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Abstract 

The problem of delivering as quickly as possible a re- 
quested torque produced by a spark ignition engine 
equipped with a multi-point port injection manifold 
and with drive-by-wire electronics is addressed. The 
optimal control problem, subject to the constraint that 
the air-fuel ratio stays as close as possible to the 
stoichiometric ratio, is solved using a detailed, cycle- 
accurate hybrid model and hybrid control approaches. 
The quality of the control law, that is particularly sim- 
ple to implement, has been analytically demonstrated 
and a set of simulations have been carried out. 

1 Introduction 

The ever increasing computational power of micro- 
controllers has made it possible to extend the perfor- 
mance and the functionality of electronic sub-systems 
controlling the motion of the car. This opportunity 
has exposed the need for control algorithms with guar- 
anteed properties that can reduce substantially emis- 
sion and gas consumption while maintaining the per- 
formance of the car. 
In this paper, we deal with the problem of delivering as 
quickly as possible a requested torque produced by a 
spark ignition engine equipped with a multi-point port 
injection manifold and with drive-by-wire electronics to 
control the throttle valve position. The optimization 
problem is subject to the constraint that the air/fuel 
(A/F) ratio stays as close as possible to stoichiomet- 
ric value of 14.64 (the ratio that guarantees minimum 
emission). A/F ratio evolution is subject to both air 
and fuel dynamics. After fuel is injected, partly va- 
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por turns into fluid that deposits onto the intake run- 
ner. Hence only part of the injected fuel is immedi- 
ately available for combustion, while the fluid film con- 
tributes with a noticeable delay to the combustion pro- 
cess since it has first to evaporate again. 
The most used solutions to this problem consist of feed- 
forward compensation of fuel dynamics [l, 6, 51, based 
on mean value engine models [4]. However, the mean 
values of the engine variables of interest may not be 
enough to guarantee small transient deviations from 
the optimal A/F ratio. In this paper, we propose an 
approach, based on a hybrid detailed model of the cyclic 
behavior of the engine, that is characterized by very 
small deviations over the optimal A/F ratio. The hy- 
brid model describes accurately the detailed behavior 
of the drive-by-wire components, of the injections sys- 
tems and of the torque-generation mechanism. The 
discrete abstraction for parts of the model allows the 
development of powerful closed-loop control laws. 
The goal is to design a control law for the fuel injec- 
tion durations and the throttle valve motor voltage so 
to drive the evolution of the system from an initial 
condition characterized by the delivery of a torque u” 
to a final condition characterized by the delivery of a 
requested torque u1 in minimum time subject to con- 
straints on emissions. The control problem solved here 
is new not only because a detailed model for the in- 
jection process is used but also because the entire con- 
trol chain, from throttle motor to engine, is considered. 
Our approach to the control problem at hand is to first 
introduce and solve an auxiliary optimal control prob- 
lem in the continuous time, and then to map the so- 
lution back in the hybrid domain with the appropriate 
inputs and models. By doing so, we are paying close 
attention to constraint satisfaction that is essential to 
obtain a control law that obeys emission limitations. 
The quality of the control law has been analytically 
demonstrated and extensive simulations have been car- 
ried out. 
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2 Plant model and problem formulation 

In this section, a hybrid model for vehicles with 4- 
stroke 4-cylinder gasoline engine equipped with a 
multi-point injection system and drive-by-wire is illus- 
trated. The model (an expansion of the model in [2]) 
consists of four parts (see Fig. 1): two continuous-time 
systems, modeling the power-train dynamics and the 
air dynamics respectively, and two hybrid systems, one 
modeling the behavior of each cylinder and one mod- 
eling the behavior of each injection system. 
Air Dynamics. The model of the quantity of air en- 
tering the cylinder during the intake run is obtained 
from the air flow balance equation of the manifold. The 
air mass mar loaded during an intake run, is subject to 
the manifold pressure (p) dynamics which is controlled 
by the throttle valve actuated by a DC motor. The 
linearized model is 

b(t) = a&(t) + &u(t) (1) 
j(t) = up P(i) + bp4) (‘4 

ma(t) = cp p(t) (3) 

where Q is the throttle angle and 21 is the DC motor 
voltage. 
Powertrain Model. Powertrain dynamics are mod- 
eled by the linear system 

i(t) = AC(t) + b4t), (4) 

where C = [cx,,w~,u~]~ represents the axle torsion 
angle, the crankshaft revolution speed and the wheel 
revolution speed. The input signal u is the torque 
produced by the engine and acting on the crankshaft. 
Model parameters A and b, depend on the transmission 
gear which is assumed not to change. Integrating the 
crankshaft velocity wc, a single-state hybrid system 
emits the event dead-point, when pistons reach either 
the top or bottom dead centers. 
Torque-generation. The behavior of each cylinder in 
the engine is abstractly represented by a Finite State 
Machine (FSM) and a Discrete Event System (DES) 
modeling torque generation. The FSM state Si of the 
i-th cylinder assumes values in the set Hi, Ii, Ci, Ei 
which correspond to the Exhaust, Intake, Compression 
and Expansion strokes, respectively, in the 4-stroke 
engine cycle. When the event dead-point is emitted, 
the piston reaches a dead center and a FSM transition 
occurs. The DES describing the torque generation 
process of the i-th cylinder increments its time counter 
lc by one at each transition of the FSM. Its inputs 
are the masses m,i and m,; of air and fuel loaded 
during the intake phase; its output is the torque pi 
generated by the cylinder. At the transition Ii + Ci, 
that is at time tli, the event int-endi is generated and 
the DES reads its inputs, storing in qai and qvi their 
values. The maximum amount of torque achievable 
during the next expansion phase, obtained by the 
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Figure 1: Engine hybrid model E. 

fuel-to-torque gain G, is stored in zi. The DES output 
ui(k) is always zero except at the Ci + Ei transition 
when it is set to the value stored in zi. Input u;(t) to 
the powertrain dynamics is obtained from ui(lc) by a 
zero order hold block latched on the event dead-point. 

Injection Process. The i-th injection system is 
abstractly represented by a hybrid system, whose 
discrete state Fi assumes values Ji, Bi, FVi, Di as 
follows: 
l Ji: the injector is open and delivers a constant flow 
P of vaporized fuel. A fraction x of it condenses in a 
fuel-puddle and increases the mass mli of liquid fuel, 
fraction 1 - x increases the mass m,i of vaporized 
fuel in the intake runner. The mass of liquid fuel 
evaporates off with a time constant 7. The injector 
remains open for Ai seconds measured by timer ty. 
l Bi: the injector is closed and the evaporation process 
continues. When the next dead-point event is emitted, 
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the intake valve opens, and the air-fuel mix begins fine in the hybrid state space the invariant set ‘T(uO) c 
to enter the cylinder. At the Ii + Ci transition, the Q x Z x X given by the trajectories described by 
intake valve closes and the int-endi event is generated. the hybrid model & during its evolution in the steady 
The mass m,i of vapor is reset to zero since all the state corresponding to the torque u”, under inputs 
vapor fuel has been loaded in the cylinder. Y = (a,ap/b,bp)(14.64/cpG)uo and Ai = uO/(GP). 
l Wi: the injector is closed and evaporation proceeds. 
l Di: the beginning of fuel injection is synchronized 
with respect to the the beginning of the exhaust phase 
with a time delay of td seconds measured by timer t:. 

Fuel dynamics is as in state IV;. 

Engine hybrid model. The overall model of the 
engine & is the combination of four hybrid systems 
representing the behavior of each cylinder and related 
injection system, and the power-train and intake 
manifold models which are shared among all cylinders. 
The pistons are connected to the crankshaft, so that 
dead-points are synchronous and the cycle of each 
one is delayed one step with respect to the cycle 
of the previous one. Then, the dead-point events 
and the time counter lc are shared among all the 
cylinders and only one signal w(t) may be different 
from zero at any time. Input signals are: the input 
voltage v(t) to the DC motor actuating the throttle 
valve, a scalar continuous time signal in the class 1, 
of functions lR,+ + [-V,+V]; the injection intervals 
A(k), a scalar discrete time signal in the class V 
of functions Z$ -+ [0, A,,,], which is sequentially 
distributed over the four injectors synchronously with 
the corresponding exp-endi event. 

Problem 1 Consider the engine hybrid model E, de- 
picted in Figure 1. Let u” and u1 be the initial value 
and the desired value of the torque. Assume that, at the 
initial time t = 0, the hybrid state (q”, z”,xo) belongs 
to 7(u0), namely the steady state trajectory with torque 
u”. Consider in the hybrid state space Q x Z x X, the 
target set ‘T(u’). Find b(t) E 2, and G(t) E V such 
that 

l the initial state (so, z”, x0) is steered to ‘T(ul); 
l for all t 2 0 and for aiE k > 0 

0 5 a(t) 5 n/2 (5) 

.&in qvic (k) 5 qaic (k) I bnax qvic (k) (6) 

where ic denote the cylinder which enters the C 
state and Lmin < 14.64 < L,,,; 

l the time f such that u(t) = u1 for all t 2 t is 
minimized. 

3 Auxiliary optimal control problem 

The state of the overall hybrid systems is a triple 
(q, z, x) where: q = [S,,F~,SZ,I”Z,S~,F~,S~,F~I 
is the state of the FSMs associated to each 
cylinder and each injection system, z = 
[~l,c?vl,Qal,.. . , z4, q,,4, qa4] is the cylinder DES state 
and x = [C, 4, a, P, ti, (“, m,l, ml, . ..,tk,tk’,mv4,m41 

is the continuous state associated to the powertrain 
and air dynamics and to each injection system. The 
output of the overall system is the generated torque ‘1~. 

In this section a continuous time model &CT, which ap- 
proximates the behavior of the hybrid model & is intro- 
duced and Problem 1 is reformulated for such model. 
In model &CT the intake manifold dynamics, given 
by (l-2), has as output the flow of air that, in aver- 
age, enters the cylinders: fa(t) = c,p(t) with c, = 
$cp. Fuel dynamics is expressed by the average model 
til(t) = alml(t) + bra(t), with fuel flow given by 

fi(t) = clml(t) + d,A(t) where ai = -r-l, bl = XP$, 

2.1 Problem formulation 
At the initial time the engine hybrid model is supposed 
to be at a steady state, where a fixed crankshaft veloc- 
ity w: is maintained by a torque u”. The FMSs repeat a 
same sequence of configuration, which can be obtained 
from the initial state [Cl, Wi, Ez, WZ, H3, D3,I4, B4]. 
The powertrain equilibrium state is Co = [a:, wz, w$ = 
-A-‘buO and the crank angle 4 evolves between 0 
and 7r describing a triangular wave of frequency 2~:. 
The injection DESs steady state is given by ~9 = u”, 
q$ = u”/G, qzi = 14.64q$, when not 0. The mani- 
fold dynamics is at the equilibrium with p” = q$/cp, 
,o = -up p”/bp. Finally, the fuel injection hybrid 
model exhibits a periodic steady state at frequency wz, 
and the evolution of state variables t:, ty, rnli and m,i 
can be readily obtained by integration of fuel dynam- 
ics. 

Cl = 7 -I, dl = (l-X)P$. Since in &CT the crankshaft 
coupling is abstracted away, these two dynamics are de- 
coupled. As standard in constrained optimal control, 
rewrite constraints in Problem 1 as gi(.) < 0. By (5), 

91 = -a 5 0, 92 = Q - 7r/2 < 0. - (7) 

Minimum time solutions for model &CT are obtained 
by the Maximum Principle. The Hamiltonian function 
should contain all the given constraints, in a formu- 
lation that explicitly shows the contribution of each 
control which affects the state components that appear 
in the constraint itself. This is achieved differentiating 
with respect to time the constraints, until the interest- 
ing controls appear (see [3]). Differentiating (7), 

hl = $f = -aaa-bav, h2 = % = aaa+b,v, (8) 

where v, which controls a, appears. In model &CT con- 
straints (6) are imposed on fa and fi, that is 

Given a value u” of torque produced by the engine, de- LZP + Lm I A(t) 5 LIP + &ml (9) 
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with L1 = Lzi;d,, Lz = ca L, = -3. Con- Lmxdt ’ 
straints (9) introduce a coupling between the manifold 
dynamics and the fuel dynamics. To have both control 
variables o and A appearing in the Hamiltonian, fuel 
dynamics is expanded as follows 

there exist adjoint evolutions $ = (icily, &, $i, g2, Go), 
which satisfy (16), and Lagrange multipliers pi s.t. 

h(t) = w(t), ki.z(t> = z1(t) (10) 

kl(t) = wm(t) + hz2(t> (11) 

where zs stands for A and w is the new input. By (9), 

is verified on (15) for almost any t 2 0. Hence, optimal 
controls has to satisfy 

g3 = -xz+Lzp+L,ml I: O,g4 = +x2-Lip-L,ml I: 0. 
(12) 

Further, since A is bounded to belong to [0, Aa,,,], then 

-v if=>0 -0 if=>0 

6= [-V,V] 

{ 

if$=O ,&= 

{ 

[-&RI ifk=O 

V ifm<O Bv R if=<0 
ad (18) 

gs = -22 5 0, 96 = +x2 - Ama < 0. (13) 

Differentiating twice (12) and (13), one gets2 

where 

h3 = +Gzv - w + DZ(Y + Ezp + Flxl + Fzx2 + Foml 

h4 = -Clw + w - D~Q - Elp - FIxI - F2x2 - Foml 

h5 = -w he = +w. 

Let p1 = vu1 and consider the new target set 

M= (p,a,x1,x2,mi)lp=p1,a=-~p1 
{ 1 

* (14) 

aH/av = balDa +ba(% -?'l)+c2y3 - cl'74 (19) 

aHlaw=$1-y3+~4--y,+y6 cw 

are required to meet the additional conditions 

Let 0 denote the class of functions lR$ + [-0, +0] for 
some R > 0. Solutions to Problem 1 are derived from 
the solutions of the following problem for R + 00. 

Problem 2 Consider the dynamics (l-2), (10-11). 
Find v(t) E V and G(t) E 8 which steer in mini- 
mum time an initial state p” = 14.64/(~,G)u~,~~~ = 
-(a,/b,)p’ to the manifold M as in (14), satisfying 
the constraints (7), (12) and (13) for all t > 0. 

Necessary conditions on optimal solutions to Problem 2 
are obtained from Pontryagin Maximum Principle. In- 
troducing the adjoint variables +a, &, $1, $s,&,, and 
the Lagrange multipliers pi, the Hamiltonian is 

if gi = 0 V g2 = 0, dH/% = 0, (21) 
if gs = 0 V g4 = 0, dH/dv = 0 V dH/aw = 0, (22) 

if g5 = 0 V g6 = 0, dH/dw = 0. (23) 

The target set M given in (14) is a 3-dimensional sub- 
space parallel to the ml, xi and x2 axes. Hence, at the 
final time T, the transversality condition gives 

&n(T) =+1(T) =+2(T) =O. (24) 

Assuming that u1 is not on the boundary of feasible 
torques, (7) are not tight at the final time: gi(T) < OA 
ga(T) < 0. Since, by (14), a(T) is such that p(T) = p’ 
is an equilibrium point for (2), then p(T) = 0 and, 
by (15), H(T) = 1 + r,ba(T)(a,al + b,v(T)) = 0, i.e. 

&(T) = -(a,cr’ + baw(T))-l . (25) 

H = 1+ $!Jdi + $Q + ffhkl + $!+2 + &JiLl (15) 

+Ylhl + “lzhz + y&3 + T&4 +-c&5 + %hs 

3.1 Minimum time trajectories. 
Due to space limitation, only the case 2~~ < u” is here 
illustrated and some proofs are not reported. We have 
already noticed that gi (T) < 0 A ga(T) < 0. It can be 
verified 

where hi are as above, if gi(t) < 0 then ri(t) = 0, 
and if gi(t) = 0 then yi(t) 2 0. The adjoint variables 

Proposition 1 Solutions to Problem 2, with u1 < u”, 

dynamics (4 = -g ), are 
can be found in the suficient family given by trajecto- 
ries that 

d'a = --aa'+cx -bptip+Gx(~l -Y2)--D2Y3 +D1Y4r 

$p = -a&p - E273 +ElY4,h = +2 -fi(y3 -Y4), 

$2 =-b,h - F2(73 -Y4),dh =-W+h--fi(Y3 -74). 

l reach the target set by a constrainted arc satisfying 

(16) 
Along a trajectory 6 = (cY,& Pi, Z2, &) solution to 
Problem 2 corresponding to the optimal controls 6,&, 

l fulfill g3 = 0 along all the trajectory. 

2where h; = %, for i = 3,. . ,6, and Cl = Llbpbp,C2 = 
Lzb,b,,Dl = Ll(an + a,)b,, D2 = Lz(au + a,)b,,El = 
LlaE,E2 = L2aF,Fl = L,b,, F2 = L,albl,Fo = L,af. 

Hence, fuel injection is regulated in such a way that 
the evolution of ml follows the evolution of the man- 
ifold pressure so to maintain * = L,,, (see (12)). 
The time to the target set depends only on manifold 
pressure evolution. Solutions obtained with g4 = 0 are 

319 



equivalent to (26), but the latter have been chosen since 
they minimize fuel consumption. 

Optimal solutions to Problem 2 are obtained by back- 
ward integration of the extended dynamics given by (l- 
2), (10-11) and (16), from final conditions (24),(25), 

(27) 
on the target set (14), choosing &(T) such that 
p(t), cx(t),ml(t) span the region in the space of interest. 

Being ga = 0 along all the optim_al trajectory, by (12), 
the optimal injection control is A = Lzp + L,ml. 
The optimal 6 at t = T is obtained for $,(T) < 
0. By (19), we have g(T) = b,&(T) < 0, and, 
by (18), c(T) = V. Further, in a left neighborhood 
of t = T, 73(t) = gl(t) 1 0, y;(t) = 0 for i # 3. 
From the backwards integration of (16), we verify that 
g(t) = ba$a(t) + &$1(t), increases, while a(t) de- 
creases. Hence, at some time t = tl < T either 
g(tl) = 0 or a(tl) = 0, i.e. gl(tl) = 0. In the former 
case, by (18), the control v has to switch to 6 = -V. 
Points (a(tl),p(tl)), define the switching surface 

~={(4tl),p(tl))l ba&(h) + G&(h) = 0). (28) 

for 6. For t < tl, a(t) increases in the backward inte- 
gration and gi never reaches 0. Otherwise, if a(tl) = 0, 
the singular control i?(t) = 0 is applied until, at some 
time t2 < tl, w switches to the nonsingular control 
-V and a(t) starts to increase. Introduce the function 
U(CY,P) such that 

d%P) = 0 if (a,p) E C 
4QlP) > 0 if (o,p) $ C and v = V (29) 
4% PI < 0 if (a,~) 6 C and u = -V 

see Figure 3. According to the construction above, 

Proposition 2 The feedback laws 

@P, ml) = ~52~ + -Lm (30) 

1 

-v ifc7((Y,p) <o A cx>o 
iqa,p) = 0 ifa= (31) 

V ifo(ct,p) >0 A a>0 

are optimal controls for Problem 2. 

4 Hybrid control and simulation results 

The continuous control law described in Section 3, must 
be approximated to yield a feasible control law for the 
hybrid model introduced in Section 2. The main issues 
to address when we move from the continuous case to 
the hybrid case are the following ones. 

In model & there is a delay between the time at which 
the injection control A; is set (at the end of the expan- 
sion phase) and the time at which the vaporized fuel 

qv is loaded (at the end of the intake phase). 

Further, feasible control actions on Ai are discrete time 
signals synchronized with the crank angle. This issue 
is the main cause of difficulty for devising a hybrid con- 
trol strategy. 

Finally, in model E, there exist four independent fuel 
dynamics whose evolutions are constrained with re- 
spect to the same air flow evolution by A/F bounds. 

The measures available for closing the control loop are: 
the pressure p, the angle cr and the crankshaft speed 
w,. According to (30), fuel injection is regulated so 
to maintain in (6) qa = L ma2q,,, when the cylinder is 
in the compression stroke. The injection control Ai 
for the i-th cylinder is set at the end of the expansion 
stroke (i.e., when the exp-en& event is generated). The 
fuel mass qW in the next compression phase can be ex- 
pressed as a linear function of the mass of liquid fuel 
mli(tk) and the injection duration Ai at the end of 
the expansion stroke. This is achieved by integration of 
the fuel dynamics described in Figure 1, approximat- 
ing tk+2 - tk x 2n/w,(tc) and linearizing exponent&. 
Hence, since by (3) qa = c,,p(tk+l), the feedback is set 
as follows 

A = max(O, K&k) + Kl&li(k)) (32) 

where: @(lc) is an estimate of the pressure p at the end 
of the intake phase, i.e. p(tk+z), and &li(k), is an es- 
timate of the current mass of liquid fuel ml;(tk). Since 
mli is not measurable, fili(k) is obtained by integra- 
tion of the fuel dynamics from the value ml;(O), known 
for the initial steady state. Control A = 0 is applied 
only in the case where the initial condition cannot be 
controlled to the target set satisfying constraint (6). 
Due to the independent fuel mass evolutions a small 
chattering around the constraint qa = L,,,q, appears 
in the hybrid model. 

The DC motor voltage control II is obtained from (31). 
The proposed injection control (32) needs the estimate 
p(k) of the manifold pressure p(tk+z). To simplify this 
computation in the engine control unit, control v is 
also applied on a discretized time axis th = hT, with 
T = 1.5 ms. By this choice, samples &.(h) and #(h) can 
be obtained from the discretized version of (l-2), i.e. 

[&(h+l),$(h+l)lT = A;1[&(h),@(h)]T+bd2r(h) (33) 

(with sample period T), with initial conditions 
(Li(O),f3(0)) = (a(tk),p(tk)), and feedback ‘u given 
by (31). Manifold pressure estimate is set to 

fi(k) = (a$(h) + b,&(iE))[(2r)/w(tk) - hT] (34) 

where h = argminh[](2r)/w(tk) - hT[]. Due to time 
discretization switching points cannot be precisely lo- 
cated in the state space on the switching lines a? = 0 
and o(a,p) = 0. A study based on modal analysis 
of dynamics (l-2) reveals that satisfaction of problem 
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Figure 2: Simulation results: DC motor voltage v and
injection times A (on the left); air–fuel ratio
A/F and generated torque u (on the right).

constraints and convergence to (al, pl) is guaranteed
when stitchings are always anticipated with respect to
ideal switching point. It can be shown that

Proposition 3 Applying feedback (32) and (31), with
estimates (33–34), to the engine hybrid model E, the
evolution of (a, p) convergence to the rectangular set
R = [al, czz] X ~1, p2], with [a2, p2] = Ajl([al,pl]~ –
bdv). Once in R, control v = – (aa/b.)al produces
asymptotic convergence to (al, pl ). The torque error
IU- ul [, when (cY,p) E R, can be made arbitrarily small
by a proper choice of the sampling time T.

The proposed hybrid control law has been evaluated in
a number of simulations. Figures 2 show the results
of the proposed approach when the engine is requested
to change the produced torque from the initial con-
stant value U“ = 35 Nm to the final constant value
U1 = 10 Nm, with initial crankshaft velocity 4000 rpm.
The air–to–fuel ratio is requested to remain within a
1% band centered around the stoichiometric value, The
control starts at to = 0.45 s from the steady state cor-
responding to u0. The throttle valve is forced to close
as fast as possible under the initial control v(t) = –V

(see Figures 3), while, according to (32), fuel injection
is controlled so that A/F is maintained on the maxi-
mum feasible value. When the valve is about to close,
at time t = 0.064 s, the control v(t) is set to O. At
time t = 0.107 s the switching surface Z is approached
and the control v(t) is set to V. Then, starting from
time t = 0.11 s, the valve is controlled so that the air
trapped in the cylinders is regulated in proportion to
the evaporated fuel trapped in the cylinders. At time
f = 0.126 s the requested torque U1 is generated. l+om
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Figure 3: Switching surfaces for DC motor voltage v and
a trajectory of the hybrid closed–loop system.

this time, the throttle valve ~osition is constant and
the fuel system is controlled “so that the fuel puddle
dynamics is compensated.

5 Conclusions

The problem of delivering as quickly as possible a re-
quested torque produced by a spark ignition engine
equipped with a multi-point port injection manifold
and with drive-by-wire electronics to control the throt-
tle valve position has been addressed. The optimiza-
tion problem subject to the constraint that the air/fuel
(A/F) ratio stays as close as possible to stoichiometric
ratio has been solved using hybrid system modeling and
control approaches.
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