = pLσω�(Is + βφr) (2)

with uf as the continuous control which makes the system finite
discretizable.

Remark 1: Note that uf in (2) and the term epθ� must be
implemented by analog devices, whereas the new control vk =
v(kδ) = ( va,k vb,k )T , designed on the basis of the discrete-
time representation of the system derived in the following,
can be implemented by a digital computer and a zero-order
holder. In Section IV, it will be explained how to determine uf

from the sampled measurements and using analog devices given
by an integrator and a so-called exponential holder [8], [9].
The resulting controller will be hybrid, namely it will contain
discrete and continuous time terms.

With the continuous feedback (2) and under (H1), the fol-
lowing controlled dynamics are obtained:

φ̇r = − αφr + pω�φr + αLmIs

İs =αβφr − γIs + pω�Is +
1

Lσ
epθ�vk

ω̇ =μIT
s �φr −

1
J

C

θ̇ =ω. (3)
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As common in the IM’s literature [27], we consider hereinafter
a change of coordinates in an appropriate rotating frame [23].
In particular, we consider a transformation which puts in light
that the flux and current dynamics are linear, with the current
dynamics linear, thanks to the feedback (2). Hence, we consider
the globally defined change of coordinates⎛
⎜⎝

Φ
I
ω
θ

⎞
⎟⎠=

⎛
⎜⎝

e−pθ�φr

e−pθ�Is

ω
θ

⎞
⎟⎠, e−pθ�=

(
cos pθ sin pθ
−sin pθ cos pθ

)
(4)

with e−pθ� as an orthogonal matrix. The transformed variables
Φ and I in (4) are the rotor flux and the stator current rotated ac-
cording to the electrical rotor angular position pθ, respectively.
Obviously, (4) preserves the vector norms. Note also that the
complex notation e−jpθ(Va + jVb) could be equivalently used
for the terms e−pθ�V , V = φr, and Is in (4).

In the new variables [(4)] and with the input vk, the dynamics
[(3)] are expressed as follows:

Φ̇ = − αΦ + αLmI

İ =αβΦ − γI +
1

Lσ
vk

ω̇ =μIT�Φ − 1
J

C

θ̇ =ω (5)

because de−pθ�/dt = −pω�e−pθ� and e−pθ�� = �e−pθ�.
Note that the equations in (5) are nonlinear, but the sampled
closed form is now easily obtained noting that the dynamics
for Φ and I are linear, and the control vk will be designed to
be constant over the sampling period δ. Denoting Φk = Φ(kδ),
Ik = I(kδ), ωk = ω(kδ), and Ck = C(kδ) and considering as
outputs to be controlled the rotor angular velocity and the rotor
flux square modulus, some calculations given in Appendix I
yield the closed representation for the sampled dynamics of
system (5)

Φk+1 = a11Φk+a12Ik+b1vk

Ik+1 = a21Φk+a22Ik+b2vk

ωk+1 = ωk+η1I
T
k �Φk+(η2Φk+η3Ik)T�vk−

Ck

J
δ

θk+1 = θk+ωkδ+κ1I
T
k �Φk+(κ2Φk+κ3Ik)T�vk−

Ck

J

δ2

2
(6)

where a11, a12, a21, a22, b1, b2, ηi, and κi, i = 1, 2, 3, are
constants. Note that the matrix

Ad =
(

a11I2×2 a12I2×2

a21I2×2 a22I2×2

)
= A ⊗ I2×2 (7)

with I2×2 as the identity matrix 2 × 2, and ⊗, the Kronecker
product, is Schur because A is Schur for every choice of the
sampling period δ (see Appendix I).

The control problem is to force the rotor angular velocity
ωk and the rotor flux modulus ΦT

k Φk to track some desired
references ωr,k and Φr,k, ensuring at the same time disturbance

rejection. We assume that these references are bounded with
bounded increments, where

|Δωr,k| = |ωr,k+1 − ωr,k| ≤ Δωr,max

|ΔΦk| = |Φr,k+1 − Φr,k| ≤ ΔΦmax.

Moreover, also the load torque Ck is bounded by a value
Cmax. Furthermore, we assume that Ck has bounded incre-
ments. Finally, we need to ensure that this increment vanishes
when δ is zero. This can be formalized with the following
assumption.

(H2): The piecewise load torque Ck is such that Ck+1 =
Ck + ΔC(k, δ) with, for each integer k̄∣∣ΔC(k̄, δ)

∣∣ ≤ ΔCmaxΔ(δ), lim
δ→0

Δ(δ) = 0. �

The control problem will be solved in the next section by
means of a discrete-time sliding mode control.

Remark 2: As last observation, it is interesting to compare
uf in (2) with the well-known field-oriented control (FOC)
[12]. The FOC can be determined considering the (d, q) model

φ̇r,dq = − αφr,dq + pω�φr,dq + αLmIs,dq − ε̇0�φr,dq

=
(
−αφr,d + αLmis,d

0

)

İs,dq =αβφr,dq − pβω�φr,dq − γIs,dq +
1

Lσ
udq − ε̇0�Is,dq

=
(

αβφr,d − γis,d + ε̇0is,q + 1
Lσ

ud

−pβωφr,d − γis,q − ε̇0is,d + 1
Lσ

uq

)

ω̇ =μIT
s,dq�φr,dq −

1
J

T = μφr,dis,q −
1
J

T

θ̇ =ω (8)

obtained from (1) considering

Idq =
(

is,d

is,q

)
= e−ε0�Is φr,dq =

(
φr,d

0

)
= e−ε0�φr

udq =
(

ud

uq

)
= e−ε0�u ε̇0 = pω +

αLm

φr,d
is,q. (9)

It is not surprising that (9) resembles (4), because the idea
behind the FOC is to have linear flux and current dynamics, as
in the finite discretization. In both cases, the first one determines
a transformation which renders linear the flux dynamics. Then,
one looks for a control law which cancels the nonlinearities in
the current dynamics. Indeed, the transformation (9) is different
from (4), and the resulting models (5) and (8) are different in the
current dynamics. This leads to different control expressions. In
fact, the FOC is given by [12]

udq =Lσ(−αβφr,dq + pβω�φr,dq + ε̇0�Is,dq + vdq)

=Lσ

( −αβφr,d − ε̇0is,q − αLm

φr,d
i2s,q + vd

pβωφr,d + ε̇0is,d + αLm

φr,d
is,dis,q + vq

)
(10)
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where vdq = ( vd vq )T , with

vd = − kd,1(φr,d − φref) − ki,1

t∫
0

(φr,d(τ) − φref(τ)) dτ

vq = − kd,2(ωr,d − ωref) − ki,2

t∫
0

(ωr,d(τ) − ωref(τ)) dτ

and φref and ωref as the flux and angular velocity references,
respectively, and kd,1, kd,2, ki,1, ki,2 > 0. One hence obtains
the following closed-loop dynamics:

φ̇r,dq = − αφr,dq + pω�φr,dq + αLmIs,dq − ε̇0�φr,dq

=
(
−αφr,d + αLmis,d

0

)

İs,dq = − γIs,dq + vdq

ω̇ = μIT
s,dq�φr,dq −

1
J

T = μφr,dis,q −
1
J

T

θ̇ = ω. (11)

From (10), it is clear that FOC imposes the feedback lineariza-
tion of (8) [22]. Hence, the FOC eventually obtains a linear
model for the flux and current dynamics, as uf in (2). In this
sense, the FOC can be applied to obtain a finite discretizable
system as well, namely, from (11), one could obtain an exact
closed form for the sampled dynamics. Indeed, it easy to see
that uf is more general than FOC, because it cancels just the
terms which do not allow the finite discretizability. In fact, in
the (d, q) coordinates uf can be written as

uf,dq = e−ε0�uf = Lσ(pβω�φr,dq + pω�Is,dq)

and it is readily checked that

udq = uf,dq + Lσ

(
−αβφr,dq +

αLm

φr,d
is,q�Is,dq + vdq

)

and it is clear that the implementation of the FOC would imply
also the implementation of further terms.

III. DISCRETE-TIME CONTROL OF IMs

The discrete-time control vk in (2) is designed hereinafter,
in order to solve the posed control problem, following the
sliding-mode approach. On this ground, we first derive the
expression of the tracking error dynamics e1,k = ωk − ωr,k,
e2,k = ΦT

k Φk − Φr,k, which are the new outputs which we
want to force to zero. Using (6), the error dynamics can be
written as follows:

e1,k+1 =ωk + η1I
T
k �Φk + λT

1,kvk − δ

J
Ck − ωr,k+1

e2,k+1 = a2
11Φ

T
k Φk + 2a11a12ΦT

k Ik + a2
12I

T
k Ik

+ λT
2,kvk + b2

1v
T
k vk − Φr,k+1 (12)

where

λ1,k = −�(η2Φk+η3Ik) λ2,k =2b1(a11Φk+a12Ik). (13)

It is interesting to note that λ1,k represents the vector η2Φk +
η3Ik rotated π/2 clockwise.

Notice that the system (12) depends on quadratic terms of
the control signal vk because b1 > 0 for all sampling time
δ > 0. This complicates the control design procedure. In order
to simplify the design of a control law, one considers as
new control

Vk =
(
Va,k

Vb,k

)
= Tkvk, Tk =

(
λT

1,k

λT
2,k

)
(14)

vk = T −1
k Vk. It can be verified that the transformation Tk is

invertible for all k, with

det Tk = dk = λT
2,k�λ1,k = 2b1

(
Φk

Ik

)T

R

(
Φk

Ik

)
�= 0

(b1 > 0)
and

R=
(

a11η2I2×2
1
2 (a12η2 + a11η3)I2×2

1
2 (a12η2 + a11η3)I2×2 a12η3I2×2

)
(15)

nonsingular for all δ (see Appendix I). Note that

T −1
k =

1
dk

�(−λ2,k λ1,k)

(
T −1

k

)T (
T −1

k

)
=

1
d2

k

(
λT

2,kλ2,k −λT
1,kλ2,k

−λT
1,kλ2,k λT

1,kλ1,k

)
.

With such a control transformation, e1,k+1 and e2,k+1 de-
pend only on Va,k and Vb,k, respectively, and (12) becomes

e1,k+1 =ωk + η1I
T
k �Φk − δ

J
Ck − ωr,k+1 + Va,k

e2,k+1 = akV2
b,k + bkVb,k + ck (16)

where

ak =
b2
1

d2
k

λT
1,kλ1,k ≥ 0 bk = 1 − 2b2

1

d2
k

λT
1,kλ2,kVa,k

ck =
1

4b2
1

λT
2,kλ2,k +

b2
1

d2
k

λT
2,kλ2,kV2

a,k − Φr,k+1

=
(

1
4b2

1

+
b2
1

d2
k

V2
a,k

)
λT

2,kλ2,k − Φr,k+1

=
(

Φk

Ik

)T (
a2
11 a11a12

a11a12 a2
12

)(
Φk

Ik

)

+
b2
1

d2
k

λT
2,kλ2,kV2

a,k − Φr,k+1.

It is worth noting that ak is zero when Φk = −η3Ik/η2.
A discrete-time sliding-mode control will be designed here-

inafter to force to zero the error dynamics. A natural choice as
sliding functions are the errors e1,k and e2,k.

Because the control objective is to design a controller for
angular velocity tracking and disturbance rejection, considering
e1,k as sliding surface, one can impose that this tracking error
be zeroed in one step, namely, e1,k+1 = 0. Considering the first
of (16), this is achieved considering

Va,k = −ωk − η1I
T
k �Φk +

δ

J
Ck + ωr,k+1. (17)
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Usually, such a control is called equivalent control and is such
that the sliding manifold e1,k = 0 is rendered invariant.

Analogously, we determine Vb,k, imposing that the tracking
error e2,k is zeroed in one or more steps or tends asymptotically
to zero. The determination of the equivalent control follows
from simple considerations reported hereinafter.

1) If ak > 0 and Δk = b2
k − 4akck ≥ 0, considering the

second of (16), one imposes akV2
b,k + bkVb,k + ck = 0.

Hence, the control

Vb,k = − bk

2ak
±

√
Δk

2ak

straightforwardly imposes e2,k+1 = 0, i.e., ensures that
e2,k is zeroed in one step.

2) If ak > 0 and Δk < 0, then e2,k cannot be zeroed in one
step. In this case, we can only determine Vb,k so that
e2,k decreases at each time step. This can be achieved as
follows. For a certain r > 0, representing the duration of
the decrease required on e2,k, one iteratively imposes

e2,k+j+1 = ak+jV2
b,k+j + bk+jVb,k+j + ck+j = pj

where j = 0, . . . , r, with pj chosen so that |e2,k+j+1| <
|e2,k+j | and such that the new discriminant

Δ̄k,j = b2
k+j − 4ak+j(ck+j − pj)

is equal to a fixed minimum value Δmin,j ≥ 0. Hence,
pj = ck+j + (Δmin,j − b2

k+j)/(4ak+j). Therefore, one
easily works out the values of the control Vβ , ensuring
this decrease

Vb,k+j =
−bk+j ±

√
Δmin,j

2ak+j
, j = 0, . . . , r.

With this choice, e2,k tends asymptotically to zero.
Clearly, the fastest decrease of e2,k is obtained for
Δmin,j = 0, i.e., with Vb,k+j = bk+j/(2ak+j), j =
0, . . . , r, namely, imposing Vb,k = bk/(2ak) when ak >
0 and Δk < 0. Clearly, if after r steps, Δk becomes
nonnegative, Vb,k will be chosen as in point 1) [or 3)],
therefore obtaining zero error in r + 1 steps.

3) If ak = 0, then it is possible to impose straightforwardly
e2,k+1 = 0 in one step with the control Vb,k = −ck/bk.

We can resume this discussion saying that, with the following
equivalent control:

Vb,k =

⎧⎪⎨
⎪⎩

− bk

2ak
±

√
Δk

2ak
if ak > 0 and Δk ≥ 0

− bk

2ak
if ak > 0 and Δk < 0

− ck

bk
if ak = 0

(18)

with Δk = b2
k − 4akck, the flux tracking error is zeroed in one

or more steps or tends asymptotically to zero.
We have shown that e1,k and e2,k are forced to zero asymp-

totically. One should ensure that Ik does not diverge to infinity.
This aspect is correlated with the stability of what are called
the zero dynamics which, roughly speaking, are those dynamics
obtained when the output of the system is zero (see [22]
for the continuous time setting and [30] for the discrete-time
case). We do not carry out a formal study of this aspect (but,

in Appendix III, we give some more details), and we just
mention that Ik remains bounded (this can be also seen from
the experimental results given in the following), whereas the
flux angular position θΦ,k and the rotor angular position θk in
practice take value in [−π, π). This prevents the control vk from
saturating, and the suggested scheme can be applied to solve the
posed control problem.

IV. DISCRETE-TIME CONTROL FROM

SAMPLED MEASUREMENTS

In this section, we consider and fix the drawbacks of the
proposed controls (2) and (14). The first problem is the mea-
surability of the rotor flux and the load torque. This problem
is solved by a simple discrete-time reduced-order observer, as
shown in Section IV-A. The second problem concerns how the
continuous feedback (2) is implemented, i.e., the availability of
the signals θ(t), Is(t), and φr(t). This aspect is considered in
Section IV-B.

A. Flux and Load Torque Observers

In practical cases, the rotor flux and load torque are not mea-
sured, and this is a crucial aspect in the real implementations.
The literature presents various works on this subject, in the
case of continuous time, see [1], [3], [5], [14], [21], [24], [39],
[41], and [46] among the others. Less numerous are the results
in the discrete-time setting [2], [7], [10]. In the following, we
derive flux and torque discrete-time observers for the discrete
model (6). The flux observer is proposed to have the following
(quite obvious) form:

Φ̂k+1 = a11Φ̂k + a12Ik + b1vk. (19)

Then, the dynamical error equation becomes

eΦ,k+1 = a11eΦ,k eΦ,k = Φk − Φ̂k.

It can be verified that |a11| < 1 (see expression in Appendix I).
Hence, Φ̂k asymptotically converges to Φk.

As far as the load torque estimation is concerned, we have
assumed that (H2) holds. Then, the following observer can
be used:

ω̂k+1 =ωk + η1I
T
k �Φ̂k +

(
η2Φ̂T

k + η3I
T
k

)
�vk

− δ

J
Ĉk + l1(ωk − ω̂k)

Ĉk+1 = Ĉk + l2(ωk − ω̂k). (20)

Note that the estimation ω̂k is necessary only to determine Ĉk.
Setting eω,k = ωk − ω̂k and eC,k = Ck − Ĉk as rotor angular
velocity and load torque estimate errors, respectively, the dy-
namical error equations become(

eω,k+1

eC,k+1

)
=

(
−l1 − δ

J
−l2 1

)(
eω,k

eC,k

)

+
(

η1I
T
k − η2v

T
k

0

)
�eΦ,k

+
(

0
1

)
ΔC(k, δ). (21)
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Note that eΦ,k tends asymptotically to zero and η1I
T
k and η2v

T
k

are bounded terms. Due to the presence of the term ΔC(k, δ),
which acts as a perturbation, choosing l1 and l2 such that the
state matrix in (21) is Schur, ω̂k and Ĉk converge asymp-
totically to ωk and Ck in a practical sense [17], namely, the
trajectory of the estimation error belongs to a neighborhood of
radius r of the origin. Note that, on the basis of the assumption
(H2), the perturbation term ΔC(k, δ) can be made small by
reducing the sampling period δ, namely

|ΔC(k, δ)| ≤ ΔCmaxΔ(δ) ≤ ΔCmaxΔ(δ0)

for δ ≤ δ0, with δ0 sufficiently small. In this way, one obtains
a smaller value for the radius r and, hence, a better observer
performance.

B. Implementation of (2)

The main issue concerning the implementation of the control
law designed here is the realization of the continuous part of
control (2), where the stator current Is(t), the rotor flux φr(t) =
epθ(t)�Φ(t), and the rotor angular position and velocity θ(t) and
ω(t), respectively, are required. On this ground, we show here
that this continuous control can be written as a combination
of the sampled values θk, ωk, and Φ̂k. The coefficients of this
combination depend on a time varying term, usually called
exponential holder. This exponential holder is the only term to
be implemented via an analog device, together with an analog
integrator.

The stator current Is can be measured by analog devices,
whereas the rotor angular position and velocity θ and ω, re-
spectively, are commonly measured by a digital device, such as
an encoder, meaning that their values θk and ωk are available at
sampling instants. Furthermore, φr is estimated by the discrete-
time observers (19) and (20), and only the values φ̂r,k =
epθk�Φ̂k are available at sampling instants.

Therefore, we need to reproduce the continuous time signals
θ(t), ω(t), and φ̂r(t) from the knowledge of the values θk, ωk,
and Φ̂k. This can be done as follows. Referring to Appendix I
and considering (24) and (25), setting τ = t − kδ, τ ∈ [0, δ),
and considering Φ̂k in the place of Φk, for Φ̂(t) and ω(t), one
obtains the following expressions:

Φ̂(t) = Φ̂(τ + kδ) = ϕ1(τ)Φ̂k + ϕ2(τ)Ik + ζ1(τ)vk

ω(t) = ω(τ + kδ)
= ωk + ν1(τ)IT

k �Φ̂k

+ ν2(τ)Φ̂T
k �vk + ν3(τ)IT

k �vk − Ck

J
τ. (22)

Note that the expressions of ϕ1(τ), ϕ2(τ), ζ1(τ), and νi(τ),
i = 1, 2, 3 contain terms of the form eςτ , ς = ±ρ or ς = ±ω0,
see Appendix I. In fact, the hyperbolic trigonometric functions
can be represented with exponential terms. The term eςτ is
usually called exponential holder and is physically realizable
by an analog device [8], [9]. In particular, in [9], an electronic
realization of such device is proposed and a circuit realization
is given for sinusoidal signals. In some sense, the exponential
holder represents the “minimum requisite” that has to be imple-
mented analogically to reproduce Φ̂(t) and ω(t).

Therefore, (22) allows us to reconstruct the values of Φ̂(t)
and ω(t), for all t. Once ω(t) has been reconstructed, it can
be integrated in order to obtain θ(t) by means of an analog
integrator device.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we first compare the proposed control scheme
with different control laws, by means of simulations, and then,
we describe the experimental results.

A. Simulation Results

We considered an IM with the following plate data: three
phase, two pole, 0.14 KW, 0.74 pf, 1600 r/min, 220 V, 1.3 A,
and with Rr =10.1, Rs =14 Ω, Ls =400, Lr =412.8, Lm =
377 mH, and J =0.01 Kg m2.

Hence, α=24.467 Ω/H, β=16.398 1/H, γ=402.62 Ω/H,
μ=2.7398 1/(Kg m2), and Lσ =5.5695 × 10−2 H. Moreover,
ω0 =198.6 Ω/H and ρ=213.5 Ω/H, where Ω/H=Hz. The
sampling period is δ=230 μs, which is a typical value in
applications, see for instance [5], and which is in accordance
with the value used in Section V-B. It is worth noting that
the choice of the sampling period is an important aspect in
the digital implementation of control laws, and one popular
way to check the influence of the sampling period δ on the
controller performance is by simulation. In Section I, we have
already noted that an advantage of obtaining an exact discrete-
time model is that the sampling period can be theoretically high,
although other aspects limit in practice its value.

The gain control parameters have been chosen equal to
l1 = 0.0824 and l2 = −0.8244. With these values, it is possible
to check that matrix (7) is Schur. A load torque T of 0.2 Nm,
with a variation to 1 Nm at t = 4.6 s, has been considered in
the simulations.

In order to compare different control solutions, we have
considered four control schemes:

a) the sampling of the classical FOC, see (10), with the state
observer proposed in [47];

b) digital control and observer determined on the basis of the
Euler approximation [26]

φr,k+1 = φr,k + δ(−Ψkφr,k + αLmIs,k)

Is,k+1 = Is,k + δ

(
βΨkφr,k − γIs,k +

1
Lσ

uk

)

ωk+1 = ωk + δ

(
μIT

s,k�φr,k − 1
J

Tk

)
θk+1 = θk + δωk

of the dynamics (1), with Ψk = αId − pωk� and Id as
the identity matrix;

c) control law given by (14), (19), and (20) and the sampling
of uf in (2), namely

uk = pLσωk�(Is,k + βφ̂r,k) + epθk�vk (23)

where (
φ̂r,k

Is,k

)
=

(
epθk�Φ̂k

epθk�Ik

)
.
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Fig. 1. (Solid) Rotor angular velocity ωk and (dashed) reference ωr,k . (a) FOC with observer. (b) Digital control and observer (Euler approximation). (c) Control
laws (14), (19), (20), and (2) sampled. (d) Control laws (14), (19), (20), and (2) implemented with the exponential holder. (e) Control laws as in (d), but with
δ = 460 μs.

Fig. 2. (Solid) Estimated square flux modulus ‖Φ̂k‖2 and (dashed) reference Φr,k . (a) FOC with observer. (b) Digital control and observer (Euler
approximation). (c) Control laws (14), (19), (20), and (2) sampled. (d) Control laws (14), (19), (20), and (2) implemented with the exponential holder.
(e) Control laws as in (d), but with δ = 460 μs. (Right) Zoom from 0 to 0.5 s of the same graphics on the left.

d) control law given by (14), (19), (20), and (2) implemented
as explained in Section IV-B;

e) control law as in d), but with a doubled sampling period
δ = 460 μs.

In Figs. 1 and 2, the simulation results for these five schemes
are compared. The rotor angular velocity reference increases
from 0 to 100 rad/s in the first 20 s and, then, is piecewise
constant and equal to 70 rad/s for t ∈ [30, 40) and to 40 rad/s for

t ∈ [40, 50]. The flux modulus reference has a constant value
of 0.2 Wb2. The other variables have not been reported due
to space limitations. Note that the behaviors of the controllers
c) and d) are practically coincident, at least for the chosen
sampling rate. This means that the simple sampling of (2) is
an effective solution, which avoids the use of analog devices,
at least for sufficiently small sampling periods δ. In fact, it is
obvious that, as δ → 0, one recovers the continuous behavior.
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Fig. 3. (Solid) Rotor angular velocity ωk and (dashed) reference ωr,k in the case of measurement noise. (a) FOC with observer. (b) Digital control and observer
(Euler approximation). (c) Control laws (14), (19), (20), and (2) sampled. (d) Control laws (14), (19), (20), and (2) implemented with the exponential holder.
(e) Control laws as in (d), but with δ = 460 μs.

Fig. 4. (Solid) Estimated square flux modulus ‖Φ̂k‖2 and (dashed) reference Φr,k in the case of measurement noise. (a) FOC with observer. (b) Digital control
and observer (Euler approximation). (c) Control laws (14), (19), (20), and (2) sampled. (d) Control laws (14), (19), (20), and (2) implemented with the exponential
holder. (e) Control laws as in (d), but with δ = 460 μs. (Right) Zoom from 0 to 0.5 s of the same graphics on the left.

Anyway, on the basis of the comments already done, there is no
theoretical assurance in case c) that the digital representation
is still accurate as δ increases. It is also worth noting that
the controller d) performs better with respect to the sampled
FOC or a digital controller determined on the basis of simpler
discrete-time representations, such as the Euler approximation.
The controller e) shows a behavior similar to that in d), because
the exact continuous reproduction is ensured at the sampling

time by the sampled closed model, in accordance with the
theory. Note that nothing can be ensured for the intersamplings.

As final consideration, because the implementation of these
control laws requires the knowledge of the angular velocity,
whose measurement is usually quite poor in practice, a de-
generation of the controller performance is expected due to
measurement noise. In order to evaluate this important aspect,
in Figs. 3 and 4, we have considered the previous controllers
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Fig. 5. Experimental setup.

with measurement noise. In this case, the performance of the
controllers c) and d) are practically the same. However, the
degradation in performance of controller b) and the sensitivity
of controller a) with respect to load torque variations suggest
the superiority of the proposed controller d).

B. Experimental Results

The experimental setup, shown in Fig. 5, consists of an IM
with the same characteristics given in the Section V-A. The
power module is a three-phase inverter Semikron IGBT Power
Electronics Teaching System, which incorporates a three-phase
rectifier fed by a three-phase ac variator. The control and PWM
generation are implemented with a DSP board (Dspace 1104).
The signals from the phase currents are acquired by analog-to-
digital converters included in the DSP board.

The motor is loaded by a dc generator connected to a
variable-power resistor. In the tests, we reproduced a load
torque T of 0.2 Nm, with a variation to 1 Nm at t = 4.6 s, as in
the simulations.

The motor position and speed are measured by an optical
encoder with 1024 ppr (pulses per revolution) of resolution and
filtered by a first-order Butterworth low-pass filter having an
8 rad/s edge frequency, to attenuate the measurement noise. The
stator phase currents are measured by Hall-type sensors.

On the base of the time constraints of the implementation,
the sampling period has been fixed equal to δ = 230 μs, which
is a typical value in applications, as already observed. However,
we recall that an advantage of obtaining an exact discrete-time
model is that the sampling period to be used in the implementa-
tion of the control law can be high, at least theoretically. Other
aspects, such as actuators, data acquisition, etc., limit in practice
its value.

Fig. 6 shows the output tracking results. The references have
been chosen as in Section V-A. The results are similar to those
in Section V-A, showing slight deviations corresponding to
step variations. These differences can be attributed to the high-
frequency effects of the unmodeled dynamics of the actuator,
not considered in the mathematical model. Finally, Fig. 7 shows
the experimental behaviors of the components is,a,k and is,b,k

of the stator current vector Is,k and those of the input voltages
ua,k and ub,k.

VI. CONCLUSION

In this paper, an exact sampled data representation of the
IM has been obtained. This sampled data model has been
determined by means of a particular controller which induces
a sampled closed representation for the original continuous
time model. On the basis of the exact sampled data model,
an observer-based controller, which guarantees asymptotic ref-
erence tracking for the velocity and flux in the presence of
an unknown load torque, has been designed. Some interesting
issues, such as the robustness of the controller with respect to
parameter variations, determination of the sampling period, and
modeling of the actuator’s dynamics, are currently under study.

APPENDIX I
SAMPLED DYNAMICS OF SYSTEM (8)

Integrating (5) on the time interval [kδ, t), t < (k + 1)δ, one
obtains

(
Φ(t)
I(t)

)
=

(
ϕ1(t − kδ)I2×2 ϕ2(t − kδ)I2×2

ϕ3(t − kδ)I2×2 ϕ4(t − kδ)I2×2

)(
Φk

Ik

)

+
(

ζ1(t − kδ)I2×2

ζ2(t − kδ)I2×2

)
vk

ω(t) = ωk + μ

t∫
kδ

IT�Φdτ − Ck

J
(t − kδ)

θ(t) = θk +

t∫
kδ

ω(τ)dτ (24)

where, denoting “sinh” and “cosh” by “sinh” and “cosh,”
respectively

ϕ1(t) = e−ρt

[
γ − α

2ω0
sinh ω0t + cosh ω0t

]

ϕ2(t) =
αLm

ω0
e−ρt sinh ω0t

ϕ3(t) =
αβ

ω0
e−ρt sinhω0t

ϕ4(t) = e−ρt

[
−γ − α

2ω0
sinh ω0t + cosh ω0t

]

ζ1(t) =
Lm

Rs

[
1 − e−ρt

[
ρ

ω0
sinh ω0t + cosh ω0t

]]

ζ2(t) =
1

Rs

[
1 − e−ρt

[
1
ω0

(
ρ − Rs

Lσ

)
sinh ω0t + cosh ω0t

]]
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Fig. 6. (a) (Solid) Rotor angular velocity ωk and (dashed) reference ωr,k . (b) (Solid) Estimated square flux modulus ‖Φ̂k‖2 and (dashed) reference Φr,k .

Fig. 7. Stator current components: (a) is,a,k and (b) is,b,k . Control input voltages: (c) ua,k and (d) ub,k .

with ρ = (α + γ)/2 = (LsRr/Lr + Rs)/(2Lσ) and

ω0 =
√

(γ − α)2 + 4α2βLm/2 =
√

ρ2 − αRs/Lσ

γ − α =
(
Rs +

(
2L2

m − LsLr

)
Rr/L2

r

)
/Lσ.

Note that, for our case, γ − α > 0.

For the expressions of ω(t) and θ(t), one works out

ω(t) = ωk + ν1(t − kδ)IT
k �Φk + ν2(t − kδ)ΦT

k �vk

+ ν3(t − kδ)IT
k �vk − Ck

J
(t − kδ)

θ(t) = θk + (t − kδ)ωk + ν4(t − kδ)IT
k �Φk

+ ν5(t − kδ)ΦT
k �vk + ν6(t − kδ)IT

k �vk

− 1
2
(t − kδ)2

Ck

J
(25)
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where

ν1(t) =
μ

ρ
e−ρt sinh ρt

ν2(t) =
μ

αRs
e−ρt

[
γ − α

2

(
1
ω0

sinh ω0t −
1
ρ

sinh ρt

)

+ cosh ω0t − cosh ρt

]

ν3(t) =
μLm

Rs
e−ρt

[
1
ω0

sinh ω0t −
1
ρ

sinh ρt

]

ν4(t) =
μ2

α + γ

[
t − e−ρt

ρ
sinh ρt

]

ν5(t) =
μ2Lσ

α2R2
s

[
γ − e−ρt

[
(γ − α)γ + 2α2βLm

2ω0
sinh ω0t

+ γ cosh ω0t

]]

− μ2

(α + γ)Rs

[
e−ρt

ρ
sinh ρt +

γ

α
t

]

ν6(t) =
μ2LmLσ

αR2
s

[
1 − e−ρt

[
α + γ

ω0
sinh ω0t + cosh ω0t

]]

− μ2Lm

Rs

e−ρt

ρ2
sinh ρt.

For t = (k + 1)δ, we finally obtain the expressions in (6) with

a11 =ϕ1(δ) a12 = ϕ2(δ) a21 = ϕ3(δ) a22 = ϕ4(δ)

b1 = ζ1(δ) b2 = ζ2(δ) η1 = ν1(δ) η2 = ν2(δ)

η3 = ν3(δ) κ1 = ν4(δ) κ2 = ν5(δ) κ3 = ν6(δ).

Note that the coefficient b1 is always positive for all δ > 0, as
can be verified by plotting b1 as a function of δ. Note also that
the matrix Ad in (7) can be easily transformed into the matrix
diag{A,A}, where

A =
(

a11 a12

a21 a22

)
.

A is a nonsingular matrix with determinant |A| = e−ρδ and
with characteristic polynomial p(λ) = λ2 + a1λ + a0, a1 =
−2e−ρδ cosh ω0δ, and a0 = |A| = e−ρδ . Applying Jury’s cri-
terion [4], one gets that all its roots are inside the unit
circle if and only if a0 = e−ρδ < 1 and a0 ± a1 + 1 =
e−ρδ ± 2e−ρδ cosh ω0δ + 1 > 0. Because ρ > 0 and e−ρδ ±
2e−ρδ cosh ω0δ + 1 is always positive, one easily concludes
that Ad is Schur for every choice of the sampling period δ > 0.

Finally, considering the matrix R given by (15), one works
out that the determinant is

detR = (a11η3 − a12η2)4/16

where

a11η3−a12η2 =
μLm

ω0Rs
e−2ρδ

(
sinh ω0δ cosh ρδ

− ω0

ρ
cosh ω0δ sinh ρδ

)

=
μLm

ω0Rs
dR,δ

(
tanhω0δ −

ω0

ρ
tanh ρδ

)

with

dR,δ = e−2ρδ cosh ω0δ cosh ρδ.

Here, tanhω0δ/ tanh ρδ − ω0/ρ is a positive increasing func-
tion of δ, and dR,δ is different from zero for δ �= 0.

APPENDIX II
SAMPLING OF (a, b) ROTOR FLUX VECTOR

ANGULAR POSITION

In the stator reference frame (a, b), the rotor flux at time kδ
can be obtained from (4)

φr,k =
(

φr,a,k

φr,b,k

)
= epθk�Φk, Φk =

(
φa,k

φb,k

)

=
(

cos pθk − sin pθk

sin pθk cos pθk

)(
φa,k

φb,k

)

=
(

φa,k cos pθk − φb,k sin pθk

φa,k sin pθk + φb,k cos pθk

)
.

Hence, the angular position of φr,k is given by

θΦ,k = arctan
φr,b,k

φr,a,k
=

φa,k sin pθk + φb,k cos pθk

φa,k cos pθk − φb,k sin pθk

= pθk + arctan
φb,k

φa,k
(26)

where some trigonometric manipulations have been performed.
Moreover, considering that

φr,k =
√

ΦT
k Φk

(
cos θΦ,k

sin θΦ,k

)

one gets

Φk = e−pθk�φr,k

=
(

cos pθk sin pθk

− sin pθk cos pθk

)√
ΦT

k Φk

(
cos θΦ,k

sin θΦ,k

)

=
√

e2,k + Φr,kϑk

with ΦT
k Φk = e2,k + Φr,k and where we have defined

ϑk =
(

cos(θΦ,k − pθk)
sin(θΦ,k − pθk)

)
.
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APPENDIX III
ZERO DYNAMICS

The difficulties in studying the stability of the whole con-
trolled system are due to the fact that the strict feedback form
[20], as that of the IM dynamics, is lost under sampling. To
the best of the authors’ knowledge, there are not general results
on the stability of such sampled systems. In the following, we
analyze the so-called zero dynamics and we give some results.
The system dynamics can be rewritten using the new state
variables ( e1,k e2,k IT

k θΦ,k θk )T , where the first two
variables are exactly the outputs of the system and where the
“complement” of this state transformation is given by the cur-
rent Ik, the rotor flux angular position θΦ,k [see (26)], and the
rotor angular position θk. The zero dynamics are the dynamics
of the complement variables when the outputs are zero.

The current dynamics [the second of (6)]

Ik+1 = a22Ik + Wk

Wk = a21

√
e2,k + Φr,kϑk + b2T −1

k Vk

have eigenvalues inside the unit circle (a22 ∈ (0, 1) for all
δ > 0—see Appendix I), so that these dynamics are bounded
input–bounded output. Unfortunately, it is not evident how to
show that the “input” Wk is bounded. In fact, while ϑk is
given by bounded (trigonometric) functions, Φr,k is bounded,
and e2,k tends to zero, it is easy to check that vk = T −1

k Vk

depends explicitly on Ik. A possible solution to circumvent this
difficulty is to show the existence of a steady-state function Ir,k

for Ik. On this ground, we first get rid of uk between the flux
and current equations [first two equations of (6)], considering
the variable Īk = b2Φk − b1Ik. One easily obtains

Īk+1 = λ̄Īk + b̄Φk, Φk =
√

e2,k + Φr,kϑk

where

λ̄ = a22 − a12b2/b1

b̄ = (a11 − a22)b2 − a21b1 + a12b
2
2/b1.

It is possible to check that |λ̄| < 1 (see Appendix I).
These linear dynamics are bounded input–bounded output,
forced by a bounded input Φk (e2,k goes to zero, Φr,k is
bounded by assumption, and ϑk has trigonometric—sin and
cosine—components). Hence, Īk is bounded and therefore also

Ik =
b2

b1
Φk − 1

b1
Īk

is bounded. Moreover, there exists a steady state

Īr,k =
k−1∑
j=0

λ̄k−j−1b̄
√

Φr,jϑj

solution of the linear equation

Īr,k+1 = λ̄Īr,k + b̄
√

Φr,kϑk.

It is easy to see that Īk converges to Īr,k. In fact

Īk+1−Īr,k+1 = λ̄(Īk−Īr,k) + b̄(
√

e2,k+Φr,k−
√

Φr,k)ϑk

|λ̄| < 1, and Φk converges to
√

Φr,k ϑk (because e2,k tends to
zero). Therefore, Ik converges asymptotically to

Ir,k =
b2

b1

√
Φr,kϑk − 1

b1
Īr,k

=
b2

b1

√
Φr,kϑk − b̄

b1

k−1∑
j=0

λ̄k−j−1
√

Φr,jϑj .

Finally, the dynamics of θΦ,k+1 and θk may be unstable,
namely, θΦ,k+1 and θk may go to infinity. This is physically
admissible because they refer to the flux and rotor angular
positions [in practice, they take values in [−π, π)], and is
mathematically acceptable because θΦ,k and θk enter in the
other equations (those of Ik) through ϑk, which is bounded.
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