
Hybrid Damgård Is CCA1-Secure under The DDH
Assumption

Yvo Desmedt1, Helger Lipmaa2, and Duong Hieu Phan3

1 University College London, UK
2 Cybernetica AS, Estonia

3 University of Paris 8, France

Abstract. In 1991, Damgård proposed a simple public-key cryptosystem that he
proved CCA1-secure under the Diffie-Hellman Knowledge assumption. Only in
2006, Gjøsteen proved its CCA1-security under a more standard but still new and
strong assumption. The known CCA2-secure public-key cryptosystems are con-
siderably more complicated. We propose a hybrid variant of Damgård’s public-
key cryptosystem and show that it is CCA1-secure if the used symmetric cryp-
tosystem is CPA-secure, the used MAC is unforgeable, the used key-derivation
function is secure, and the underlying group is a DDH group. The new cryp-
tosystem is the most efficient known CCA1-secure hybrid cryptosystem based on
standard assumptions.
Keywords. CCA1-security, Damgård’s cryptosystem, DDH, hybrid cryptosys-
tems.

1 Introduction

CCA2-security in the standard model is currently the strongest widely accepted security
requirement for public-key cryptosystems. The first practical CCA2-secure cryptosys-
tem was proposed by Cramer and Shoup [CS98]. In their scheme, the plaintext is a
group element. However, in practice one really needs a hybrid cryptosystem where the
plaintext can be an arbitrarily long bitstring. The first related hybrid cryptosystem was
proposed by Shoup in [Sho00]. In [KD04], Kurosawa and Desmedt proposed another
hybrid cryptosystem that, taking account the comments of Gennaro and Shoup [GS04],
is up to now the most efficient published hybrid CCA2-secure cryptosystem that is
based on the Decisional Diffie-Hellman (DDH) assumption.

Existing CPA-secure cryptosystems like Elgamal [Elg85] are considerably simpler.
CPA-security is however a very weak security notion. In this paper we concentrate
on an intermediate security notion, CCA1-security (or “non-adaptive CCA-security”).
Recall that already in 1991, Damgård [Dam91] proposed a simple CCA1-secure cryp-
tosystem, although with the security proof relying on the non-standard Diffie-Hellman
Knowledge assumption [Dam91,BP04]. In 2006, Gjøsteen proved that a generaliza-
tion of Damgård’s cryptosystem is CCA1-secure under a strong conventional assump-
tion [Gjø06]. Recently, Lipmaa [Lip08] gave a considerably simpler proof of Gjøsteen’s
result.

2 Yvo Desmedt, Helger Lipmaa, and Duong Hieu Phan

Table 1. Comparison between a few discrete-logarithm based hybrid cryptosystems. Here, x is
the bit length of group element representations and |m| is the length of symmetrically encrypted
plaintext. In encryption/decryption, e means one exponentiation, s — one symmetric-key IND-
CCA secure encryption/decryption of |m|-bit string (this may also consist of an IND-CPA secure
encryption/decryption together with a MAC on the ciphertext), t — one computation of a target
collusion-resistant hash function, u — one computation of a universal one-way hash function.
Non-cryptographic operations, e.g., of key-derivation functions, are not included to the computa-
tion cost. If the assumption is not well-established, a link to the paper(s) defining the assumption
is given

Name Security Assumption Encrypt. Decrypt. |Ciphertext| |pk|
Hybrid
This paper CCA1 DDH 3e + s 2e + s 2x + |m|+ |t| x
[HK07, Sect. 4.2] CCA2 DDH 4e + t + s 2e + t + s 2x + |m|+ |t| 3x+hash
[KD04,GS04] CCA2 DDH 4e + t + s 2e + t + s 2x + |m|+ |t| 2x+hash
[ABR01] CCA2 [ABR01] 2e + s 1e + s x + |m|+ |t| x
[Sho00] CCA2 DDH 5e + s 3e + s 3x + |m|+ |t| 4x+hash
Non-hybrid
[CS04] CCA2 DDH 5e + u 3e + u 4x 5x+hash
Lite [CS04] CCA1 DDH 4e 3e 4x 4x
[Dam91] CCA1 [Gjø06,Lip08] 3e 2e 3x 2x
[Elg85] CPA DDH 2e e 2x x

We propose a Damgård-based hybrid cryptosystem that we call “Hybrid Damgård”.
This scheme can also be seen as a simplification of the Kurosawa-Desmedt cryp-
tosystem [KD04]. We prove that Hybrid Damgård is CCA1-secure if the used sym-
metric cryptosystem is semantically secure, the used MAC is unforgeable, the used
key-derivation function is secure, and the underlying group is a DDH group. Hybrid
Damgård is currently the most efficient CCA1-secure hybrid cryptosystem that is based
on the DDH assumption. It is essentially as efficient as Damgård’s original CCA1-
secure cryptosystem, requiring the encrypter and the decrypter to additionally evaluate
only some secret-key or non-cryptographic operations. See Tbl. 1 for a comparison. In
addition, Hybrid Damgård is a hashless cryptosystem.

In the security proof, we use a standard game hopping technique, similar to the
one in [KD04,GS04]. Also our proof is only slightly more complex than that given by
Gjøsteen, the additional complexity is only due to use of additional symmetric primi-
tives.

Recent Work. Essentially the same cryptosystem was very recently discussed
in [DP08] and [KPSY08]. In [DP08], the authors proved CCA2-security of the Hy-
brid Damgård cryptosystem under a strong knowledge assumption (corresponding to
KA3 of [BP04]). One can extract a CCA1-security proof from it under a somewhat
weaker knowledge assumption (corresponding to KA2 of [BP04]). In a yet unpublished
eprint [KPSY08], the authors proved that the Hybrid Damgård is CCA2-secure under
the DDH assumption; however, the used hash function and symmetric cryptosystem

Hybrid Damgård Is CCA1-Secure under The DDH Assumption 3

have to satisfy stronger assumptions. They also briefly mention that it is CCA1-secure
under the same assumptions we use.

Notation. For a set A, let U(A) denote the uniform distribution on it.

2 Preliminaries

Let |B| < |A|. A function kdf : A → B is key derivation function, KDF, if the dis-
tributions kdf(U(A)) and U(B) are computationally indistinguishable. If |A| < |B|,
then KDF is a pseudorandom generator. Otherwise, KDF may be a non-cryptographic
function.

Decisional Diffie-Hellman Assumption.

Definition 1. Let G be a group of order q with a generator g. A DDH distinguisher
Alice has success AdvDDHG,g(Alice), defined as∣∣∣∣∣ Pr[x, y ← ZZq : A(G, q, g, gx, gy, gxy) = 1]−

Pr[x, y ← ZZq, z ← ZZq \ {xy} : A(G, q, g, gx, gy, gz) = 1]

∣∣∣∣∣
in attacking DDH group G, where the probability is taken over the choice of random
variables and over the random coin tosses of Alice. We say that G is a (τ, ε)-DDH
group if AdvDDHG,g(Alice) ≤ ε for any τ -time adversaryAlice and for any generator
g.

Usually, one takes z ← ZZq. The difference between Alice’s success in these two vari-
ants of the DDH game is clearly upper bounded by 1/q, see e.g. [CS04, Lem. 1]. We
later use a variation where also x is fixed (i.e., gx is a subindex of AdvDDH), but this
variation is equally powerful because of the random self-reducibility of DDH. More-
over, because of the random self-reducibility of DDH, the choice of g is not important.

We say that (g1, g2, g3, g4) is a DDH tuple if (g3, g4) = (g1, g2)r for some r ∈ ZZq.

Public-key cryptosystems. Let pub = (pub.gen, pub.enc, pub.dec) be a public-
key cryptosystem for a fixed security parameter λ. In particular, pub.gen(1λ) re-
turns a new secret/public key pair (sk, pk), pub.enc(pk;m; r) encrypts the message
m by using randomizer r, and pub.dec(sk;C) decrypts a ciphertext C such that
pub.dec(sk; pub.enc(pk;m; ·)) = m; the result of pub.dec may be a special symbol
⊥.

Consider the next CCA2 game between the adversary Alice and the challenger:

Setup. The challenger runs pub.gen(1λ) to obtain a random instance of a secret and
public key pair (sk, pk). It gives the public key pk to Alice.

Query phase 1. Alice adaptively issues decryption queries C. The challenger responds
with pub.dec(sk;C).

4 Yvo Desmedt, Helger Lipmaa, and Duong Hieu Phan

Challenge phase. Alice outputs two (equal length) messages m̂0, m̂1. The challenger
picks a random bAlice ← {0, 1} and sets Ĉ ← pub.enc(pk; m̂bAlice

, r̂) for random
r̂. It gives Ĉ to Alice.

Query phase 2. Alice continues to issue decryption queries C as in phase 1, but
with the added constraint that C 6= Ĉ. The challenger responds each time with
pub.dec(sk;C).

Guess. Alice outputs her guess b′Alice ∈ {0, 1} for bAlice and wins the game if bAlice =
b′Alice.

Definition 2 (CPA/CCA1/CCA2 Security of Public-Key Cryptosystems). A CCA2
adversary Alice has success AdvCCA2pub(Alice) := |2 Pr[bAlice = b′Alice] − 1|
in attacking pub, where the probability is taken over the choice of bAlice and over
the random coin tosses of Alice. We say that pub is (τ, γ1, γ2, µ, ε)-CCA2-secure if
AdvCCA2pub(Alice) ≤ ε for any τ -time adversary Alice that makes up to γi queries
in phase i ∈ {1, 2}, with the total queried message length being up to µ bits. pub is
(τ, γ, µ, ε)-CCA1-secure if it is (τ, γ, 0, µ, ε)-CCA2-secure. pub is (τ, ε)-CPA-secure if
it is (τ, 0, 0, 0, ε)-CCA2-secure. The values AdvCPApub and AdvCCA1pub are defined
accordingly.

Damgård Cryptosystem [Dam91].

Setup: On input the security parameter λ, return a λ-bit prime q, a group G of order q,
and its randomly chosen generator g ∈ G.

Key setup pub.gen: Generate (α, β) ← ZZ2
q . Set sk ← (α, β) and pk ← (c ←

gα, d← gβ).
Encryption pub.enc: Given a message m ∈ G, do the following. First, set r ← ZZq

and then u1 ← gr, u2 ← cr, e← m · dr. The ciphertext is (u1, u2, e).
Decryption pub.dec: Given a ciphertext (u1, u2, e), do the following. If u2 6= uα

1 then
output m← ⊥. Otherwise, compute m← e/uβ

1 and return m.

Descriptions of some other known public-key cryptosystems are given in Appendix.

Symmetric cryptosystems. Let sym = (sym.gen, sym.enc, sym.dec) be a symmetric
cryptosystem for a fixed security parameter λ. In particular, sym.gen(1λ) returns a new
secret key sk, sym.enc(sk;m; r) encrypts the message m by using randomizer r, and
sym.dec(sk;C) decrypts a ciphertext C such that sym.dec(sk; sym.enc(sk;m; r)) = m.

CPA/CCA1/CCA2-security of symmetric cryptosystems is defined similarly as in
the case of public-key cryptosystems. Consider the next CCA2 game between the ad-
versary Alice and the challenger:

Setup. The challenger runs pub.gen(1λ) to obtain a random instance of a secret key sk
Query phase 1. Alice adaptively issues encryption queries m, where the challenger

responds with sym.enc(sk;m, r) for random r, and decryption queries C, where
the challenger responds with sym.dec(sk;C).

Challenge phase. Alice outputs two (equal length) messages m̂0, m̂1. The challenger
picks a random bAlice ← {0, 1} and sets Ĉ ← sym.enc(sk; m̂bAlice

, r̂) for random r̂.
It gives Ĉ to Alice.

Hybrid Damgård Is CCA1-Secure under The DDH Assumption 5

Query phase 2. Alice continues to issue encryption queries m and decryption queries
C as in phase 1, but with the added constraint that C 6= Ĉ. The challenger as in
phase 1.

Guess. Alice outputs her guess b′Alice ∈ {0, 1} for bAlice and wins the game if bAlice =
b′Alice.

Definition 3 (CPA/CCA1/CCA2 Security of Symmetric Cryptosystems). A CCA2
adversary Alice has success AdvCCA2sym(Alice) := |2 Pr[bAlice = b′Alice] − 1|
in attacking sym, where the probability is taken over the choice of bAlice and over
the random coin tosses of Alice. We say that pub is (τ, γ1, γ2, µ, ε)-CCA2-secure if
AdvCCA2pub(Alice) ≤ ε for any τ -time adversary Alice that makes up to γi queries
in phase i ∈ {1, 2}, with the total queried message length being up to µ bits. sym is
(τ, γ, µ, ε)-CCA1-secure if it is (τ, γ, 0, µ, ε)-CCA2-secure. sym is (τ, ε)-CPA-secure
if it is (τ, 0, 0, 0, ε)-CCA2-secure. The values AdvCPAsym and AdvCCA1sym are defined
accordingly.

MAC. A MAC mac = (mac.tag,mac.ver), on key κ and message e produces a
tag t = mac.tag(κ; e). A MAC is unforgeable if for random κ, after obtaining
t′ ← mac.tag(κ; e′) for (at most one) adversarially chosen e′, it is hard to compute
a forgery, i.e., a pair (e, t) such that e 6= e′ but mac.ver(κ; e, t) = >.

A standard way of constructing a CCA2-secure symmetric cryptosystem is to en-
crypt a message m by using a CPA-secure cryptosystem, e ← sym.enc(K;m, r) and
then returning e together with a tag t ← mac.tag(κ; e). Here, (K, κ) is a pair of inde-
pendent random keys.

3 Hybrid Damgård Cryptosystem

We now propose a new cryptosystem, Hybrid Damgård, an hybrid variant of the
Damgård cryptosystem that uses some ideas from the Kurosawa-Desmedt cryptosys-
tem as exposed by [GS04].

Setup: On input the security parameter λ, return a λ-bit prime q, a group G of order
q, and its two randomly chosen different generators g1, g2 ∈ G. Choose a CPA-
secure symmetric cryptosystem sym = (sym.gen, sym.enc, sym.dec), an unforge-
able MAC mac = (mac.tag,mac.ver), and a KDF kdf from G to the set of keys of
(sym,mac).

Key setup pub.gen: Generate (α1, α2) ← ZZ2
q . Set sk ← (α1, α2) and pk ← (c ←

gα1
1 gα2

2).
Encryption pub.enc: Given a message m ∈ {0, 1}∗, do the following. First, generate

r ← ZZq, and randomizer ρ for sym, and then

u1 ← gr
1 , u2 ← gr

2 , (K, κ)← kdf(cr) ,

e← sym.enc(K;m, ρ) , t← mac.tag(κ; e) .

The ciphertext is (u1, u2, e, t).

6 Yvo Desmedt, Helger Lipmaa, and Duong Hieu Phan

Decryption pub.dec: Given a ciphertext (u1, u2, e, t), do the following. Compute
(K, κ) ← kdf(uα1

1 uα2
2). If mac.ver(κ; e, t) = ⊥ then return m ← ⊥ else return

m← sym.dec(K; e).

Theorem 1. Fix a group G, a symmetric cryptosystem sym =
(sym.gen, sym.enc, sym.dec), a MAC mac = (mac.tag,mac.ver), and a hash
function kdf from G to the set of keys for (sym,mac). Then the Hybrid Damgård
cryptosystem pub is CCA1-secure if (1) the DDH assumption holds, (2) kdf is a KDF,
(3) sym is CPA-secure, and (4) mac is unforgeable.

Proof. Use the next sequence of game hops. Assume that Alice is a (τ, γ, µ, ε) CCA1-
adversary for pub. In every game Gamei we modify the CCA1 game so that thereAlice
has advantage Pr[Xi], where for every i, |Pr[Xi+1]−Pr[Xi]| is negligible. Moreover,
|Pr[Xi+1]−Pr[Xi]| is estimated by defining an event Fi+1 such that events Xi∧¬Fi+1

iff Xi+1 ∧ ¬Fi+1. Then clearly |Pr[Xi+1] − Pr[Xi]| ≤ Pr[Fi+1] [CS98]. The full
proof is slightly more complicated since the games build up a tree instead of a chain.
All games are fairly standard. Details follow.

Game0:

This is the original CCA1 game.Alice gets a random public key pk = (c), makes a num-
ber of decryption queries (u1, u2, e, t), receives a challenge ciphertext (û1, û2, ê, t̂),
makes some more decryption queries (u1, u2, e, t), and then makes a guess. In this
game, Alice has success Pr[X0] = ε. To simplify further analysis, we assume that the
challenger has created the values (û1, û2, K̂, κ̂) before the phase-1 queries.

Game1:

Here we redefine the internal way of computing the key during the decryption queries
and the challenge ciphertext creation. Namely, we let (K, κ)← kdf(uα1

1 uα2
2). This does

not change the ciphertexts, and thus also in Game1, Alice has success Pr[X1] = ε.

Game2:

In this game, the challenge ciphertext is created by choosing (û1, û2) ← (gr̂1
1 , gr̂2

2) for
random r̂1 6= r̂2. Assume that in Game2, Alice has success probability Pr[X2]. We
now construct a DDH adversary Bob with advantage related to |Pr[X1]−Pr[X2]|. Bob
gets (g1, q, g2) as an input, where g1 generates a group G of order q and a g2 ← G\{g1}.
Bob and Alice choose appropriate (sym,mac, kdf). He then runs Alice step-by-step.

– Bob asks for his challenge (û1, û2) ∈ G2. He generates random α1, α2 ← ZZq,
sets sk← (α1, α2) and pk← (c← gα1

1 gα2
2). He sends pk to Alice.

– When Alice makes a phase-1 decryption query with a purported ciphertext
(u1, u2, e, t), Bob returns m according to the decryption formula: (K, κ) ←
kdf(uα1

1 uα2
2). If mac.ver(κ; e, t) = ⊥ then m← ⊥ else m← sym.dec(K; e).

Hybrid Damgård Is CCA1-Secure under The DDH Assumption 7

– When Alice submits her message pair (m0,m1), Bob sets bAlice ← {0, 1},
and sends (û1, û2, ê, t̂) as the challenge ciphertext to Alice, where ê ←
sym.enc(K̂;mbAlice

, ρ̂), for uniform randomizer ρ̂, and t̂ ← mac.tag(κ̂; ê) for
(K̂, κ̂)← kdf(ûα1

1 ûα2
2).

– Finally, Alice replies with a guess b′Alice. Bob outputs b′Bob ← 1 if b′Alice = bAlice,
and b′Bob ← 2 otherwise.

Let bBob = 1 if (g1, g2, û1, û2) is a random DDH tuple, and bBob = 2 if it is a random
non-DDH tuple, and assume that Pr[bBob = 1] = 1/2. In particular if bBob = 2 then
û1 ← gr̂1

1 , û2 ← gr̂2
2 for random r̂1 6= r̂2.

If bBob = 1 then all steps are emulated perfectly for Game1. Thus, Pr[b′Alice =
bAlice|bBob = 1] = Pr[X1]. If bBob = 2 then all steps are emulated perfectly for Game2

and thus Pr[b′Alice = bAlice|bBob = 2] = Pr[X2].
Thus, Pr[b′Bob = bBob] = 1

2 Pr[b′Bob = 1|bBob = 1] + 1
2 Pr[b′Bob = 2|bBob =

2] = 1
2 Pr[b′Alice = bAlice|bBob = 1] + 1

2 −
1
2 Pr[b′Alice = bAlice|bBob = 2] =

1
2 + 1

2 (Pr[X1] − Pr[X2]), and |Pr[X1] − Pr[X2]| = |2 Pr[b′Bob = bBob] − 1| is the
advantage of Bob distinguishing random DDH tuples and random non-DDH tuples of
form

{
(g1, g2, û1, û2) : (g1, g2, û1)← G3, û2 ← G \ {û1}

}
. Thus,

|Pr[X1]− Pr[X2]| ≤ εddh ,

where εddh is the probability of breaking the DDH assumption, given resources compa-
rable to the resources of the adversary.

Game3:

First, recall that (û1, û2) is computed before the phase-1. Now, we let the decryption or-
acle to reject all ciphertexts (u1, u2) such that (u1, u2) 6= (û1, û2) and (g1, g2, u1, u2)
is not a DDH tuple. Here, F3 is the event that such a ciphertext would have been ac-
cepted in Game2. Clearly, Pr[F3] ≤ γ1 · Pr[F ′

3], where F ′
3 is the event that such a

ciphertext would have been accepted in a randomly chosen phase-1 query of Game2,
and γ1 is again the number of queries in phase-1. We defer the computation of Pr[F ′

3]
to later games where it is substantially easier to do.

Complete description of Game3 is given in Fig. 1 (here we can explicitly use the
value of w since we are done with a DDH reduction that had to compute w; the up-
coming DDH reduction in Game4 computes something different). It also points out
differences between Game3 and Game4.

Game4:

In this game we change six lines as specified in Fig. 1. Let Alice be an adversary in
Game4 again. Because of the change on line D05, other changes are only decorative
and do not changeAlice’s view. Thus, let F ′

4 be the event that during a randomly chosen
phase-1 query of Game3, the line D08 is executed.

8 Yvo Desmedt, Helger Lipmaa, and Duong Hieu Phan

Setup. Fix G, q, two random different generators g1, g2 ∈ G where g2 = gw
1 for a random

w ← ZZq \ {1}, sym, mac and kdf. The challenger does the following.
S01 α1, α2 ← ZZq ::::::::

α← ZZq

S02 sk← (α1, α2) ::::::
sk← α

S03 pk← (c← gα1
1 gα2

2)
:::::::::::::
pk← (c← gα

1)
S04 Send the public key pk to Alice
S05 r̂1 ← ZZq , r̂2 ← ZZq \ {r̂1}
S06 û1 ← gr̂1

1 , û2 ← gr̂2
2

S07 v̂ ← ûα1
1 ûα2

2 ::::::
v̂ ← G

S08 (K̂, κ̂)← kdf(v̂)
Query phase 1. Alice adaptively issues decryption queries (u1, u2, e, t). The challenger does

the following.
D01 If (u1, u2) = (û1, û2) then
D02 If mac.ver(κ̂; e, t) = ⊥ then return ⊥
D03 Return sym.dec(K̂; e)
D04 else if uw

1 6= u2 then
D05 v ← uα1

1 uα2
2 ::::::

v ← G
D06 (K, κ)← kdf(v)
D07 If mac.ver(κ; e, t) = ⊥ then return ⊥
D08 Return ⊥. // Event F3: Difference between Game2/Game3

D09 else
D10 v ← uα1

1 uα2
2 :::::::

v ← uα
1

D11 (K, κ)← kdf(v)
D12 If mac.ver(κ; e, t) = ⊥ then return ⊥
D13 Return sym.dec(K; e)

Challenge phase. Alice outputs two (equal length) messages m̂0, m̂1. The challenger picks a
random bAlice ← {0, 1}. The challenger sets ê ← sym.enc(K; m̂bAlice , ρ̂), for uniform
randomizer ρ̂, and bt← mac.tag(κ̂; ê). It gives Ĉ ← (û1, û2, ê,bt) to Alice.

Guess. Alice outputs its guess b′Alice ∈ {0, 1} for bAlice and wins the game if bAlice = b′Alice.

Fig. 1. Games Game3 and Game4. Two games differ only in a few lines. In those lines, the
part that is only executed in Game3 has been underlined, while the part that is only executed in
Game4 has been underwaved

Hybrid Damgård Is CCA1-Secure under The DDH Assumption 9

Consider a concrete phase-1 decryption query. Then

logg1
c =α1 + wα2 , (1)

logg1
v =r1α1 + r2wα2 . (2)

Equations (1) and (2) are linearly independent and thus v can take on any value from
G, and thus is uniformly distributed over G. Thus,

Pr[F ′
4] = Pr[F ′

3] .

Now we do a fork in the hopping. Games Game5 and Game6 bound Pr[X4].
Game Game′5 bounds Pr[F ′

4].

Game5:

Game5 is the same as Game4, except that here we compute (K̂, κ̂) ←
“random keys”. Because in Game4, v̂ is completely random, and is not used anywhere,
except once as an input to kdf, then it is easy to see that

|Pr[X5]− Pr[X4]| ≤ εkdf ,

where εkdf is the probability of distinguishing the output of kdf from completely random
keys, using resources similar to the resources of the given adversary.

Game6:

Game6 is the same as Game5, except that we change the line D03 to “return ⊥”. Let
F6 be the event that line D03 is ever executed in Game6 in any decryption request.
If F6 occurs then Alice has broken the MAC keyed by κ̂ (which in Game6 is truly
random). Thus, Pr[F6] ≤ γεmac, where εmac is the advantage with which one can break
the MAC using resources similar to those of Alice. Then, clearly,

|Pr[X6]− Pr[X5]| ≤ Pr[F6] ≤ γεmac .

Observe that K̂ is completely random and thus used for no other purpose than to encrypt
mbAlice

. It is thus easy to see that

|Pr[X6]− 1/2| ≤ εenc ,

where εenc is the probability of breaking the semantic security of sym, using resources
comparable to the resources of the adversary.

Game5′ :

Game5′ is the same as Game4, except that we change the line D06 to (K, κ) ←
“random keys”. Let F ′

5′ be the event that line D08 is executed in a randomly chosen
decryption query of phase-1 in Game5′ . Because in Game5′ , in line D05, the value

10 Yvo Desmedt, Helger Lipmaa, and Duong Hieu Phan

of v is completely random and not used anywhere, except once as an input to kdf, then
it is easy to see that

|Pr[F ′
5′]− Pr[F ′

4]| ≤ ε′kdf ,

where ε′kdf is the advantage with which one can distinguish the output of kdf from a
random key pair, using resources similar to those of the given adversary.

Now, in Game5′ , the key κ used in line D07 is completely random. From this, it
easily follows that

Pr[F ′
5′] ≤ ε′mac ,

where ε′kdf is the probability of breaking mac, using resources similar to those of the
given adversary.

Completing The Proof:

We have

Pr[F3] ≤ γ1 Pr[F ′
3] = γ1 Pr[F ′

4] ≤ γ1(Pr[F ′
5′] + ε′kdf) ≤ γ1(ε′mac + ε′kdf) .

Finally,

|Pr[X0]− 1/2| ≤ εddh + εkdf + εenc + γ1(εmac + ε′mac + ε′kdf) . (3)

ut

4 Why We Cannot Prove CCA2-Security

We will now briefly show why this proof technique cannot show that Hybrid Damgård
is CCA2-secure in the standard model and “standard” assumptions from KDF, MAC
and secret-key cryptosystem. Consider any phase-2 decryption query in Game4. Let
v̂ := ûα1

1 ûα2
2 . Then from Alice’s point of view, during a query of phase-2, (α1, α2) is a

random point satisfying two linearly independent equations, Eq. (1) and the equation

logg1
v̂ = r̂1α1 + r̂2wα2 . (4)

During an arbitrary query of phase-2, suppose that Alice queries an invalid cipher-
text (u1, u2, e, t) to the decryption oracle where u1 = gr1

1 and u2 = gr2
2 with r1 6= r2.

Thus also Eq. (2) holds. Now, Eq. (1), (2) and (4) are not linearly independent and thus
we cannot claim as in the previous papers that the value v is uniform and random.

More precisely, to distinguish v from random, Alice participates in the next game.
She first sees tuple

(g1, g2, c← gα1
1 gα2

2 ; û1 ← gr̂1
1 , û2 ← gr̂2

2 , v̂ ← gr̂1α1
1 gr̂2α2

2)

for randomly chosen α1, α2, r̂1 6= r̂2. Second, she sends to challenger a tuple

u1 ← gr1
1 , u2 ← gr2

2 ,

Hybrid Damgård Is CCA1-Secure under The DDH Assumption 11

for r1 6= r2. Third, she gets back a value v such that either v = uα1
1 uα2

2 = gr1α1
1 gr2α2

2

(if bAlice = 1), or v ← G (if bAlice = 0).
Clearly, we can assume that Alice knows the values r1, r2. Note that her task

is equivalent to deciding whether v/cr1 = g
(r2−r1)α2
2 = ur2−r1

2 or whether v =
cr1ur2−r1

2 , which she can do trivially. Therefore, v is not pseudorandom.
Recently, [KPSY08] have given a CCA2-security proof of the Hybrid Damgård

under a stronger assumption on the hash function.

Acknowledgments. Part of this work was done while the second and the third author
were working at University College London. Yvo Desmedt is the BT Chair of Informa-
tion Security and funded by EPSRC EP/C538285/1. Helger Lipmaa was supported by
Estonian Science Foundation, grant #6848, European Union through the European Re-
gional Development Fund and the 6th Framework Programme project AEOLUS (FP6-
IST-15964).

References

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The Oracle Diffie-Hellman As-
sumptions And An Analysis of DHIES. In David Naccache, editor, Topics in Cryp-
tology - CT-RSA 2001, The Cryptographer’s Track at RSA Conference 2001, volume
2020 of Lecture Notes in Computer Science, pages 143–158, San Francisco, CA, USA,
April 8–12, 2001. Springer-Verlag.

[BP04] Mihir Bellare and Adriana Palacio. Towards Plaintext-Aware Public-Key Encryption
Without Random Oracles. In Pil Joong Lee, editor, Advances on Cryptology — ASI-
ACRYPT 2004, volume 3329 of Lecture Notes in Computer Science, pages 48–62, Jeju
Island, Korea, December 5-9 2004. Springer-Verlag.

[CS98] Ronald Cramer and Victor Shoup. A Practical Public Key Cryptosystem Provably Se-
cure against Adaptive Chosen Ciphertext Attack. In Hugo Krawczyk, editor, Advances
in Cryptology — CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science,
pages 13–25, Santa Barbara, USA, 23–27 August 1998. Springer-Verlag.

[CS04] Ronald Cramer and Victor Shoup. Design And Analysis of Practical Public-Key En-
cryption Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal
of Computing, 33(1):167–226, 2004.

[Dam91] Ivan Damgård. Towards Practical Public Key Systems Secure against Chosen Cipher-
text Attacks. In Joan Feigenbaum, editor, Advances in Cryptology—CRYPTO ’91,
volume 576 of Lecture Notes in Computer Science, pages 445–456, Santa Barbara,
California, USA, August 11–15, 1991. Springer-Verlag, 1992.

[DP08] Yvo Desmedt and Duong Hieu Phan. A CCA Secure Hybrid Damgård’s ElGamal En-
cryption. In Feng Bao and Kefei Chen, editors, ProvSec 2008, volume 5324 of Lecture
Notes in Computer Science, pages ?–?, Shanghai, China, October 30 – November 1,
2008. Springer-Verlag.

[Elg85] Taher Elgamal. A Public Key Cryptosystem And A Signature Scheme Based on Dis-
crete Logarithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[Gjø06] Kristian Gjøsteen. A New Security Proof for Damgård’s ElGamal. In David
Pointcheval, editor, Topics in Cryptology - CT-RSA 2006, The Cryptographers’ Track
at the RSA Conference 2006, volume 3860 of Lecture Notes in Computer Science,
pages 150–158, San Jose, CA, USA, February 13–17, 2006. Springer-Verlag.

12 Yvo Desmedt, Helger Lipmaa, and Duong Hieu Phan

[GS04] Rosario Gennaro and Victor Shoup. A Note on An Encryption Scheme
of Kurosawa And Desmedt. Technical Report 2004/194, International
Association for Cryptologic Research, August 10, 2004. Available
at http://eprint.iacr.org/2004/194, last revision made on May 18,
2005.

[HK07] Dennis Hofheinz and Eike Kiltz. Secure Hybrid Encryption from Weakened Key En-
capsulation. In Alfred Menezes, editor, Advances in Cryptology — CRYPTO 2007,
27th Annual International Cryptology Conference, volume 4622 of Lecture Notes
in Computer Science, pages 553–571, Santa Barbara, USA, August 19–23, 2007.
Springer-Verlag.

[KD04] Kaoru Kurosawa and Yvo Desmedt. A New Paradigm of Hybrid Encryption Scheme.
In Matthew K. Franklin, editor, Advances in Cryptology — CRYPTO 2004, 24th An-
nual International Cryptology Conference, volume 3152 of Lecture Notes in Computer
Science, pages 426–442, Santa Barbara, USA, August 15–19, 2004. Springer-Verlag.

[KPSY08] Eike Kiltz, Krzysztof Pietrzak, Martijn Stam, and Moti Yung. A New
Randomness Extraction Paradigm for Hybrid Encryption. Technical Report
2008/304, International Association for Cryptologic Research, 2008. Available at
http://eprint.iacr.org/2008/304, as of October 2008.

[Lip08] Helger Lipmaa. On CCA1-Security of Elgamal And Damgård Cryptosystems. Techni-
cal Report 2008/234, International Association for Cryptologic Research, 2008. Avail-
able at http://eprint.iacr.org/2008/234, as of October 2008.

[Sho00] Victor Shoup. Using Hash Functions as A Hedge against Chosen Ciphertext Attack.
In Bart Preneel, editor, Advances in Cryptology — EUROCRYPT 2000, volume 1807
of Lecture Notes in Computer Science, pages 275–288, Bruges, Belgium, 14–18 May
2000. Springer-Verlag.

A Some Known Public-Key Cryptosystems

Cramer-Shoup Cryptosystem from [CS98].

Setup: On input the security parameter λ, return a λ-bit prime q, a group G of order q,
and a universal one-way family UOWHF of hash functions.

Key setup pub.gen: Let (g1, g2) ∈ G2 be two random generators, let
(α1, α2, β1, β2, γ) ← ZZ5

q . Compute c ← gα1
1 gα2

2 , d ← gβ1
1 gβ2

2 , h ← gγ
1 .

Choose uowhf ← UOWHF . The public key is pk ← (g1, g2, c, d, h, uowhf), the
private key is sk← (α1, α2, β1, β2, γ).

Encryption pub.enc: Given a message m ∈ G, do the following. First, set r ← ZZq

and then u1 ← gr
1 , u2 ← gr

2 , e ← m · hr, v ← (cduowhf(u1,u2,e))r. The ciphertext
is (u1, u2, e, v).

Decryption pub.dec: Given a ciphertext (u1, u2, e, v), do the following. Set k ←
uowhf(u1, u2, e). If uα1+β1k

1 uα1+β1k
2 6= v then output m ← ⊥. Otherwise, com-

pute m← e/uγ
1 and return m.

Cramer-Shoup Lite Cryptosystem from [CS98, Sect. 5.4].

Setup: On input the security parameter λ, return a λ-bit prime q, a group G of order q.

Hybrid Damgård Is CCA1-Secure under The DDH Assumption 13

Key setup pub.gen: Let (g1, g2) ∈ G2 be two random generators, let (α1, α2, γ) ←
ZZ3

q . Compute c ← gα1
1 gα2

2 , h ← gγ
1 . The public key is pk ← (g1, g2, c, h), the

private key is sk← (α1, α2, γ).
Encryption pub.enc: Given a message m ∈ G, do the following. First, set r ← ZZq

and then u1 ← gr
1 , u2 ← gr

2 , e← m · hr, v ← cr. The ciphertext is (u1, u2, e, v).
Decryption pub.dec: Given a ciphertext (u1, u2, e, v), do the following. If uα1

1 uα1
2 6=

v then output m← ⊥. Otherwise, compute m← e/uγ
1 and return m.

Shoup Hybrid Cryptosystem from [Sho00].

Setup: On input the security parameter λ, return a λ-bit prime q, a group G of order q,
and a universal one-way family UOWHF of hash functions.

Key setup pub.gen: Generate a random generator g1 ← G, and (w,α, β, γ) ← ZZ4
q .

Compute g2 ← gw
1 , c ← gα

1 , d ← gβ
1 , h ← gγ

1 . Choose uowhf ← UOWHF . The
public key is pk← (g1, g2, c, d, h, uowhf), the private key is sk← (w,α, β, γ).

Encryption pub.enc: Given a message m ∈ {0, 1}∗, do the following. First, set r ←
ZZq and then u1 ← gr

1 , u2 ← gr
2 , (K, κ) ← kdf(hr), e ← sym.enc(K;m, ρ) for

uniform randomizer ρ, t ← mac.tag(κ; e), v ← (cduowhf(u1,u2))r. The ciphertext
is (u1, u2, v, e, t).

Decryption pub.dec: Given a ciphertext (u1, u2, v, e, t), do the following. Set k ←
uowhf(u1, u2), (K, κ) ← kdf(uγ

1). If mac.ver(κ; e, t) = ⊥ or uα+βk
1 6= v or

u2 6= uw
1 then output m ← ⊥. Otherwise, compute m ← sym.dec(K; e) and

return m.

DHIES Cryptosystem from [ABR01]. The DHIES cryptosystem is very simple but
relies on a nonstandard assumption that was called “oracle-DDH” in [ABR01]. Briefly,
it is assumed that one cannot distinguish tuples (gu, gv, h(guv)) and (gu, gv, r) for ran-
dom group elements u, v ← ZZq and a random string r, even if given access to an oracle
that on any input x 6= gu computes h(xv).

Setup: On input the security parameter λ, return a λ-bit prime q, a group G of or-
der q, and its randomly chosen generator g ∈ G. Choose a CPA-secure sym-
metric cryptosystem sym = (sym.gen, sym.enc, sym.dec), a secure MAC mac =
(mac.tag,mac.ver), and a hash function family H from G2 to the set of keys of
sym and mac.

Key setup pub.gen: Choose a hash function h ← H. Generate α ← ZZq. Set sk ← α
and pk← (c← gα, h).

Encryption pub.enc: Given a message m ∈ {0, 1}∗, do the following. First, set
r ← ZZq and then u ← gr, (K, κ) ← h(cr), e ← sym.enc(K;m, ρ) for uni-
form randomizer ρ, t← mac.tag(κ; e). The ciphertext is (u, e, t).

Decryption pub.dec: Given a ciphertext (u, e, t), do the following. Compute (K, κ)←
h(uα). If mac.ver(κ; e, t) = ⊥ then return m ← ⊥ else return m ←
sym.dec(K; e).

14 Yvo Desmedt, Helger Lipmaa, and Duong Hieu Phan

Kurosawa-Desmedt Hybrid Cryptosystem from [KD04]. We give a description
due to [GS04] that differs from the original description from [KD04] in two as-
pects. It replaces the original (information-theoretically) rejection-secure CCA2-secure
sym of [KD04] with a CPA-secure sym and a (computationally) secure mac =
(mac.tag,mac.ver). It also allows to use a computationally secure KDF.

Setup: On input the security parameter λ, return a λ-bit prime q, a group G of or-
der q, and its two randomly chosen different generators g1, g2 ∈ G. Choose a
CPA-secure symmetric cryptosystem sym = (sym.gen, sym.enc, sym.dec), a se-
cure MAC mac = (mac.tag,mac.ver), a KDF kdf from G to the set of keys of
(sym,mac), and a target-collision-resistant function family T CR : G2 → ZZq.

Key setup pub.gen: Choose a hash function tcr ← T CR. Generate
(α1, α2, β1, β2) ← ZZ4

q . Set sk ← (α1, α2, β1, β2) and pk ← (c ← gα1
1 gα2

2 , d ←
gβ1
1 gβ2

2 , tcr).
Encryption pub.enc: Given a message m ∈ {0, 1}∗, do the following. First, set

r ← ZZq and then u1 ← gr
1 , u2 ← gr

2 , (K, κ) ← kdf
(
(cdtcr(u1,u2))r

)
,

e ← sym.enc(K;m, ρ) for uniform randomizer ρ, t ← mac.tag(κ; e). The ci-
phertext is (u1, u2, e, t).

Decryption pub.dec: Given a ciphertext (u1, u2, e, t), do the following. Compute k ←
tcr(u1, u2), (K, κ) ← kdf(uα1+β1k

1 uα2+β2k
2). If mac.ver(κ; e, t) = ⊥ then return

m← ⊥ else return m← sym.dec(K; e).

Hofheinz-Kiltz DDH-based cryptosystem. In [HK07, Sect. 4.2], the authors proposed
the next DDH-based cryptosystem.

Setup: On input the security parameter λ, return a λ-bit prime q, a group G of order
q, and its randomly chosen generator g ∈ G. Choose a CCA2-secure symmetric
cryptosystem sym = (sym.gen, sym.enc, sym.dec), a KDF kdf from G to the set of
keys of (sym,mac), and a target-collision-resistant function family T CR : G →
ZZq.

Key setup pub.gen: Choose a hash function tcr ← T CR. Generate (α1, α2, β) ←
ZZ3

q . Set sk← (α1, α2, β) and pk← (c← gα1 , d← gα2 , h← gβ , tcr).
Encryption pub.enc: Given a message m ∈ {0, 1}∗, do the following. First, set r ←

ZZq and then u1 ← gr, u2 ← (ctcr(u1) ·d)r, K ← kdf(hr), e← sym.enc(K;m, ρ)
for uniform randomizer ρ. The ciphertext is (u1, u2, e).

Decryption pub.dec: Given a ciphertext (u1, u2, e), do the following. If u1 6∈ G
or u

α1·tcr(u1)+α2
1 6= u2 then return ⊥. Compute K ← kdf(uβ

1). Return m ←
sym.dec(K; e), possibly m = ⊥.

