
Received February 23, 2020, accepted March 13, 2020, date of publication March 20, 2020, date of current version April 1, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2982227

Hybrid CPU-GPU Community Detection
in Weighted Networks

STAVROS SOURAVLAS 1, (Member, IEEE), ANGELO SIFALERAS 1,

AND STEFANOS KATSAVOUNIS 2
1Department of Applied Informatics, University of Macedonia, 54636 Thessaloniki, Greece
2Department of Production and Management Engineering, Democritus University of Thrace, 671 00 Xanthi, Greece

Corresponding author: Stavros Souravlas (sourstav@uom.edu.gr)

This work was supported by the Project Algorithms and Applications in Social Networks and Big Data Systems funded by the Unified
Insurance Fund of Independently Employed (ETAA), Greece.

ABSTRACT Recently, a new trend has emerged in the field of parallel and high performance computing, the
hybrid implementation using CPU-GPUmodules. In such implementations, the computational load is shared
between the CPU and GPU, in order to improve the computational efficiency. However, the task of sharing
the computational load between the two modules is a rather difficult one, with a number of limitations being
imposed. This paper extends our recent work on community detection, which is based on transforming a
network of nodes into a set of threaded binary trees. In this work, we share the computational load between
the two units: the CPU takes specific samples of the network communities and organizes them in the form
of threaded binary trees. The GPU takes over the heavy load of reading this data and transforming it into
a path-matrix. Finally, this matrix is sent back to the CPU for analysis, community detection and overlaps,
as well as network information upgrades. Our simulation results show significant improvement over our
previous strategy and other known community detection strategies found in the literature.

INDEX TERMS Community detection, parallel algorithms, binary trees, social circles, GPU-CPU
scheduling.

I. INTRODUCTION

Several synchronous applications are based on graph-
structured data. A very important application of this kind
is community detection. The community detection prob-
lem refers to finding community structures, that is, sets of
‘‘strongly’’ related nodes. The analysis of modern social net-
works becomes rather cumbersome, as their size and number
keeps growing larger and larger. In this sense, some level
of parallelism should necessarily be employed, to reduce the
computational costs. However, it has been reported in several
works (for example, see [2], [3]) that even well-structured
parallelized strategies suffer from low speedups and high
execution times. Moreover, due to their irregular topologies
and their frequent changes, the processing of these networks
becomes even more difficult and more computational efforts
are required to accommodate these changes. This work aims
at taking advantage of the parallel processing capabilities of
the GPU [4], in order to accelerate computations, keeping in

The associate editor coordinating the review of this manuscript and

approving it for publication was Zonghua Gu .

mind though, that the GPU has different performance char-
acteristics compared to the CPU and that scheduling should
be implemented in such a way that not much synchronization
between the two modules should be needed, as this would
cause large overheads. Another idea that can improve perfor-
mance is to keep busy the maximum possible number of the
GPU threads.

Research on community detection is highly motivated by
the fact that the traditional community detection algorithms
fail to scale with the increasing number of users and the
number and complexity of their relationships.More computa-
tionally efficient algorithms are now necessary to analyze and
even predict the user’s behavior, which is of great importance
for organizations and companies, or even for political parties.
Generally, community detection strategies have to overcome
three very important problems:
1. The increasing size of social networks leading to huge

data volumes that need to be processed.
2. The irregular topologies which cause load imbalances

when a set of multiple processors is used for the compu-
tations (for example, one processor may process a node

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 57527

https://orcid.org/0000-0002-9602-2663
https://orcid.org/0000-0002-5696-7021
https://orcid.org/0000-0001-8988-2457
https://orcid.org/0000-0003-4228-2774

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

with thousands of neighbors while another processes a
node with just a few).

3. The network updates are quite often, as new users enter a
community and others leave. This causes changes to the
irregular topologies mentioned just above, which pose
another burden in community detection.

This work extends our previous parallel community detec-
tion strategy [1], which introduced the use of threaded binary
trees for community detection. One of the issues raised in
this work was whether it is possible to implement the pro-
posed algorithm or parts of it in the GPU and if such an
implementation could improve the computational efficiency.
Although it is known that the GPUs provide higher gains
when operating on problems with high B/F (bytes per flop),
like computationally intensive matrix multiplications or Fast
Fourier Transformations (FFT), there have been a lot of recent
efforts to exploit the parallelism benefits they offer on irregu-
lar problems, with generally unpredictable, input-dependent
computations and memory accesses. Tree traversals are such
an example. (for example, see [5], [6]). This work addresses
the aforementioned issues of community detection strategies
and redesigns our previous work, in such a manner that a part
of the overall computational load is performed on the GPU.
To do so, some basic design principles need to be followed:
1. To take full advantage of parallelism using a GPU,

the executing threads should avoid control divergence
like branches. Ideally, all threads in a warp (group of
threads) should execute similar instructions simultane-
ously, on different data.

2. Memory divergences should be avoided that is, consec-
utive threads should read consecutive data bytes, so as
to satisfy the memory reads with the minimum number
of memory transactions. In other words, the memory
requests should be predictable and involve aligned and
continuous memory positions. This would reduce the
total memory costs.

3. Little or no communication between the executing
threads is required, in order to explore the GPU paral-
lelism capabilities. If this is not the case, communication
overheads may occur.

4. Ideally, when large number of threads are executed
on the GPU, the GPU will reach its maximum
performance.

These principles will be further discussed when we present
our GPU/CPU scheme. The remainder of this work is orga-
nized as follows: Section II describes the related work.
Section III gives a very brief theoretical background of the
community detection problem and presents the criteria posed
in our strategy to detect memberships and overlaps. More
details can be found in [1]. Section IV describes our com-
munity detection algorithm and the CPU-GPU scheduling
strategy, taking into account the four design principles pre-
sented above. Section V presents our experimental results and
Section VI concludes the paper and offers aspects for future
work.

II. RELATED WORK

Typically, the social networks are organized into groups of
users [7]. These users join a network, create their own pro-
files, publish information and find other users with the same
interests. In this way, groups of users are formed within
networks. Such groups are referred to as communities [8]. The
nodes of a community are considered similar to each other,
dissimilar to the other nodes of the network [9] and represent
its users. The edges represent the similarity between the users
of one community or between users of different communities.
Put it in a different way, a community can be viewed as a
sub-network of highly related users, within a huge network
composed of a large number of such communities. Two or
more communities can be partially overlapping, that is, they
may have one or many common members. In cases where the
commonmembers are too many and very strongly connected,
the two communities may be indeed considered as one.

Although there has been some work on disjoined commu-
nities (a good example is the work of Staudt and Meyerhenke
in [3]), the majority of the latest algorithms study the problem
of overlapped communities. The main reason behind such
choice is that, when absolutely no overlapping is considered,
it follows that each node exclusively belongs to one commu-
nity, which is quite restricting.

The study of community structures is generally related
to the problem of network partitioning [10]. Typically, the
network partitioning problem is defined as the partitioning of
a network into a set of groups of approximately equal sizes
with minimum number of edges [9]. The general idea is to
let the network nodes represent computations and the edges
represent communications. However, network partitioning is
not the ideal method for the analysis of networks and for
community detection. This is firstly due to the fact that in real
networks, the communities formed rarely have approximately
the same size and secondly because network partitioning
does not consider the similarities between nodes (or users),
which are inherited in a social network. Moreover, network
partitioning is an NP-hard problem, thus heuristics need to
be employed.

The community detection methods try to group the net-
work nodes based on the relationships that hold among them,
in order to form strongly linked subgraphs from the entire
graph that represents the whole network [11]–[13]. Appar-
ently, the community detection has turned out to be a graph
problem and graph-based methods have been developed to
solve the problem in an effective manner. Researchers have
to deal with dynamic graphs, where nodes can be added or
removed at a time. In the remaining of this section, we catego-
rize the community detection schemes found in the literature
and briefly discuss the most representative strategies from
each category.

Generally, the community detection schemes can be
categorized into three basic approaches: (a) top-down
approaches, which start from the graph representing the
entire network and try to divide it into communities, (b) the

57528 VOLUME 8, 2020

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

bottom-up approaches that use the local structures and try to
expand them to form communities, and (c) the data-structure-
based approaches, that try to convert the entire network into a
data structure, which is then processed to detect communities.
In this section, we briefly mention the most representative
papers from each category. A more detailed description can
be found in our previous work ([1]).

A. TOP-DOWN APPROACHES

The top-down approach is based on the idea of graph or

link partitioning, that divides the overall network into small
groups, in order to detect communities. When the links con-
nected to a node are found in more than one communities,
this node is assumed to be overlapped. In [14], the authors
proposed theWeighted Community Clustering (WCC), which
computes the level of cohesion of a set of nodes S. The idea
behind this work is that good communities are those with a
significant number of triangles well distributed among all the
nodes. A similar triangle-based approach, called k−mutual-
friend subgraph was also used in [15].

Chen et al. [16] detect an initial community from the node
with the largest node strength (the sum of weights of all the
edges connected to the node). Then, the ‘‘strongest’’ node is
selected and its belonging degree (a measure based on the
coefficients of links) is measured against a threshold. The
node belongs to a community if its belonging degree is less
than the threshold. A similar approach is found in [17], where
the authors present a strategy that can detect both overlapping
and non-overlapping communities and adds one node to a
community in every expanding step.

A newly introduced top-down strategy named picaso
was introduced very recently by Qiao et al. [2]. The pro-
posed scheme detects communities using a modularity-based
mountain model, which divides the network into chain
groups (top-down) and sorts them by the weights of edges.
Based on the community features, some edges fall down and
others raise like mountains. New communities are formed
by the mountains produced. An update-modularities phase is
also included.

Generally, the top-down approaches are an interesting and
well-adopted idea to perform community detection. Their
advantage is that, they can easily detect overlapping commu-
nities, but sometimes this overlapping is too high, if a node
is connected to large number of links distributed to many
different communities. In such a scenario, processing delays
may occur, so the algorithms should be cautious regarding the
link connections they consider.

B. BOTTOM-UP APPROACHES

The second kind of approaches starts from local structures
and expands to the overall network. During this process,
various communities are formed. A number of different
ideas is used to implement a bottom-up community detection
approach.
Optimization is bottom-up approach that characterizes

the quality of an interconnected part of the network.

The community is considered as a subgraph identified by
the maximization of the nodes fitness. This measure is based
on the total internal and external degrees of the nodes of a
group (or module). The aim of optimization schemes is to
find a subgraph starting from a specified node such that, the
inclusion of a new node, or the elimination of one node from
the subgraph would lower the fitness value. Optimization
based examples are [18]–[20], and [21].

Another idea to implement a bottom-up approach is Clique
Percolation. This method assumes that a community consists
of fully connected subgraphs. Sets of such subgraphs may
overlap. The community detection is based on searching and
identifying neighboring cliques. Initially, it finds all cliques
in the network, which are then represented in the graph
by a vertex. If two cliques share a predefined number of
members, then their corresponding vertices are connected.
Thus, connected vertices on the graph represent network
communities. Interesting clique percolation techniques were
introduced in [22], [23], and [24].
Label propagation is another interesting bottom-up

approach. It is a technique that assigns labels to previ-
ously unlabeled data points. Initially, a few nodes only
have labels and, as the algorithm proceeds, the nodes
adopts the labels that most of its neighbors currently
have. Interesting label propagation schemes were introduced
in [9] and [25].

Finally, some other interesting ideas include the work of
Zhi-Xiao et al. [26], which is based on the estimation of the
nodes’ mass and on spotting their location in the network and
the Parallel Louvain Method with Refinement (PLMR) [3],
which is based on the initial Parallel Louvain Method (PLM)
introduced by Blondel et al. [27].

Generally, the bottom-up approaches have the advantage
that, in many cases, their complexity is linear. However,
strategies that belong to these sub-categories often fail to
detect very small communities, even in cases they are well-
defined. This generally happens because the initial local
structures do not capture these small communities from
scratch, and the expansion method used fails to incorporate
node-members of a community. The clique percolation strate-
gies suffer high computational costs, as they need to contin-
uously check every pair of cliques detected, to determine if
they can belong to a larger clique.

C. DATA STRUCTURE BASED APPROACHES

The data structure based approach is based on the idea of
forming a network to some type of data structure (usually
in a tree form), which is then analyzed in a way to detect
communities. Here, we briefly describe some of the most
representative examples of strategies of this type.

Ahn et al. [28] use the metric of Jaccard index to compute
the similarity for any given pair of links connected to a node.
Based on similarities, they build a link dendrogram, which is
then cut at some threshold to produce the communities. The
Overlapping Community Algorithm (OCA) [29] is based on
the idea of mapping each node to a multi-dimensional vector.

VOLUME 8, 2020 57529

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

Each node subset is then defined as the sum of individual
vectors in this set.
Agglomeration algorithms build tree hierarchies start-

ing from small clusters and expanding to larger ones.
Clauset et al. [30] presented an algorithm that starts from
single nodes and builds the dendrogram structure which
describes the community structure, while maintaining the
changes in modularity. A slightly different approach, matrix
blocking [31] constructs an hierarchy tree by recognizing
matrix column similarities between nodes. Then, partial clus-
tering is computed in the graph. Finally, another interesting
data structure approach is presented in [32]. The scheme is
called graph-skeleton-based clustering (gSkeletonClu) and
its idea is to project an undirected network to its maximal
spanning tree. Then, the optimized clusters on the tree are
detected.
Generally, the idea of converting a network to a tree

structure is an interesting one, however, this conversion
should be implemented carefully, as it may be very expensive
in terms of computation costs, especially when processing
networks of millions nodes or edges. Careful parallelism is
the solution for this issue. This work belongs to the cate-
gory of data structure based techniques and combines the
CPU/GPU modules, to efficiently scan for communities and
to reduce the computational costs.

III. COMMUNITY DETECTION PRELIMINARIES

Let G = (V ,E) be a weighted, undirected graph, where V
and E are the sets of nodes and edges, respectively. Nodes
represent users and edges represent the relationship between
two users (e.g., friendship in Facebook). The similarity wi,j
between users i and j is the weight of the edge that con-
nects i and j. This value lies in the interval [0 . . . 1]. As will
be described in the Experimental Results and Discussion
section, this value is computed based on the real data col-
lected for various networks.
The network nodes are also weighted: the weight of a node

i indicates its Network Connectivity Degree (NCD), i.e., how
well the preferences, likes, views of a user are fitted to a
community. The network connectivity degree is also between
[0 . . . 1]. In a network representation, the nodes are labeled by
boldfaced numbers, the edge values are the similarities, and
the node values indicate network connectivity degrees. The
network connectivity degree of a user i, NCDi, is computed
as follows:

NCDi =

∑

wi,j

ne
(1)

where wi,j is the weight of any edge that, relates user i with
any user j that lies in the same community and ne is the
number of such edges. For example, consider community C1
in Fig.1. User 1 has three internal links, namely with users
10, 2 and 3 and two external links, with users 5 and 6.
To compute NCD1, we only consider the internal links and
we have NCD1 =

(0.9+0.96+1)
3 = 0.953.

FIGURE 1. An irregular network with 3 communities.

Therefore, theAverage Community Connectivity (ACC) for
a communityC (ACCC) is defined as the average of theNCDs
of all the n nodes in the C , that is:

ACCC =

∑n
i=1 NCDi

n
(2)

This measure indicates how strongly the members of a
community are related.

In this work, we will use a double criterion to identify a
user’s membership to a community.

1. A user can be considered as a communitymember, either
directly, through a relationship with one or more users
of the community, or indirectly, through a relationship
with a user that is related to a member of the community.
To determine a user’s relationship to a community and
possible overlaps, we need to detect the existence of
‘‘stronger’’ in terms of weight paths, within ‘‘weaker’’
that already determine the membership to a community.
We introduce the notion of path strength (PS) as the
sum of weights on a path that connects two not directly
connected users i, j, divided by the number of hops on
this path

PSi,j =
(
∑k

i=1 wi,ri−1) + wri,j

k
(3)

where ri denotes one of the k intermediate nodes
between i and j.
Apparently, a criterion to determine the membership of
a node to a community, would be the detection of a path
starting from this node, which is stronger than the ACC
of this community.

2. The length of each path δi,j found to satisfy the first cri-
terion should not exceed the diameter d of communityC
(dC), that is, the longest path that can be found among the
nodes of C . This condition is necessary because, given a
very long path, chances are that the path similarity would
be reduced. Moreover, the ACC values are quite large,
thus condition 1 may never be satisfied. The diameter
of C gives a reasonable bound for the acceptable path
lengths. To summarize the conditions:

57530 VOLUME 8, 2020

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

Mathematically, the conditions described above are
expressed by the following inequalities:

PSi,j ≥ ACCC (4)

δi,j ≤ dC (5)

Before concluding this paragraph, let us illustrate this dou-
ble criterion with a brief example. The Average Community
Connectivity for community C1 of Fig. 1 is the sum of the
NCDs for nodes 1, 2, 3, and 10 divided by 4, that is,
0.9+0.95+0.98+1

4 ≈ 0.9575 and the diameter of C1 is 3. The
path starting from node 8 to node 4 and then to node 3

has a strength of 0.955 and its length is 2. In this case, the
double criterion is not satisfied, although the length of this
path is smaller compared to the diameter of C1, since its
strength is smaller compared to the average connectivity of
C1. However, if the weight of the link connecting nodes 8
and 4 was 1, the double criterion would have been satisfied,
and node 8 could have been considered as overlapping to
community C1.

IV. HYBRID GPU-CPU SCHEDULING

In this work, we introduce a hybrid CPU-GPU based scheme
to detect communities on weighted graphs. The main idea
behind our scheme is to detect possible overlaps between
pairs of existing communities and keep expanding the pro-
cess, using the newly formed communities. To examine if a
node overlaps with a community, we seek for strong paths
between this node and the members of the target community,
with the restriction that the path length is at most equal to
the diameter of the target community. The proposed commu-
nity detection scheme operates as follows: we take samples
of suitable size for GPU processing (this will be explained
later on), from pairs of initially formed communities (in the
Experimental Results section, we show how we can form
samples of initial communities given real data) and then we
transform these samples into threaded binary trees, using the
CPU capabilities. These binary trees are passed to the GPU,
where they are transformed into a bit-matrix form at a very
high speed. This bit-matrix form is passed back to the CPU
for path analysis, to determine overlaps. When new nodes
enter the network, they are connected to already existing
nodes, so they can be examined for possible overlaps using
the paths already determined. This expansion phase is also
implemented by the CPU.
As more and more nodes keep entering the network with

only few connections to existing nodes, this overall process
needs to be regularly repeated. Since our scheme detects
overlaps and one node is not considered as a member of
only one community, there may be cases where a pair of
overlapped communities may have only a few nodes in com-
mon but very strong internal paths and high ACCs. In such
a scenario, repeating the overall process may give us the
chance to determine that, in fact, the two communities may
be merged into a single one. The following paragraphs will
describe and analyze the three phases of our proposed hybrid

FIGURE 2. A frame describing a tree node.

CPU-GPU strategy: a) threaded binary tree formulation,
b) path formulation and analysis, and c) expansion phase.

A. THREADED BINARY TREE FORMULATION

In most of the cases, a tree structure is stored in the mem-
ory as an object (object-oriented programming) or as a link
list. However, we need a form that will be useful for GPU
processing, so we will prefer a structure of continuous array
elements. Each tree node will be stored as a 32-byte frame,
that is divided into the following fields (see Fig.2):

• Community id: A 4-byte containing information regard-
ing the community each node belongs to.

• Node id: A 4-byte value, which stores the node id,
typically an integer value.

• Left Link: A 4-byte integer value, which stores the id of
a node’s left link on the tree.

• Right Link: A 4-byte integer value, which stores the id
of a node’s right link on the tree.

• Left Thread: A 4-byte integer value, which stores the id
of a node’s left thread on the tree.

• Right Thread: A 4-byte integer value, which stores the
id of a node’s right thread on the tree.

• Weight values: There are four integer values, 2 bytes
each, which store the weight values of the node’s left
link (LLW), right link RLW), left thread (LTW), and
right thread (RTW). To avoid floating point represen-
tations, we store the weight values in an integer form,
for example, a value of 0.89 is stored as 890, a value
of 0.955 as 955, and so on.

To formulate the proper information, we transform pairs
of communities from an irregular topology to a single binary
tree. Then we add the proper threads to the binary trees,
to change them into threaded binary trees, which are con-
verted in a proper form for GPU processing. These tree
operations are described and analyzed in the remaining of this
paragraph. Transforming Pairs of Communities Into Binary
Trees: A pair of communities can initially be represented
as a forest of two trees as follows See also Fig. 3(a) for
communities C1 and C2 of Fig. 1.
1) From each community a node is assigned as the tree

root. In this work, we choose as the root the community
member with the largest number of internal links. In case
of a draw, we choose the node with the largest number
of external links. This is just a second criterion to handle
cases of a draw, there is no specific reasoning behind this
choice. Any other criterion could also be used.

2) For each node, we add the proper directed links to
members inside the community. (Duplicates are allowed
for example, if two nodes are linked to the same node)

VOLUME 8, 2020 57531

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

FIGURE 3. Transforming pairs of communities into binary trees.

provided that, the duplicate has not appeared at a higher
level of the forest (so that there is no chance of being
found twice over a path - node 7 is such an example).

Once the forest has been created, we can transform each
tree to a binary form as follows:
1) For each node i, its left subtree is LSi, a tree rooted

at its leftmost child node, in the representation of a
community as a forest.

2) For each node i, its right subtree is RSi, a tree rooted at
its right sibling, in the representation of a community as
a forest. Recall that the roots have no siblings, so they
have no right subtree.

Fig. 3(b) shows this simple procedure for communities
C1 and C2 of Fig. 1.
Finally, we link together the roots of the two trees of the

initial representation and add the one community as the right
subtree of the other. This is seen in Fig. 3(c), where C1 has
been added as the right subtree of C2. In this representation,
the left tree will be referred to as source community and the
right tree will be referred to as target community.

An important consequence of this type of representation is
the avoidance of triangles and other cycles, since each node
has its own siblings in its right subtree and its own children
in its left subtree. The elimination of triangles and cycles is
important, to reduce the time required to find paths between
communities. The existence of triangles has been shown to

FIGURE 4. Removing triangles.

be important in the formation of community structures [33].
Intuitively, a strong community includes a set of highly
interconnected nodes and such a strong interconnection is
supported by the existence of triangles between nodes i1, i2,
and i3, such that wi1,i2 ≈ wi1,i3 ≈ wi2,i3 , where these weight
values are relatively large. Although the idea of eliminating
some links by representing the network as a forest and then a
binary tree may look somehow arbitrary, it is well based on
the following proposition.

Proposition 1: For a certain triangle in the form ,
where the tree nodes have approximately the same weight w,
we can freely remove one edge, say i2 → i3 and process
only the paths i1 → i2 → . . . and i1 → i3 → . . . , but
not i1 → i2 → i3 This last path actually has the same
similarity value compared to the other ‘‘shortest’’ ones. So,
this triangle will be processed in either of the two following
ways:

(1) As shown in Fig. 4(a), if i2 and i3 are siblings, with i1
as their parent node

(2) As shown in Fig.4(b) if i1, i2, and i3 are all siblings,
with some other node as their parent.

The placement of threads will be explained immediately
after. In Fig.4 note that, the right links are used to locate
a node’s next sibling and do not indicate a straight linking
between two siblings on a path being formed, to avoid circles.
As will be explained in the Path Formulation and Analysis
section, two nodes are linked on a path via left or right threads
or via left links. Adding Threads to the Binary Trees: Each
node i has two threads, the left thread LT and the right thread
RT. The left thread of each node i simply links to its parent
node:

LT (i) = parent of i

The right thread of i is the maximum-weight link of i to the
target community. If i has no link to the target community,
then the right thread is NULL:

RT (i) =

{

i′, where wi,i′ is maximum

NULL, if no link exists

Fig.5(a) shows the threads added to the binary tree of
Fig.3(c). The ‘‘Reflection’’ of a Threaded Binary Tree: Now,
we introduce the notion of ‘‘reflection’’ of a threaded binary
tree. It is a tree similar to the one of Fig. 5(a), in which the

57532 VOLUME 8, 2020

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

FIGURE 5. (a) Representation of the binary tree of Fig. 3(c) as a threaded binary tree and (b) its reflection.

source community becomes target vice versa. This tree is gen-
erated in a similar manner and its use is to find strongest paths
between a pair of communities in the reverse direction (from
the target to the source). The left threads point to the parent
nodes and the right threads (in this case, there is only one
right thread with no NULL value) point to the highest-weight
link of each node to the target community (in this case it is
the link from node 1 to node 6, with weight equal to 0.77). Its
use will be clear when we describe the path analysis phase of
our scheme. Fig. 5(b) is the reflection of Fig.5(a).
Storing the Threaded Binary Trees Into Arrays: The

threaded binary tree and its reflection can be naturally rep-
resented as a set of 32-byte frames, in the form of Fig.2.
Each tree node requires one such frame. The reason we do
not cut down the frame size (for example, to 16 bytes per
node could also be a reasonable choice) is simply to have
enough space to represent networks with large number of
communities and nodes. Each threaded binary tree is stored
separately in an array A of size (n/4) × 128 (n/4 rows
and 128 columns), where n is the number of nodes of the tree.
The n/4 value derives from the fact that each read/write GPU
memory transaction involves a continuous area of 128 bytes.
In 128 bytes, we can store 8 half frames, 16 bytes each), thus
to accommodate n nodes, we need (n/8) × 2 = n/4 rows.
Each node is stored into two rows of the array (half 16-byte
frame in one row and another half in the immediate next row).
The format of the two half frames is similar to the one seen in
Fig.2. An instance of such an array is shown in Fig.6, in which
the 6 frames of community C2 of Fig. 5(a) are stored. Now,
if we label every node’s i half frame as NiH1 and the other
half frame as NiH2, each row j of A is filled as follows:

j = 0: A[j] = |N0H1|N1H1|N2H1 | . . . |N7H1 |

j = 1: A[j] = |N0H2|N1H2|N2H2 | . . . |N7H2 |

j = 2: A[j] = |N8H1|N9H1|N10H1| . . . |N15H1|

j = 3: A[j] = |N8H2|N9H2|N10H2| . . . |N15H2|

· ·

· ·

j = (n/4) − 2: A[j] = |N[(n/4)−2]×4H1| . . .

|N7+[(n/4)−2]×4H1|

FIGURE 6. Storing the threaded binary trees of Fig.5.

j = (n/4) − 1: A[j] = |N[(n/4)−2]×4H2| . . .

|N7+[(n/4)−2]×4H2|

The last two rows are used to store the elements of
the last 8 nodes, from N[(n/4)−2]×4 to N7+[(n/4)−2]×4. The
reason the CPU employs this storage policy will be made
clear when we describe our storage model during our
path analysis approach, in the next section. Fig. 6 shows
how community C2 (see Fig.5(a)) is stored. Note that, the
first two rows of this array correspond to node 5, the
next two rows correspond to node 6, etc. Each row stores
exactly 16 bytes of data. The nodes shown in Fig. 6 will
be stored in the first two memory rows: specifically, the

VOLUME 8, 2020 57533

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

FIGURE 7. GPU memory model.

frames |2|5|6|1|, |2|6|7|13|, |2|7|NULL|NULL|, |2|13|7|9|,
|2|7|NULL|NULL|, and |2|9|NULL|NULL| will be stored in
the first memory row and will move together in one transac-
tion, representing half-node data, while the remaining frames
will be stored in the next memory row and be transferred
together, representing the remaining half-node data.
Parallelism Issues and Computational Analysis: The main

advantage of the threaded binary tree formulation phase is
that, it is a very straightforward procedure that involves the
transformation of a community into a forest, the transfor-
mation of a forest to a binary tree, and the placement of
threads. These three procedures are clearly O(n), where n is
the number of community nodes and we can get a theoretical
speedup of n/P, where P is the number of cores of our CPU
for the overall process. Since the proposed strategy involves
no sorting (unlike our previous threaded formulation scheme)
and there is little communication, only between processors
that work on successive levels of the forest or the tree, we can
achieve almost optimal speedup for the threaded binary tree
formulation, as will be shown in the experimental results
section.

B. PATH FORMULATION AND ANALYSIS

Once the threaded binary trees have been stored, the data
in the form of Fig.6 has to be transferred to the GPU for
path formulation and analysis. Since this phase is the most
expensive (overall cost analysis follows in the end of this
section), the data have to be carefully passed to the GPU in the
most suitable form. In this paragraph, we first need to show
how to map the trees generated in Phase 1 to the GPU threads,
in order to avoid memory divergence. Then, we show how
the GPU processes the data to formulate the paths between
communities and analyze them for overlaps.
Reading the Data Into the GPU: Before describing our

GPU mapping strategy, it is necessary to describe our GPU
memory model, which is shown in Fig. 7. All the executing
threads are organized into blocks and the blocks are executed

on a single streaming multiprocessor. Fig. 7 shows a SMwith
eight blocks. The application global memory is accessible
from all the blocks. Each SM can have a maximum number
of blocks and each block is divided int groups called warps.
Each warp has 32 threads that execute the same instructions
on different data, in parallel. In our scheme, each warp will
be processing two threaded binary trees. Specifically: half
warp will be processing a threaded binary tree (the source
community) and the other half will be processing its reflec-
tion (the target threaded binary tree). Each load/store memory
transaction can read or write up to 128 byte of contiguous
memory. With 4-byte data words, the result is that each
memory transaction can read or write up to 32 values. It is
important that these values fall within the same memory
segment, where each segment starts from an address, which
is an integer multiple of 128 bytes. If this is not the case,
part of the bandwidth is unexploited (uncoalesced memory
transactions).

Generally, the available threads can access data frommulti-
plememory spaces while executing. For example, each thread
has its own private local memory, while blocks of threads
have their own shared memory, which is accessible to all the
threads that belong to the block. This shared memory is very
fast, however its size makes it unsuitable for applications with
high storage demands. A typical shared memory of 48KBytes
places severe limits to the amount of nodes that can be stored.
If each node is stored in 32 bytes, only 48×1024

32 = 1536
nodes can be stored per block. With a block of 256 threads
(which is normal, since it is desirable to have as many as
possible active threads), this means that each thread can only
store six nodes in the shared memory. Moreover, reducing the
number of threads would be inefficient: the shared memory
would be enough but because of the large number of nodes,
many transfers between this memory and the global memory
would be necessary and this is a burden. A possible idea to
be used in order to (at least at some extent) use the shared
memory is to take advantage of the temporal locality of the

57534 VOLUME 8, 2020

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

data generated in the path matrix. However, because of the
small size of this memory, the algorithm has to be changed
so that: 1) Node samples should be processed instead of the
overall network, in order to reduce the data being stored, and
2) The algorithm has to be changed to work in a pipeline
fashion, so that the time losses due to the necessary regular
transfers between the shared and the global memory overlaps
with some other useful operation. This is part of our future
work. For this reason, our implementation will not use the
GPU sharedmemory, despite its higher speed compared to the
global memory. Another sort of memory is the so called Uni-
fied Memory, shared between the CPU and the GPU. In this
approach, we will not make use of the unified memory. To the
best of our knowledge, this memory has one disadvantage: the
CPU cannot access any portion of the unified memory, while
the GPU is executing, that is, synchronization is required
for the CPU to be allowed to access unified memory. In our
scheme, we try to avoid such synchronization issues, so we
have chosen to work on the GPU global memory.
The number of threads executed in parallel depends on the

amount of hardware available (for example, registers) and
the thread-block size. It is desirable to have a high number
of active threads, in order to take advantage of the stalling
time of the memory transactions. Specifically, when a warp
requires reading some data, its threads are put to stall waiting
for the transaction to complete. During this time, the warp
scheduler can detect another warp not stalled and put its
threads into execution. This type of behavior is necessary to
smooth the effects of constant memory reads which take place
in our scheme.
To efficiently read data from the global memory, that

is, to maximize the global memory bandwidth, it is impor-
tant to minimize the number of memory transactions. These
memory transactions are implemented on a half-warp basis
(16 threads), which means that a memory transaction issued
will satisfy half warp. The total number of transactions is
minimized via coalesced memory access, which refers to
the combination of a number of memory accesses into one
transaction. In other words, the memory requests for half a
warp are satisfied in one memory transaction. During each
transaction, each thread can read at most 16 bytes, and the
maximum bus transaction size is 128 bytes. The memory
segments should be aligned, so their first address should be
an integer multiple of 128. The pseudo-code of the algorithm
used to perform coalesced reading from the global memory
is given in Algorithm 1.
The remaining half-warp can use the same algorithm to

read the reflection of the threaded binary tree, which is
stored in the same fashion as the threaded binary tree. The
transactions for the other half-warp are issued independently.
In other words, half of a warp reads and processes the paths
from a source to a target community and the other half works
in the ‘‘opposite’’ direction (by processing the reflection tree).
Now, let us illustrate how this algorithm is applied for the

storage pattern we presented for the array A, which is used
by the CPU to store the binary threaded trees. The reason

Algorithm 1: Coalesced Global Memory Reading per
Half-Warp

input : An array of n nodes, with size n/4 × 128, each
node is stored in 32 bytes
index: the starting address for each thread
mem : the first byte of an 128-byte segment
block_id : the id of a block
thread_id : the id of a thread within a warp

output: Each half-warp reads the proper data with the
minimum number of transactions

1 begin

2 Locate mem, as the first memory address of the 128-byte
segment requested by the thread with the lowest id
number

3 Spot the consecutive, 8 in total, active threads whose
requested data is located within this segment and locate
the starting address for the data they request as follows:

4 index = block_id × n
4 + [thread_id × 16] + mem

5 Load the 128-byte data into registers for these 8 threads
(16 bytes per thread)

6 Repeat Steps 2 and 5 to read another 16 bytes into these
8 threads

7 Mark the threads that completed their reading as done
8 Repeat steps 2 to 7 for the remaining 8 threads of the

half warp
9 end;

we have chosen the size of A to be (n/4) × 128 is because
each thread can read at most 16 bytes in each memory trans-
action. Also, all the memory transactions are implemented
in batches of at most 128 bytes. This means that, in every
transaction, eight threads can read half a frame, so they need
two transactions to read a full frame. In other words, eight
nodes are completely read within two transactions which
means that, we need a total of n/4 transactions to fully read
a threaded binary tree with N nodes. Thus, A has n/4 rows
and 128 columns. Each transaction is on a ‘‘half-warp’’ basis,
but in our loading scheme we use half of this ‘‘half-warp’’,
that is, eight threads, each reading 16 bytes. Apparently,
as data is stored in A in the form of 128-byte rows, each
transaction reads exactly one row of A.
Let us use an example of a set of eight threaded binary

trees and their reflections, which contain 64 nodes (we use
a small number of nodes to make the illustrative example
more clear). These trees will be handled by eight warps
found in block with id = 0. Also, suppose that the CPU has
stored the nodes in continuous positions of an array of size
8 × 2 × 64 × 32 = 32KBytes, starting from address 0 up to
address 32K-1. Initially, thread 0 (thread with the lowest id)
will locate mem = 0, the address of the byte segment that it
requests. Now, the threads t0 − t7 will compute their index
value as

index = block_id ×
n

4
+ [thread_id × 16] + mem

VOLUME 8, 2020 57535

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

FIGURE 8. Applying Algorithm 1 to perform four memory transactions.

Thus, the eight threads will start from the following
addresses:

t0 : 0 × 64/4 + 0 × 16 + 0 = 0

t1 : 0 × 64/4 + 1 × 16 + 0 = 16

t2 : 0 × 64/4 + 2 × 16 + 0 = 32

t3 : 0 × 64/4 + 3 × 16 + 0 = 48

t4 : 0 × 64/4 + 4 × 16 + 0 = 64

t5 : 0 × 64/4 + 5 × 16 + 0 = 80

t6 : 0 × 64/4 + 6 × 16 + 0 = 96

t7 : 0 × 64/4 + 7 × 16 + 0 = 112

This 128-byte segment is loaded to these eight threads
(step 5). Then these steps are repeated to load another 16 bytes
to the very same threads. The memory location mem is now
set to 128 and the index values are similarly computed:

t0 : 0 × 64/4 + 0 × 16 + 128 = 128

t1 : 0 × 64/4 + 1 × 16 + 128 = 144

t2 : 0 × 64/4 + 2 × 16 + 128 = 160

t3 : 0 × 64/4 + 3 × 16 + 128 = 176

t4 : 0 × 64/4 + 4 × 16 + 128 = 192

t5 : 0 × 64/4 + 5 × 16 + 128 = 208

t6 : 0 × 64/4 + 6 × 16 + 128 = 224

t7 : 0 × 64/4 + 7 × 16 + 128 = 240

Then, nodes t8 − t15 read their nodes in a similar fashion,
to complete the readings of the half warp. These 16 threads
will repeat this reading mode, until all the nodes of the
threaded binary tree are read. Independently, the other half
warp reads the bytes of the reflection tree. Fig. 8 shows the
first four memory transactions, for threads 0 to 15.
Forming the Paths: The path formulation is performed on

the GPU, in order to have the proper data available at the
higher possible speed. However, the use of the GPU places
a number of limitations, so the design of the path formulation
phase has to obey to a a number of rules:

1. To fully exploit parallelism, any type of control diver-
gences (like if-then-else statements) has to be avoided.

2. The writing of the results to the global memory
should ideally be coalesced (like the readings) so that,
we achieve a minimum number of memory transactions.
This means that the threads that process the tree nodes
should transfer back to the path data in a contiguous form
of 128 byte segments.

3. The CPU should receive the paths in a way that, it can
use them to efficiently execute the expansion phase.

To facilitate the path storage, we use we use a path matrix,
P , which stores the nodes that need to be linked to form the
paths. This linking is performed before the expansion phase
by the CPU. The path-matrix is n × n-bit long array, where
n is the number of nodes of the threaded binary tree. If we

57536 VOLUME 8, 2020

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

let n be a multiple of 32 (that is, n = n′ × 25), the size of P
will be an integer multiple of 128 bytes, since n′×25×n′×25

23
=

(n′)2×27 = 128(n′)2. Therefore, the path-matrix can reside in
the global memory and be made available to all 32 threads of
a warp in a series of (n′)2 broadcast (coalesced). Also, all the
threads can read/write to P simultaneously. The idea behind
updating the path matrix is as follows:
Each node being processed initiates a path followed by its

left child and follows the path followed by its parent. Also,

it initiates one path starting from its parent node followed by

its right link (sibling with the same parent). All the required

information has been read by the thread processing this node

using Algorithm 1.

Algorithm 2 presents the path matrix update process.

Algorithm 2: Updating the Path-Matrix

input : Each node’s LL, RL, LT, RT and the
corresponding weights from array A

output: Path-matrix P

1 begin

2 Set all elements of P to 0.
3 foreach thread t in a warp
4 let nt be the node processed by a thread t
5 P[nt ,LL] = 1 // a path continuing at node LL
6 P[LL, nt] = 1 // as in line 5, but opposite

direction

7 P[LT ,RL] = 1 // new path originating from
8 // nt ’s parent, followed by

n′
ts

9 // n′
ts sibling

10 P[RL,LT] = 1 // as in line 7, but opposite
11 // direction
12 P[nt ,RT] = 1 // path to the target community
13 P[RT , nt] = 1 // as in line 12, but opposite
14 // direction
15 end foreach;

16 end;

In the example of Fig. 5(a), let us see how the thread
that processes node number 6 will update P . From line 5,
it will set P[6, 7] = 1, indicating that node 7 follows a path
immediately after node 6 (note that, the thread processing
node 5 has used the same instruction to add node 6 to a path
started at itself. This suggests a very important property of
our scheme related to synchronization that, will be discussed
after this example). Then (line 6), the same path is defined
in the opposite direction, that is, P[7, 6] = 1. Then (line 7),
P[LT ,RL] = P[5, 13] = is set to 1, to define a path starting
from node’s 6 parent, that is node 5, followed by node’s 6
sibling, that is node 13. Line 10 is doing the same job, but
in opposite direction. Lines 12 and 13 set to 1 the values
that define paths to the target community, so P[nt ,RT] =

P[1, 6] = 1 and P[RT , nt] = P[6, 1] = 1. Table 1 shows
the overall P matrix for the tree of Fig. 5(a).

TABLE 1. Matrix P as formed by the warp handling the tree of Fig. 5(a).

The path-matrix is now ready to be read and analyzed
by the CPU. Before proceeding to the reading and analysis
phase, it is important to mention the following properties of
our path formulation scheme:

1. Our scheme does not make use of dynamic structures
like queues or stacks to store the path data. This would
necessarily require synchronization between threads,
e.g., in our previous example, the thread that processes
node 6 should add node 6 to its queue before the thread
processing node 7. However, when working with threads
that execute in parallel, there is no guarantee of a spe-
cific order of execution, unless some type of lock or
semaphore is used. In such a scenario, some parallelism
will be lost.

2. The path-matrix is a multiple of 128 bytes (provided
that, the number of tree nodes is a multiple of 32). Thus,
it can be made available in a few memory transactions
to all the warp threads, thus coalescing can be achieved.
Moreover, it is a bit matrix, thus its size is relatively
small.

3. Control divergence is also avoided, so we fully exploit
parallelism to produce the path-matrix.

4. The implementation described focuses on the NVIDIA
GPU architecture. For example, the aforementioned
architecture uses 32 warps per thread, while other archi-
tectures likeAMDuse 64 threads in their hardware. Each
vendor may decide to change that, and probably new
hardware vendors may decide to come up with other
sizes. However, our work can be directed to a differ-
ent architecture with slight modifications. For exam-
ple, if the warp size becomes 64, then, an architecture
that supports memory transactions of 256 contiguous
bytes would give exactly the same scheduling as the one
described.

Analyzing the Paths: Once the paths have been written in
the form of a path-matrix, this bit-matrix is transferred to the
CPU, for path analysis. The main reasons that, we prefer the
CPU to analyze the paths and determine new communities
and overlaps are the following:

1. Reading and analyzing involves control divergences,
which should preferably be avoided by the GPU.

2. The path sizes are not known in advance, so dynamic
memory allocation is required, which generally reduces
the GPU performance.

VOLUME 8, 2020 57537

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

FIGURE 9. The first two zigzag moves for the example of Table 1.

3. The CPU will have to process a rather small bit-vector
for each pair of communities, so the memory and
processing costs are efficiently reduced. Moreover, the
proposed path analysis is scheduled to be efficiently
parallelized by the CPU cores.

When the CPU receives P , it can easily examine possible
overlaps between a node and a community by:
1. Reading the node’s data from P

2. Applying the double criterion of Section III, to deter-
mine the node’s membership to a community.

Algorithm 3 presents the pseudo-code for our path analy-
sis. The algorithm indicates a greedy strategy, which finds
path from a selected node to other nodes of the threaded
tree by employing a left-to-right and top-to-bottom zigzag
move on a copy of P , say P ′. There are two procedures,
one handling the ‘‘right’’ move on P ′ and one handling the
‘‘down’’ move. Specifically, the algorithm for path analysis
operates as follows:
1. Creates a copy of P , say P with its rows down-rotated

and its columns left-rotated so that, the node examined
is located in the first row and column, to allow zigzag
‘‘right’’ and ‘‘down’’ moves.

2. Generates an active list, which includes all the node
labels corresponding to the positions of the first row
which are filled with 1’s. These are the nodes that, the
source will follow to form the paths.

3. Starting from the first row, the algorithm proceeds right-
wards (‘‘right move’’) to find the first non-zero element
(this corresponds to the label of the first element of
the active list). Then, it moves downwards (‘‘down’’)
until it finds the first non-zero element. The sequence

of ‘‘right’’-‘‘‘down’’ moves continues, until either a
‘‘right’’ move finds no other 1-element on the row being
processed, or a ‘‘down’’ move finds no other 1-element
on the column being processed, or we have reached the
last row/column position, indexed n− 1, for a matrix of
n elements. All the nodes labeled in the positions this
zigzag move has passed are added to the current path
and when the move completes, the entire path is stored
to the path scheduling matrix, S.

4. The last element to be found equal to 1 is eliminated
(becomes 0) and the process continues, until all the
paths involving the source node and the first node of the
active list are exhausted. This node is removed from the
active_list.

5. The next element of the active_list is selected and the
original P matrix obtained from the GPU is copied to
P ′ to restart the process, with one difference: The posi-
tion corresponding to the active_list element that was
removed in step 4 gets a 0 value, to avoid reprocessing
paths involving this element.

An Illustrative Example: To clarify the ideas of the path
analysis scheme, we use the example of Table 1 and see how
the paths starting from node 5 will be processed. For node 5,
there is no need for rotations. If, for example, we were to
process node id 7, the rows and columns would be rotated
so that they appear in the order: 7, 9, 2, 13, 3, 10, 5, 6, 1.

Fig. 9 graphically displays the formulation of two paths
originating from node 5 followed by node 6. As it can be seen
from Table 1, the active list includes node labels 6, 7, 9, and
13. These labels correspond to the positions of the first row
which are filled with 1’s. When the scan_right procedure is

57538 VOLUME 8, 2020

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

Algorithm 3: Path Analysis

input : Path-matrix P ′ (copy of P after proper rotation)
of size n× n

output: Path-scheduling array S for a source node

1 begin

2 set active_list={all j.labels for which P[1, j] = 1}
3 Add first active_list element to cur_path, Set i, j to 0;
4 while active_list not empty
5 scan_right (i,j);
6 procedure scan_right(i,j)
7 begin

8 y = j; j = j+ 1; Add source node to cur_path;
9 while (P[i, j] 6= 1)
10 if (j == n− 1) then // indexing starts from 0

11 if (i == 0) then terminate;
12 else

13 {
14 Set P ′[i, y], and i, j, x, y to 0;
15 break to Line 4
16 }
17 end if;
18 j = j+ 1;
19 end while;
20 add j.label to cur_path; cur_path.length+ +;
21 if (i < n− 1) then scan_down (i,j);
22 else

23 {
24 scan_down (i − 1, j); P ′[i, j] = 0
25 }
26 end procedure;
27

28 procedure scan_down(i,j)
29 begin

30 x = i; i = i+ 1;
31 while (P[i, j] 6= 1)
32 if (i == n− 1) then // indexing starts from 0

33 P ′[x, j] = 0; store cur_path to S;
34 Compute cur_path’s strength by Eq.(3)
35 if x == 0 then remove x.label from the
36 active_list;
37 Set i, j, x, y → 0; break to Line 4;
38 end if;
39 i = i+ 1;
40 end while;
41 add i.label to cur_path; cur_path.length+ +;
42 if (j < n− 1) then scan_right (i,j);
43 else

44 {
45 scan_right (i, j − 1); P ′[i, j] = 0
46 }
47 end procedure;
48 end while;

49 end;

called with parameter values (i, j) = (0, 0), the while loop
increases the column index j until it finds the first 1 in position
j = 1, corresponding to node number j.label = 1.label = 6.
Note that, the if clauses of lines 11-18 have false values,
thus, no effect. Node 6 is the first node of the active list, so it is
added to the cur_path (Line 20). The cur_path now becomes
[5,6], its length becomes 1 + 1 = 2 and the scan_down
procedure (Line 22) is called with parameters (i, j) = (0, 1)
for the next zigzag ‘‘down’’ move. The scan_down procedure
stores the row value by which it was called in variable x,
so x = 0 and keeps increasing i until it finds the first 1 in
column j = 1. The if clauses have no effect as we haven’t
reached the end of this column (i < n − 1), so after two
iterations, the first 1 is located, for i = 2. The corresponding
i.label value is 1, so node 1 is added to the current path,
thus cur_path = [5, 6, 1] and its length becomes 2 + 1 =

3 (Line 42). Now, scan_right is called for the next zigzag
‘‘right’’ move, with parameters (i, j) = (2, 1).

The scan_right procedure stores the column position value
by which it was called to variable y, that is y = 1 (Line 9) and
keeps increasing the column values (‘‘right’’ moves) until the
first 1 is found, at column j = 7. Since 7.label is node 3, this
node is added to cur_path, which becomes [5, 6, 1, 3] and its
length becomes 3+1 = 4 (Line 42). Sincewe haven’t reached
the last column element, scan_down is called with parameters
(i, j) = (2, 7). Again, it stores the row value by which it was
called to x, so x = 2 and starts a ‘‘down’’ move. However,
it reaches i = 8 and there is no non-zero element. Now, the
condition of Line 33 holds, since i = n−1 = 8. The algorithm
now will perform as follows: (1) it turns the value of P ′[2, 7]
to 0 (Line 34), so that no other path processed can follow the
route 5,6,1,3 (the path 5,6,1 could have been followed only by
node label.8 = 10, if this value was 1), (2) stores cur_path
[5,6,1,3] to S (Line 34), (3) Computes the path strength by
Eq.(3), which is 0.82+0.77+1

3 = 0.86. The zigzag moves to
form this path are shown by the arrows of Fig.9. Note that, this
algorithm is greedy: a stepwise algorithm could have placed a
condition to stop the zigzag moves upon reaching an element
of the target community, in this example, node 3. However,
the greedy approach, although slower, has the advantage that
more paths are available for the update phase. Because x 6= 0
(Line 36), it follows that there are more paths to be processed,
which involve node 6. Thus node 6 is not removed from the
avtive_list. Then, the algorithm sets all the variables i, j, x, y
to 0 and breaks to Line 4, to continue processing.

The scan_right process will start with parameters (0, 0),
and the consecutive calls scan_down(0,1) and scan_right(2,1)
will be repeated as before, generating the cur_path [5,6,1].
However, when scan_right(2,1) executes, it will store the
value of y = 1 by which it was called, but then it will
find no other non-zero element on the right until position
(2,8) of P ′ [recall that (2,7) has now a zero value]. Thus,
because i = 8 = n − 1, the If clause of Line 11 is true.
The second If clause of Line 12 is false (we are not in the

VOLUME 8, 2020 57539

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

first line, so more paths including node 6 are to be processed).
The control passes to Line 15, P ′[2, 1] becomes 0, indicating
that the path [5,6,1] will no longer be processed. Again,
variables i, j, x, y will turn to 0.
Then, scan_right is called again with parameters (i, j) =

(0, 0), then scan_down(0,1) is called and the next 1 in column
j = 1 corresponds to node 7 (P ′[3, 1]). Processing continues
as described above, and the first path to be formed is [5,6,7,9]
and it is shown using the dashed arrows in Fig.9. Then,
in a similar manner, the path [5,6,7] is formed and position
P ′[3, 1] is set to 0.
Finally, scan_right is called again with parameters (i, j) =

(0, 0), again scan_down(0,1) is called, but there is no other 1
available in column 1. Now, x has stored the value of 0 (row
index by which the procedure was called), the if clause of
Line 33 is true, P ′[0, 1] becomes 0, cur_path [5,6] is stored
to S (Line 34), but this time the if clause of Line 36 is also
true. Thus, the node labeled at row x, column 1, that is, node 6
has to be removed from the active_list. This means that, the
new copy P ′ that will be used for further processing will
have the same values as P , with the exception of P ′[0, 1]
which will be set to 0, so to avoid processing paths including
the link 5 → 6. In the next time scan_right is called, with
parameters (i, j) = (0, 0) and using the new copy of P ′,
it will initially call scan_down(0,2), to start forming the paths
involving nodes 5,1.
Parallelism Issues and Computational Analysis: This

phase involves updating the path-matrix, which is performed
on the GPU and the path analysis, which is performed on
the CPU. The path-matrix updates are performed in a GPU
warp and by taking threads with node numbers multiple of
32, each warp processes n/32 threads at full speed. Moreover,
the memory operations are fully coalesced and the overhead
induced by their large numbers is soothed by the fact that,
multiple threads are kept busy. Each SM can work on a set
of community pairs to update various path matrices. The
procedure is O(n) per threaded tree and we obtain almost
full speedups of O(n/T), where T is the number of executing
threads.
For the analysis performed on the CPU, we can get max-

imum performance, by trying to take such samples from the
communities that, the binary threaded trees formed are com-
plete (or at least, most of the nodes other than the leaves have
one left and one right link). Under this hypothesis regarding
the construction (which can generally be satisfied, as each
node of our threaded binary trees has one sibling on the right
link and one child on the left) of the threaded binary trees, the
internal path length of the tree is m log(m) + O(m), where m
is the number of internal nodes (not leaves). Thus, for a set of
m1 nodes in the source node’s active_list, we require at most
m1[m log(m) + O(m)] and this value is optimal [34].

C. EXPANSION PHASE

One of the main problems in the analysis of social networks
is that their structure changes in a rapid way, from moment
to moment due to nodes entering/leaving the network.

When a node leaves the network, processing is quite straight-
forward: the new node is simply removed from all the paths
it is involved and the path strengths are computed accord-
ingly. When new samples are taken to define new paths, path
strengths and communities, these nodes are not taken into
account. When new nodes enter the network, the nodes to
which it is connected are re-examined and their strengths are
re-computed. The newly entered node is considered as part of
those communities, for which its paths’ satisfy Eq.(4) and (5).
If this is not the case, the new-coming nodes are considered
to form their own communities.

Let us analyze the updating process. Initially, all the nodes
are members of a single community and their path strengths
determine their membership to other communities. Because
the threaded binary tree structures we develop involve pairs
of communities it is clear that, the information regarding its
membership to other communities will be spread all over the
CPU processors. A node may have a number of connections
inside a community (internal links) and a number of relations
outside a community (external links). The internal links are
the ones necessarily stored in the same processor. The local
clustering coefficient (see [35]), denoted as lcc is the ratio
of external degree/total degree for each node. Specifically,
each node shares lcc of its links with the members of its
community and 1− lcc with members of other communities.
Apparently, lcc ∈ [0 . . . 1]. As new nodes enter the network,
the lcc changes. When the newly inserted node has most of
its links to nodes of the same community, thus its lcc → 1,
then the algorithm performance increases.

To prove this fact, assume that, for a newly inserted node i,
all its links, say l in total, lie in community C , thus lcc = 1.
In this case, we only need to examine the membership of i to
C and the information required (the paths) is stored locally
in one processor. Therefore, a set of κl paths will be re-
computed, where κ is an integer value and the overall cost
isO(κl). Now, if one link of i, say i′, is outside C and belongs
to C ′, then the membership of i to C ′ has to be examined
as well. In this case, if there are l ′ links of i′ in C ′, then a
set of κ ′l ′ paths will be re-computed, where κ ′ is an integer
value and the overall cost is O(κ ′l ′)1, where 1 represents
inter-processor communication overheads. Now, if without
loss of generality, we assume that each neighbor of i outside
C has, on the average, M links in their neighborhoods. the
overall complexity would be lcc[(κl)] + (1 − lcc)(l ′M)1.
Consequently, the overall computational costs decrease as
lcc → 1 and increases as lcc → 0.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The community detection algorithm was implemented using
an object-oriented environment, where each node is imple-
mented as an object-member of a threaded tree. As it can be
clear from the description of the previous sections, the proper
data is exchanged between processing units and elements as
required (for example, between the CPU and the GPU during
the second phase or between the processing elements of the
CPU in the third). For our simulation environment, we used

57540 VOLUME 8, 2020

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

an Intel Core i7-8559U Processor system, with clock speed
at 2.7GHz, equipped with four cores and two threads/core,
for a total of 8 logical processors. The GPU used for our
simulations were implemented on a TESLA K10 GPU (an
NVIDIA GPU), with 3072 cores, 192 cores per SM, 16 SMs,
warp size equal to 32 threads and global memory of 8GB.
With 3072 cores, we can theoretically have 3072 independent
trees being processed, but because of the intense memory
transactions required to transfer tree structures from the CPU
to the GPU, we avoid to process simultaneously so many
trees.
To evaluate the performance of our proposed scheme,

we used five real-world datasets: ego-Facebook, ego-Gplus,
ego-Twitter, Pokec and Livejournal. Pokec is the most popu-
lar on-line social network in Slovakia. The popularity of this
network remains high despite the advent of Facebook. Pokec
connects more than 1.6 million people. LiveJournal is an
on-line communitywith almost 10,000,000 quite activemem-
bers, in which users maintain journals, and blogs. It allows
people to declare friendship with other network members.
The data is available online at [36]. Our algorithm will use
this data, in search of social circles or social lists.1 These
terms refer to mechanisms employed by the users to organize
their networks and the data generated by them. McAuley and
Lescovec [37] suggested three properties for circle formation:
(1) The nodes within a circle should share some common
properties, likes, opinions etc., (2) Completely different cir-
cles are formed by completely different properties, likes,
opinions etc., and (3) Circles do overlap, that is ‘‘stronger’’
circles can be formed within weaker ones, in the sense that
stronger paths can be formed within weaker ones in the
algorithm presented in the previous section.

A. DESCRIPTION OF DATA USED AND ADAPTATION TO

THE PROPOSED SCHEME

Table 2 presents the basic statistic properties of the three net-
works being used. The triangles are basic structural properties
of social networks and they represent a strong relationship
between three nodes. Our algorithm handles the triangles
using the left thread value of the binary tree. Dense com-
munities generally tend to have large number of triangles.
The diameter values show the number of nodes that should
be traversed to travel from one vertex to another, excluding
backtracks and loops. The value of average local clustering
coefficient (alcc) is the average lcc for all the nodes of the
network.
For each network, a combination of features describing

the users was used. The data, as presented in [36] were not
in a proper form for the purpose of our algorithm, so we
had to make some kind of adjustment, to adapt the data to
the input demands of our scheme. Here, we describe the
transformations we made for the ego-Facebook network. For
the other networks, ego-Gplus and Twitter, we worked simi-

1The first term is used in Google+, while the second is used in Facebook
and Twitter, but they practically mean the same thing.

larly. For each user examined (called ego), a set of combined
features has been created. This set includes all the combined
features possessed by at least two users, with whom the ego is
related. This means that attributes owned only by one person
related to the ego (for example, rare first names, or rare
ages like 90+) tend to disappear. In [36], one can find data
for a total of 26 attribute categories, including hometowns,
education, birthdays, political affiliations, schools, etc and
for different egos, the set includes different number of com-
bined features. Table 3 shows 10 of these combined features,
collected from the users related to with ID=0. For these
users, there are 224 different combined attributes (shown
in file named 0.featnames). Also, note that the attributes
are encoded as integer values, to maintain users’ privacy.
In Table 3, the attribute with ID=0 corresponds to an age
(apparently, one can find many more age attribute IDs, that,
taken together, describe the range of ages of the users related
to ego with ID=0), the attribute with ID=21 describes a
combination of education and degree (again there are many
combinations of education types and degrees with different
IDs), etc.

Each ego forms circles with a set of nodes, based on
the attribute values. These circles will be used as the ini-
tial communities for our algorithm. First, we give a circle
example and then we will formally describe how to trans-
form the given data to produce our initial communities in
the form of weighted graphs. Based on the data given in
[36], circle_13 of ego with ID=0 includes the node ID’s (or
users) 138, 131, 68, 143, 86. The binary values at positions
0,21,30,53,72,77,78,79, 100, and 140 of their bit_vectors are
given in Table 4. From these values, it follows that, taking
into consideration the 10 attributes of Table 3, the similarities
wi,j between each pair of nodes (i, j) can be computed by tak-
ing the bitwise Exclusive-OR (XOR) of their corresponding
bit_vectors I , J into bit_vector W , counting the number of
1s resulted, and divide this number by the total number of
attributes examined, in this case, 10. Mathematically:

wi,j =
Num. of 1s in vector W

Num. of Attributes
, where W = I ⊕ J (6)

By implementing (7), we get the following similarity val-
ues between the pairs of nodes of the circle:

w0,138 = 0.9, w0,131 = 0.9, w0,68 = 0.6

w0,143 = 0.8, w0,86 = 0.7, w138,131 = 1

w138,68 = 0.7, w138,143 = 0.7, w138,86 = 0.8

w131,68 = 0.7, w131,143 = 0.7, w131,86 = 0.8

w68,143 = 0.8, w68,86 = 0.9, w143,86 = 0.9

and these values will be used for the link weights when
forming the threaded binary trees.
For the simulations described in the next paragraphs,

we took samples of circles found in [36] for given egos
as our initial communities, keeping in mind though that:
(1) the size of these initial communities should be a mul-
tiple of 32 to allow coalesced data reads in the GPU, and

VOLUME 8, 2020 57541

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

TABLE 2. Statistic properties of the datasets for the five social networks selected for experiments.

TABLE 3. Some combined features of users related to ego with ID=0, as shown in [36].

TABLE 4. Bit_vectors for the subset of attributes of Table 3.

(2) different samples from one community could be taken
in different simulations. Then, we kept adding new nodes to
form new communities, examine a given ego’s membership
to these communities and spot community overlaps (circles
within circles or, in our terminology, ‘‘stronger’’ paths within
‘‘weaker’’).

B. EXPERIMENTS AND PERFORMANCE EVALUATION

In this paragraph, we present our experimental results per
phase of the algorithm proposed. The experiments of phase
A and B can be used to measure the strong scaling of our
scheme, while phase C is used to measure its weak scaling.
In the end, we compare the scaling of our scheme to the
scaling and runtime of our scheme to other state-of-the-art
methods, like PLMR [3] and the recently introduced picaso
scheme [2].

1) PHASE A: THREADED BINARY TREE GENERATION

In our previous work, the first phase was divided into two
procedures: The SORT procedure, which sorted every node’s
list of neighbors, performs sorting in a pipeline fashion and
the TBTGEN procedure that takes an ordered list and adds
the proper threads. In our CPU-GPU scheme, we use two
procedures, the one that translates the network to a forest
(from now on, it will be referred to, as NETOFOR) and
the one that changes each forest into a threaded binary tree
(from now on, it will be referred to, as FORTOTHR). Thus,
to compare the first phase of the two algorithms, we need

to compare the SORT to the NETOFOR procedure and the
TBTGEN to the FORTOTHR procedure.
NETOFOR vs SORT: In the following, we compare the

speedups obtained by running the NETOFOR and the SORT
procedure for the 5 real network datasets, using up to
8 threads. Apparently, the speedups obtained are related to
the execution times of the two procedures, but for the strong
scaling behavior, we decided to present only the speedups
here, for clarity reasons.

The cost of the SORT procedure depends on the number of
neighbors per node to be sorted. For very small networks like
Facebook with only about 4,000 nodes, it achieves an almost
perfect speedup. However, as the networks become larger
and the pipeline-based sorting requires more inter-processor
communications, overheads increase, as sorted sub-lists
are communicated and thus the speedup is reduced. The
speedup achieved by the NETOFOR procedure overcomes
the speedup of the SORT procedure when working on very
large networks like LiveJournal. The NETOFOR procedure
does not make use of any sorting procedure and requires
fewer inter-processor communications, which involve pro-
cessing elements working on adjacent levels of the initial for-
est. For smaller networks, the speedups achieved are almost
identical, but for larger networks we have managed speedup
increases up to ≈ 27% (See Fig. 10). For example, referring
to the LiveJournal network, the speedup achieved by SORT
was 5.5, while NETOFOR reached a speedup of almost 7.
FORTOTHR vs TBTGEN: In the following, we compare

the speedups obtained by running the FOTTOTHR and the
TBTGEN procedure for the 5 real network datasets, using up
to 8 threads. Again, we present only the speedups here, for
clarity reasons.

The TBTGEN procedure suffers a total of m2 value com-
parisons per neighborhood in order to determine the left
thread values, when generating the threaded binary tree.

57542 VOLUME 8, 2020

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

FIGURE 10. Phase A -NETOFOR vs SORT- strong scaling behavior.

To the contrary, the FORTOTHR procedure compares m

values to find the maximum-weight link to add as a right
thread value. The experimental results of Fig. 11 (strong
scaling) show that the FORTOTHR speedup is about 20%
larger (5 against 4.1) than the TBTGEN speedup, referring
to largest network, LiveJournal. No better improvements can
be achieved due to the extra storing procedure, which is
necessary to transform the data into a format suitable for GPU
processing.

2) PHASE B: PATH FORMULATION AND ANALYSIS

In the experiments for Phase B, we have to consider the
effects of the GPU involvement. Instead of comparing a CPU

only version of our new scheme to the CPU-GPU approach,
we preferred to compare our new scheme to our previous
strategy, which is purely CPU-implemented. There are two
reasons behind this choice: (1) The path formulation proce-
dures in both strategies are, to a large extent, comparable,
based on reading data from threaded binary trees. In this
regard, we can highlight the advantage of the GPU involve-
ment, and (2) Running our new scheme on the CPU only,
would require eliminating all the modifications suggested in
the Section ‘‘Reading Data into the GPU’’, so this would
actually be a different algorithm.

The path analysis is the most computationally intensive
and memory- demanding procedure of our scheme and the

VOLUME 8, 2020 57543

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

FIGURE 11. Phase A -FORTOTHR vs TBTGEN- strong scaling behavior.

time required for completion is in order of seconds (except
the very small Facebook network). As the number of nodes
grows larger (for Pokec and LiveJournal) or in cases where
the number of edges is too large and each node has a very
large number of neighbors (like Google+), the time required
to traverse the trees enlarges.

For LiveJournal, our CPU-GPU strategy achieves a
speedup of 5 (for 8 threads) and the speedup increase is ≈

20% compared to the speedup of about 4.1 of our previous
strategy. For small networks with small number of edges
and nodes, like Facebook, the CPU-GPU strategy manages
speedups of about 7. Figure 12 presents the strong scaling

57544 VOLUME 8, 2020

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

FIGURE 12. Phase B, strong scaling behavior comparisons.

behavior of the path analysis phase, for the five networks
examined.
Figure 13 compares the accumulative speedups of the

new CPU-GPU strategy and our previous scheme, for two
networks, namely Pokec and LiveJournal. For Pocek, the
speedup increases by ≈ 12%, while for the largest network
examined, LiveJournal, this increase is about 15%. These
results are the average values obtained from different sets of
experiments.

3) PHASE C: NETWORK UPDATING

In this set of experiments, we choose one of the networks
used for our experiments, to study the weak scaling of the
proposed scheme and compare it to the weak scaling of our
previous scheme. We chose the Google+ network, because
of its interesting structure, that comprises a relatively small
number of nodes but disproportionate number of neighbors
per node. To perform weak scaling, we had to execute our
algorithm on a single core and then keep doubling the number

VOLUME 8, 2020 57545

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

FIGURE 13. Phases 1 and 2, cumulative speedups for Pokec and LiveJournal networks.

FIGURE 14. Comparison of the weak scaling behavior on the Google+ network, for four different alcc values.

of network nodes while simultaneously doubling the number
of processing nodes. To add new nodes, we generated random
bit_vectors like the ones in Table 4. One factor that played
major role in this type of experiment was the use of the alcc
value, which determines the ratio of the links internal to its
community to its total links(internal and external).
To perform updating, we added samples of double the size

of the original network. Our scheme tries to place each new
node in a community or in communities by locating stronger

paths originating from the new node to each community
examined. The requirement for a node’s membership to a
community was that 50% of the paths examined were found
to satisfy Equations (4) and (5). For our experiments, the alcc
value ranged between 0.4 (its value for the Google+ dataset
is≈ 0.5) and 0.7. Thus, each new-coming node has alcc of its
nodes inside a community and another 1−alcc spread to other
communities, alcc ∈ [0 . . . 1]. Figure 14 shows the weak
scaling for the Google+ dataset. The expansion factors are

57546 VOLUME 8, 2020

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

FIGURE 15. Comparisons of the CPU-GPU strategy and our previous scheme on the number of new communities and overlaps detected for four
different alcc values.

shown in the horizontal axis. The original problem (expan-
sion factor=1) had about 100K (107,614) nodes. The larger
problem (expansion factor=8) had about 1M nodes and an
average of 85 neighbors per node. Note that, the both schemes
perform better as the lcc values increase, as expected (see the
proof in the Expansion Phase paragraph). Moreover, from all
the experiments, we find that, on the average, the CPU-GPU
scheme outperforms our previous scheme by ≈ 28%.

One way to analyze the GPU’s contribution to the entire
application would be to quantify the cost of CPU-GPU trans-
ferring cost as part of the overall cost. However, such a
quantification is not easy as there is a phase which involves
CPU-GPU communications phases relying only on the CPU.
The experimental results offer us an intuitive conclusion
regarding the GPU’s contribution: In our new CPU-GPU
scheme, the total execution time does not decrease analo-
gously to the speedup increase. The accumulative speedup
values (referring merely to the CPUs, see Figure 13) would
suggest an average of 15% improvement on the execution
time. However, the results have shown a total execution time
reduction of about 27%. This reduction is mainly due to the
introduction of the GPU processing in Phase 2: the use of
the GPU plays an important role in this case, as the data
required for path analysis is delivered to the CPU at high

speeds, even when the problem size increases. Although the
memory transactions also increase, our strategy keeps using
large thread numbers of the GPU as these transactions incur,
thus the memory effect is soothed.
In the last set of experiments, we show the effect of alcc

to the number of communities detected. The experiments
concern the Google+ network expansion, from 100K to 1M
nodes (In Fig. 15(a) to (d), we keep doubling the expansion
factor for every set). The two schemes have similar behavior,
but the CPU-GPU scheme detects ≈ 12% more commu-
nities. This increase is explained by the fact that our new
scheme, due to the presence of the GPU, does not exclude
any path from processing while our previous scheme consid-
ers ever-increasing paths only. However, both strategies use
a strict double criterion to determine community member-
ship, so, although the number of paths processed is larger,
the increase on the number of communities and overlaps is
only 12%.

For both schemes, when we have low alcc values (average
up to 50%), more newly formed communities than overlaps
are detected. This is an expected behavior, since we have
chosen a strict approach for overlapping and every node has
more of its links connected to nodes outside its community.
As alcc increases, more overlaps than new communities are

VOLUME 8, 2020 57547

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

detected, as explained in Section IV.C. For example, when
the expansion factor was 8 (about 1M nodes) and alcc =

0.7, about 140K communities were detected, where 32%
(about 45K) were overlaps while 68% (about 95K) were
newly formed communities. Figure 15 shows the effects of
increasing the alcc to the number and nature of communities
detected.

4) COMPARISON RESULTS

In this paragraph we compare the scaling of our CPU-GPU
scheme to our previous scheme and to two other well-known
strategies: The PLMRmethod [3], and the picaso method [2].
We conducted two sets of experiments. In the first set,
we compare the aggregated speedup for each phase of the
CPU-GPU strategy to the aggregated speedup for each of
the phases of our previous work and of the PLMR method.
In the second set, we perform speedup comparisons between
the CPU-GPU scheme, the PLMR, the picaso method and our
previous scheme, on the Livejournal dataset.
Similarly to the proposed scheme, the Parallel Louvain

Method with Refinement (PLMR) also includes three phases
and, based to the functionality, we can say that there is
some correspondence between the phases of the two schemes.
In its first phase, the PLMR algorithm moves the nodes to
neighboring communities until the modularity is maximized.
This phase generates stable communities, just like our scheme
generates neighbors for each node, in the form of a threaded
binary tree. In its coarsening phase, the PLMR method forms
communities of communities by recursively contracting each
community to a certain super-node, just like our scheme
detects communities and overlaps by using the path analysis.
In its last phase, the PLMR method reevaluates the commu-
nities based on the network changes made during the last
coarsening phase. This corresponds to our update method.
From the aggregated results derived, the move and the

update (refinement) phase of the PLMR scheme present the
largest aggregated speedups, while the second phase (coars-
ening) is the most computationally intensive. As shown in
the experiments presented in the previous paragraphs, the
CPU-GPU scheme behaves in a similar manner, as was the
case with our previous work: the first and third phases scale
better compared to the phase that detects the communities and
their overlaps.
Fig. 16 compares the first phase of the three strategies.

The two procedures of the CPU-GPU strategy, that is, the
NETOFOR and the FORTOTHR have good scaling perfor-
mance, due to the lack of large numbers of inter-processor
communications and the lack of large numbers of compar-
isons. The PLMR first phase is based on the total number
of nodes so, the CPU-GPU scheme (based on each node’s
neighbors) naturally scales better. The SORT and TBT_GEN
operators require more communications between process-
ing elements and more comparisons, so the procedures our
CPU-GPU strategy overcomes them in terms of scaling. The
second phase the CPU-GPU scheme does not scale as well
as the other two phases, but the experiments conducted the

FIGURE 16. Speedup comparisons between the first phase of our scheme
and the first phase of the PLMR scheme.

FIGURE 17. Speedup comparisons between the second phase of our
scheme and the second phase of the PLMR scheme.

PLMR method indicate that this scheme dos not have very
large gains due to parallelism. This explains the large speedup
difference (see Fig. 17) between the corresponding phases of
the two strategies. The third phase of our CPU-GPU strategy
scales better for networks with larger alcc, like Facebook,
Twitter or Google plus. Its performance degrades for net-
works like LiveJournal or Pokec. Since our CPU-GPU strat-
egy requires only simple computations on the paths already
defined in the previous phase (our previous strategy may
need to make some extra comparisons during this phase), this
phase outperforms the third phase of our previous strategy
and the third phase of the PLMR strategy, which is based
on the changes occurring the coarsening phase (see Fig. 18).
Apparently, there are cases when the changes in the coarsen-
ing phase are such that the gains from parallelism are reduced.

Then, we compare the speedup of ourwork, to the speedups
of our previous work, picaso [2] and PLMR on the LiveJour-
nal network (see Fig. 19). The results indicate that, while
our scheme outperforms all the other strategies while the
picaso strategy comes second, as far as scaling is concerned.

57548 VOLUME 8, 2020

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

FIGURE 18. Speedup comparisons between the third phase of our
scheme and the third phase of the PLMR scheme.

FIGURE 19. Speedup comparisons between our strategy, the PLMR and
the Picaso method.

FIGURE 20. Runtime comparison of the CPU-GPU and the Picaso schemes.

The low alcc of the LiveJournal network, which is 0.27,
meaning that our update phase is not so well-scaled as in other
networks, reducing the overall parallelism gains. However,
the main properties of our scheme, like the GPU usage and
the reduced number of inter-processor communications and

comparisons explains the speedup results. It should be noted
also, that while our experiments were conducted on logical
processor, thus the results suffer from hyper-threading, the
picasomethod uses 16 physical processors and does not suffer
that much from this effect. In the last set of experiments,
we compare the running time of our scheme to the picaso
method. In this set, we run a series of experiments and
took average values. Our initial neighborhood samples fed
to the GPU varied from 8K to 256 K nodes for which new
communities and overlaps were detected. This community
detection was followed by expansion phases up to a value
of 2M. The average running times obtained are used in this
set of experiments. On the average, our scheme offers an
improvement of about 30% in the detection of communities,
when the number of nodes approached 2M. Fig. 20 shows the
comparison results for a number of threads, from 1 to 8.

VI. CONCLUSIONS-FUTURE WORK

This paper presented an extension of our previous threaded
binary tree approach for community detection, which is
schedule to exploit the CPU and the GPU processing capa-
bilities. Due to the certain limitation regarding divergences,
we used the GPU on the second phase of our work, where
the GPU generates a bit-vector used later by the CPU to
analyze the paths. The CPU-GPU strategy requires fewer
inter-processor communications and comparisons than our
previous scheme, thus the speedup is increased. To determine
a user’s membership to a community, the method tries to
locate ‘‘stronger’’ paths (with higher similarity) between the
user’s node and this community. We used the real network
data, which are freely available from Stanford university,
to test the performance of our scheme.

Our experimental results have shown that, for the proce-
dures of the first phase, we have managed average speedup
increases of about 15-20% compared to our previous work.
These increases were mainly of the reduced number of
inter-processor communications required by the CPU-GPU
strategy. For the second phase, the use of the GPU guarantees
a reduced total processing time for the second phase com-
pared to our previous work, which has reached an average of
15% for big networks, like LiveJournal, (for 8 threads). For
the third phase, the CPU-GPU scheme outperforms our previ-
ous scheme by about 28%, on the average, as the problem kept
increasing (weak scaling). The use of different lcc values ver-
ified the fact that more overlaps than new communities were
detected for larger lcc values, Also, the overall performance
was increased.

Finally, we compared our work to other known schemes
like the Parallel Louvain Method with Refinement (PLMR)
and the picaso strategy. The ‘‘per-phase’’ comparisons have
indicated that our strategy outperformed the PLMR in terms
of speedup values. Also, it outperformed the picaso strategy.
Finally, we compared the runtime of the CPU-GPU scheme
to the runtime of the picaso scheme, using 8 processing
elements. The results have indicated an average of 30%
improvement, when the number of nodes approached 2M.

VOLUME 8, 2020 57549

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

In our future work, we plan to perform extensive experi-
ments onmore and even larger networks, using similar system
configurations. For this purpose, we need more comparable
results, especially from parallel schemes that also detect over-
laps, and a tool that implements parallel graph algorithms,
like NetworKit ([3]). Moreover, there is a wide variety of
other aspects to be further examined: First, we plan to expand
the tree structure, to include multiple threads, from each node
to other, non-neighboring parts of the network. In this way,
we will highly reduce the time required for path detection.
Then, we are planning to work on the use of other data
structures such as ternary or higher degree trees, to represent
the entire network of nodes. Finally, extensive work needs to
be done, in order to use the GPU in a more efficient way.
For example, efforts are made to exploit the unused shared
memory by using it as L1 cache. Our initial approach is to
use data prefetching, where data blocks are prefetched from
the global memory to the shared memory. A advantage in
this approach is that the accuracy can reach almost 100%,
since the memory reads in our work have been scheduled
in a regular way. On the other hand, if each thread gener-
ates a prefetching request, then there are large numbers of
additional memory requests that require additional time to
be serviced. In this regard, we need to propose an efficient
software-hardware mechanism tailored to our scheme and the
hardware being used. Another idea is to take advantage of the
temporal locality of the path matrix and work with smaller
node samples (in this scenario, statistics is necessary to group
node sets into a single one based on the observed behavior,
so as to decrease the number of processed nodes) instead
of processing large samples or the overall network. In this
regard, the shared memory could be used in an effective
manner.
Moreover, we seek for a way of assigning to the GPU

more procedures related to our work. Because of divergences,
this in not an easy task, however, the GPU technology keeps
adding new features, that probably can be used for such
purposes.
Finally, a careful pipeline-based implementation of the

three phases of our scheme needs to be elaborated. Such
a scheme could include 3 stages operating in parallel: in
the first stage, a dedicated portion of the CPUs gener-
ate the threaded trees, in the second stage, the GPU generates
the paths, and in the third, a portion of the CPUs performs
the path analysis. In such a scenario, the overall processing
time would be overlapped, but careful scheduling is required
(perhaps with delay introduction that would slow down the
system), as the time required by the three phases is completely
different.

REFERENCES

[1] S. Souravlas, A. Sifaleras, and S. Katsavounis, ‘‘A parallel algorithm
for community detection in social networks, based on path analysis and
threaded binary trees,’’ IEEE Access, vol. 7, pp. 20499–20519, 2019.

[2] S. Qiao, N. Han, Y. Gao, R.-H. Li, J. Huang, J. Guo, L. A. Gutierrez,
and X. Wu, ‘‘A fast parallel community discovery model on complex
networks through approximate optimization,’’ IEEE Trans. Knowl. Data

Eng., vol. 30, no. 9, pp. 1638–1651, Sep. 2018.

[3] C. L. Staudt and H. Meyerhenke, ‘‘Engineering parallel algorithms for
community detection in massive networks,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 1, pp. 171–184, Jan. 2016.

[4] N. Antoniadis and A. Sifaleras, ‘‘A hybrid CPU-GPU parallelization
scheme of variable neighborhood search for inventory optimization prob-
lems,’’ Electron. Notes Discrete Math., vol. 58, pp. 47–54, Apr. 2017.

[5] F. Zhang, P. Di, H. Zhou, X. Liao, and J. Xue, ‘‘RegTT: Accelerating tree
traversals on GPUs by exploiting regularities,’’ in Proc. 45th Int. Conf.
Parallel Process. (ICPP), Aug. 2016, pp. 562–571.

[6] J. Liu, N. Hegde, and M. Kulkarni, ‘‘Hybrid cpu-gpu scheduling and
execution of tree traversals,’’ in Proc. 21st ACM SIGPLAN Symp. Princ.

Pract. Parallel Program., 2016, Art. no. 40.
[7] Z. Bu, C. Zhang, Z. Xia, and J. Wang, ‘‘A fast parallel modularity opti-

mization algorithm (FPMQA) for community detection in online social
network,’’ Knowl.-Based Syst., vol. 50, pp. 246–259, Sep. 2013.

[8] S. Fortunato, ‘‘Community detection in graphs,’’ Phys. Rep., vol. 486,
nos. 3–5, pp. 75–174, Feb. 2010.

[9] U. N. Raghavan, R. Albert, and S. Kumara, ‘‘Near linear time algorithm to
detect community structures in large-scale networks,’’ Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 76, no. 3, Sep. 2007,
Art. no. 036106.

[10] M. E. J. Newman, ‘‘Detecting community structure in networks,’’ Eur.
Phys. J. B, vol. 38, no. 2, pp. 321–330, 2014.

[11] M. Wang, C. Wang, J. X. Yu, and J. Zhang, ‘‘Community detec-
tion in social networks: An in-depth benchmarking study with a
procedure-oriented framework,’’ Proc. VLDB Endowment, vol. 8, no. 10,
pp. 998–1009, Jun. 2015.

[12] S. I. Souravlas and A. Sifaleras, ‘‘On the detection of overlapped net-
work communities via weight redistributions,’’ in GeNeDis (Advances
in Experimental Medicine and Biology), P. Vlamos, Ed. Dordrecht, The
Netherlands: Springer, 2017, pp. 205–214.

[13] S. Souravlas, A. Sifaleras, and S. Katsavounis, ‘‘A novel, interdisciplinary,
approach for community detection based on remote file requests,’’ IEEE
Access, vol. 6, pp. 68415–68428, 2018.

[14] A. Prat-Pérez, D. Dominguez-Sal, J. M. Brunat, and J.-L. Larriba-Pey,
‘‘Shaping communities out of triangles,’’ in Proc. 21st ACM Int. Conf. Inf.

Knowl. Manage. (CIKM), 2012, pp. 1677–1681.
[15] F. Zhao and A. K. H. Tung, ‘‘Large scale cohesive subgraphs discovery

for social network visual analysis,’’ Proc. VLDB Endowment, vol. 6, no. 2,
pp. 85–96, Dec. 2012.

[16] D. Chen, M. Shang, Z. Lv, and Y. Fu, ‘‘Detecting overlapping communities
of weighted networks via a local algorithm,’’ Phys. A, Stat. Mech. Appl.,
vol. 389, no. 19, pp. 4177–4187, Oct. 2010.

[17] Z. Lu, X. Sun, Y. Wen, G. Cao, and T. L. Porta, ‘‘Algorithms and appli-
cations for community detection in weighted networks,’’ IEEE Trans.

Parallel Distrib. Syst., vol. 26, no. 11, pp. 2916–2926, Nov. 2015.
[18] M. C. V. Nascimento and L. Pitsoulis, ‘‘Community detection by modular-

ity maximization using GRASP with path relinking,’’ Comput. Oper. Res.,
vol. 40, no. 12, pp. 3121–3131, Dec. 2013.

[19] D. Džamić, D. Aloise, and N. Mladenović, ‘‘Ascent–descent variable
neighborhood decomposition search for community detection by modu-
larity maximization,’’ Ann. Oper. Res., vol. 272, nos. 1–2, pp. 273–287,
Jan. 2019.

[20] R. Santiago and L. C. Lamb, ‘‘Efficient modularity density heuristics for
large graphs,’’ Eur. J. Oper. Res., vol. 258, no. 3, pp. 844–865, May 2017.

[21] M. E. J. Newman, ‘‘Modularity and community structure in networks,’’
Proc. Nat. Acad. Sci. USA, vol. 103, no. 23, pp. 8577–8582, Jun. 2006.

[22] I. Farkas, D. Ábel, G. Palla, and T. Vicsek, ‘‘Weighted network modules,’’
New J. Phys., vol. 9, no. 6, p. 180, 2007.

[23] J. M. Kumpula, M. Kivelä, K. Kaski, and J. Saramäki, ‘‘Sequential algo-
rithm for fast clique percolation,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 78, no. 2, Aug. 2008, Art. no. 026109.

[24] X. Zhang, C. Wang, Y. Su, L. Pan, and H.-F. Zhang, ‘‘A fast overlapping
community detection algorithm based on weak cliques for large-scale
networks,’’ IEEE Trans. Comput. Social Syst., vol. 4, no. 4, pp. 218–230,
Dec. 2017.

[25] S. Gregory, ‘‘Finding overlapping communities in networks by label prop-
agation,’’ New J. Phys., vol. 12, no. 10, 2010, Art. no. 103018.

[26] W. Zhi-Xiao, L. Ze-Chao, D. Xiao-Fang, and T. Jin-Hui, ‘‘Overlapping
community detection based on node location analysis,’’ Knowl.-Based
Syst., vol. 105, pp. 225–235, Aug. 2016.

[27] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, ‘‘Fast
unfolding of communities in large networks,’’ J. Stat. Mech., Theory Exp.,
vol. 2008, no. 10, 2008, Art. no. P10008.

57550 VOLUME 8, 2020

S. Souravlas et al.: Hybrid CPU-GPU Community Detection in Weighted Networks

[28] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, ‘‘Link communities reveal
multiscale complexity in networks,’’ Nature, vol. 466, no. 7307,
pp. 761–764, Aug. 2010.

[29] A. Padrol-Sureda, G. Perarnau-Llobet, J. Pfeifle, and V. Muntes-Mulero,
‘‘Overlapping community search for social networks,’’ in Proc. IEEE 26th
Int. Conf. Data Eng. (ICDE), Mar. 2010, pp. 992–995.

[30] A. Clauset, M. E. J. Newman, and C. Moore, ‘‘Finding community struc-
ture in very large networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 70, no. 6, pp. 66–111, Dec. 2004.

[31] J. Chen and Y. Saad, ‘‘Dense subgraph extraction with application to
community detection,’’ IEEE Trans. Knowl. Data Eng., vol. 24, no. 7,
pp. 1216–1230, Jul. 2012.

[32] J. Huang, H. Sun, Q. Song, H. Deng, and J. Han, ‘‘Revealing density-
based clustering structure from the core-connected tree of a network,’’
IEEE Trans. Knowl. Data Eng., vol. 25, no. 8, pp. 1876–1889, Aug. 2013.

[33] C. Klymko, T. G. Kolda, and D. Gleich, ‘‘Using triangles to improve com-
munity detection in directed networks,’’ 2014, arXiv:1404.5874. [Online].
Available: https://arxiv.org/abs/1404.5874

[34] D. Knuth, The Art of Computer Programming, vol. 1. London, U.K.:
Pearson, 1997.

[35] R. Zhang, L. Li, C. Bao, L. Zhou, and B. Kong, ‘‘The community detection
algorithm based on the node clustering coefficient and the edge clustering
coefficient,’’ in Proc. 11th World Congr. Intell. Control Autom., Jun. 2014,
pp. 3240–3245.

[36] J. Leskovec and A. Krevl, ‘‘SNAP datasets: Stanford large network dataset
collection,’’ Univ. Stanford, Stanford, CA, USA, Tech. Rep., Jun. 2014.
[Online]. Available: http://snap.stanford.edu/data

[37] J. Leskovec and J. J. Mcauley, ‘‘Learning to discover social circles in
ego networks,’’ in Advances in Neural Information Processing Systems,
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.
Red Hook, NY, USA: Curran Associates, 2012, pp. 539–547.

STAVROS SOURAVLAS (Member, IEEE) is
currently an Assistant Professor of computer
architecture and digital logic design with the
Department of Applied Informatics, School of
Information Sciences, University of Macedonia,
where he joined in 2014. His research interests
include computer architecture and performance
evaluation, parallel and distributed systems, big
data stream scheduling, cloud computing, systems
modeling, and simulation.

ANGELO SIFALERAS is currently an Associate
Professor with the Department of Applied Infor-
matics, School of Information Sciences, Uni-
versity of Macedonia, Thessaloniki, Greece. His
researches focus on mathematical programming
and network optimization. He is also a Senior
Member of ACM.

STEFANOS KATSAVOUNIS is currently an Asso-
ciate Professor with the Department of Produc-
tion Engineering and Management, Democritus
University of Thrace, Greece. His scientific inter-
ests revolve around scheduling, RCMPSP, project
management, graph theory and modeling, and
heuristics for NP-hard problems in transportation
and supply chain management, grey analysis, and
data processing in material science.

VOLUME 8, 2020 57551

	INTRODUCTION
	RELATED WORK
	TOP-DOWN APPROACHES
	BOTTOM-UP APPROACHES
	DATA STRUCTURE BASED APPROACHES

	COMMUNITY DETECTION PRELIMINARIES
	HYBRID GPU-CPU SCHEDULING
	THREADED BINARY TREE FORMULATION
	PATH FORMULATION AND ANALYSIS
	EXPANSION PHASE

	EXPERIMENTAL RESULTS AND DISCUSSION
	DESCRIPTION OF DATA USED AND ADAPTATION TO THE PROPOSED SCHEME
	EXPERIMENTS AND PERFORMANCE EVALUATION
	PHASE A: THREADED BINARY TREE GENERATION
	PHASE B: PATH FORMULATION AND ANALYSIS
	PHASE C: NETWORK UPDATING
	COMPARISON RESULTS

	CONCLUSIONS-FUTURE WORK
	REFERENCES
	Biographies
	STAVROS SOURAVLAS
	ANGELO SIFALERAS
	STEFANOS KATSAVOUNIS

