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Abstract

Wind turbines require continuous monitoring and control in order to maintain the power

output as the wind speed varies. Traditional control techniques using conventional equipment

and devices have been used in small scale generators at a commercial or residential level. A

range of techniques have been developed and used to control generation output and to satisfy

grid code requirements. Such techniques have demonstrated good performance with constant

wind speed and linear system parameters.

At the same time classical control techniques, based on the linear Proportional Integral

controller and low band-width modulation, present several technical issues during lower

switching frequency operation as well as slow response to uncertainty in system parameters.

It is important to note that wind turbines are non-linear in nature and therefore require

robust controllers that can adjust to the changes in the external environment as well as

operational conditions and disturbances. For this reason, advanced control schemes have

been proposed to mitigate the effects of potential system disturbances.

A variety of advanced control methods have recently been applied in response to wind

energy conversion problems, such as fuzzy logic, slide mode, adaptive and predictive that

have been applied to solve some of these problems. Such techniques are only valid for a

specific operational range and do not cover the whole operational region with regard to rate of

change of wind speed. Therefore, when considering large scale power generation from wind

energy, high turbulence wind velocities and uncertainty in system parameters require the

development of new hybrid controllers in order to address such problems. In order to improve



iv

the system performance and deal with uncertainties under different operational conditions,

advanced control techniques such as model reference control and model predictive control

are combined with fuzzy logic control.

This thesis presents detailed analyses, modelling and simulation of novel and hybrid

control schemes for variable speed wind turbines as operated in small or large scale such as 2

MW grid-connected Permanent Magnet Synchronous Generators. The proposed controllers

show a reduction of steady state errors, reduced overshoot of the rotor speed and an increase

in the active power that is generated. The results are compared to conventional controllers

such as Proportional Integral controller in order to demonstrate the improved performance

and the robustness of system.
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Chapter 1

Introduction

1.1 General Background

It is believed that the ancient human being has utilised the movement of the wind for 3000

years. The use of wind power has been more developed since the beginning of the last century

to provide mechanical power to grind grain or pump water [1].

At the beginning of industrial revolution, utilization of the unstable or swing wind energy

resource have been replaced and exchanged by fossil fuel for firing the machines to produce

the electrical energy, which delivered a more consistent adjustable power source in acceptable

price and high efficiency.

Fossil fuel sources cover more than 80% of the world’s energy absorption which are

being depleted at a faster rate than they can be regenerated. Generally, the consumption of

fossil fuels has bad side effect for the Earth’s atmosphere and surface such as climate change

and global warming, which related to the anthropogenic release millions of tons of carbon

dioxide (CO2) every year. This problem causes a huge amount of pollution and high costs of

fuel in generation.

To overcome this problem, reliable and cost effective renewable energy such as wind

energy which have been applied in developed countries and finally commercially traded in
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several developing countries. Renewable energy production is rapidly increased during the

last decades concerns about limited fossil resources and the associated environmental issues.

Due to the fast development of wind energy generation and penetration into the electrical

power market, many issues related to the stability and security of operational environment is

growing as well as the development of protection and control in the electric power system.

Nowadays grid codes may form a crucial point to acquire in many countries that contain grid

connected large scale wind turbines operated instantaneously in large areas of wind farms

[2]. Global demand for renewable energy have been raised during 2014, then it provided an

estimated 19.2% of global energy consumption [3].

Various categories with different types of generators are utilized with a lot of advantages

and drawbacks in operation. The power electronic devices have been used commercially in

wind turbines design since the beginning of grid connected operation, and this technology

has changed dramatically over the past three decades [4].

Recently, various combinations of wind generators and power electronic devices have

been applied in wind turbines operation and control to obtain different values of rotational

speed operation. The latter has raised as a successful configuration to improve the system

efficiency of wind energy conversion and then increase the quality of injected grid power.

The power converter and its control are very crucial in the successful and efficient operation

of variable-speed wind turbines [5].

In practice, the widely used electrical machine drive systems are permanent magnet

synchronous machine due to the attractive features such as high energy density, low torque

ripple, higher efficiency, higher reliability, lower cost of maintenance and operation at low

rotational speed [6]. Furthermore, there is a wide range of variety to control the output

powers, voltages, current and frequency in all parts of the system.

Generally, control schemes manage different variables such as generator currents and

voltages, pitch angle of the blade in the turbine, DC link voltage, and grid side variables such
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as frequency, active and reactive powers as well as the output voltages and injected currents

to the grid. Different types and techniques have been used and developed to achieve the

control schemes requirements and implement in practice using power electronic devices.

Furthermore, traditional control techniques using simple equipments and devices have

been used in small size generators which cover a domestic area or residential. These have

a good performance during constant wind speed and assumption of linearity in the system

parameters. A lot of issues have been discussed in research rather than in practice such as

variable wind speed, non linearity of the system, behaviour of the system during faults or

mechanical damage and the main issues of power system network such as load flow, stability

analysis and constancy of voltage and frequency [7].

Operation of the system under constant voltage and frequency need further precise and

robust techniques by developing control schemes to satisfy stable penetration of power

during the operational periods. A new techniques use an intelligent system such as Fuzzy

Logic Control (FLC) in combination with other controller to overcome the problems of the

uncertainties and improve the profile of output current. These models are Model Reference

Fuzzy Control (MRFC) and Fuzzy Predictive Control (FPC) that can be used in different

parts in the system [8–10].

This thesis described the impacts of these techniques and the effect of their combination

on the output profile of the currents to maintain the voltage and frequency constant during

wind speed variations.

1.2 Research Motivation

Designing, modelling and simulation are very important processes that enable the efficient

operation of the wind system and control strategies. The developed devices of power

electronics supports control operation and enables wind energy conversion to adequately

enhance the electric power penetration. Increase in grid code requirements lead to develop
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modern wind turbines capable to follow the designing of robust, advanced and intelligent

control schemes for variable speed wind turbine depending upon the potentials of power

electronic interface.

This thesis deals with designing a grid connected variable speed wind energy conversion

system, their modelling, analysis and control. The design also controls wind system operation

in various values of wind system parameters using novel hybrid controllers that satisfy

different issues such as maximum power extraction from the wind. Modelling of a three

phase voltage source converter with traditional controller such as proportional integral

controller or hysteresis current controller are commercially employed in power markets.

Furthermore, advanced controller such as fuzzy are recently used to improve the output

profiles of voltages and currents.

This design can be developed using an alternative model for voltage source rectification

and inversion switching circuit using a hybrid control that can be efficiently applied.

In addition to that, the new control scheme can mitigate the effect of sudden change and

disturbances in wind speed during operation and the effect of uncertainties of the system due

to change of the system parameters.

1.3 Aim of the thesis

The main aim of the presented thesis is to design an advanced control scheme for wind

generator to satisfy stable performance of the systems and constant voltage and frequency.

This can be achieved by analysing the system behaviour under different operational conditions

using following steps:

1. Design and simulate a variable speed wind energy conversion system using permanent

magnet synchronous generator to mitigate the effect of wind speed disturbances and

satisfy maximum power tracking during wind speed variation.
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2. Investigate the system states to different wind speeds and loading conditions (stand

alone load or the power grid).

3. Develop advanced control schemes using intelligent controller such as fuzzy logic

control scheme to maintain the output voltage and frequency constant during any

disturbance and operated in wide range of generator sizes.

4. Evaluate the effectiveness of the developed schemes for large scale system at different

speeds and parameters variations.

1.4 Thesis Contribution

The principal contributions to knowledge, as discussed in this thesis, can be expressed briefly

in the following summarized points:

1. Permanent magnet synchronous generators and control strategies are generally based

on detailed voltage source back to back converters. Therefore, such a model has

been developed and implemented using a fuzzy logic based algorithm in the design

of the controller of the converter machine side to enhance the operation of the system

by mitigating the effect of wind speed disturbances and satisfying maximum power

extraction from the wind.

2. Development and implementation of a novel Model Reference Fuzzy Control scheme

for the machine side converter. The design is based on using a fuzzy logic controller

that improves the input to the system using the error between the model reference and

the values of output variables. This controller is designed using expert knowledge

which is activated in the event of plant parameter variations or external disturbances.

The fuzzy controller is designed to preserve the desired model reference in order to
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give more robustness and effectiveness to the proposed controller as demonstrated via

simulation results.

3. Development and demonstration of a novel hybrid control scheme combining both

fuzzy logic control and Model Predictive Control for both the machine side and grid

side converters. The scheme reduces overshoot of the generator rotor speed, and

maintains the output voltage and frequency within the rated values in cases of wind

speed disturbances. This approach requires the determination of set values of currents

in order to adjust the converter voltages. Fuzzy logic control performs this task by

adjusting the input to the predictive controller and minimizing the cost function to

maintain the output voltage constant.

1.5 Thesis Organisation

The chapters of this thesis can be organised as follows:

• Chapter 1 represents the general introduction of the thesis. It consists of background of

the wind energy and research motivation, aims and objectives and thesis contributions.

Finally, the publications that regarded with the thesis have been added.

• Chapter 2 shows the main background of the thesis which consists of the classification

of wind energy conversion systems and issues that related to power energy and the

literature survey to the references for the relevant issues of the main contributions.

• Chapter 3 represents the modelling and control of the Back to Back energy conversion

system. It is defined by an introduction then mechanical modelling witch belongs to

wind turbine structure, electrical modelling of wind energy conversion system which

consists of the generator, converter and the grid. Other part of this chapter is the

traditional control of the system which consists of the machine side converter and
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the grid side converter control using proportional integral controller in field oriented

scheme. The aim of the control system to achieve the proper values of currents

and speed of the generator to satisfy Maximum Power Point Tracking to extract the

maximum power of the wind.

• Chapter 4 is talking about one of the advanced control technique in the field oriented

scheme to control the machine side converter. This type of control uses a Fuzzy

Logic Control in currents and speed circuit to improve the rotor speed variation during

variable wind speed. At the same time, setting values of rotor speed and direct axis

current are also adjusted to satisfy the principle of maximum capturing power from

the wind and maximum torque at low current during operation. Further improvement

has been made using a combination of Fuzzy Logic Control with model reference to

obtain Model Reference Fuzzy Control which addressed as a novel control scheme to

overcome the problems of non-linearity of the system.

• Chapter 5 describes hybrid control scheme that use a combination of Model predictive

control with Fuzzy Logic Control to form a Fuzzy Predictive control scheme. De-

scriptions of both controllers and their applications have been presented through and

simulation and results for different values of wind speed are discussed. To prove the

impact of this controller on the uncertainty of the system, two cases studied have been

suggested for the change in generator resistance and inductance during the operation

showing the output currents and power and system behaviour during this period.

• In chapter 6, conclusions followed by brief points of future work have been sum-

marised.

1.6 Publications

The work in this thesis has been published in number of refereed publications as follows:
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• A. Al-Toma, G. Taylor, and M. Abbod, "Model Reference Fuzzy Control Scheme

for Field Oriented Permanent Magnet Synchronous Generator Wind Turbines", IEEE

Transactions on Control Systems Technology. In preparation.

1.6.2 Conferences

Conference papers that have published and accepted:

• A. Al-Toma, G. Taylor, and M. Abbod, "Modelling and simulation of load connected
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national Universities’ Power Engineering Conference (UPEC2015). 1-4 September,

University of Staffordshire, Stoke-On-Trent, UK, 2015.

• A. Al-Toma, G. Taylor, and M. Abbod, "Development of Space Vector Modulation

Control Schemes for Grid Connected Variable Speed Permanent Magnet Synchronous
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ence (UPEC2016). 6-9 September, Coimbra Institute of Engineering (ISEC), Coimbra,

Portugal, 2016.
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Chapter 2

Wind Energy Conversion System

This chapter introduces the fundamentals, principle of operation and control of Wind Energy

Conversion System (WECS). General description to the principles and operation of WECS

has been demonstrated by describing major components of grid connected WECS such

as mechanical, electrical and control parts, operation voltage that the WECS work and

finally the grid code requirements. Classification of WECS has been discussed in section

showing all types of WECS and their applications detailed and mentioned the advantages and

disadvantages of them. Power converters and their applications have been reviewed as well

as the classification of applied control schemes which is used in WECS has been discussed

briefly.

2.1 Introduction

Several technological advancement in both aerodynamic or electrical equipment design

have been developed by wind energy markets during last decades in industry or commerce

environments. These issues related to mechanical equipment, electric generators and power

electronic devices, which cooperated the control equipment in power systems integration.
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Fig. 2.1 Development in commercial wind turbine sizes

From the perspective of electrical engineering, the electric generators and power electronic

converters have major interest in the operation of WECS.

Since the beginning of grid-connected wind system utilization in 1980s, different types of

combinations of generators and equipment of power electronic converters have been applied

and improved in modern wind turbines manufacturing companies to acquire fixed or variable

rotational speed wind turbine system [11, 12]. The production of power which obtained

by renewable sources in the world exceeded 1470 GW in 2012 representing nearly 19% of

global energy consumption [13–15]. As a result, in 2013 the sizes of offshore and onshore

wind turbines are stated approximately as 3.613 and 1.926 MW respectively [3].

Commercially the marketing of wind turbines expects that 10 - 20 MW of those turbines

should be operated in large scale size in the future. These turbines have rotor diameters may

exceed 150 m, that means double of the length of the air-plane Boeing 747. The development

of wind turbine size during last three decades is shown in Figure 2.1. Statistical studies show

that the industrial plants consume the largest amount of delivered energy; where expected to
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Fig. 2.2 Basic structure of a grid connected wind turbine

absorb over half of total supplied energy in 2040. Research show that the renewable energy

is one of the world’s rapidly growing sources of energy, increasing by 2.6% /year; nuclear

energy grows by 2.3% /year, from 4% of the global total in 2012 to 6% in 2040 [3, 11].

In modelling, application and control of WECS many researchers have published various

works focussing on the related topics. Some studies concentrated on designing using various

types of generators and control schemes. These topics will be discussed in the next sections.

To analyse the whole components of the system, it is important to concentrate on the

fundamental and principles of operation of these components such as generation, conversion

devices and control parts that represent the main topics of recent studies.

2.2 Overview of Wind Energy Conversion Systems

The following topics related to the main components of WECSs, the classification of these

systems, ratings limits of voltages and currents, and the requirements of grid code have been

described in this section.

2.2.1 Main Parts of Wind Energy Conversion System

The main configuration of grid-connected wind energy system is shown in Figure 2.2. The

WECS consists of several components that manage the conversion process of kinetic energy
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captured by the wind into electric energy penetrated to the grid in reliable pattern and efficient

performance.

Generally the essential components of a WECS contain mechanical, electrical and

control components. The main mechanical parts contain the structure of tower, rotor hub,

nacelle,rotor blades, moving parts of pitch drivers, yaw rotating drivers, gearbox, drive-train,

sensors of wind speed, and brakes. The electrical parts contain electric generator, connection

wires, power converters and inverters and finally the collection point to the three-phase grid

[2, 11, 16].

In some models the harmonic filters and transformer are shown in the system. Control

techniques are used with both the mechanical and electrical equipment to manage the energy

conversion process [17, 18, 12].

2.2.1.1 Mechanical Components

First of all the kinetic energy captured by wind turbine can be converted into mechanical

energy by the aid of air-foil structured rotating blades. In the common types of wind turbines,

a three blades configuration is more beneficial and stable for the conversion process [19, 20].

The efficiency of the energy conversion process depends upon many parameters like blade’s

angle, the structure of the rotor blades, air density, and velocity of wind [21].

Some electronic or mechanical sensors are used to measure the values and direction of

wind speed, while the yaw is designed to rotate the blades with nacelle in the direction of the

wind to obtain the maximum power extraction. When the turbine speed is increased over the

rated limit, the blades angle will be varied to maintain the output electric power within the

rated value of the generator [19].

The purpose of tower, nacelle and hubs is providing mechanical support to the structure

of the blades. According to the aerodynamic properties, maximum electricity is generated by

any particular turbine only within or above the rated value of wind speed [11, 22–24].
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The large scale turbines usually operate at relatively high torque and low speed (6 - 20

rpm) due to huge construction of the turbine. The review of wind power markets shows

that the diameter of the rotor and power rating of offshore wind turbines and generator are

higher than the onshore wind turbines. A multi stage gearbox is used for coupling purpose

to convert the low speed and high torque to the high speed low torque generator shaft. The

gearbox shows several effective impacts such as highly cost, high audible noise, low life span

and efficiency, and finally requiring a continuous maintenance [25].

These drawbacks leads to think in an appropriate design to eliminate the gearbox of the

machine. By corresponding the turbine speed with the rotor speed, the existence of gearbox

can be omitted. The elimination of gearbox; which is usually called as direct-drive or gear

less; helps to reduce mechanical problems, particularly in the case of offshore wind turbines

[26, 27].

Other mechanical equipment such as brakes can be mounted in the generator drive-train

specially in those which have a shaft of high speed in order to break wind turbine in the case

of unbalanced conditions such as fault or high wind gust during highly variable air flow.

2.2.1.2 Electrical Components

To convert mechanical energy to electric energy, an electric generator is the tool that can be

used. Over the last three decades, many types of generators like the Squirrel-Cage Induc-

tion Generator (SCIG), Doubly Fed Induction Generator (DFIG), Wound Rotor Induction

Generator (WRIG), Permanent Magnet Synchronous Generator (PMSG) and Wound Ro-

tor Synchronous Generator (WRSG) have been studied and analysed in research for wind

turbines manufacturing [28–30].

Growing up of these types began only with SCIG have been used in wind turbines, but

recently the turbines incorporates both types of induction and synchronous generators. The
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induction generators (IGs) mainly run at highly speeds compared to the synchronous which

operated with wide range of speeds [31–33].

The output voltage and frequency of the generator are changed proportionally with the

wind speed. It will be difficult to control these variables when the generator is directly

connected the grid. To achieve a controllable values of output variables, the generator can

be decoupled through a power electronic rectifiers and inverters, various types of converters

topologies utilise the power switching devices usually connected to the DC-link equipment

like capacitors or inductors. Harmonic filters can be applied in AC generator output converter

or inverter to mitigate the harmonic of the switching process of power converters [5].

In the generator side part, the harmonic filter can be applied to minimize the total

harmonic distortion of the generator currents. This minimization can reduce the harmonic

losses dissipated in the generator’s winding and core. As a complement to the electric part of

WECS, the grid side converter may use a harmonic filter to reduce the generated harmonics

and to meet the requirements that indicated by the grid code [34, 35].

When the transferred voltage of the power inverter and filter is less than the grid voltage,

a step-up transformer can be used to connect the filter to the grid side, and finally to

electric circuit breaker of the bus-bar. Using power electronic converter at the point of

power collection enable to connect system directly to the grid and then the need for step-up

transformer can be omitted.

2.2.1.3 Control System

To acquire desired operation as well as stable performance in WECS, the wind turbine system,

several auxiliary control systems for both mechanical and electrical components can be used.

The control equipment and sensors usually used to monitor various variables and parameters

such as the velocity of wind speed and its direction, the voltages and currents of the generator,

converters and filters as well as DC-link voltages. These variables have been provided to
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adjust the system operating states or variables in the case of the grid voltages and currents

are changed to keep the operation at the reference limit [17].

For example, active, passive or pitch stall control should be selected by the master control

system when the variation of wind speed is more than the rated speed of the turbine. This

control system manages the change of blades angle in way that the turbine output power kept

no more than the rated value [22, 36].

Applying a micro-controller, computer, Field Programmable Gate Array (FPGA) or

Digital Signal Processor (DSP) used to be provided to the control system for the main tasks

that should be performed [37, 38]. Using the recent control strategies, the control process

can be faster and performing highly precision calculations (in less than 100 microseconds)

and repeatedly.

2.2.2 Operating Voltages of Wind System Configuration

In the North American and European power markets, the definition of WECS operating

voltages is summarized recently [39, 40]. These voltages can be more classified according to

level margin such as medium voltage (MV) and low voltage (LV) operation. The voltages

below 1000 V are classified as LV class, where as voltages approximately 1− 34.5 kV

regarded as MV. Various values have been used in LV range, but most standard of them

which used for electric generators and converters in different area in electric power system

are 575 or 690 V, while applied generators output and converters of MV voltages are within

3−4 kV [11].

Nowadays the participation of major industrial manufacturing companies in global

markets reduce the importance of these regional classifications. Therefore, the commercial

wind turbines should be connected to the Point of Common Collection (PCC) by cables or

lines using step-up transformers, then the regional voltage will be irrespective.
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2.2.3 Grid Code Regulations

The increase of the power penetration of wind turbines and wind farms contribute to signifi-

cant enhancement in supplying energy of the systems in the existing power plants.

Many specific technical requirements and regulations usually called as Grid Codes have

been developed and continuously updated to ensure consumer power quality and the grid

stability [41, 42]. The main requirements of grid codes contain the control constraints of

active power in order to adjust the grid frequency and control of reactive power to satisfy the

grid voltage regulation.

Other valuable variables such as the quality of power, voltage dip, Fault Ride-Through

(FRT) detection, harmonic oscillations and overall protective devices are taken into account

in grid code requirements. The correct determination of these requirements is crucial for

manufacturers and operators of wind turbines.

2.3 Classification of Wind Energy Conversion Systems

Various types of wind turbine-generator categories have predominated the power system

application in the last decade. These types are classified and explained in [43] and [44].

There are different winds turbines generator are currently in use, classified according to the

combinations between their parts and the output power converted [45, 46].

2.3.1 Type 1: Fixed Speed Wind Turbine Concept

Figure 2.3 shows a fixed speed induction generator used in WECS without power converter

interface. In this configuration a starting device and step up transformer are used to connect

the generator to the grid [47–49]. This is a primary and oldest technology that developed

the wind turbines system. In highly converted power of WECS, the simple types of SCIG

consists of 4 or 6 poles in order to operate with the rated frequencies of 50 or 60 Hz.
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Fig. 2.3 Type 3 grid-connected Fixed speed SCIG WECS

The variation in rotational speed of generator is limited and approximately within 1%

of rated speed at different values of wind speeds. Therefore this type of WECS is called

fixed-speed [2]. Practically, a gearbox can be used for matching the speed error between the

turbine and generator. The starter device can be bypassed after starting by a switch, where

the system basically works without need to the converter device.

This type of generator configuration draws a valuable amount of reactive power by the

grid. To recover this situation, three-phase banks of capacitors operate as a compensator

device are usually applied. The features of this configuration is simple, reliable operation

and low initial costs while the main drawbacks can be addressed as: (i) lower efficiency

in energy conversion ; (ii) the variations of the wind speed will be transferred to the grid

side; and finally (iii) any faults in grid side will cause huge tension on the mechanical parts

of the wind turbine. This configuration of WECS is operated with auxiliary devices, like

Static Compensator (STATCOM), in order to improve the operation performance and finally

converge the grid code requirements [11, 50–53].
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2.3.2 Type 2: Variable speed wind turbine with variable rotor resis-

tance

Applying the variable speed of wind turbine generator configuration will lead to increase the

efficiency of conversion process, and decrease mechanical tension which may be effected by

the wind gusts, and finally decrease the bearings friction and the maintenance requirements,

which finally increases the life the system at all. The wind energy system of semi-variable

speed are using wound rotor type of IG and partial 10% of rated power conversion is shown

in Figure 2.4. The configuration of this type uses the principle of variation of the rotor

resistance which affects the characteristic of torque and speed of the generator and acquiring

the operation of variable speed wind turbine. The rotor resistance can be adjusted by a

power converter which consists the combination of diode-rectifier and chopper circuit. This

configuration is usually called Opti-slip control [54]. The range of speed adjustment is limited

to be within ±10% of its nominal speed. The operation under variable speed will enable

to capture wind energy efficiently, though the existence of power losses in the generator

resistance.
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Fig. 2.4 Type 2 grid-connected semi-variable speed WRIG WECS
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In this type, it is necessary to use soft starter, gearbox, and compensation devices of

reactive power.

2.3.3 Type 3: Doubly-Fed Induction Generator Wind Turbine

This limited-variable speed configuration WECS applying DFIG is shown in Figure 2.5. The

principle and operation of this type implies that the generated power is supplied to the grid

by two windings, stator and rotor. A part of the converter rated power can be utilized in rotor

circuit to recover the slip power, which is around 30% of the generator rated value [55–58].

Similar to those in Types 1 and 2 wind turbines, the gearbox is also used in Type 3

configuration to obtain the required rotation speed of the rotor. At the same time, there is no

need to existence the reactive power compensation devices and a soft starter in this type [59].

The power converters are used to allow bidirectional power penetration in the rotor part and

increases the range generator speed.

The overall power conversion efficiency can be improved via these features to perform

Maximum Power Point Tracking (MPPT) [60, 61], and increase in the speed around 30%,

may enhance the dynamic performance and strengthen the robustness against the system

Reduced Capacity 30% 

Power Converter 
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Gear 

box
Transformer

DFIG Filter

~

~

Fig. 2.5 Type 3 grid-connected semi-variable speed DFIG WECS
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disturbances which are not available the Types 1 and 2 turbines [62–64]. These features

enabled this type of induction machine to be one of the dominating technologies in modern

electric market sharing approximately 50% [65]. The capability to FRT is limited because

the partial transfer of power. Existing of the gearbox will increase the weight of the system

and overall turbine cost as well as demanding continuous maintenance.

Moreover, the brushes and slip rings are needed to connect the power converter to the

rotor windings through them. Regular maintenance is fundamental in these types of turbines

due to ageing of brushes approximately is 6-12 months, that should be replaced periodically.

These main drawbacks restricted these types of turbines being used in offshore wind farms

due to highly expensive maintenance cost.

2.3.4 Type 4: Variable Speed Wind Turbine with Full-Scale Converter

Using of full-scale 100% power converters will greatly enhance the performance of WECS

as shown in Figure 2.6. The types of SCIG, WRSG and PMSG can be applied in this

configuration with a wide range of power rating reach to 8 megawatts. Since the rating of the

power converters should be the same as generator rating, therefore the cost, complexity of

system configuration and then the size will be increased. For this reason the losses of power

converters are higher causing reduction in the efficiency of this type [66–68].

However, in this type of full power conversion, the generator and converters are fully

separated from the grid, and generate full rated power during the operation at wide range of

rotor speed 0 to 100%. The power converters is also needed to compensate the reactive power

and obtain smooth active power [69]. The efficiency of WECS is higher in these turbines than

other types [70–72]. The best FRT compliance also can be improved and obtained without

external equipment. Although the power converter cost is slightly high, it will be a small

fraction; within 7%-12%; of overall equipment cost . By using high number of pole pairs for

all types of PMSG, the turbine gearbox can be deleted [11, 73].
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This type of WECS is more strong against power system disturbances in comparison

with the types 1, 2, and 3 wind systems.

The principle of distributed drive train is applied in developed large scale Type 4 wind

system. Although WRSG and SCIG can be applied in this principle, the PMSG showed good

operational performance because it removes the slip rings and brushes which provides simple

design [31]. The gearbox is capable to drive multiple generators at higher speeds, therefore

high power density can be obtained by the distributed drive-train and multiple generators.

Some configuration also shows effective fault tolerant in various operational conditions.

The other three converters can still deliver the power to the grid in case of failure of one

converter [2]. Applying a multi-winding transformer on the grid-side leads to minimize

the circulating currents and reduction in harmonics. Complicated drive-train regarded as

the main disadvantage with this configuration, for this reason the designers use multi poles

generator to keep the angular frequency within the rated value and eliminate the drive train.
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Fig. 2.6 Type 4 grid-connected variable speed WECS
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2.3.5 Comparison between WECS types

The Type 3 turbines (DFIG) have been used by seven manufacturers among the top ten

companies because it hold the highest market share. Approximately 100 various types of

DFIG turbine models are utilized and manufactured by all the wind turbine companies.

Few of these companies produce Type 4 turbines, however very little of them are dealing

with direct drive solutions. It is shown by review that the best selling and utilization of

wind turbines in the electric power markets use Types 3 and 4 technologies. It is expected

during coming few years that Type 4 configuration would dominate the electric power market

and will have main priority in the future projects which will be held by the manufacturing

companies. A brief description of all types of turbines and their manufacturing companies

have been explained in detail in [74, 75].

The comparison have been made depends upon electrical issues such as generator; power

converters; capacity of power converter; and external reactive power compensation; compli-

ance with the fault ride-through requirement; requirement for soft-starter, and mechanical

and control issues such as gearbox and MPPT ability; aerodynamic power control, speed

variety achievable; technology situation; and market penetration.

Generally, the Types 3 and 4 turbines are most suitable for large scale power grid

connection and their utilizations. In this thesis, the configurations of generators and converters

are analysed for the Type 4 of wind turbines in the next chapter.

2.4 Overview of Power Converters

As discussed in the last sections, since last three decades, the power electronics manufacturing

and technology has an important participation with the advanced manufactured large scale

wind turbines. This technology has been developed rapidly, and the recent manipulated

categories are available represented by full-scale converters. Wind turbines as well as wind
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farm level use power electronics of the current technology of energy conversion and grid

connection. In this section, the power electronics technology is devoted to discuss briefly

addressing the general description of power converters, their classification and technical

requirements for this converter technology [76].

2.4.1 General Classification of Power Converters

The main objective of the converters is applying technology to operate Types 3 and 4

WECS with variable speed operation, whilst removing starting circuit and reactive power

compensation to achieve simple construction. The variable voltage and frequency of the

wind generator should be transformed to fixed values in order to enable a regular connection

of these wind turbines to the grid.

Most of these converters have been applied commercially in various applications, while

some of them have been suggested in research with committed features for future develop-

ment. According to the power conversion operation, these converter categories are compre-

hensively classified into direct and indirect converters [11].

The single stage AC/AC converters has been applied as direct conversion process, while in-

direct one uses two stages of (AC/DC+DC/AC) or three stages of (AC/DC+DC/DC+DC/AC)

to processed the power conversion [77].

Generally, electric drives industry depend upon some of these converters and their

developments while some other converters have limited development for serving wind power

application. The classification also shows different types of converters such as current source

converters and direct ac/ac converters. These converters are main contenders to voltage source

converters in power system markets [78, 79]. It is noticed that some of typical converters

from the electric drive manufacturing market are also developed and studied although they

have not been used widely in power factories yet.
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2.4.2 Technical Requirements for Power Converters

Generally, the power converters Type 1 wind power generators configurations are applied

for the purpose of smoothing the grid connection only. At the moment, when the turbine

system is tied to the grid they are disconnected from the circuit. However, Types 3 and 4

configurations utilize these converters to fulfil most of these technical issues and operational

requirements. Some important requirements should be taken in to account in wind energy

system design have been discussed in some references [80, 81].

Generally, the initial cost of converter forms a small portion (around 7%-12%) of overall

cost of wind turbine [73]. This factor is valuable in helping to minimize the Cost Of Energy

(COE) and play a vital role in competing with other energy sources. Although it is a small

part of the total cost, it can provide huge saving in expenses for a wind energy farm which

contains hundreds of wind turbines.

Over the mentioned initial cost, the cost of maintenance which involves components

replacement and technicians’ expenses should also be minimized to reduce values of COE.

Recent studies on wind turbine fault analysis show that electric generators as well as power

converters have the highest maintenance priority with an average rate of failure approximately

13%-20% [82, 83].

Furthermore, system efficiency has high importance in cost reduction of high power

conversion [84]. Millions of dollars can be saved at the wind farm level; which may contain

hundreds of power converters equipment operated with wind turbines; when the efficiency of

power converter improved by 1%. To reduce the efficiency, power losses should be reduced by

applying high efficient triggering circuit for switching devices, modulation/control schemes,

optimal arrangement of switching devices and cooling system.

Power quality can be referred to different parameters and variables of power system. The

output voltage profile must be as close as possible to sinusoidal shape waveform which is

also indicated by number of dv/dt steps of the voltage waveform. When the number of
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steps is increased, the dv/dt ratio will decrease, then the voltage waveform will improve

and the need to install output filter is also decreased. Furthermore, the interference with

communication system will be reduced as dv/dt reduced [85]. Reduction of Total Harmonic

Distortion (THD) of all components of generator and grid variables is important to reduce

the oscillations of the generator shaft and to supply undistorted current by the wind system

to the grid [11].

In grid connected wind energy system equipped with power converters, the currents must

feed with minimum value of THD (approximately less than 5%) to grid, enable reactive

power feeding whenever required by the consumers [86]. It is also needed to provide

FRT, and acceptable limit of voltage/frequency percentage rather than other factors. These

requirements should be obtained through the operation of the power converter, and without

requesting help from the external devices such as STATCOM or FACTS or other synchronous

generators.

Other parameters such as dimensions and weight can played an important role in wind

turbine design. The electric generator and power converters must have high level of density

in order to acquire a small size and weight in the nacelle of the turbine. This step regarded as

an important issue especially in the offshore wind turbines to reduce the cost and minimize

the physical size.

The output of AC converter should be connected to the step-up transformer of and finally

to PCC through AC power lines or cables. Modern wind turbines have typical hub heights in

the range approximately of 60-150 m, therefore the total cost of lines, cables and associated

power losses become significantly high. This factor must be taken into account in in designing

and manufacturing to decrease the cost of cable and losses. Ideal power converters must have

all the above merits to ensure good performance of the system within rated limits.

Practically, it is difficult to design a power converter taking all mentioned technical merits

in to account. Best marketable power converters obviously fulfil most of above regulations



2.4 Overview of Power Converters 27

Converter without 

Intermediate 

DC-Link

Converter for 

Multiphase 

Generator

Classification of 

Power Converters 

Passive 

Generator Side  

Converters

Back-to-Back  

Converters
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for wind turbines. The engineering methodology should imply most crucial requirements

of the design while neglecting the other unimportant conditions. To facilitate the schematic

diagrams of various types configurations of the WECS in this thesis, the generator side filter

is not shown in the design, while the grid side filter is represented by an equivalent block

diagram.

In pursuit of acquiring the above mentioned technical requirements, various types of

power converters have been developed and utilized by wind turbine manufacturing plants

and other suppliers research departments. It is not possible to define all the converters based

on one parameter or operational function due to complexity of WECS power converters and

their applications.

Generally, the generator-converter configurations can be classified into four different

groups as summarized in Figure 2.7 to facilitate easier discussion. These are back-to-back

(BTB) converters, electric generator, converter for multiphase generator and converter without

intermediate DC link. Power converter types which have been deployed by several wind

turbine manufacturers, and also suggested in literature with favourable features, belong to

these four distinguished categories.
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2.4.3 Back-To-Back Converters

The main conversion process of the electrical energy can be done by the power converter.

The BTB converters are identical on both side of the generator and grid, where all parts

of power electronic devices such as IDBTs have the same size. The BTB converters have

main two groups AC/Dc group and DC/AC group and they are connected through a DC-link.

Various types BTB converters which can be used commercially by WECS are summarized in

Figure 2.8.

The main task is to perform a conversion of variable voltage/frequency output of the

generator to DC, and then DC to AC, taking into consideration fixed values of the grid

connected output of voltage/frequency. The power flow is bidirectional, and then the BTB

converters can be applied with the both types of induction generators SCIG, DFIG, and in

other types synchronous generator PMSG, and WRSG. For the above features, This type of

power converters will be concentrated and discussed in this thesis.

These operating voltages that been used in generator and power converters are further

classified according to Low Voltage (LV) and Medium Voltage (MV) operation.

The standard LV used by many manufacturers and companies of wind turbine for the

LV grid connection are 690 and 575 V. The Voltage Source Rectifier (VSR) and Voltage

Source Inverter (VSI) are connected through a DC-link capacitor bank. The VSR and VSI

are technically built by LV Insulated Gate Bipolar Transistors (LV-IGBTs) to form the final

shape in matrix arrangement [11].

The DC-link part is practically implemented using series or parallel groups of capacitors

to obtain the required voltage by the converters and capacitance current limit. At power

levels lower than 3 MW in Type 4 turbines the LV converters are simple, efficient and cost

effective. As the power rating increased with increase in the number of converter groups and

as a result, the size of electric components, total cost, and finally the system complexity will

be increased too.
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Wind turbine manufacturers have low tendency to move from LV to MV technology due

to the limited propagation of MV generators and less knowledge acquisition for the MV

operation area of turbines, where MV converters is still a mature technology in the electric

drives industry [80]. A detailed cost investigation has been presented between the LV and

MV operation of wind system using matrix converter. The results show that the energy

production cost can be decreased with MV operation by the fraction 2% - 4% [11, 77].

A summary of the LV and MV operation of a 6 MW Type 4 wind turbine are more

efficient and applicable in the power market shown in Table 2.1 [87]. It is noticeable that the

MV operation of WECS is the most suitable technique for power ratings greater than 3 MW

with low cost and effective performance.
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Table 2.1 Comparison of LV and MV Operation Wind Turbines

LV WECS MV WECS

Typical Converter BTB 2L-VSC BTB 3L-VSC (NPC)
Typical Power 0.75 – 6 MW 3 – 8 MW
Typical Voltage 690 V 3000 V
Number of Converters 8 1
Number of Switches 96 24
Switching Devices LV - IGBT MV – IGBT/IGCT
Clamping Diodes 0 12
Redundancy High Low
WECS Efficiency Medium High
Converter Complexity Very High High
Controller Complexity Medium - High Medium
Grid Code Compliance Good Excellent
Cable/Transformer/Filter/Nacelle

size
High Medium

Cost of Production 100% 97 – 98 %
Technology Status Well Established Well Established
Market penetration Mature Available
Example Commercial Products Inge team FC LV Inge team FC MV

2.5 Overview of Control Schemes

Several researchers have recently published their works on WECSs and their control schemes.

The authors in [88] investigated the dynamics modelling oriented control design for WECS.

In [89] authors described various types of wind turbine systems, categories, and classified

according to the generators types and rotor speeds. Authors in [90] analysed the stability and

reliability of wind turbine system, the power quality, transmission systems and storage, etc.

The authors in [47] described a WECS control concept in different working zones. They also

described a recent advanced and standard control schemes which consist of multi input and

multi output and compared with the traditional controller.

Some studies concentrate on the wind turbine control schemes which use fuzzy logic and

neural network [91, 92]. The authors reviewed on controlling process of matching between

the wind turbine frequency and wind power saturations. Other surveys are focusing on the
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present, past and future trends of wind power control markets using individual Horizontal

Axis Wind Turbine (HAWT) [93]. Compared to other types of generators, the authors in [94]

showed the optimal power extracting and wind turbine efficiency of synchronous generator

compared to DFIG that used in wind system.

Furthermore in [95], reviewed power electronic utilizations in WECS. Some researchers

have studied and concentrated on modelling and control based on WECS using PMSG, to

show the system integration using grid connected models [96, 97]. Latest survey shows

several features in control area that systematically to solve existing problems and develop

the output using advanced control technologies for WECS based on different wind turbine

generator configurations [98].

In this section, developed types, methods and techniques for a certain number of research

articles have been reviewed and discussed.

2.5.1 Wind Turbine Controller Techniques

The most advanced and developed WECS control techniques are classified according to their

function and operation as:

1. Proportional Integrator Differentiator controller

Proportional Integrator Differentiator (PID) controller was suggested to increase the

efficiency of wind turbine system and improve the performance of operation. This type of

controller used also in the modern power converters. This controller placed in control system

equipment that manage the switching process of the converters which are situated between

wind turbine generator and the point of common collection [99]. However, the PID is utilized

to collect the signal of error between the reference value that already specified and the real

output power, which can be measured from the load or grid side. In some studies, the authors

concentrated on power electronics firing angles of generator side converter and grid side

inverter, which are controlled and adjusted to acquire desired values [100, 98].
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In addition, some authors proposed a non-linear dynamic wind turbine model with

comparative investigation and studies have introduced the effects of combining some optimal

techniques with PID controller. However, particle swarm and radial basis function neural

network algorithms have much better performance than conventional PID controller [101].

2. Model Predictive Controller

Studies on the use of Model Predictive Controller (MPC) in application to wind turbine

control have become more widespread in the last century. Most of the MPC wind turbine

studies can be grouped according to the range of operating conditions under which the turbine

is simulated. These studies can be more divided into categories by what loads the control

system addresses (e.g., drive train [102], tower [103], blades [104], etc.), by whether or not

the control uses generator torque, blade pitch, or both for actuation, and whether the blades

are pitched individually or with other controllers.

This type of control has also been developed to involve other aspects of the WECS issues

as well as individual turbine control. In [105] the use of MPC is analysed in application to

the resources dispatching in a power generation side that includes a wind farm configuration;

while the author in [106] investigates the use of MPC for integrating battery storage systems

with a WECS. Non-linear control issues can be manipulated by the predictive control

technique with reasonable limitations. Some researchers discussed the predictive control

techniques utilized in wind turbine system and DFIG connected to the power grid [107].

These study claimed that the better design of controller can efficiently follow the speed

disturbances of wind turbine in order to keep the injected power constant. Besides that, some

studies proposed a new control design that can be preferable to the PI to acquire the dynamics

regulation of WECS parameters during optimal operation [108, 109, 98].

Similarly, the authors [110] claimed that those non-linear MPC scheme for a DFIG

connected to the power grid is more accurate, easy to use and having good performances
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compared to other traditional schemes. In this thesis, the MPC type of control have been

discussed and developed.

3. Adaptive Controller

The Model Adaptive Control (MAC) technique is taken into account when it is quite

hard to find an unknown parameters of non-linear dynamic model of a wind turbine system.

Due to fundamental objective to find non-linear parameters, the adaptive control scheme

introduced to operate with WECS. Various studies have been proposed direct adaptive control

strategies.

Some studies have focused on two procedures of control techniques: a supervisory

control which depends upon crude bounds of the non-linear boundaries of the wind turbine

parameters, and a radial system technique depends upon transfer function to design the

controller. The tracking error can be reduced to zero by using this technique with taking in

to account the dynamics of the WECS [111]. At the same time, the author did not use any

method to estimate or track the wind speed.

In similar issue, referring to [112], authors described a direct adaptive control strategy

which have concentrated on the optimized tracking of wind speed measurements in order to

ensure the following of turbine speed to the required output desired level.

Lyapunov method can be used in self tuning of PID controller which can be applied to

control the converters of WECS as described and discussed in [113]. The authors have used

this control method that depends up on the training of the impulse response filter to estimate

and finally update the values of PID controller during wind energy conversion.

In [114], the Hill Climb Searching (HCS) technique has been used to obtain MPPT of

wind turbine speed controller. In this publication, the authors suggest a self-tuning technique

associate with changeable efficiencies of the wind subsystem that can be run under stochastic

wind speed. The reliability of the wind turbine systems and the cost of the equipment have
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been taken into account. The development of HCS to avoid the mechanical sensors using

smart sensor-less speed controller was also an important issue in model design [98].

4. Robust Controller

Different review studies [98, 115, 116] discussed this type of controller. The robust

controller has been suggested due to unexpected disturbances in wind speed that appeared in

power systems. Obtaining maximum power and reduce the load variation can be estimated

by applying feedback loop method as mentioned in [117].

In [118], it is presented the effectiveness and influence of H ∞ and H-2 control techniques

taking into account stable constraints of WECSs. This study indicate that the H ∞ technique

shows a robust performance and has less time response compared to H-2 technique. As

a result of this study, the author deduced that H ∞ controller is not suitable for highly

disturbance in wind speed. In contrast, the H-2 controller is not applicable for constant wind

speed turbine. Even though authors, in reference [119, 120] justify and claim that H ∞ can

be applied in variable speed wind system due to some advantages such as simplicity and

higher dynamic performance [98].

Many researchers such as [121, 122] developed and simulated a software for regulation of

wind turbine using Kalman Filter (KF) techniques for estimation of wind speed. These

publications are also proposed anemometer to determine the values of wind speed, in

order to smooth gain scheduled controller feedback from wind turbine torque to obtain

the maximum operating points. In this suggested technique, the PI controller unable to

improve the performance of the gain scheduled controller to the linear state in the case of

varying parameter [98].

The study in [123] describes the principles of fractional calculations and also compares

features of fractional order control systems with those of classic integer order controllers.

In this study, the method uses feature that enable the phase frequency variations around a

gain crossover frequency to be insensitive. This will increase the robustness of a fractional
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order control system during uncertainties. PMSG wind turbine system is considerable type

of WECS that used with this method.

Finally, authors in [124], showed that H ∞ robust controllers used in wide range of

operating conditions and obtaining the ability for effective performance. In these techniques

the WECSs can be applied by mu-synthesis robust control which adapt DK-iteration method

[125]. A little variation will be shown in both system parameters like angles and power in

the case of a smaller amount of disturbances.

5. Sliding Mode Controller

Essentially, the sliding mode control schemes show an appropriate environment to manage

the non-linear systems using intelligent mechanism [126].

The authors in [127, 128] demonstrate a control design technique for WECS using a

DFIG which inject the power to the grid through stator windings and rotor static converter.

In more details, they evolved an easy and simple sliding mode controller in which static

converter operate as a compensator to the torque of the generator to interpolate the signal

between rotor and stator. By this method, it proposed that the system damping will mitigate

the essential weakness of generator torque and output power fluctuation. The proposed

system will be strongly respond to the constraints of the generator uncertainties and voltage

reduction of the power grid [98].

Moreover, the authors in [128], described WECS using appropriate controller to operate

under optimum Tip Speed Ratio (TSR) condition and satisfy a maximum power efficiency.

The simulation shows the efficient robustness of the control scheme in the case of grid

disturbances and uncertainties in the power limit.

Avoiding oscillation issues encourage the authors in [129] to demonstrate suitable com-

promise between conversion efficiency and torque oscillation smoothing to address above

mentioned issues in WECSs. The authors conduct that the controller operates in optimum
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tracking area for different operating modes to satisfy maximum power conversion efficiency

and damping torque oscillations which provide a good robustness to the system [98].

Another simple method of sliding mode control has been proposed by using a 1.5 MW

wind turbine systems with matrix converter calmed by the authors in [130]. The simulations

have been used to satisfy the system performance. In this scheme, it is justified the effective-

ness and efficiency of the control strategy in terms of power regulations. They proposed a

control technique to reduce the oscillation in the generated torque. This design consequently

lead to increase the mechanical tension due to strong unbalance torque disturbance.

In [131], authors proposed an energy reliability of WECS by using sliding mode control

technique to operate in on-line simulations in order to obtain MPPT. In this publication,

the controller show a good performance can be obtained, which are quite satisfying study

although that some physical limitations and the need of certain prediction of control signal to

improve the performance of the controller [132].

6. Neural Network Controller

Fundamentals of neural network and implementation for a different types of wind turbine

have been discussed in [133]. Implementation of Artificial Neural Network (ANN) can be

used to track maximum power in various operational conditions for steady state or dynamic

state. In addition, the tracking of wind speed is more quickly compared with using external

device such as an anemometer as shown in this model. The ANN concept can be applied

to compensate the system for a probable drift of wind turbine coefficient. This technique

can be implemented as hardware, and in this case, extra cost for a digital controller can be

omitted. Furthermore, a new control technique that can be used in WECS has been suggested

by the author in [134]. In there publication, authors proposed an ANN in order to forecast

the optimum value of wind turbine rotational speed that occur under uncertainty in wind

variation to satisfy MPPT. Finally, output results show a good performance which verified

via simulations that showing a significant minimization of the system disturbance. Due to
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variable wind speed, wind turbine demonstrate valuable non-linear behaviour. For this reason

it is quite difficult to build the system model to identify these issues [98].

Safety and protected system can be achieved and finally more power can be captured in

the case of uncertain wind speed. Moreover, authors in [135] recommended an ANN depends

upon Jordan recurrent concept wich can be trained on line. The system consists of four input

signals such as output power, rotor or wind speed, and optimal power in order to estimate

the reference to track the rotor speed. Moreover, they supposed that the feedback of ANN

returned signal can be collected via the output, and then back to dissemination as an input

signal. The difference between the maximum power and measured power can be applied for

updating the network weights and finally generate reference rotor speed. It is concluded from

these points that the ANN mechanism is satisfactorily applied to WECSs based on PMSGs.

In the same way, the WECS model based on Markov schemes approaches have been

designed by the authors in [136] using ANN techniques in order to optimize the output power

of the wind system. It is shown by this publication that the control scheme has been operated

using central control environment. It is shown that the suggested method reduced the rotor

speed fluctuations, besides the improvement of wind turbine system.

7. Fuzzy Logic Controller

Applying an intelligent control techniques for WECSs have taken the attention of the

researchers. This brief survey is focusing on the latest publications talking about the FLC

development and utilization in wind energy market. The authors in [137] described a

principles of the optimal power capturing from the wind using FLC techniques in order to

track the turbine speed using the cyclo-converter configuration. The meteorological data

acquisitions has been used to test the system control scheme by simulation.

Optimum power extracting and pitch angle control using FLC that applied in designing of

uncertain wind speed has been described in [138]. The main aim of this controller is to replace

the linearity of FLC to acquire the speed control improvement and extract maximum power.
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The output results of the proposed design which uses a real 800 kW wind turbine showed

that the maximum power is obviously captured during a wide range of speed operation.

A closed loop fuzzy control used together with fuzzy observer scheme to give a practical

solution to the main issues related to the process of power conversion and regulation of the

constraints as proposed in [139]. The configuration of Takagi-Sugeno fuzzy logic has been

applied with non-linear system model in order to improve the performance of operation and

show the impact of applying fuzzy controller in wind turbine. Moreover, this technique

is more accurate, simple and easy to use compared to the conventional controller. The

disturbance in the system which usually occurs in WECS due to the uncertain values of

wind speed can be reduce using this proposed controller based on Linear Matrix Inequality

approaches [98].

Furthermore, a fuzzy controller using H ∞ can be designed by applying bilinear matrix

inequalities as in [140]. In this type of control technique, the two-step method of linear

matrix inequalities can be reduced. These steps can be evaluated by convex optimization

principle. Consequently, authors refused this principle that appeared in their publication

before [139]. However, in order to mitigate the effect of over-rated variation of wind speed, a

new techniques have been used in [141, 142] to design a FLC for under and over the rated

values of wind speed. The main control design operated by using two input variables to

capture the optimal value of wind power.

These inputs can be signals like error between TSR of measured speed and TSR of actual

speed, the error derivative, and one output can be used like the value of generator voltage.

The exact same dynamic structure can be used to design the second controller that performs

the stabilization of output power. Therefore, the error will be between the estimated and

measured output power while the output will be the value (in degrees) of pitch angle of

turbine blades. In these papers, the authors designed these control schemes to acquire MPPT

following slightest disturbances of rotor speed and output power. As conclusion, it is noticed
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that these studies have demonstrated the tracking process of maximum power using FLC to

satisfy the operational performance through simulation and experiments where no need to

detect the value of wind speed.

Different designs, techniques and applications such as pitch angle control, maximum

energy extraction, 3-phase grid current and voltage and DC-link voltage control schemes for

various types of generators have been proposed in [143–145].

8. Optimal Controller

Many researchers proposed good ideas for capturing the optimal power of uncertain wind

variation, but these approaches were not supportive enough for the optimal control schemes

for WECSs [146, 147]. Then, the authors in [71] have suggested an optimal control algorithm

for the MPPT using PMSG wind turbine with fixed blades angle. In this control scheme,

the authors have made a combination of predicted maximum DC output power versus DC

voltage characteristics with the frequency of PMSG to run the system at level of maximum

power, in order to omit other techniques to track the wind speed to keep operation within

optimal power level. Fast Fourier Transform has been used in this scheme to acquire the

maximum power. The authors in [148] have presented developed method using an efficient

conventional PI controller in order to maximize gains of PI controller and improve the error

tracking quality .

Later, a simple sensor less control technique using variable speed PMSG have been

proposed for WECS [149]. In this publication, the control design technique is distinguished

compared to other studies where the authors justify that the the power at the maximum level

at uncertain wind speed can be captured by using this control strategy in the case of grid

connected system. Using the above concept of control scheme, PMSGs have been combined

to provide a proper connection of 3-phase source inverter mode and switch mode to obtain

maximum power extraction [98].
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Fig. 2.9 Development of control techniques and the percentage of their researches [98]

Latest thoughts have been proposed to improve MPPT algorithm for PMSG of wind

energy system in [150]. Using this algorithm of MPPT, synchronous machine speed controller

is combined with the power rectifier control and finally boost converter control. This method

can be used to control the speed and current to obtain optimal operational conditions. Various

types of control techniques and the percentages of the relevant researches that contribute are

shown in Figure 2.9. It is shown that PI controller has the major interest by the studying all

situations and applications while the predictive and robust controllers have minimum interest

in the fields of researches.

2.5.2 Developed Configurations Studies of Control Systems

One of the earliest studies [151] is also one of the most sophisticated control scheme which

applies Non-Linear MPC (NMPC), uses a neural network to adaptively adjust the model

parameters, and simulates the turbine response in conditions that encompass rated and above

rated operation. More recently, authors in [152] demonstrate a NMPC for collective pitch
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and generator torque control in all operating conditions. Tower loads have been termed in the

cost function by punishing the tower top velocity. This controller operates in all operating

regions and utilizes constraints to control rotor speed and tip-speed-ratio.

Utilisation of plug-in hybrid-electric vehicles as a storage method for balancing wind

farm power production is studied in [153, 154] imply the MPC at the supervisory level to

manage a hybrid wind-solar stand-alone system; and finally [155] uses a fast set-membership

technique for NMPC to satisfy and actually design controls for a prototype high altitude kite

WECS.

In less relevant applications to the Horizontal Axis Wind Turbine (HAWT), there are

also abundant existing MPC studies in the literature. In[156], authors use only a single

linear model serves as a basis for the MPC algorithm which is demonstrated in all load

conditions; the present mechanical power of turbine and rotor speed are both determining

the MPC cost function which is reduced as well as the control actuations available to the

MPC algorithm. In their study, the goal was to show an MPC architecture that operates with

all load conditions of the wind turbine involving to actuation constraints. It is noticeable

that this control algorithm performance was not independent to other controllers in terms

of structural load mitigation. On the other hand the intelligent control system such as FLC

and ANN and their combinations have been proposed to mitigate the errors and overshoot or

reduce the settling time of the main controlled signals like currents, voltages, active power or

the signal of mechanical equipment such as rotor speed and pitch angle.

In addition, it explicitly estimates a preview of rotor effective wind speed based on a spe-

cific pattern of specific measurements, and uses this information in the NMPC algorithm. The

study reports significant reductions in tower loads and speed fluctuation in both instantaneous

wind variation and in turbulent wind variation generated using TurbSim [157]. Different type

of controllers and control strategies have been proposed in [98, 158–161].
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The work in this thesis is divided into several stages. The first stage addresses the

modelling and design of a traditional control scheme for currents and speed in machine side

converter control, and the grid side converter control for the grid current control and DC

link voltage control. The next stage is investigation of this modelling which is focusing on

capturing maximum power in case of variable wind speed in time that the output voltage and

frequency of the grid are still constant and keep them within the limit margin of the grid code

during wind speed variation.

Developed control schemes using fuzzy logic system have been proposed in the machine

side converter control to show the impact of this controller on the generator speed variation.

Then, the final stage to develop an advanced control scheme using MPC control with FLC to

form the FPC to achieve the benefits of non linearity of the system and reduction in overshoot

of rotor speed of the generator in case of sudden change in wind speed.

2.6 Summary

Fundamentals, principles and applications of WECS been discussed in this chapter.The main

configurations, types of converters that used in the systems and the the types of controllers of

these equipment were introduced and discussed in this chapter.



Chapter 3

Modelling and Control of Wind System

The whole system of a grid connected wind turbine has been described in this chapter. The

main parts contains several equipments. The mechanical modellings of the WECS and their

specific function in the energy conversion process from wind energy into electrical energy

has been discussed showing all components such as PMSG, converters which transfer the

electric power from AC to DC to AC with different categorises and finally the modelling of

the grid. To show the principle and operation of the traditional control schemes, the classical

control scheme using PI controllers has been simulated and results have been previewed for

different values of wind speeds.

3.1 Introduction

Since the wind turbine manufacturing and development began in 1980 until today, wind

energy and its application is shown as a new technology and has become an attractive

invention in the power generation market. Various wind turbine concepts and designed

models have been evolved during this period of time. The Wind Energy Conversion System

(WECS) has different mechanical and electrical components collected and operated together
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Fig. 3.1 Schematic diagram of grid connected WECS model

and controlled to harvest the wind mechanical power and convert it into useful electrical

power within rated voltage and frequency [162, 163]

In this chapter, all components will be presented and detailed in real values to satisfy

overall description of the system during all operational cases. The whole system of a grid

connected WECS consists of several components, which contribute to the operation of the

conversion process of electric energy from wind energy into electrical energy. Figure 3.1

shows the main structure of wind turbine connected to generator which convert the power

through a traditional Type 4 , back to back converter and finally to the grid through filter

[162].

Firstly, the aerodynamics of the wind turbine will be expressed and formulated in detail.

Simulation model will be developed to generate the wind turbine mechanical characteristics.

Secondly; the electrical and mechanical models of the generator configuration will be

presented, explained and followed by the power electronic converter interface design and

control connected to the grid. In some cases the harmonics of the output currents distort

the signal profile then the filter of R-L, L-C or L-C-L should be used to mitigate the Total

Harmonic Distortion (THD) and finally reduce the power dissipation and losses.

It is also noticeable that the output voltage of the grid side should be the same of the grid.

Otherwise, the transformer should be connected to convert the low voltage to high voltage to

synchronise the vector quantities of the system voltages.
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3.2 Mechanical Modelling of WECS

3.2.1 Wind Turbine Model

Wind energy is converted to mechanical power by a wind turbine and then to electrical energy

by an electric generator. The kinetic energy which has been stored by the air is proportional

to the unit area perpendicular to the direction of wind speed per unit mass is converted to

mechanical energy. Assuming the front end of the wind stream is uniform, that is, all the

particles have the same speed at the time. From Newton’s Law, the kinetic energy exists in

the wind stream can be expressed as follows [164]:

Ekin =
1
2

mv2
w (3.1)

where Ekin is the kinetic energy stored in the wind, m mass of the air and vw is the wind speed

(m/s). By substitution the mass by the density times the volume, and the volume is the speed

times the area and time. Therefore, determination of the mass in a circular interfacing area

between the wind stream and the turbine blades with area A , can be derived:

m = ρv = ρvwAt = ρvwπR2t (3.2)

where ρ is the air density values from 1.1 to 1.3 (kg/m3), t is the time, R is the radius of the

circular area swiped by the turbine blades.

By substituting equation (3.2) into equation (3.1) yields:

Ekin =
1
2

ρv3
wπR2t (3.3)

Then, the stream power of the wind (Pwind) can be expressed as [165]:
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Pwind =
1
2

ρπR2v3
w (3.4)

The power captured by a wind turbine from an air stream flowing through an area A is

equal to:

Pm =
1
2

ρACpv3
w (3.5)

where Pm is the wind power (watts or J/s) ,and A is the area swept out by turbine blades (m2) .

where R is the radius of the area swept out by blades turbine and ωm is the mechanical speed

of the generator in rad/s. The power coefficient (Cp) can then be expressed as a function of

the Tip Speed Ratio (TSR)denoted by (λ ) and pitch angle β in equation (3.6)[166]:

Cp(λ ,β ) =C1(
C2

γ
−C3β −C4)e

−C5
γ +C6λ (3.6)

and

γ =
1

(λ +0.08β )− (0.035β 2 +1)
(3.7)

where β is the pitch angle of the blade in degrees. The coefficients parameters of equation

(3.6) are empirical constants and can be estimated for a WT as: C1 = 0.5176, C2 = 116, C3 =

0.4, C4 = 5, C5 = 21, and C6 = 0.0068. The Tip Speed Ratio (TSR) can be defined as follows:

λ =
ωmR

vw
(3.8)

In ideal case, the power coefficient Cp reaches a maximum value that will be within the

range 59.26 % according to Betz’s limit. This means that the extracted power is practically

from the wind is always less than this value [167]. In other words, the extracted power from

the wind is always less than 50 %. The value less than the theoretical limit is caused by the

inefficient conversion of power that lead to different types of losses, which depend on the
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Fig. 3.2 Variation of power cofficient with TSR

construction of the generator rotor with regard to weight, stiffness, number and structure of

blades of the turbine.

The relationship of the performance power coefficient, Cp of a wind turbine and the

TSR shows that the maximum values of Cp in all operational situations occur at optimum

values of TSR. By adjusting these values in the control circuit it is possible to obtain the

Maximum Power Point Tracking MPPT for any variation of wind speed. Figure 3.2 shows

the relationship between the power coefficient Cp and optimum values of TSR for different

values of pitch angle β . The output mechanical power varies with the angular velocity ωm ,

for variable values of the wind speed according to the synchronous machine characteristics. A

significant aim of this research is to achieve optimum values of ωm that satisfy the maximum

output mechanical power of the wind. Therefore the above important relationships of Cp and

λ should be taken in to account in order to obtain optimum design as shown in Figure 3.2.

The dynamic equation of the wind turbine is given in equation (3.9):

J
dωm

dt
= Te −Tm −Fωm (3.9)
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where J is the total moment of inertia of wind turbine and generator, F is the friction of

viscosity coefficient and Tm is the input mechanical torque to the turbine.

3.3 Electrical Modelling of WECS

Electrical components of WECS can be modelled as a static or dynamic components accord-

ing to their operations of the system.

3.3.1 PMSG Model

Electrical generator is the main device converting wind energy into electric power. However,

permanent magnet synchronous machines (PMSM) are generally manufactured for high

capacity up to a rated power of about (8 MWs) and (10 MW in research), which settles a

new development in wind power generation. There characteristics show more efficiently than

the conventional synchronous machine due to less mechanical equipment of gear box and

reduction in electrical losses due to operation without excitation circuit.

Permanent magnet machine consists of fixed flux due to permanent magnet. Although

the cost of a synchronous generator is more expensive for a same size of Induction Generator

(IG), there are different advantages that enable us to use it in large scale generation. One of

these advantages that it does not required reactive magnetizing current in order to operate

correctly, whereas, the magnetic field can be generated from permanent magnet of the rotor.

Another feature that leads to reduce the cost where the generator used for wind turbine

application can be directly driven without gearbox with appropriate number of poles. Thus,

despite of the cost and complexity, synchronous generator is regarded as desirable tool for

wind turbine generator, especially for low wind speed where the number of poles can be high

to achieve agreeable frequencyn [168].
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Fig. 3.3 Cross section of different synchronous generator types [162]

Nevertheless, synchronous generator is much more complex than induction generator. The

output voltages of PMSG can be represented in the reference frame rotating synchronously

where the q-axis is shifted by 90 degrees ahead of the perpendicular d-axis with respect to

the direction of rotation [169].

Three various models of synchronous generators (SG) are shown in the Figure 3.3:

• Salient pole SG: In this model, the windings of the rotor are situated and represented

as a coil around the pole shoe. This new structure leads to a different magnetic

resistance (reluctance) in the rotor oriented d and q axis, and consequently a different

machine reactances xd and xq (xd > xq). A damper winding is also usually used and

situated in the pole shoe. These components can be 8 or 16 poles and a respective

speed of 750 or 375 rpm. The famous utilization of this type of synchronous generator

is more commonly used in hydro-electric power stations, and rotating with lower speed

compared to round rotor synchronous generators [170].

• Round rotor SG: The windings of the rotor are regularly spread in the rotor slots.

This configuration leads to an equal reactance in d and q axis (xd = xq). In practice,

2-pole or 4-pole round rotor SGs are used in thermal power plants or diesel fuel which
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operating at very high speed are commonly used and have a rotor speed as (3000 rpm,

1500 rpm) [171].

• Multipole permanent magnet SG: To operate the wind turbine with low speeds, e.g.

at 20 rpm, increase the number of poles in PMSG wind turbines is a good way to obtain

a required operational speed. The permanent magnets provide the magnetic rotor field

instead of electrical DC excitation Figure 3.3 shows a design with surface mounting

of permanent magnets in the machine body. The reactances in d and q axis differ

by only a few percent due to the equal distribution of the surface mounted magnets

and a permeability of the magnet material µm approximately as big as the free space

permeability (µm ≃ µo) [172, 173].

For this manipulation in designing, this model of surface mounted PMSGs can be

considered as round rotor machines (xd = xq). Due to the multi-pole PMSG is a

converter connected low speed application (compared to high dynamic drives), the

damper winding is not necessary.

3.3.1.1 Steady State Generator Model

The phasor diagram of the synchronous generator can be plotted for any arbitrary operational

point. If the stator windings resistance Rs is neglected the equivalent circuit can be simplified

as shown in Figure 3.5. The voltage E is induced by permanent magnets and finally the stator

current Is and stator voltage Us will be appeared.

3.3.1.2 Dynamic Model of the PMSG

The output voltages of PMSG can be represented in the synchronous rotating reference frame

where the q-axis is 90 degrees ahead of the d-axis with respect to the direction of rotation.

The phasor diagram of abc voltage and dq voltage is shown in Figure 3.4. The d-q stator
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Fig. 3.4 abc-dq axis.

voltages equations of this generator are shown in equations (3.10) and (3.11) respectively.

vd = Rdid +Ld

did

dt
−ωeψq (3.10)

vq = Rqiq +Lq

diq

dt
+ωeψd (3.11)

ψq = Lqiq (3.12)

ψd = Ldid +ψPM (3.13)

where Ld and Lq are the inductances of the rotor on the d and q axes, Rd and Rq are the

resistance of the rotor on the d and q axis, id and iq are the generator currents on the d and q

axis, ψPM is the flux of the permanent magnet and ωe is the electrical angular speed of the

PMSG which is defined as:

ωe = pnωm (3.14)



3.3 Electrical Modelling of WECS 52

Fig. 3.5 Phasor diagram and equivalent circuit of PMSG

where pn is the number of pole pairs.

For pn number of pole pairs in the machine, the electromagnetic torque can be expressed

as:

Te =
3
2

pn

[(

Lsd −Lsq

)

isdisq +ψPMisq

]

(3.15)

If a surface-mounted PMSG is considered, equation (3.15) for Te can be further simplified

since Ld = Lq:

Te =
3
2

pnψPMisq (3.16)

By controlling the value of isq, electromagnetic torque can be changed. The values of

this torque followed the mechanical torque and then mechanical power which satisfy MPPT.

Thus, isq is called the torque producing current component. The modelling of the PMSG is

completed by the equation of motion given by:

dωm

dt
=

1
J
[Te −Tm −Fωm] (3.17)

It is obvious that the PMSG model is a second order system, which has a constant parameter

such as rotor flux in the design and modelling of the machine[174][175]. Active and
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reactive powers of the synchronous generator can be expressed in equations (3.18) and (3.19)

respectively:

Pgen =
3
2
[vsdisd + vsqisq] (3.18)

Qgen =
3
2
[vsqisd − vsdisq] (3.19)

As the generator is fully converted the power to the grid through Back-to-Back converter,

the reactive power which obtained before will be exchanged with the generator side converter

reactive power and not with the grid, thus the net reactive power supplied to the grid will be

zero and the machine will inject the active power only. As multi-pole synchronous generators

are low speed machines and generally could be connected to the grid within a fully decoupled

converter system, therefore there is no need to exist damper winding in core of the generator

. Furthermore, due to the permanent magnet, there is no need to apply field windings in

PMSG which can be apply to induce or damp the transient currents. Hence, in case of any

disturbance the PMSG would not contribute to damping in all cases of operation. However,

the damping power injected to the grid could be generated from the WECS by independent

equipment control of the active and the reactive power which can be built separately [176].

3.3.2 Voltage Source Rectifier Model

In modern variable speed electric machine drives, Voltage Source Converters (VSC) are

an important device in conversion process. The main task of this equipment is to convert

the electrical power form AC to DC or in vice versa. The VSC has different advantages

such as ease of control with open loop V/Hz control, compact size, low cost and provide

higher power factor as well as lower power losses [177, 178]. These specifications make the

designers to use VSC in industry more than Current Source Converter (CSC)which is also

widely used in power electronic conversion [179, 180]. The passive bridge type of diode

rectifier is shown in Figure 3.6 represents a simple,cheap and easiest rectification tool of low
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Fig. 3.6 AC to DC diode rectifier

losses. However, it is obvious that the DC voltage and then the stator voltage will depend

upon the speed. Therefore, a low DC voltage at low speeds can be obtained.

Furthermore, the diode rectifier is uncontrolled device therefore it does not have the

ability to supply reactive power to the generator. This leads to that the stator current and

voltage will be in phase along the operation.

Increasing of stater current due to increase in torque and load angle, leads to drop in the

stator voltage, which in turn leads to a decreasing DC-link voltage [181, 182]. Therefore, the

converter shown in Figure 3.6 (which called step-up converter) in the DC-link must balance

the effect of the drop in the DC link voltage. Since the excitation of the PMSG is fixed and

constant, it is only appropriate for one point of operation. The reactive power cannot be

provided or consumed by the diode rectifier when it is used, this lead to insufficient utilization

of PMSG when the operational point is changed [183]. Therefore, the best performance of

low speed PMSG ca be obtained with fully controllable of the inverters, such as using the

PWM control technique for IGBT voltage source rectifier and inverter. Additional reactive

power can then be supplied or absorbed by the converter where a very high efficiency of

the system can be achieved. However, IGBT converters are more expensive and need more

protection against sudden change in currents and voltages. This type of converter as described

in chapter 2 is called Back-to-Back converter.
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Fig. 3.7 Back to Back IGBT converters

3.3.3 Back-To-Back Converter Model

The power flow of the grid side converter can be controlled in order to keep the DC voltage

constant, while the function of the the generator side controller is set to obtain the Maximum

Power capturing from the wind [184]. De-coupling capacitor between the grid inverter and

the generator inverter has several advantages. These advantages give some protection to

the system from over voltages and offers also separate control of the rectifier and inverter,

enable the compensation of asymmetry on both generator side and grid side independently

[185, 186]. The schematic diagram of WECS with Back-to-Back converter connected to the

grid is shown in Figure 3.7. In some applications, a boost inductance in the DC link circuit is

exist. This inductance increases time delay of capacitor charging, but in the same time, the

good effect reduces the demands on the performance of the grid side harmonic filter. On the

other hand, the combination of inductor and capacitor is also provides some protection of the

converter against abnormal conditions on the grid [187].

3.3.4 Grid Model

The mathematical model of the grid will be explained in this section [188]. The grid is

represented as an ideal symmetrical three-phase voltage source shown in Figure 3.8. The
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three phase voltages of the symmetrical system va,vb and vcare defined as:

va =Vmcos(ω.t) (3.20)

vb =Vmcos(ω.t − 2π

3
) (3.21)

vc =Vmcos(ω.t − 4π

3
) (3.22)

where Vm is the amplitude of the phase voltage and ω is the angular frequency. The three

phase currents of the symmetrical system are defined as:

ia = Imcos(ω.t +ϕ) (3.23)

ib = Imcos(ω.t − 2π

3
+ϕ) (3.24)

Fig. 3.8 Representation of the symmetrical three-phase voltage
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ic = Imcos(ω.t − 4π

3
+ϕ) (3.25)

where Im is the amplitude of the phase current and ϕ is the phase between the voltage and

the current. From symmetry, the line-to-line voltages can be also defined as:

vab = va − vb (3.26)

vbc = vb − vc (3.27)

vca = vc − va (3.28)

The total neutral current iN is:

iN = ia + ib + ic (3.29)

In balance case where the neutral currents is zero (iN = 0) then the equations (3.30) and

(3.31) should be satisfied:

ia + ib + ic = 0 (3.30)

va + vb + vc = 0 (3.31)

Apparent power in (VA) can be represented as:

S = v.i∗ (3.32)

The power flow of the grid side converter should be controlled in order to maintain the

DC-link voltage within constant limit, while the control of the generator side is set to suit to

capture the maximum power converted by the wind.
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3.4 Control System Schemes

A control technique for the PMSG-side converter aims to control either flux or torque

separately (through the control of generator phase currents), which can be achieved directly

by using Vector Control. Different types of vector control can be achieved for PMSG side

such as Direct Torque Control (DTC) or indirectly by using Field Oriented Control (FOC),

and Direct Power Control (DPC) or Voltage Oriented Control (VOC) for the grid side. This

section presents the design of the FOC and VOC strategies for a the proposed model of

PMSG.

FOC scheme is implemented in the synchronous rotating reference frame for an easier

control by which spatial orientation of the PM flux inside the machine can be controlled.

Figure 3.9 shows the schematic diagrame of FOC sckeme used in MSC. One of the famous

control scheme is vector control which use field oriented control FOC to achieve an acceptable

limit of accuracy and speed. Vector control is based on the use of the dq-axis reference frame,

whose direct axis is fixed to the position of rotor flux vector. Consequently, considering a

constant magnet flux, the electromagnetic torque is directly proportional to the q-axis stator

current component (equation 3.16). Therefore, the maximum torque per ampere in a surfaced

mounted PMSG is obtained with isd = 0.

3.4.1 Reference Frames for Control Schemes

The control of any electrical machine should be performed normally in a reference frame,

which rotates with one of the state space vectors of the generator in order to obtain steady

state control signals instead of sinusoidal signals. In addition to that, a phaser diagram

of the generator is displayed in order to illustrate the alignment of the machine vectors to

the reference frames. Various types of control strategies can be applied to the frequency

converters have been discussed in [189].
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Fig. 3.9 Schematic Diagram of PMSG Control Scheme

3.4.2 Control Schemes of Variable Speed Generator

The control methods of PMSGs can be divided into scalar and vector control. Generally,

the classification of the variable frequency control is shown in Figure 3.10. The scalar

control techniques are depends upon the steady state representation of the model, where the

magnitude and frequency of voltage and currents as well as the flux linkage space vectors

can be controlled.

The most famous scalar control method of PMSM is Volt/Hertz (V/Hz) control. The

V/Hz control is the simplest method, but with little-performances. On the other hand, vector

control is based on a relation valid for dynamic states where the position of the voltage,

current and flux space vectors as well as magnitude and frequency are controlled. This variety

make the control concept can be implemented in several control methods. There are two
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Fig. 3.10 Classification of Control Schemes of PMSG

types of vector control: Field Oriented Control (FOC) and Direct Torque Control (DTC).

The early development of FOC was in 1970s, and by which the operation gave the PMSG

high level performance. In this method the machine voltage equations are transformed into a

coordinate system that rotates in synchronism with the permanent magnet flux [190].

The flux and torque can be controlled separately and indirectly by FOC using separately

and indirectly using current control loop. The the shaft speed, obtained by an encoder

organize the control process of FOC which is used as a feedback in the control strategy. This

type of control schemes show several advantages such as: accurate speed control,good torque

response and acquires full torque standstill [191].

In the mid 1980s, searchers developed DTC as a simpler and good performance control

system a new vector control. This control method allows control the torque and flux directly

without inner control loops, which corresponds very well method to the on/off operation

of VSI semiconductor power devices. The main merits of DTC that its simple structure

technique and has a good dynamic behaviour. On the other hand, the main disadvantages of
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DTC are: high torque pulsation and fast sampling time requirements and variable switching

frequency. In this thesis, FOC will be used due to discussed advantages.

3.4.3 Machine Side Converter Control

The FOC scheme is presented with the dq-axis current controllers in the inner loops and

the speed controller in the outer loop as shown in Figure 3.11. This type of control uses a

Proportional Integral (PI) controller to adjust the error of signals where the steady state errors

of PI controllers are zero due to the integrator term [192, 15]. The implemented controls are

performed in continuous time domain and PI’s in design. For implementing this category the

acquisition devices of the three phase stator currents (ia, ib and ic), the DC link voltage Vdc

and the rotor position θm are required.

Bases on the sum of the three phase balanced currents is always equal to zero, therefore

to simplify the design, it is sufficient to use only two current sensors because . The permanent

magnet flux of generator is fixed onto the direct axis of the rotor, therefore the position of ψm

is easily obtained by the measurement of rotor speed ωm. With the aid of encoding device ωm

can be calculating by integration of θm. The stator reference frame currents can be measured

using Clarke’s transformation that transforms the form of the abc reference frame into two

dimensional iα and iβ . The feedback loop currents isd and isq can be obtained using Park

coordinate transformation which applied to dimensional currents after knowing the rotor

position θm. The stator current reference in d axis i∗sd is maintained at zero, for producing

maximum torque at minimum speed of the generator. The outputs of the two PI current

controllers are added to coupling term of the network to obtain the dq axis reference voltages

v∗sα and v∗
sβ which form together with Vdc the command values of the the input voltage of the

Space Vector Modulation (SVM).
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Fig. 3.11 Field Oriented Control Schematic Diagram

Since all quantities have to be kept within acceptable limits; the output voltage and

frequency have to be constant. Then the control system has been designed to perform this

aim in both the machine side and the grid side to satisfy the requirement [193].
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In MSC control circuit, there are two loops that perform this scheme, inner loop and outer

loop. The aim of inner loop is to control the d axis and q axis currents while the outer loop

to control the generator speed. The outer loop controls the speed of the generator with the set

value that satisfy the condition of MPPT of the power captured from the wind.

3.4.3.1 Current Control Loop

This PI controller has a proportional parameter KP and integrator parameter KI , which have

to be tuned in a proper way to obtain the optimum operation and response [66, 194]. The

commanded q reference current i∗sq is determined by speed controller and the output of PI

controller is:

i∗sq = KPω +KIω

∫

eω dt (3.33)

where KPω and KIω are the proportional and integral parameters of the PI controller of the

outer loop, while eω is the error between the reference rotor speed and measured rotor speed

of the machine as shown in equation (3.34):

eω = ω∗
m −ωm (3.34)

The reference value of d axis current i∗sd is equal to zero in order as mentioned before.

According to q axis reference current, the d axis and qaxis controlled voltages of the inner

loop can be determined by other two PI controllers as shown in equations (3.35) and (3.36):

V ∗
sd = KPied +KIi

∫

ed dt −ωrLqiq (3.35)

V ∗
sq = KPieq +KIi

∫

eq dt +ωr(Ldid +ψm) (3.36)

where V ∗
sd , V ∗

sq are the reference voltages of dq axis voltages, and KPi and KIi are the gain of

the proportional and integral parameters of the current loop PI controller respectively, while
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ed and eq are the error of dq current component as shown in equations (3.37), and (3.38):

ed = i∗sq − id (3.37)

eq = i∗sq − iq (3.38)

Generally, in the time domain, the equation for the PI controller, applied to an error signal

e(t) can be expressed in equation (3.39) :

u(t) = KP.e(t)+KI.
∫

e(t)dt (3.39)

where u(t) is the output signal, and KP, KI are the proportionality constant and the integration

constant respectively. In the time domain the PI controller is the ratio between the output

signal and error signal, called transfer function, as shown in equation (3.40):

G(s) =
U(s)

E(s)
= KP +

KI

s
(3.40)

= Kp(
s+

1
Ti

s
) (3.41)

and the ratio between KP and KI is called integrator time, denoted as Ti in equation (3.41):

Ti =
Kp

KI
(3.42)

The voltage equations for the PMSG are mentioned in equations (3.43) and (3.44)

respectively. Using PI controller, the dq-axis voltages are cross coupled by the terms −ωeLqiq

and −ωe(Ldid +ψPM) respectively. Due to these terms voltage disturbances may appear in

the system and the id and iq currents should be controlled together. Adding decoupling terms
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to the current controllers, not only simplifies the control model but improves the accuracy of

the control.

The system after eliminating the cross-coupling terms can be represented in the following

equations (3.43) and (3.44):

vd = Rdid +Ld

did

dt
(3.43)

vq = Rqiq +Lq

diq

dt
(3.44)

Considering ( s = d/dt ) the following transfer functions for the plant are obtained (with

Id(s) as input and V d(s) as output in the system):

Gd(s) =
Id(s)

Ud(s)
=

1
Rd +Lds

(3.45)

Gq(s) =
Iq(s)

Uq(s)
=

1
Rq +Lqs

(3.46)

Assuming the generator has surface mounted magnets on the rotor, the d and q-axis induc-

tances have the same values, thus the two transfer functions Gd(s) and Gq(s) are identical.

All control blocks can be implemented in Simulink control environment using Single Input

Single Output (SISO) tools.

The q-axis current controller is designed using the block diagram to find the gain pa-

rameters. Figure 3.13. presents the control architecture for a PI control loop taken from

SISOtool for the plant and feedback of delay time Td . After performing the decoupling

on voltage equations, the current loop can be minimised and arranged as shown in Figure

3.14. The process of defining the SISOtool in block is going forward and finally the control

circuit will be ready to simulate. In the same manner, the control circuit of the d- axis can

be implemented in SISOtool of Simulation and all parameters will be known. Finally, the

controlled voltages will be transferred to abc voltages by Park inverse transformation to get
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Fig. 3.12 Synchronous reference frame control loops

Fig. 3.13 Control architecture provided by SISO tool

the values of switches of Insulated Gate Bipolar Transistor (IGBT)[195].

3.4.3.2 Speed Control Loop

The speed controller represents the outer loop in a FOC strategy. This loop gets its feedback

from the rotor position sensor. The mechanical equation of the generator, showing the relation

between mechanical speed ωm, mechanical torque Tm and electromagnetic torque Te and

can be expressed in swing equation (3.17) that mentioned in subsection 3.3.1. The equation

can be arranged as the plant transfer function is derived from equation (3.9) assuming soft
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Fig. 3.14 q-axis current loop

rotating without friction (F = 0) as follows:

Gω (s) =
ωm (s)

Te (s)
=

1
J.s

(3.47)

The transfer function of the PI speed controller is:

Cω (s) = KPω

(

1+
1

Tiωs

)

= KPω









s+
1

Tiω

s









(3.48)

where KPω is the proportional gain and Tiω is the integrator time constant of the controller.

Applying the design that mentioned in current loop control and shown in Figure 3.13 the

control parameters are:

• C(s) is the compensator block, which the PI controller needed to be designed using

equation (3.49).

• Di(s) is the inner current loop transfer function which the transfer function of current

open loop.

• G(s) is the mechanical plant block
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• H(s) is the first order transfer function, which represents the delay introduced by the

speed sensor and can be determined by:

Hω (s) =
1

Td.s+1
(3.49)

These transfer functions, after being defined in Matlab Workspace, were imported into

SISOtool and then the design of the speed PI is made. The procedure for tuning of the PI

parameters was the same as for the current controller.

3.4.4 Grid Side Converter Control

There are various control strategies can be used to do the control of the grid side converter.

The main target of these schemes are focusing on the same issue: the active and reactive

powers delivered to the grid, the control of the DC-link voltage and grid synchronization

to ensure high quality of the injected power [196]. According to the derivation of grid side

converter models, the d and q axis voltage Vgd and Vgq of the grid side converter from original

Fig. 3.15 Schematic diagram of grid side converter configuration
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three phases Vga, Vgb and Vgc shown in Figure by equations (3.50) and (3.51):

Vgd =Vgd +RgIgd +Lg

dIgd

dt
−ωsLgIgq (3.50)

Vgq =Vgq +RgIgq +Lg

dIgq

dt
+ωsLgIgd (3.51)

where Igd and Igq are the d and q axis currents of grid side converter. Rg and Lg are the

resistance and reactance of the grid side converter, ωs is the rotational speed of the grid side

converter.

3.4.4.1 Grid Current Control Loop

In equations (3.50) and (3.51), the terms Lg

dIgd

dt
and Lg

dIgq

dt
are replaced by the controlled

voltages V ∗
gd and V ∗

gq using PI controllers expressed by :

V ∗
gd = KPiegd +KIi

∫

edg dt (3.52)

V ∗
gq = KPiegq +KIi

∫

egq dt (3.53)

Fig. 3.16 Current control of grid side converter
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where V ∗
gd , V ∗

gq are the reference voltages of dq axis grid voltage, and KPi and KIi are the a

proportional and integral parameters gain of the current loop PI controller respectively, while

egd and egq are the error of dq current component error as shown in equations (3.54), and

(3.55):

egd = I
re f
gd − Igd (3.54)

egq = Ire f
gq − Igq (3.55)

Based on equations (3.52) and (3.53), the decoupled current controller is shown in Figure

3.16. The voltages Vgd and Vgq are regulated as modulation index for generation the signal

for the PWM of grid side converter [197, 198].

3.4.4.2 DC Voltage Control Loop

The derivation of DC link voltage and its reference value are sent to d- axis PI controller

to specify the reference value of the current I
re f
gd as shown in Figure 3.17 and expressed by

equation (3.56):

I
re f
gd = KPdc edc +KIdc

∫

edc dt (3.56)

where KPdc and KIdc are proportional and integral parameters of the PI controller and edc is

the error of measured and reference values of the DC voltage as in equation (3.57):

edc =V
re f
dc −Vdc (3.57)

Fig. 3.17 DC voltage loop control
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The q-axis current reference I
re f
gq is usually predefined as zero while the grid side voltage

control can be used to control the DC link voltage to maintain it at the rated level for DC/AC

power conversion during normal and disturbances due to variable wind speed.

3.4.5 Phase Locked Loop

To achieve a synchronized quantities of amplitude, phase and frequency of the inverted

voltage which regarded as a variable and critical information for the operation of the grid-

connected inverter systems, the synchronization process is required.

Synchronization method which can be used to synchronize the magnitude and angle of

reference current of the VSI with the grid voltage. In this equipment and its utilization, fast

and accurate detection of the amplitude, phase angle and frequency of the inverted voltage

of VSI is basically to assure the correct generation of the reference signals and follow the

requirements of the grid connected system. On the other hand, grid connected WECS have

been controlled to work as close as the unity power factor in order to satisfy minimum power

dissipation and fellow the standards of grid code[199]. Two basic synchronization methods

can be used for this purpose: Filtered Zero Cross Detection (ZCD) and Phase Locked Loop

(PLL).

The detection of the zero crossing of the grid voltage can be achieved by the first method

while the PLL provide a feedback control system that adjusts the phase of a generated signals

automatically to correspond the input signal phase. The function of PLL is acquisition

process to obtain the power factor as close as possible to 1. This process seek to synchronize

the angle of inverter current, θinv, with the grid voltage angle, θgrid . The angle θinv used

to determine the reference current which is compared to the actual value of the inverter

output current. From three phase systems representation, the space vector voltage vabc can be

represented by two orthogonal voltages vd and vq and should be easily obtained to satisfy the
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algorithm of PLL. The main idea in the PLL is altering the frequency of inverter current, ωm,

in case of phase shift between the grid voltage and the inverter current.

The process depends upon the lagging and leading angle between currents and voltages.

When the inverter current lags the grid voltage the PLL will decrease ωm until the inverter

current be in phase with the grid voltage. In case of leading inverter current, then the grid

voltage ωm will be increased until they are in phase again. The most common PLL technique

applied to three phase grid connected systems is based on an algorithm implemented in

synchronous reference frame dq-axis.

3.4.6 Pitch Angle Control

The pitch control is basically used for controlling the amount of generated power of the wind

turbine. Its function is to maintain the output power of the turbine constant when it exceeded

above the rated values, by varying the pitch angle of the rotor blades. There are two main

methods to generate the pitch angle: one is from the difference between measured electrical

power and power reference, and the other is to obtain the pitch from the difference between

measured mechanical speed and reference speed. These two signals give the error which can

be input in the pitch controller.

Various strategies can be used to achieve the the best values of pitch angle to maintain

the output power within the limit using different controller such as P or PI controllers, fuzzy

logic control [200]. The pitch controller has been used in this thesis is in the form of a PI

controller. The selection of pitch control technique is illustrated in Figure 3.18, where the

difference between the rated power Prated and actual power Pe shows the error signal that will

be controlled by the PI controller.

For a better understanding of the pitch angle control mechanism the following power

characteristic for a typical large scale wind turbine will be explained. Four different regions

shown in the power curve as function of the wind speed as shown in Figure 3.19. In regions
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Fig. 3.18 Schematic diagram of the pitch angle control method

I and IV, when the wind is below cut-in wind vw(cut−in) and above cut-out wind vw(cut−out)

the pitch angle is kept at 90 degrees to stop the rotor from rotating. In region II, for wind

speeds between Vtcut−out and vw(rated) the pitch angle is fixed at 0 degrees for maximum

aerodynamics of the rotor, and then maximum power capture from the wind kinetic energy.

In region III for wind speeds between vw(rated) and vw(cut−out) the pitch angle β is varied

(decreased with an actuator constant rate limiter of 10 degrees/sec) for keeping the power

generated at its rated value.

3.5 Simulations and Results

Generally, the simulations have been done for the classical controller using Matlab program-

ming environment. Implementation and built blocks are used in the Matlab/Simulink 14

which is built in the same program.

In this simulations the variation of different values of wind speed will be an input to

the system during the chosen time interval, while the output will be the values of 3-phase

voltages and currents injected to the system. The initial conditions of simulation are taken in

to account in order to operate the system in a stable manner. In classical control scheme, PI

controller have been used to design both control schemes of MSC and GSC. The simulation

have been implemented for the schematic diagram shown in Figure 3.11.
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Betz’s limit
Cp=0.593

Fig. 3.19 Power Output fo a Wind Turbine Generator[201]

The parameters of WECS have been taken from [202, 203]:

(a) Wind turbine: blade radius Ro = 39 m, inertia Jeq = 10,000 kg.m2, air density

ρ = 1.205 kg/m3, rated wind speed Vw−rated = 11.4 m/s, cut-in speed Vw,cut−in = 5m/s, and

cut-out speed Vw,cut−out = 24m/s.

(b) Parameters of generator: rated power Pg−rated = 2MW , number of poles pair

p = 11, stator resistance Ra = 50 µΩ , d-axis inductance Ld = 0.0055 H q-axis inductance

Lq = 0.00375 H, field flux ψ = 135.25 V.s/rad, rotational damping D = 0.

(c) Parameters of power converter: PWM carrier frequency f p = 10kHz, rated DC-

link voltage Vdc−rated = 7.1kV , DC-link capacitor C = 15,000µF .

(d) Parameters of Control schemes: MSC: speed loop controller Kp = 33, KI = 100,

current loop Kp = 100, KI = 5. GSC: DC voltage loop controller Kp = 2, KI = 70, current

loop Kp = 100, KI = 10.
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Fig. 3.20 Wind speed variation with time

3.5.1 Wind Turbine Control Simulations

In this work, the modelling of single machine, 3-phase horizontal axis wind turbine direct

train can be connected to PMSG to feed AC power to the DC link and then converted to the

grid through 3 phases IGBT inverter. The movement of wind turbine cases a mechanical

output power and torque with mechanical rotor speed. The variation of wind speed and

mechanical rotor speed are shown in Figures 3.20 and 3.21 respectively.

To achieve MPPT, the values of TSR should be within the optimum value in time that

the power coefficient should be maximum. These values are shown in Figures 3.22 and 3.23

respectively.

3.5.2 Generator Current Control Simulations

Machine side converter control schematic diagram is shown in Figure 3.11. The variation of

the 3-phase currents have been changed due to change of the input torque which is consequent
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to the wind speed variation. The 3-phase output currents of the generates are shown in Figures

3.24.

3.5.3 Grid Current Control Simulations

Grid side control schematic diagram is shown in Figure 3.15. The aim of the grid side control

is to keep the DC link voltage of Back-to-back converter constant during the wind variation

where the set point is (VDC = 7.1kV ). This DC voltage is shown in Figure 3.25. It is obvious

that the DC voltage will be varied within acceptable limit during the simulation to keep the

output voltage consequently constant. Grid side 3-phase currents with time are shown in

Figure 3.26 and 3-phase grid voltages with time are shown in Figure 3.31.

It is noticeable that the current increased while the wind speed increase to inject more

active power to the grid. The variation of wind speed usually causes a small fluctuation in

DC voltage which leads to a fluctuation in current frequency profile as shown in Figure 3.30

where the grid voltage frequency will be constant.
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Fig. 3.24 Generated 3-phase current with respect to time
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Fig. 3.26 Grid side 3-phase Current 50 Hz with respect to time
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Fig. 3.27 Grid side 3-phase active, reactive and mechanical power with time
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Fig. 3.29 mechanical and electromagnetic torque variation

3.6 Summary

In this chapter, a modelling of WECS, Type 4 has been proposed using a traditional control

such as PI controller is also discussed. The main control system depends up on two controllers
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Fig. 3.31 3-phase Grid voltage

for MSC and GSC respectively. The function of the first controller is to achieve the MPPT in

MSC during variable wind speed while the second controller is working in order to keep the
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DC link voltage constant during simulation to keep the output voltage and frequency within

acceptable limits. All simulations have been done in MATLAB/Simulink 14.



Chapter 4

Advanced Control Schemes of Wind

System

In this chapter, the state-of-the-art of advanced control schemes which can be used in variable

speed synchronous machine have been discussed. The description contains the modelling and

application of digital control technique such as hysteresis control, PI/PID control, intelligent

control, predictive control and hybrid control. The operating principle of these techniques is

analysed briefly and summarised of Various classes of the predictive control techniques are

discussed along with their merits and demerits of these type has been discussed at all, with

focussing on both intelligent and predictive control as a new techniques that have been used

in last decades.

4.1 Introduction

Many semiconductor devices have been developed to obtain the ideal characteristics of

a switch of power conversion process [204–207]. The first generation of simple model

configure diode rectifiers of semiconductor devices with uncontrolled commutation and

called natural commutation control process. The second generation semiconductor devices,
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the gating terminals will be controlled according to desired input information by turning on

and off of gate switches. Consequently, many power devices have been designed such as

thyristor which is regarded as one of the latest developments in this categories.

Control techniques have been developed since 1960s, depend up on operational amplifiers

and passive components to adjust the firing angles of thyristors to keep the output voltage

within desired values [208]. With thyristors, the turn-on instant can be controlled, but the turn-

off instant is uncontrollable and is dependent on the line frequency. In an effort to achieve

controllable turn-off, Insulated Gate Bipolar Transistors (IGBTs) have been developed [204].

A prime model of using IGBT to acquire controllable performance is a buck converter whose

output voltage can be adjusted by changing the value of the duty cycle [177].

In this type of converters, analogue control circuits have been applied in the past, where a

single-phase pulse width modulator or other linear controller such as hysteresis controller

can be used to form the gates signals. Although the analogue control techniques are simple

and easy in use, several drawbacks have been noticed such as a large number of components,

reduced system reliability and poor computational capability.

To eliminate those drawbacks typically of analogue systems and achieve a high perfor-

mance operation, digital control systems made a big revolution especially in the industrial

world virtually which involve powerful calculations, complex strategies and sophisticated

mathematical algorithms [37]. Introduction of Digital Signal Processors (DSPs) by Texas

Instruments in 1983 was a giant leap to which applied later in the digital control systems.

One example of the earlier DSPs is a 16-bit processor and operational power of 10 million

instructions per second [177].

Recently the technological progresses in semiconductor devices have produced in differ-

ent types switching devices such as the power Metal-Oxide Semiconductor Field Effect Tran-

sistor (MOSFET), MOSFET-Controlled Thyristor (MCT), Gate Turn-Off thyristor (GTO),

Insulated Gate Commutated Thyristor (IGCT), Emitter Turn-Off thyristor (ETO), Insulated



4.1 Introduction 85

Gate Bipolar Transistor (IGBT), Reverse Blocking (RB) IGBT, Static Induction Thyristor

(SIT), Silicon-Controlled Rectifier (SCR), Injection-Enhanced Gate Transistor (IEGT), Gate

Commutated Thyristor (GCT) and Symmetrical Gate Commutated Thyristor (SGCT).

Digital control techniques has also developed industrially allowing the user to improve so-

phisticated control algorithms to perform more complicated mathematical tasks. Controllers

such as: micro-controllers, DSP, Field Programmable Gate Array (FPGA), rapid prototyping

systems are examples of modern Real-Time digital control. These platforms have a good

features like low cost, more reliability and high computational power. For this reasons they

have been utilized widely in the controlling process of different types of power electronic

converters [209].

Genetic Algorithms (GA), Fuzzy Logic Control (FLC), Expert Systems (ES), and Ar-

tificial Neutral Network (ANN) belong to the family of intelligent control techniques. As

demonstrated in this thesis, FLC scheme is used instead of PI controller to acquire the above

features.

The current reference tracking error and its derivative are used as the input to the fuzzy

controller. In this technique, the robustness of the system performance during the variations

of the machine parameter can be improved by using the fuzzy technique. In this case, the

knowing the exact converter model is not important. FLC works within the non-linear control

techniques, and positively it is evaluated as the best among other controllers [210–212].

This controller has the membership functions which implies the knowledge, experience

and intuition of the converter operator/designer. To reduce the dependence upon the implica-

tion knowledge, some novel control schemes have been suggested by the designers in order to

satisfy this purpose and achieve better performance of the output as well. These novel control

schemes contain: Fuzzy and PID, Neural networks and PID, Fuzzy and Neural Networks,

Fuzzy and Genetic Algorithm, Fuzzy and Adaptive Control, Fuzzy and Predictive Control

and finally Fuzzy and Sliding Mode Control. Application of FLC and Model Reference
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Control will be discussed in this chapter, and the other model of Fuzzy Predictive Control

will be discussed in the next chapter.

4.2 Fuzzy Logic Controller

In this section, a principle design and operation of the advanced control schemes is presented.

The proposed approach, addressed as Fuzzy Logic Control (FLC) scheme is based on logical

situation and decision will be discussed in the following section.

4.2.1 Fuzzy Logic System

As traditional PI controllers are linear feedback controllers, then they cannot improve and

respond to fast variations of the process. In addition, PI controlled system is less responsive

to real and relatively fast change in wind speed. As a result, modern robust controllers

become more and more necessary in order to follow grid code requirements and adhere to

engineering recommendations.

Non-linear behaviour of the power system leads to the non-linearised problems, then

the control of the wind turbine-generator system will be difficult by using the conventional

control scheme such as PI controller. Although PI controller is simple , cheap and easy to

use with low maintenance, it has some drawbacks such as irregularity of operation during

disturbances or the change in system parameters in operation due to warming or friction

impact. Advanced control schemes have overcomes some of these drawbacks with good

performance and highly level of efficient operation. A recently developed approaches use

the intelligent control systems such as FLC to satisfy proper behaviour and operation of the

system [13]. The fuzzy controller can be expressed as a rule based to non-linear control

method. This controller presents some advantages as compared to the traditional controller.
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Variable gains can be obtained depending on the errors in order to tackle the problems which

are affected by an uncertainty of the system.

From these figures, the conventional PI controllers are replaced by the fuzzy controllers.

In this thesis, FOC scheme for MSC control has been designed with direct FLC is used

and compared with respect to the output values of PI controller. Traditional control scheme

has used a PI controller in both inner circuit to control the currents of direct axis id and the

quadrature axis iq and while in this control scheme the FLC will be used in stead, where the

output should be the value of i∗sq for the outer loop and V ∗
d and V ∗

q for the inner control loops.

The PI controller which used in the outer circuit to control the generator speed is also can

be replaced by FLC in complete design. At present, different types of controllers have been

developed and have enhanced the wind system in order to achieve several advantages such as,

reduction in system losses, size and cost and give a high performance of output voltages and

currents during non-linearity of the system [66]. One of the advanced control system have

been used with intelligent controller such as FLC which is used to overcome the uncertainty

of the system in case of sudden change disturbance or variation in system parameters.

This section presents the analysis and design of FLC and its behaviour during variable

wind speed compared traditional PI controller. As a result, modern robust controllers become

more and more necessary in order to follow grid code requirements and adhere to engineering

recommendations. A recently developed approaches use the intelligent control systems as

FLC to satisfy the the proper behaviour and operation of the system [13].

4.3 Analysis of Fuzzy Logic Controller

The FOC scheme for MSC control shown in Figure 3.11 uses PI controllers to achieve the

control process in inner and outer loops as described above. In the proposed control scheme,

PI controllers are replaced by three FLCs for the same loops to control the speed and currents.

The schematic diagram of FLC system that is used in MSC shown in Figure 4.1. The two
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inputs variables are the error (e) and change of error (∆e). The behaviour of a FLC depends

on the shape of membership functions and the rule base [213]. FLC system approach is

capable to improve the tracking of the operation when compared to conventional control

systems for both grid or load connected cases of linear or non-linear loads.

In simulations of this chapter, the design of FLC controller depends upon the the error

input will be explained in the following sections. The structure of the FLC scheme consists

of three main function: fuzzification which depends upon the input membership function,

inference engine which depends upon the rule base and defuzzification which depends upon

the output membership function. The inputs variables of FLC are selected as a signals that

should be varied with the change of outputs. The behaviour of a FLC depends on the shape

of membership functions of the rule base [213].

4.3.1 Fuzzification

The membership function values are assigned to the linguistic variables using fuzzy subsets

named: Negative Big (NB), Negative Small (NS), Zero (Z), Positive Small (PS) and Positive

Big (PB). The signals (e) and (∆e) are selected as an inputs to FLC in all cases as shown in

Figure 4.1 , while I∗(k) is the outputs of the FLC for the outer control loop.

Fuzzy 

Inference
Fuzzification

Membership 

function of 

output fuzzy set

Defuzzification

Rule Base
Membership 

function of 

input fuzzy set

e(k)

de(k)

I
*

(k)

Fig. 4.1 Structure of Fuzzy Logic Controller
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Fig. 4.2 Membership Function of FLC for the input variables

In the inner control loop of MSC, the signal (e) is the error between the reference current

signals and actual current signal of the system for both d-axis and q-axis circuits, while ∆e

is the change in error in the sampling period of time. In the outer control loop of MSC, the

signal (e) is the error between the angular speed signals and actual angular speed signal of

the system for q-axis circuit only with ∆e is the change in error, while q-axis circuit reference

current will be fixed on zero value.

In the first stage, the crisp variables of errors are converted into fuzzy variables using the

triangle shape as shown in Figure 4.2, and each fuzzy variable is a member of the subsets

with a degree of membership varying between 0 and 1.

Table 4.1 Rule base table of the Fuzzy Controller

e/∆e N Z P

N N N Z
Z N Z P
P Z P P
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Fig. 4.3 Membership Function of FLC for the output variable

4.3.2 Inference Engine

The fuzzified inputs are fed to the interface engine which mainly consists of fuzzy rule base

and fuzzy implication sub-blocks. At this stage the rule base is applied to obtain the output

fuzzy set using the fuzzy implication method. There are different methods that can be used

for this process such as max-min implication technique. The rules-base of the proposed

system are shown in Table 4.1.

4.3.3 Defuzzification

In the defuzzification process, the inference engine output variables are converted into a crisp

values as shown in Figure 4.3. The output reference current is represented by I∗(k).

Different algorithms have been developed to perform this function such as the centroid

defuzzification algorithm, in which the crisp value can be determined as the centre of gravity

of the membership function. The estimation of the spread of each partition is generally a

compromise between the equally spaced triangles of the output values. Inputs and outputs
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normally differ from the range of membership functions, therefore the fuzzy logic outputs

can be changed by multiplying the signal controller of input and output variables by gain

factors in order to match these variables with the normalized intervals [214, 215].

4.4 Application of Fuzzy Logic in Control Scheme

Fuzzy logic controller can be used in different types of control scheme that control the input

signal to process based on the output signal.

4.4.1 Direct Fuzzy Logic Controller

For the machine side control circuit, the controllers (1 and 2) can be replaced by FLC in

stead of PI controller as shown in Figure 4.4.

The cascaded control loops have been used to control the currents and speed of the

machine. This can be divided into internal loop for currents and external loop for speed.

The external speed loop can be controlled by conventional methods to adjust the rotor speed.

Alternatively, an FLC internal loop will controls the currents in the dq synchronous reference

axis. Maximum torque at the minimum current can be obtained by adjusting the d- axis stator

current reference i∗sd to zero. The q- axis stator current reference i∗sq is computed via the PI

external speed controller. In order to obtain the values of controlled voltage, the equations

(4.1) and (4.2) can be represented by applying the FLC control circuit in d- axis and q- axis

respectively.

vd = Rdid +Ld

did

dt
(4.1)

vq = Rqiq +Lq

diq

dt
(4.2)
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Fig. 4.4 FOC scheme using FLC for current variable

The PI controller of proportional gain KPω and integral gain KIω can be used for speed

control. The block diagram of the outer loop of speed controller has been constructed as a

conventional PI control system [216].

4.4.2 Model Reference Fuzzy Controller

The traditional control schemes depend upon the mathematical model representation parame-

ters of the controlled plant which are time varying due to temperature rise and changes in
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generator drive operating conditions. Therefore, it is desirable to design a robust controller

for the system to reduce parameter dependency. Various control algorithms developed require

the system states, thus they are not easy to implement [217]. To overcome this problem and

to enhance the flexibility of changing control algorithm, a FLC is used to implement the

combination with model reference. When the model is uncertain then the intelligent control

schemes such as FLC show a better performance. It has been discussed before that the FLC

requires expertise knowledge of the process operation of the plant to set the FLC parameters

and it works as good as the expertise involved in the design.

To reduce the dependence of the controller on the quality of the expert knowledge,

the speed controller can be added to the model following error managing fuzzy adaptive

control mechanism in order to compensate this deficiency and reduce the effect of the plant

parameters variations. Model reference is an efficient technique to mitigate the effect of

parameter variations. The control input signal can be designed to drive the controlled plant

for tracking the generated response by the main model [218].

Fuzzy control systems based on model reference can be combined as novel control

scheme called a Model Reference Fuzzy Control (MRFC) which has been introduced and

discussed by some researchers for various applications. The reference model can be used

to appoint the desired performance that fulfils design requirements [219]. The proposed

novel controller designed to enable the plant output to be varied to track the reference model

output. When parameters external disturbance occur or the system parameters changed,

an augmented signal will be setting up automatically by the FLC adaptive mechanism that

depends upon the error between model output and the reference output as an input to the

controller.

The main components of the system are the reference model, direct fuzzy logic controller

(FLC) and model reference signal. In some model design, FLC used with PI controller to

give more smoothing to the output signals. The loop of fuzzy logic adaptation can be added
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in parallel to the loop of fuzzy control feedback. Normally, the assumption has been made

that the following model is linear and the fuzzy controller adaptation loop should be operated

in idle case to show the desired performance characteristics of the overall system [215]. The

design of classical adaptive control system is applied based on the mathematical modelling

and adaptive control based on the gradient algorithm method [220]. When the parameters

varied, an adaptive signal generated by adaptation mechanism will be corrected the output of

the fuzzy logic controller to keep the desired model following the control output and improve

the model performance [221].

Figure 4.5 shows the schematic diagram of MRFC which simulated in this thesis. This

method is explained as learning a more global control function with high speed convergence.

The reference signal is affected by changing the references values of the fuzzy sets according

to the membership function that have been represented in FLC membership functions [222].

The error of the proposed scheme and the changing of error can be measured between

the speed of generator and the reference model output which can be applied to a fuzzy logic

control. The output signal will force the system to behave like the model by improving the

knowledge base of the fuzzy controller or by adding the reference signal to the output of

fuzzy controller [223]. The output variables which obtained by the suggested fuzzy logic

adaptation technique is used to generate a corrected values of ∆Iq and finally this correction

term will added to the FLC output to obtain the set values of currents.

4.5 Simulation and Results

Matlab/Simulink programming environment has been used to demonstrate the effectiveness

of the conventional and advanced control system using PI controller, FLC and MRFC

respectively.

In most residential areas, offices and some industrial plants, small size wind turbines

are more applicable. In addition, the control schemes of small turbines are easy to use
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Fig. 4.5 MRFC scheme using FLC with model reference for current variable

and applying the traditional PI controllers. However, most controllers are designed for the

purpose of battery charging requirements as well as supplying power to the consumers taking

in to account limited range of wind speed variation. To achieve maximum power capturing

from the wind and constant output voltage during step change in wind speed, the variation

in rotor sped and electromagnetic torque should be controlled to follow the change in wind

speed, therefore FLC and MRFC have been used in small size machine and subjected to step

change in wind speed to show the behaviour of these controllers compared to the traditional

PI controller.
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In the MSC, the rotor speed, current and torque have been obtained in all cases for these

controller. The parameters of whole system are:

(a) Wind turbine: blade radius Ro = 2 m, inertia Jeq = 10 kg.m2 , air density ρ = 1.2

kg/m3, rated wind speed Vw−rated = 12 m/s, cut-in speed Vw,cut−in = 5 m/s, and cut-out

speed Vw,cut−out = 24 m/s.

(b) Parameters of generator: rated power Pg−rated = 6KW , number of poles pair p = 4,

stator resistance Rs = 0.6 Ω, d-axis inductance Ld = 1.4 mH, q-axis inductance Lq = 2.8

mH, field flux ψ = 0.12 V.s/rad, rotational damping D = 0.

(c) Parameters of power converter: PWM carrier frequency f p = 5kHz, rated DC-link

voltage Vdc−rated = 300V , DC-link capacitor C = 2,000µF .

The simulation results show the effects of controllers during different values of wind

speed. The initial conditions of simulation are taken into account in order to operate the

system in a stable manner. In MSC the set value of id is equal to zero to achieve maximum

torque at the minimum current. The DC-link capacitor should be charged to the rated value

of DC voltage such that (Vdc = 300V). Figure 4.6 shows the simulation of wind speed with

respect to time.

4.5.1 Simulation Using PI Controller

As a result of the variation of wind speed, the rotor speed will be varied when the wind speed

changes, then the output generator current also be changed as shown in Figure 4.7. The

variation d-axis and q-axis currents are shown in Figure 4.8. This figure shows that the values

of q- axis current varied with variation of wind speed whereas d- axis current kept at zero

level. The variation in rotor speed will follow the reference speed for as shown in Figure 4.9.

Input mechanical torque and output electromagnetic torque are shown in Figure 4.10. It

is notice that there is a difference between two torques due to the friction term (Fωm) of the

swing equation of the machine.
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Fig. 4.6 Wind speed variation with respect to time

0 5 10 15 20
−600

−500

−400

−300

−200

−100

0

100

200

300

400

500

Time (seconds)

G
en

er
at

or
 C

ur
re

nt
 (

A
)

 

 

4 4.1 4.2

−100

0

100

 

 

ia
ib
ic

Fig. 4.7 3-phase generator currents applying PI
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Fig. 4.10 Variation of mechanical and electromagnetic torques applying PI

4.5.2 Simulation Using FLC

The simulation has been used for the design shown in Figure 4.4. FLC model has been test

for the same values of variable wind speed as shown in Figure 4.6. Three phase generator

current is shown in Figure 4.11 and the d-axis and q-axis currents are shown in Figure 4.12

It is obvious that the values of q- axis current varied with variation of wind speed whereas

d- axis kept at zero level. The changed of rotor speed will follow the reference speed for

for any variation of wind speed as shown in Figure 4.13. Finally the mechanical torque ans

electromagnetic torque are shown in Figure 4.14.
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Fig. 4.11 3-phase Generator current variation using FLC
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Fig. 4.12 Direct and quadrature axis currents variation using FLC
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Fig. 4.13 Variation of reference and rotor speeds using FLC
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Fig. 4.14 Variation of mechanical and electromagnetic torques using FLC
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Fig. 4.15 3-phases Generator currents variation using MRFC

4.5.3 Simulation Using MRFC

The simulation has been used for the design shown in Figure 4.5. The MRFC scheme has

been test for the same values of variable wind speed as shown in Figure 4.7. Three phases

generator currents is shown in Figure 4.15 while the d-axis and q-axis currents are shown

in Figure 4.12. It is obvious that the values of q- axis current varied with variation of wind

speed. The variation in rotor speed will follow the reference speed for the proposed controller

as shown in Figure 4.13. Finally the mechanical torque ans electromagnetic torque are shown

in Figure 4.14.
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Fig. 4.16 Direct and quadrature axis currents variation using MRFC
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Fig. 4.17 Variation of reference and rotor speeds applying MRFC
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Fig. 4.18 Variation of mechanical and electromechanical torques using MRFC

4.5.4 Comparison Between Controllers

From realistic values of wind speed simulation results, it is shown that the power capturing

from the wind is better in case of MRFC compared to FLC and PI controller.

Consequently, the power coefficients are shown in Figure 5.21 of PI controller, FLC and

MRFC. It is shown also that the rotor speed error is high in case of PI controller and reduced

by using FLC and will be minimum using MRFC.

Compared to PI controller, the difference between of the set value of Cpre f and actual

controlled value of Cp can be expressed:

∆Cp =Cpre f −Cp (4.3)

It is noticed that the error of power coefficient in case of MRFC is minimum and equal to

3.525e−5 compared to FLC which increased in by 3.746e−5 and better than PI controller

which is 4.136e−5. In the same manner, the rotor speed error can be calculated. It is shown
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Table 4.2 Standard deviation in variations of the power coefficient and rotor speed

Delta Cp Delta wr

PI 4.136 e-5 0.0723
FPC 3.746 e-5 0.0654
MRFC 3.525 e-5 0.0614

also that the error of rotor speed in case of MRFC is minimum and equal to 0.0614 compared

to FLC which increased in by 0.0654 and better than PI controller which is 0.0723. In the

same manner, the rotor speed error can be calculated. The standard deviation of ∆Cp and

∆ωr for all controllers is tabulated in Table 4.2.

From step change simulation results, it is shown that the overshoot of the rotor speeds

appears using both PI controller and reduced by using FLC and will be minimum using

MRFC. Also it is clear from the results that the oscillation in the rotor speed is reduced when

comparing the FLC to the PI controller and reduced by using MRFC.

From the simulation, the absolute errors of rotor speeds for each values are determined.

The results show that the steady state error between the original rotor speed and the measured

one is (0.015) using PI, then reduced to (0.01) by using FLC and will be minimum as (0.005)

by using MRFC. It is shown that the FLC has lower overshoot and errors and minimum in

case of MRFC, however, it is noticed that the settling time will be (2.5 ms) and remains

constant during the simulations. These results are tabulated in Table 4.3. As a comparison

between the three controllers, step change and steady state in rotor speed of the generator is

shown in Figure 4.19 and Figure 4.20 for all controllers. It is noticed that the fluctuation in

rotor speed will be reduced in case of FLC and more reduction appeared in case of MRFC.

Table 4.3 Calculation of change response for rated rotor speed for different controllers

Overshoot

%

Settling Time

(ms)

Error

%

PI 30.7 2.5 1.5
FLC 12.6 2.5 1
MRFC 3.5 2.5 0.5
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Fig. 4.19 Variation of rotor speed for in case of step change for all controllers
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Fig. 4.21 Variation of electromechanical torques in case of step change for all controllers

For the reference rotor speed ω∗
r = 46.2 rad/s, the values of overshoot, settling time and

errors for PI, FLC and MRFC are shown in Table 4.3.

From the torque graphs in Figures 4.10, 4.14 and 4.18 respectively, it is shown that the

mechanical and electromagnetic torques are unchanged in certain wind speed for the three

types of controllers. For example, at rated wind speed (Vw = 12 m/s) the mechanical torque

will be (Tm = 125.63 N.m) and electromagnetic torque (Te = 120.6 N.m) and will be the

same in all types of controllers. It is also notice that the settling time = 2.5 ms in all time

intervals. These variables are changed due to the improvement of control signals by the

relevant controllers as shown in Table 4.4.

An other comparison between the three controllers, the electromagnetic torque of the

generator in cases of step change and steady state of wind speed are shown in Figure 4.21 and

Figure 4.22 for all controllers. Reduction in the torque is shown in case of FLC compared to

PI, and reduced rapidly in case of MRFC.
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Fig. 4.22 Variation of electromechanical torques in case of steady state for all controllers

Table 4.4 Calculation of torque variation

Overshoot

%

Settling Time

(ms)

Error

%

THD
%

PI 3.31 2.5 0.75 2.73
FLC 3.25 2.5 0.35 2.75
MRFC 3.19 2.5 0.15 2.43

Finally, the quadrature axis current indicates to the power transferred from the machine

to DC link, and can be compared in cases of three controllers as shown in Figure 4.23. The

comparison shows the low distortion in current of MRFC compared to other controllers.

It is noticed that the torque error, overshoot and current THD % have minimum values

in case of MRFC than other controllers. In FLC, the torque error will be improved with

overshoot while the current THD % is approximately the same as PI controller.

The simulation shows that the MRFC scheme as presented in this chapter has a robust

performance with regard to wind variation and significantly reduces the overshoot and error in

rotor speed when compared to a conventional PI controller and FLC. Reduction in overshoot
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Fig. 4.23 Variation of steady state quadrature axis current for all controllers

and error of rotor speed leads to an increase in the lifetime of the mechanical parts and

provides more generator stability in cases of variable wind speeds.

4.6 Summary

This control scheme has been applied to provide FOC for MSC control section. Different

types of control schemes have been used in this thesis, traditional control schemes using PI

controller and advanced control scheme using direct FLC and adaptive control scheme using

Fuzzy MRAC.

The FOC scheme is divided into two loops in MSC, inner and outer loops. The outer loop

adjusts the rotor speed to achieve MPPT in order to obtain high efficiency in power capturing

from the wind, whilst the inner loop of the scheme controls the dq- axis currents to adjust

the control signals of converter voltage as well. The simulation shows that the FLC scheme
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as presented in in above sections has a robust performance with regard to wind variation and

reduce the overshoot in rotor speed compared to a conventional PI controller. This reduction

in overshoot gives more mechanical stability to the generator in case of variable wind speed.

On the other hand the hybrid control scheme uses Fuzzy MRAC has been used in the same

model to reduce the dependency of the controller on the plant parameters. The simulation

shows a good reduction in overshoot in rotor speed compared to the traditional controller and

direct FLC.



Chapter 5

Fuzzy Predictive Control Schemes

Fuzzy Predictive Control scheme is studied in this chapter. Section 5.1 provides a short intro-

duction to beginning of this the fuzzy predictive control. Section 5.2 shows the description

of Model predictive Control scheme that can be used as a new modelling in both MSC and

GSC control. The suggested analysis is described in Section 5.3. Simulations and results of

the evaluation of the proposed approach are reported in section 5.5. Summary of this chapter

is given in Section 5.6.

5.1 Introduction

As the manufacturing and wind energy markets have developed, modern robust controllers

become more and more necessary in order to follow the grid code requirements and adhere

to engineering recommendations. So different types of controllers have been developed and

enhanced the wind system in order to achieve several advantages such as, reduction in system

losses, size and cost. Combination of FLC with other controllers such as predictive one will

form a hybrid control system.
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5.2 Model Predictive Controller

A recently developed approach is Model Predictive Control (MPC) that has been introduced as

an alternative controller in the power system industry due to a range of advantages [224, 225].

MPC is one of the most effective control techniques for controlling multi-variable systems

with limitations. It is also widely used and technically implemented for advanced control

schemes in industry for many products and applications [226]. MPC appeared in the 1970s,

and since that time it has been developed to convoy the technological evolution and still

being widely studied in recent years using different algorithms and approaches to satisfy the

purpose [227]. Very good mathematical models to predict the behaviour of the variables under

control is growing nowadays leads to growing interest in the use of MPC in this field in both

electrical and mechanical systems. As well as this, recent developments of microprocessors

which can perform the large amount of calculations needed for different algorithms with high

speed performance and reduction in cost enable the designers to implement it in complex

devices such as MPC. In general, MPC is a collection of various control methods which use

the model of the process to forecast future system dynamics and determine the control inputs

according to predicted future state of the system behaviour.

5.2.1 Control Strategy of MPC

MPC is an attractive technique that can influence nonlinear control problems in the system

with their constraints quite well [163]. Originally, MPCs have been studied and applied in

the process industry and research, where it has been in use for decades [228]. Nowadays,

predictive control is being considered in other areas of application, such as control system,

power electronics technologies and drives [208], [229, 230, 10]. Predictive control has been

demonstrated a wide class of controllers that main characteristic is applying the model of the

system for the prediction of the future attitude of the some variables over a specific prediction

interval [231].
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MPC control strategy uses these information to obtain the mechanism sequence for the

system control by optimizing a calculated cost function [232]. It should be noticed that the

algorithm is executed for every sampling period and only the first optimized value can be

applied to the system at instant k. The cost function can have any form but usually can be

defined as:

g =
n

∑
i=1

λi(x
∗
i − x

p
i )

2 (5.1)

where x∗i is the reference command and x
p
i is the predicted value for variable xi, λi is a

weighting factor and index i indicate to the controlled variables. By this easy way, it is

capable to imply variable control objectives such as (multi-variable case) constrains and

non-linearities.

5.2.2 MPC Control Principle

The flow chart execution of MPC is shown in Figure 5.1 where an IGBT converter is used

to convert DC power to AD grid. The converter presents J different switching states for

calculated variables. The control objective pursuits that variable x has to follow the reference

x∗. The MPC algorithm has the following basic steps [233]:

1. Measurements and/or estimation of the controlled variables.

2. Computational process of the optimal switching state (computed in the previous

sampling interval).

3. Prediction process to know the behaviour of variable x in the next sampling interval xp

for each switching state of the converter, (using the mathematical model).

4. Determination of the cost function, or error between the set and predicted values, for

each prediction for instance: g = |x∗− xp|.
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5. Minimization of the cost function by selecting the switching state that satisfy minimum

value, Sopt and re-save it to be used in the converter at the next sampling period.

Fig. 5.1 Timing diagram of the execution of the MPC algorithm
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5.3 Analysis of Fuzzy Predictive Control

As well as the development in prediction algorithms of variables fulfill the requred calcu-

lations, Combination with the smart intelligent control has been proposed to obtain good

robustness to the sudden change and uncertainty of these variables [234]. FPC can be formed

by a combination of FLC with MPC to obtain hybrid control scheme [235]. The following

sections describe the the theoretical analysis of this proposed model and its operation in all

parts of the system.

First of all, the design of FOC has been used to design a PI controller as a traditional

control scheme in inner and outer circuit of MSC control. As the traditional PI controllers

are fixed gain feedback controllers, then they cannot compensate the parameters of KP and

KI variations in the process. In addition, PI controlled system is less responsive to real and

relatively fast change in wind speed.

As a result, modern robust controllers become more and more necessary in order to follow

grid code requirements and adhere to engineering recommendations. A recently developed

approaches use the intelligent control systems such as FLC to satisfy the proper behaviour

and operation of the system [13]. FLC system technique is capable to improve the tracking

performance as compared to traditional control system for both grid or load connected in

cases of linear or non-linear load.

To obtain fast response of the output signal, the combination of FLC system controller

with MPC forms a hybrid control system called Fuzzy Predictive Control (FPC) where

minimization of overshoot and settling time can be achieved [236].

The schematic diagram of FLC system that used is shown in Figure 5.2. From the

principles that have been discussed in Chapter 4, input and output variables are determined.

The two inputs variables of the system are the error e and change of error ∆e. The behaviour

of a FLC depends on the shape of membership functions of the rule base [213].
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Fig. 5.2 Structure of Fuzzy Logic Controller

In this section, the design of FPC scheme depends upon the output of the FLC. Therefore,

the output should be the reference value of iq that will be an input to MPC.

The membership function values are assigned to the linguistic variables using seven fuzzy

subset called: Negative Big (NB), Negative Small (NS), Zero(Z), Positive Small (PS) and

Positive Big (PB).

The signals e and ∆e are selected as an inputs to FLC in all cases as shown in Figure 5.3,

while the output values of isq(k) is the outputs of the the FLC as shown in Figure 5.4. In

MSC, the signal e is the error between the reference current signals i∗sd and i∗sq and actual

current signal of the system for both d and q circuits as mentioned in equations (5.18) and

(5.19) respectively, ∆e is the change in error in a sampling period of time.

In the same manner described in Chapter 4, the fuzzified inputs are fed to the interface

engine which is mainly consists of fuzzy rule base and fuzzy implication sub blocks. In this

Table 5.1 Rule base table of the Fuzzy Controller

e \de NB NS Z PS PB

NB NB NB NS NS Z

NS NB NS NS Z PS

Z NS NS Z PS PS

PS NS Z PS PS PB

PB Z PS PS PB PB
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stage the rule base is applied to get the output fuzzy set which is finally identified using fuzzy

implication method.

There are different methods that are used in the inference process such as max-min

implication technique. Rules of the interface fuzzy memory which related to the proposed

system are shown in Table 5.1.

In case the fuzzification process is over, output fuzzy range is located. On this stage

defuzzification process is needed to convert to non-fuzzy value of control signal. Centroid

defuzzification method is used to reverse the fuzzification process in the proposed solution of

the signals.

5.4 Structure of the Proposed Technique

A good performance of FLC enable designers to use it in diversified hybrid system combined

with neural network, genetic algorithm, adaptive and predictive controls to improve the

output performance during uncertainty parameters of the system.

FPC system can manage the system model during controlling the output currents of both

generator and grid. In this system two controllers have been used to perform the suggested

algorithm, MSC and GSC. These controllers will be discussed in the following paragraphs.

5.4.1 Machine Side Control System

The Fuzzy predictive control of machine side is shown in Figure 5.5. The cascaded control

loop has been used to control currents and speed of the machine. This can be divided

to internal loop for currents and external loop for speed. The external speed loop can be

controlled by traditional PI control to adjust the set value of rotor speed [237, 13]. Conversely,

an internal control loop will operate to control the stator currents in the dq synchronous

reference axis. Maximum torque at the minimum current can be obtained by adjusting d axis
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stator current reference i∗sd to zero. The other current of the q axis stator current reference i∗sq

is computed via the outer loop of speed control loop.

5.4.1.1 Generator Current Loop Prediction Control

In order to obtain the digital predictive current controller algorithm the dq axis currents,

the generator equations (3.43) and (3.44) can be rewritten as in equations (5.2) and (5.3)

respectively:
disd

dt
=

1
Lsd

(Vsd −Rsisd +ωdqLsqisq) (5.2)

disq

dt
=

1
Lsq

(Vsq −Rsisq −ωdqLsqisd +ωdq psi f ) (5.3)
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From the equations (5.2) and (5.3), using the forward Euler discretization method, the

following prediction equations can be obtained:

isd[k+1] =
Ts

Lsd

(Vsd[k]− esd[k])+(1− Ts

Tsd

)isd[k] (5.4)

isq[k+1] =
Ts

Lsq
(Vsq[k]− esq[k])+(1− Ts

Tsq
)isq[k] (5.5)

where T s is the sampling period. isd[k+1] and isq[k+1] are the predicted values of d and q

stator current at the (k+1) th sampling period. isd[k] and isq[k] are measured d and q stator

current components during kth sampling period, Tsd = Lsd/Rs and Tsq = Lsq/Rs are time

constant of d and q circuit respectively. The esd and esq terms refer to the d and q coupling

terms and can be expressed in equations (5.6) and (5.7):

esd[k] =−Lsqωdq[k]isq[k] (5.6)

esq[k] = Lsdωdq[k]isd[k]+ωdq[k]φrd[k] (5.7)

The growth of the d and q stator current values depends upon the applied stator voltage

values V
j

sd[k] and V
j

sq[k] which have been determined at the k th sampling period. The values

of these stator voltage can be expressed in the dq synchronous reference axis and can be

estimated through the rotational angle equal to (θdq) to the αβ components of the stator

vectors of all voltages as shown in the equation (5.8) and Table 5.2.







V
j

sd[k]

V
j

sq[k]






=







cos(θdq[k]) sin(θdq[k])

−sin(θdq[k]) cos(θdq[k])













V
j

sα [k]

V
j

sβ
[k






(5.8)

Taking in to account the eight switching states combinations of the MSC with two

combinations V0 and V7 that lead to null stator voltage vector, then equations (5.4) and (5.5)
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Table 5.2 Switching states and corresponding output voltages V
j

sdq( j=0...7)

Sa Sb Sc V
j
sα V

j

sβ
V j V

j
sdq

0 0 0 0 0 V0 V 0
dq

1 0 0 2Vdc/3 0 V1 V 1
dq

1 1 0 Vdc/3 V dc/
√

3 V2 V 2
dq

0 1 0 −Vdc/3 V dc/
√

3 V3 V 3
dq

0 1 1 −2Vdc/3 0 V4 V 4
dq

0 0 1 −Vdc/3 -V dc/
√

3 V5 V 5
dq

1 0 1 Vdc/3 -V dc/
√

3 V6 V 6
dq

1 1 1 0 0 V7 V 7
dq

can be represented for the different possibilities of the d and q stator voltage components

space vector modulation V
j

sd[k] and V
j

sq[k] as shown in equations (5.9) and (5.10) respectively.

i
j
sd[k+1] =

Ts

Lsd

(V
j

sd[k]− esd[k])+(1− Ts

Tsd

)isd[k]( j=0...7) (5.9)

i j
sq[k+1] =

Ts

Lsq
(V j

sq[k]− esq[k])+(1− Ts

Tsq
)isq[k]( j=0...7) (5.10)

Consequently, it is able to predict the values of dq stator vector components (∆i
j
sd[k+1])

and (∆i
j
sq[k+1]) for all values of ( j = 0...7). The current errors are defined as the difference

between the reference stator currents vectors i∗sd[k], i∗sq[k] during the k th sampling period of

time and the predicted one at the (k+ 1) th sampling period of time. These errors can be

expressed as [238, 239]:

∆i
j
sd[k+1] = i∗sd[k]− i

j
sd[k+1] (5.11)

∆i j
sq[k+1] = i∗sq[k]− i j

sq[k+1] (5.12)

The errors estimated for all sectors values of ( j = 0...7). According to equations (5.11) and

(5.12), a cost function g j is applied to the obtained stator current error components. This cost

function can be expressed in (5.13):

g j = |∆i
j
sd[k+1]|+ |∆i j

sq[k+1]| (5.13)
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Finally, the selection of the optimal switching states combination S(a,b,c)opt can be obtained

that leads to the minimal cost function Min(g j) for all values of j = 0...7.

5.4.1.2 Speed control loop

The block diagram of the outer loop of speed controller has been built as FLC system.

The reference stator currents vectors i∗sq[k] during the k th sampling period of time can

be determined by FLC which performs the adjusting process of the reference current as

discussed in [240]. Input and output membership functions are shown in Figures 5.3 and 5.4

respectively.

5.4.2 Grid Side Control System

The MPC for the grid side is shown in Figure 5.6. A cascade control loops have been used,

and a PI controller controls the dc link voltage Vdc in external loop. The main internal control

loop an MPC based controls the currents of grid in the dq synchronous reference frame,

where the d axis should be linked to the grid voltage vector. The q axis grid current reference

i∗gq is adjusted to be zero in order to satisfy a unity power factor and maximum power, whereas

the d axis grid current referencei∗gd is adjusted by the PI controller of the outer loop to control

the dc-link voltage taking in to account that the primarily objective of the GSC to use both

MPC or FPC algorithms is to control the active and reactive powers through the control of

the d axis and q axis grid current components. Therefore both algorithms are predicting the

values of grid currents [241–243].

5.4.2.1 Grid Current Loop Prediction Control

In the same manner that used in MSC, the current of GSC can be controlled by adjusting

the predicted vales of d and q grid current components. During each sampling period, the

evolution of the d and q grid current components depends on the applied converter voltage



5.4 Structure of the Proposed Technique 123

F
il

te
r

G
ri

d
 /

 L
o

a
d

+

vabc

DC/AC

Vdc

PWM

Cost function 

Optimisation

Model 

Predictive 

Control

Fuzzy Logic 

control

-

abc-to-dq

abc-to-dq

∆ig-dq

i*gd

i*gq

vg-dq

vg-abc

PLL

θ g

iabc

V*dc

Vdc

ig-dq

edc

S
GSC

(abc)

Fig. 5.6 FPC - GSC for the Grid Side

components Vconvd
[k] and Vconvq

[k] at the kth sampling period. It is obvious that the voltage

vectors Vconvd
[k] and Vconvq

[k] depend also on the dc-link voltage Vdc level using Park and

Clarke transformation as in the following equations [244]:







V
j

con−d[k]

V
j

con−q[k]






=







cos(θdq[k] sin(θdq[k]

−sin(θdq[k] cos(θdq[k]













V
j

con−α [k]

V
j

con−β
[k






(5.14)







V
j

con−α [k]

V
j

con−β
[k]






=

2
3

V ∗
dc







1 −1
2

−1
2

0

√
3

2
−
√

3
2



















Sia[k]

Sib[k]

Sic[k]













(5.15)
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where V
j

con−d[k] and V
j

con−q[k] are voltage vectors of d and q axis component, and V
j

con−α [k],

V
j

con−β
[k] are the output converter voltage vectors in the stationary values of αand β axis,

and Sia[k],Sib[k],Sic[k] are the switching signals of the controller. Then, the forward Euler

discretization method can be used to adjust the predictive values of currents as:

i
j
gd[k+1] = a0[(Vgd[k]−V

j
con−d[k])]+a1igd[k]) (5.16)

i j
gq[k+1] = a0[(Vgq[k]−V

j
con−q[k])]+a1isq[k]) (5.17)

where a0 is Ts/Lg and a1 is ( 1−Rg.Ts/Lg).

The prediction process will give the predicted values of currents which will be manage

the controller to find the values of signal voltages.

In the same sequence of analysis in MSC, it is possible to firstly predict the dq grid

current error vector components (∆i
j
gd[k+1])( j=0...7) and (∆i

j
gq[k+1])( j=0...7) as shown in

equations(5.18) and (5.19) :

∆i
j
gd[k+1] = i∗gd[k]− i

j
gd[k+1]( j=0...7) (5.18)

∆i j
gq[k+1] = i∗gq[k]− i j

gq[k+1]( j=0...7) (5.19)

Finally, the This cost function can be defined in equation:

g j = |∆i
j
gd[k+1]|+ |∆i j

gq[k+1]| (5.20)

Minimisation of the cost function can be achieved by selection the optimal values of the

above switching signals considering that the applied switching signals during the previous

sampling period so that the switching frequency is minimised.
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5.4.2.2 DC voltage Control Loop

The DC link voltage equation can be expressed as a function of the voltage across the

capacitor as shown in Figure 5.6. As discussed in MSC, the current can be controlled by

adjusting the reference vales of d and q grid current components using FLC. The task of FLC

is to obtain the reference value of i∗sd[k] to be as an input of MPC. In the same time i∗sq[k] is

equal to zero to inject active power to the grid.

5.5 Simulation of the Proposed Controller

In this chapter, modelling of variable speed wind turbine PMSG connected to the grid through

BTB will be discussed. The proposed control of FPC will be used in the design of the MSC

control and GSC control. MATLAB/Simulink environment tool to show the effect of the

proposed model of FPC. The input to the system is variable wind speed. To compare the

proposed controller with the previous work of CH-3, the same parameters of WECS have

been taken for whole system as shown:

(a) Wind turbine: blade radius Ro = 39 m, inertia Jeq = 10,000 kg.m2, air density

ρ = 1.205 kg/m3, rated wind speed Vw−rated = 11.4 m/s, cut-in speed Vw,cut−in = 5m/s, and

cut-out speed Vw,cut−out = 24m/s.

(b) Parameters of generator: rated power Pg−rated = 2MW , number of poles pair

p = 11, stator resistance Ra = 50 µΩ , d-axis inductance Ld = 0.0055 H q-axis inductance

Lq = 0.00375 H, field flux ψ = 135.25 V.s/rad, rotational damping D = 0.

(c) Parameters of power converter: PWM carrier frequency f p = 10kHz, rated DC-

link voltage Vdc−rated = 7.1kV , DC-link capacitor C = 15,000µF .

(d) Parameters of PI Control schemes: MSC: speed loop controller Kp = 33, KI = 100,

current loop Kp = 100, KI = 5. GSC: DC voltage loop controller Kp = 2, KI = 70, current

loop Kp = 100, KI = 10.
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The simulation shows that the effect of the controller during different values of wind

speed. Some initial condition of simulation should be taken in to account to operate the

system fairly.

5.5.1 Machine Side Converter Simulations

In MSC the set value of id is equal to zero to achieve Maximum torque at the minimum

current.

The dc-link capacitor should be charged to rated value of dc voltage ( Vdc = 7.1 kV). In

GSC the set value of iq is equal to zero to ensure a unity power factor. Mechanical power of

wind turbine will be an input to the generator. Figure 5.7 shows the variation of wind speed

with respect to time. As shown in Figure 5.8, the generator speed will be varied when the

wind speed change, then the output generator current also be changed as shown in Figure

5.10. As a result to this variation, the generator speed will be varied when the wind speed

changed as shown in Figure 5.8. The difference between mechanical and electromagnetic

torque is approximately negligible as shown in Figure 5.9, while the output generator current

also changed with the variation of the wind as shown in Figure 5.10.

The DC link voltage will be kept constant by the GSC to insure the constancy of output

voltage. Figure 5.11 shows the measured and set values of Vdc.
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5.5.2 Grid Side Converter Simulations

The DC link voltage will be imposed to be constant by the controller of GSC as shown in

Figure 5.11, then output grid voltage will be fixed and in phase with grid current as shown in
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Figure 5.12. Normal oscillation of grid frequency within acceptable limit is shown in Figure

5.14. Since the controller is designed to inject active power, injected reactive power will be
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Fig. 5.12 Variation of grid voltage and current for a specific period of time

within zero value during the simulation. The active and reactive powers are shown in Figure

5.15.
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5.5.3 Analysis of Results

The simulations show that the effect of controller during the change of different values of

stochastic wind speed. At the beginning of simulation, the initial conditions should be fixed
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in order to operate the system within acceptable fluctuation. In MSC the set value of id is

equal to zero to achieve maximum torque at the minimum current. The simulation also shows
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Table 5.3 Variation of active power with respect to wind speeds for PI controller

Wind speed (m/s) 5 6 7 8 9 10 11.4

Pm (MW) 0.1748 0.3021 0.4798 0.71628 1.0199 1.3991 2.0728
Pe av. (MW) 0.1740 0.3005 0.473 0.702 0.995 1.368 2.025
P losses (KW) 0.8 1.6 6.8 14.28 24.9 31.1 47.8
Fluctuation (KW) ± 1.27 1.78 1.85 2.05 2.27 2.37 5.96
Overshoot % 1.6 0.711 0.97 1.593 0.94 1.77 1.94
Settling time (ms) 0.09 0.12 0.13 0.16 0.155 0.23 0.26

Table 5.4 Variation of active power with respect to wind speeds for FPC

Wind speed (m/s) 5 6 7 8 9 10 11.4

Pm (MW) 0.1748 0.3021 0.4798 0.71628 1.0199 1.3991 2.0728
Pe av. (MW) 0.1743 0.3015 0.478 0.71165 1.0105 1.3815 2.035
P losses (KW) 0.5 0.6 1.8 4.63 9.4 17.6 37.8
Fluctuation (KW) ± 1.15 1.36 1.45 1.75 1.85 2.15 5.3
Overshoot % 1.4 0.411 0.477 0.993 0.445 0.977 1.14
Settling time (ms) 0.06 0.08 0.08 0.1 0.085 0.15 0.18

that the grid currents demonstrated an obvious distortion using PI control compared with low

distorted current using FPC as shown in Figure 5.13.

5.5.4 Comparison between FPC and traditional PI controller

The comparison have been made at rated wind speed 11.4 m/s first between the proposed

model using FPC and the conventional model using PI controller.

1. Step change in wind speed

The variation of generated power with respect to the variable wind speed when subjected

to step change variation for both PI controller and FPC can be tabulated in Tables 5.3 and

5.4 respectively. The data show reduction in settling time and overshoot as well as in power

losses due to well tracking to the maximum power from the wind during variation.

The performance sensitivity of the controllers can be evaluated for some metrics such as

overshoot, settling time and power fluctuation by taking their standard deviations as shown

in Table 5.5. It is obvious from the table that standard deviations of these metrics are reduced



5.5 Simulation of the Proposed Controller 133

Table 5.5 Calculation of some metrics standard deviations for both controllers

Overshoot % Settling Time (ms) Fluctuation (kW)

PI 0.4774 0.0609 1.5651
FPC 0.391 0.0435 1.4310

Table 5.6 Calculation of some metrics mean values for both controllers

Overshoot % Settling Time (ms) Fluctuation (kW)

PI 1.3604 0.1636 2.5071
FPC 0.8347 0.105 2.1443

in case of FPC compared to PI controller. Therefore FPC is more consistent and robust than

PI controller. The mean values of the same metrics are shown in Table 5.6. The table shows

that the mean values of those metrics are reduced in case of FPC. Thus FPC performs better

than PI controller across all operating points.

It is shown that the overshoot of the rotor speed is highly reduced from 2.1% in PI

controller to 1.14% in FPC and settling time is also reduced from 0.5 to 0.18 for these

controllers respectively while the error will be reduced from 0.8 to 0.4 respectively as shown

in Table 5.7. At the same time, THD shows a small amount reduction from 1.1% in case of

PI controller to 0.93% in case of FPC.

2. Variable wind speed

Different quantities have been compared with traditional models are shown in detailed

for all period of time. In Figure 5.17 the frequencies of both controllers are shown. The

values are varied within acceptable limit of 50 Hz where the maximum variation in case of

FPC is ±1.25%.

Figure 5.18 shows the rotor speed of the generator in both FPC and PI controller. Figure

Table 5.7 Calculation of change response for rated rotor speed for different controllers

Overshoot

%

Settling Time

(ms)

Error

%

PI 2.1 0.5 0.8
FPC 1.14 0.18 0.4
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Fig. 5.18 Variation rotor speed compared to PI controller
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Fig. 5.19 Variation electromagnetic torque compared to PI controller

5.19 shows the generated electromagnetic torque in both ceases of FPC and PI controller. It

is noticed that the torque increased in case of FPC compared to PI controller which leads to

increase in generated active power.

The difference between the optimal active power and actual generated power can be

expressed as:

∆Pe = Popt −Pe (5.21)

Figure 5.20 shows this power difference for the proposed FPC and PI controller. It is

obvious that the oscillations in case of the proposed controller are reduced compared to PI

controller.

Finally, the DC voltages are shown in Figure 5.21 of both FPC and PI controller. It is

noticed that the DC voltage in case of FPC is more robust and varied by 1.5 V compared to

PI controller which increased in rated speed by 7.5 V.
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Fig. 5.20 Variation of ∆ Pe of FPC compared to PI controller

Table 5.8 Standard deviation of the variation in DC voltage and active power

Delta V dc (V) Delta Pe (W)

PI 0.474 1.643 e4
FPC 0.322 1.520 e4

Compared to PI controller, the difference between of the set value of DC voltage and

actual controlled DC voltage can be expressed:

∆Vdc =Vdcre f −Vdc (5.22)

The Standard deviation of ∆Vdc and ∆Pe for both controllers is tabulated in Table 5.8.
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5.6 Summary

In this chapter, the state of the art converter control techniques are described, followed by the

explanation of different types of the advanced and hybrid control schemes. Modelling and

design of different schemes for the VSC control are presented with their main features and

specifications. The operating principle of the MPC strategy is explained for designer point

of view for different cases of operation. The discussions imply the potentiality of the cost

function which plays a vital role in prediction process is discussed for different control and

technical requirements. The main Fuzzy Logic techniques are describes with all definitions

of the whole components of the system. Analysis presented in this chapter shows that the use

MPC and FLC strategies have different benefits if they have been combined together to form

a new scheme of FPC to satisfy high performance operation for various power converters

technology. This type of control scheme has been simulated and tested in different cases

studies to evaluate the operation of the whole system output during uncertainty.



Chapter 6

Conclusions and Future Works

This chapter concludes the work presented in this thesis and demonstrates some of the future

research directions.

6.1 Conclusions

Currently wind energy industry indicates a trend towards the research and development of

grid connected wind turbines. The major interests of the current wind turbine manufacturers

include: variable speed (Type-4) technology, a direct-driven permanent magnet synchronous

generator of medium voltage operation and development of sophisticated control systems

to increase the efficiency of wind energy conversion and to meet grid code requirements.

In this work, the proposed robust control schemes of Back-to-Back (BB) power converter

configurations have been designed and simulated to validate the system model and deal with

various operational conditions. The following notes can be addressed as conclusions:

• The fundamentals and principles of WECS have been explained in detail. Different

types of generators and their connection categories, advantages and drawbacks are

discussed through the chapters of this thesis. It is concluded from the literature

review that Type-4 technology of BTB converters is more beneficial compared to
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other technologies. This configuration has several benefits such as high efficiency, less

mechanical parts and easy of control. Therefore the Type-4 has been selected in this

thesis which fully decoupled PMSG.

• Due to ease of use, simple and low costs, conventional control schemes using PI

controllers are common and show acceptable operational performance in the case of

linear systems and constant loads. In cases of sudden change in wind or transient

operation, PI controllers will not be suitable.

• Maximum power capturing from the wind can be obtained by adjusting the PI controller

gain parameters of the speed control loop. Achieving MPPT leads to high efficiency

in power conversion of generator side converter. Furthermore, smoothing of DC

voltage in the grid or load side converter can be achieved by adjusting the PI controller

parameters of DC link control loop in GSC control. The output results show a small

oscillation in output active and reactive powers which are due to different factors such

as parameters gain of PI controller, the value of DC link capacitor and the values of

inductance and resistance of the grid. The DC output voltage will be stable after a

small oscillation. The value of oscillation depends upon the size of DC link capacitor

and the tuning of PI gain parameters in DC link control loop of GSC.

• Advanced control schemes have been developed to control the voltage source converter

in a WECS. These control schemes have been applied to provide FOC for MSC control

section. Various control schemes have been modelled and simulated in this these,

namely traditional control scheme using PI controller, advanced control scheme using

FLC, novel control scheme using MRFC and hybrid control scheme using FPC.

• Simulations show that the FLC scheme has good performance with regard to wind

variation and reduces the overshoot in rotor speed compared to a conventional PI
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controller. This reduction in errors gives more mechanical stability to the generator in

the case of variable wind speed.

• At the same time the design of FOC using MRFC has a robust performance better

than the traditional controller and FLC in reduction of errors, overshoot and THD for

all operating conditions. Reduction in overshoot and error of rotor speed leads to an

increase in the lifetime of the mechanical parts and provides more generator stability

with variable wind speeds.

• From simulations, it is clear that the MRFC scheme is more stable in rotor speed and

enable to capture more mechanical power from the wind due to the model reference sig-

nal that enhances the set points of the controller and finally improves the performance

of the system with variable wind speeds.

• FLC has been combined with MPC to form a hybrid control scheme addressed as

FPC. The system has been simulated using a mathematical model which has obtained

a stable performance with high quality output of voltage and frequency during all

operational conditions. This control scheme has been applied to grid connection and

can be divided into two parts, MSC and GSC control. The first part of the scheme

adjusts the rotor speed to achieve MPPT, whilst the second part of the scheme controls

the DC-Link voltage in order to adjust the grid voltage as well. In cases of sudden

change in wind or transient operation, PI controllers will not be suitable.

• Compared to the traditional PI controller of available BTB converter, the proposed

hybrid control scheme configuration can be used to reduce the effects of disturbances

of wind speed. For this reason, FPC scheme has been suggested to mitigate the effects

of system variability and shows robust performance.

• Simulations show that the adjusted set value of rotor speed is more accurate where the

speed error is small which enables the system to track the maximum power captured
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from the wind. As a result, DC link voltage variation during variable wind speed is so

small; therefore the grid voltage will be maintained at constant level.

• Moreover, FPC shows a good reduction in error and overshoot of rotor speed and

gives higher output energy than the conventional controller. It is also noticed that FPC

presents a fast response to wind speed variation.

6.2 Future Works

As a future work notes, the following points is suggested:

• The configuration of grid connected DFIG of Type 3 of WECS can be investigated,

modelled and simulated as well as applying other types of controller such as sliding

mode or hysteresis current controller to overcome oscillations in the output currents

and improve the system stability and performance.

• One of the important issues with FLC is determining the values of input and output

parameters of membership functions. Although simple technique has been used

in adjusting an appropriate value of inputs and outputs parameters of membership

function. It is important to analyse the system using an advanced algorithms to obtain

the optimum values of the fuzzy system parameters and present better performance.

Therefore, more general, accurate and robust methods in optimization algorithm are

needed. For example, optimisation algorithms such as Particle Swarm Optimisation

and Genetic Algorithms can be utilised to optimise the system.

• Investigation of WECS behaviour under unbalanced grid fault conditions and develop-

ment of new control systems represent an important issue in research development to

meet the emerging grid code requirements.
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