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Abstract

In this paper, we propose hybrid data-driven ROM closures for fluid flows. These new ROM
closures combine two fundamentally different strategies: (i) purely data-driven ROM closures,
both for the velocity and the pressure; and (ii) physically based, eddy viscosity data-driven clo-
sures, which model the energy transfer in the system. The first strategy consists in the addition
of closure/correction terms to the governing equations, which are built from the available data.
The second strategy includes turbulence modeling by adding eddy viscosity terms, which are
determined by using machine learning techniques. The two strategies are combined for the first
time in this paper to investigate a two-dimensional flow past a circular cylinder at Re “ 50 000.
Our numerical results show that the hybrid data-driven ROM is more accurate than both the
purely data-driven ROM and the eddy viscosity ROM.

1. Introduction

Full order models (FOMs) are computational models that are obtained by using classical numerical
methods, such as the finite element or the finite volume methods. The FOM computational cost
is prohibitively high for many important engineering, environmental, and biomedical applications
that require repeated turbulent flow simulations, such as [53].

Reduced Order Models (ROMs), presented in [9, 10, 11, 45, 46, 48] and applied to finite-volume
schemes in [16, 14], can reduce the FOM computational cost by orders of magnitude. ROMs can
be built by using different methodologies, such as least-squares Petrov–Galerkin projection [13] or
Galerkin projection [38, 12, 30, 6]. In this paper, we consider the class of Galerkin-ROMs (G-
ROMs), which are ROMs constructed by using a Galerkin method. The standard methodology
consists in the construction of a set of basis functions (modes) for the velocity and pressure fields,
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tϕ1, . . . , ϕru and tχ1, . . . , χqu, respectively, such that the unknown solution can be approximated as
a linear combination of these basis functions: upx, tq “

řr
i“1 aiptqϕipxq, ppx, tq “

řq
i“1 biptqχipxq.

The G-ROM consists in the resolution of a dynamical system, which is obtained by projecting the
governing equations onto the space spanned by these modes. The ROM basis is a data-driven
basis, which is built by available FOM snapshots. In this paper, we use the proper orthogonal
decomposition (POD) [19] to build the ROM basis. We note, however, that other approaches can
be used (see, e.g., [17, 42]). The resulting Galerkin ROM (G-ROM) is a system of equations in which
the unknowns are the coefficients paiqNui“1 and pbiq

Np
i“1 appearing in the reduced fields expressions.

For example, for the incompressible Navier-Stokes equations, the G-ROM can be written as follows:
#

at “ fpa, bq,

hpa, bq “ 0,
(1)

where aptq :“ pa1ptq, . . . , arptqq
T and bptq :“ pb1ptq, . . . , bqptqq

T , and f and h denote the ROM
operators.

ROMs are often built by using a few modes. In the marginally-resolved modal regime, where the
number of ROM basis functions allows a moderately accurate representation of the main features
of the underlying dynamics, G-ROMs can yield acceptable approximations. However, in the case of
turbulent flow applications, hundreds or even thousands of ROM modes are often required to obtain
a good approximation of the flow dynamics. Therefore, in those cases (i.e., in the under-resolved
regime), low-dimensional G-ROMs generally yield inaccurate approximations.

Different stabilization approaches have been studied in the past years in order to avoid the
stability issues and to increase the ROM accuracy [15, 12, 20, 26].

In this paper, in the marginally-resolved and, especially, under-resolved regimes, in order to
increase the accuracy of the standard G-ROM (1) while maintaining an acceptable computational
cost, the ROM approach is integrated with data-driven techniques. One popular approach is to
add closure/correction terms to the reduced formulation. To this end, one can use a purely data-
driven approach, which exploits only the available FOM data to build new terms that include the
contribution of the modes neglected in the ROM formulation. The new reduced system with purely
data-driven terms is the following:

#

at “ fpa, bq ` τupa, bq,

hpa, bq ` τ ppa, bq “ 0.
(2)

The terms τu and τ p are evaluated by solving a least square problem that minimizes the difference
between the model form of the correction terms and the exact correction terms, which are evaluated
by using the available FOM data [23, 57, 34, 36]. The technique used to compute the correction
terms takes inspiration from the operator inference approach [41, 29, 8, 27]. In [23], the purely data-
driven approach was applied for the first time to the pressure Poisson formulation (PPE-ROM),
leading to the introduction of the novel pressure correction term, τ p. This strategy has significantly
increased the accuracy of the pressure field approximation.

To construct the ROM correction terms, a different strategy is the physically-based data-driven
approach. This strategy consists of two steps: In the first step, one postulates a physical model
form for the ROM correction term. For example, to approximate turbulent flows, one can postulate
an eddy viscosity model. In the second step of the physically-based data-driven strategy, one
solves a least squares problem to determine the optimal parameters in the ROM correction term,
e.g., the eddy viscosity coefficient. The physically-based data-driven strategy was used in [18],
where the FOM utilizes a Reynolds averaged Navier-Stokes (RANS) approach [44] and an eddy
viscosity model is leveraged to close the FOM system [25, 28, 50]. To enforce FOM-ROM model
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consistency, a turbulence model was also introduced at a ROM level in [43] and in [18], where
an eddy viscosity reduced order model (EV-ROM) is built. In the EV-ROM, the eddy viscosity
reduced field is expressed as a linear combination of eddy viscosity modes νtpx, tq “

řNνt
i“1 giptqηipxq,

where tη1, . . . , ηNνt u are the eddy viscosity modes. The model introduced in [18] can be expressed
as follows:

#

at “ fpa, b,gq,

hpa, b,gq “ 0,
(3)

The vector of eddy viscosity coefficients g :“ pg1ptq, . . . , gNνt q can be obtained from the velocity
vector of coefficients a by using either interpolation or regression techniques.

The main aim of this paper is to propose a novel hybrid data-driven ROM that is constructed
by combining the two fundamentally different strategies outlined above: purely data-driven and
physically-based data-driven techniques. The new hybrid data-driven ROM can be written as
follows:

#

at “ fpa, b,gq ` τupa, bq,

hpa, bq ` τ ppa, b,gq “ 0.
(4)

Machine learning techniques are exploited to find the eddy viscosity coefficients in (4), training a
fully-connected neural network from the full order data.

To our knowledge, this is the first time that a purely data-driven strategy for both the velocity
and the pressure, and a physically-based eddy viscosity data-driven strategy are combined. A similar
approach has been used in [35]. We note, however, that the approach in [35] is different from the
approach used in the present study in two significant aspects: first, a data-driven correction term
is used in this paper, but not in [35]; second, the physically-based data-driven correction terms are
different: regression based mixing length in [35], and machine learning based eddy viscosity in the
current study.

In this paper, the new hybrid data-driven ROM (4) is compared to (i) the purely data-driven
ROM (2) proposed in [23], and (ii) the physically-based data-driven ROM (3) proposed in [18].
The three ROMs are tested and compared on the classical case study of a turbulent flow around
a cylinder. The numerical results show that the new data-driven ROM (4) yields more accurate
velocity and pressure approximations than both the purely data-driven ROM (2) and the physically-
based data-driven ROM (3).

These results support the following two conclusions, which are similar to those in [35]: adding a
physically-based (eddy viscosity) correction term improves the accuracy of the purely data-driven
ROM. Furthermore, adding purely data-driven velocity and pressure correction terms improves the
accuracy of the physically-based data-driven ROM. Thus, our numerical investigation suggests that
a hybrid data-driven ROM closure strategy is more accurate than both a purely data-driven closure
and a physically-based data-driven closure.

The rest of the paper is organized as follows: Section 2 is dedicated to a brief overview of
the FOM used and implemented in the C++ open source software OpenFOAM. In section 3, the
standard G-ROM framework is recalled, specifying the two approaches used in the numerical inves-
tigation (the supremizer and pressure Poisson approaches). Sections 4 and 5 summarize the purely
data-driven ROMs and physically-based data-driven ROMs, respectively. Section 6 is dedicated to
the presentation of the new hybrid data-driven ROM, whereas section 7 presents the results of the
numerical simulations in terms of relative errors of the pressure and velocity reduced fields with
respect to the full order results. Finally, section 8 presents the conclusions of our study and outlines
future research directions.
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2. Full Order Model (FOM)

As a mathematical model, we use the Navier-Stokes Equations (NSE) for incompressible flows. The
fluid domain is Ω P Rd with d “ 2 or 3, Γ the domain’s boundary, t P r0, T s the time, u “ upx, tq

the flow velocity vector field, p “ ppx, tq the pressure scalar field normalized by the fluid density,
and ν the fluid kinematic viscosity. The strong form of the incompressible NSE is the following:

$

’

’

’

’

’

&

’

’

’

’

’

%

Bu

Bt
“ ´∇ ¨ pub uq `∇ ¨ ν

`

∇u` p∇uqT
˘

´∇p in Ωˆ r0, T s , (5a)

∇ ¨ u “ 0 in Ωˆ r0, T s , (5b)
` boundary conditions on Γˆ r0, T s , (5c)
` initial conditions in pΩ, 0q . (5d)

The full order solutions of 5 are computed by using the software OpenFOAM, which employs a
finite volume discretization of the system [37, 24].

The full order problem uses the U-RANS (unsteady RANS equations) approach. This approach
is based on the Reynolds decomposition, proposed in [44], which decomposes each flow field in
its mean and its fluctuating part. The RANS equations are obtained by taking the time-average
of the NSE in (5). In the resulting system, it is important to include a closure model for the
Reynolds stress tensor. The closure model considered in this paper is an eddy viscosity model
that is based on the Boussinesq hypothesis. Specifically, the SST κ´ ω model is used to close the
RANS system. This model is based on the inclusion of two transport equations that describe two
additional variables: the kinetic energy, κ, and the specific turbulent dissipation rate, ω. The SST
κ ´ ω model is presented in [28] in the standard formulation, and in [32] in the SST formulation.
The extended RANS model including the SST κ´ ω equations can be found in [18].

3. The POD-Galerkin ROMs

In this section, a brief overview of the standard POD-Galerkin ROM techniques is provided.

After the offline stage is performed, all the FOM snapshots, i.e., the FOM solutions for different
time instants ttjuNTj“1, are collected. The POD is then applied on the full order snapshot matrices:

Su “ tupx, t1q, ...,upx, tNT qu P RN
h
uˆNT , Sp “ tppx, t1q, ..., ppx, tNT qu P RN

h
pˆNT ,

where Nh
u and Nh

p are the numbers of degrees of freedom for the velocity and pressure fields,
respectively.

The ROM construction uses the following different stabilization approaches for the velocity-
pressure coupling [23]:

(1) the SUP-ROM approach, in which additional supremizer modes for the velocity space are
introduced in order to fulfill the inf-sup condition [47, 7, 52, 5];

(2) the PPE-ROM approach, in which the pressure Poisson equation replaces the continuity
equation [4, 51, 52, 39].

In the two formulations, the velocity and pressure POD spaces are assembled as follows:

VuPOD “ spantrφis
Nu
i“1, rspχiqs

Nsup
i“1 u, VpPOD “ spantrχis

Np
i“1u, (6)

where Nu ! Nh
u and Np ! Nh

p , and rφis
Nu
i“1 and rχis

Np
i“1 are the velocity and pressure POD modes,

respectively. The supremizer modes psiq
Nsup
i“1 “ spχiq

Nsup
i“1 are additional modes introduced in the

SUP-ROM approach in order to fulfill the inf-sup condition [52].
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For each pressure basis function, the corresponding supremizer element can be found by solving
the following problem:

#

∆si “ ´∇pi in Ω,

si “ 0 on BΩ.
(7)

The velocity POD space can be enriched either with an exact or with an approximated approach
[7]. In the exact approach, the problem (7) is solved for each pressure basis function χi and each
solution is added to the velocity space. In the approximated approach, the problem (7) is solved
for each pressure snapshot ppx, tiqNTi“1, which yields the following supremizer snapshot matrix:

Ssup “ tspx, t1q, ..., spx, tNT qu P RN
h
uˆNT .

A POD modal decomposition is then applied to the snapshot matrix in order to obtain the suprem-
izer POD modes pηiq

Nsup
i“1 [52]. In this paper, we adopt the approximated procedure, since it sig-

nificantly reduces the computational cost of the offline phase. The reduced velocity and pressure
fields are expressed as follows:

upx, tq « urpx, tq “

Nu`Nsup
ÿ

i“1

aiptqφipxq, ppx, tq « prpx, tq “

Np
ÿ

i“1

biptqχipxq, (8)

where Nsup “ 0 for the PPE-ROM approach.
In the remainder of this section, we outline the SUP-ROM (section 3.1) and PPE-ROM (sec-

tion 3.2) approaches.

3.1. SUP-ROM

In the supremizer approach, performing a Galerkin projection of the momentum equation (5a) onto
the velocity modes, and of the continuity equation (5b) onto the pressure modes, the following
dynamical system is obtained:

#

M 9a “ νpB`BTqa´ aTCa´Hb` τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

,

Pa “ 0 ,
(9)

where a and b are the vectors of the coefficients associated to the velocity and pressure modes,
respectively.

The matrices appearing in the system are defined as follows:

pMqij “ pφi,φjqL2pΩq, pPqij “ pχi,∇ ¨ φjqL2pΩq , pBqij “ pφi,∇ ¨∇φjqL2pΩq,

pBTqij “ pφi,∇ ¨ p∇φjqT qL2pΩq, pCqijk “ pφi,∇ ¨ pφj b φkqqL2pΩq, pHqij “ pφi,∇χjqL2pΩq .

Remark 3.1 We highlight that the POD modes, as they are linear combination of snapshots, are
piece-wise constant functions. However, it is possible to compute second order operators using the
same FV procedure used at the FOM level. We remind to [37] for details.

The term τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

in (9) is a term used to enforce the Dirichlet boundary
conditions in the reduced order model [18, 54]. We call ΓD the Dirichlet boundary, which is
composed by different parts, ΓD1

, ΓD2
, .., ΓDK .

In particular, NBC is the number of velocity boundary conditions we would like to impose on
the parts of the Dirichlet boundary where velocity has at least one non-zero component; UBC,k is
the velocity non-zero component at the k-th part of the Dirichlet boundary.

5



τ is a penalization factor which is tuned by a sensitivity analysis on the specific problem com-
sidered [18, 54]. In general, bigger values of the penalization factor lead to a stronger enforcement
of the boundary conditions.

The matrices Ek and vectors Dk are defined as follows:

pEkqij “ pφi,φjqL2pΓDk q
, pDkqi “ pφiqL2pΓDk q

, for all k “ 1, ..., NBC.

3.2. PPE-ROM

In the pressure Poisson approach, the continuity equation (9) is replaced by the Poisson equation
for pressure, obtained by taking the divergence of the momentum equation. The dynamical system
is obtained by projecting the momentum equation and the pressure Poisson equation on the velocity
and pressure modes, respectively:

#

M 9a “ νpB`BTqa´ aTCa´Hb` τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

,

Db` aTGa´ νNa´ L “ 0 .
(10)

The matrices M, B, BT, C, H, D
k, and Ek in system (10) are the same as the corresponding

matrices in (9). The additional matrices are defined as follows:

pDqij “ p∇χi,∇χjqL2pΩq, pGqijk “ p∇χi,∇ ¨ pφj b φkqqL2pΩq,

pNqij “ pnˆ∇χi,∇φjqL2pΓq, pLqij “ pχi,n ¨RtqL2pΓq ,

where vector n is the normal unitary vector to the domain boundary Γ.

4. Data-driven VMS-ROMs

We consider the data-driven variational multiscale ROM (DD-VMS-ROM ) framework [23], in
which different correction/closure terms are introduced in the formulations of SUP-ROM(9) and
PPE-ROM (10). The DD-VMS-SUP-ROM approach (section 4.1) includes only velocity correction
terms, whereas the DD-VMS-PPE-ROM approach (section 4.2) includes both pressure and velocity
correction terms.

For the sake of simplicity, in this section we will consider the following notation for the coefficient
vectors for velocity and pressure:

a “ paiq
r
i“1, b “ pbiq

q
i“1,

where r is the reduced number of modes for velocity (r “ Nu in the PPE-ROM approach, r “
Nu `Nsup in the SUP-ROM approach), q is the reduced number of modes for pressure (q “ Np).
We will also consider rtot “ r ` q.

4.1. DD-VMS-SUP-ROM

The reduced formulation for the supremizer approach adopted in [23] is the following:
#

M 9a “ νpB`BTqa´ aTCa´Hb` τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

` τupaq ,

Pa “ 0 .
(11)

The velocity correction term appearing in (11) is modeled as follows:

τupaq “ Ãa` aT B̃a, (12)

6



where Ã is a matrix and B̃ is a three-dimensional tensor. The operators Ã and B̃ are constructed by
solving an optimization problem that minimizes the difference between the exact correction term,
τ exact
u , and a correction term ansatz, τ ansatz

u :

min
ÃPRrˆr,

B̃PRrˆrˆr

M
ÿ

j“1

||τ exact
u ptjq ´ τ

ansatz
u ptjq||

2
L2pΩq , (13)

where M time instances are considered to build the correction term and the term τ exactptjq is
computed starting from the snapshots coefficient vectors asnapd ptjq and asnapr ptjq, defined as follows:

asnapdi
ptjq “ pudptjq,φiqL2pΩq @i “ 1, ..., d " r.

asnapri ptjq “ purptjq,φiqL2pΩq @i “ 1, ..., r.

The value d is the number of modes used to build the exact correction term.

Remark 4.1 We remark that the value of d can be chosen as the rank of the snapshots matrix.
However, in order to decrease the computational cost of the offline stage, we chose a value which is
smaller than the rank of the snapshots matrix, but considerably bigger than the reduced number of
modes considered, as pointed out in [57].

The exact correction term for velocity is evaluated as follows:

τu
exactptjq “

´

´pasnapd ptjqqTCda
snap
d ptjq

r
¯

´
`

´pasnapr ptjqq
TCasnapr ptjq

˘

,

where the tensor Cd P Rdˆdˆd is defined in the following way:

Cd ijk “
`

φi,∇ ¨ pφj b φkq
˘

L2pΩq
.

The correction term ansatz is evaluated as in (12), but starting from asnapr ptjq at each time step
j:

τu
ansatzptjq “ Ãasnapr ptjq ` pa

snap
r ptjqq

T B̃asnapr ptjq. (14)

The optimization problem (13) is rewritten as a least squares problem following a procedure similar
to that used in [41] and presented in detail in [23] and [22].

A different way to find Ã and B̃, introduced in [34], is that of solving a constrained least squares
problem, inheriting the physical properties of the exact tensors:

min
ÃPRrˆr,

B̃PRrˆrˆr,

aT Ãaď0,

aT paT B̃aq“0

M
ÿ

j“1

||τu
exactptjq ´ τu

ansatzptjq||
2
L2pΩq . (15)

As shown in [23, 34], the constrained method can yield better results than the unconstrained method
in the marginally-resolved regime.

4.2. DD-VMS-PPE-ROM

In this section, the pressure data-driven model developed in [23] is briefly recalled. The continuity
equation at the reduced level is replaced by the pressure Poisson equation. This formulation allows
for the introduction of novel pressure correction terms in the reduced system:

#

M 9a “ νpB`BTqa´ aTCa´Hb` τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

` τupa, bq ,

Db` aTGa´ νNa´ L` τ ppa, bq “ 0 .
(16)
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In [23, 22], different ansatzes are analyzed for the correction terms τu and τ p. The formulation
which is chosen in this paper is the one in which a unique least squares problem is solved to find
all the purely data-driven terms.

As the exact correction term in the optimization problem, we consider the following:

τ exact
tot ptjq “

`

τ exact
u ptjq, τ

exact
p ptjq

˘

@j “ 1, ...,M . (17)

The exact correction corresponding to τ p includes the contribution of two different terms:

τ exact
p ptjq “ τ

exact
D ptjq ` τ

exact
G ptjq “

“

´

Ddb
snap
d ptjq

q
¯

´Dbsnap
q ptjq ` pa

snap
d ptjqqTGda

snap
d ptjq

r
´ pasnap

r ptjqq
TGasnap

r ptjq ,

where the matrix Dd and tensor Gd are defined as follows:

Ddij “ p∇χi,∇χjqL2pΩq, Gdijk “ p∇χi,∇ ¨ pφj b φkqqL2pΩq, i, j, k “ 1, . . . , d .

The ansatz considered in this paper is the following:

τ ansatz
tot ptjq “ J̃Aab

snap
ptjq ` pab

snap
ptjqq

T J̃Bab
snap

ptjq , (18)

where the matrices J̃A P Rpr`qqˆpr`qq and J̃B P Rpr`qqˆpr`qqˆpr`qq, and the vector absnap
ptjq “

pasnap
r ptjq, b

snap
q ptjqq P Rr`q. The final correction which is inserted in the reduced system (16) is

divided into two vectors:

J̃Aab` abT J̃Bab “ pτu, τ pq , where τu P RNu , τ p P RNp . (19)

Finally, the following optimization problem is solved:

min
J̃APRrtotˆrtot ;

J̃BPRrtotˆrtotˆrtot

M
ÿ

j“1

||τ exact
tot ptjq ´ τ

ansatz
tot ptjq||

2
L2pΩq . (20)

5. Eddy Viscosity ROMs

The ROMs described in section 4 do not include turbulence treatment inside the formulation.
Different models have been used in fluid applications to simulate the turbulent behaviour. In this
paper, turbulence is included at the full order level by using a particular type of eddy viscosity
model, the SST κ´ω model, which adds to the RANS equations the transport equations for κ and
ω.

At the reduced order level, an approximation of the eddy viscosity terms can be included in
equations by introducing a reduced order version of the eddy viscosity [18], as follows:

νtpx, tq « νtr px, tq “

Nνt
ÿ

i“1

giptqηipxq ,

where ηipxq is the i-th eddy viscosity mode evaluated through a POD procedure and giptq the
corresponding coefficient.

Adding the turbulence terms to the SUP-ROM (9), the new dynamical system can be written
as follows:
#

M 9a “ νpB`BTqa´ aTCa` gT pCT1 `CT2qa´Hb` τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

,

Pa “ 0 ,
(21)
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where the new matrices appearing are defined as:

pCT1qijk “ pφi, ηj∇ ¨∇φkqL2pΩq ,

pCT2qijk “ pφi,∇ ¨ ηjp∇φkqT qL2pΩq .

When a PPE approach is considered, the FOM momentum and Poisson equation, according to the
RANS turbulent model, are written in the following way:

$

’

’

’

’

’

&

’

’

’

’

’

%

Bu

Bt
`∇ ¨ pub uq “ ∇ ¨

“

´pI` pν ` νtq
`

∇u` p∇uqT
˘‰

in Ωˆ r0, T s ,

∆p “ ´∇ ¨ p∇ ¨ pub uqq `∇ ¨
“

∇ ¨
`

νt
`

∇u` p∇uqT
˘˘‰

in Ω ,

` Boundary Conditions on Γˆ r0, T s ,

` Initial Conditions in pΩ, 0q .

Consequently, the dynamical system (10) takes the following form:
#

M 9a “ νpB`BTqa´ aTCa` gT pCT1 `CT2qa´Hb` τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

,

Db` aTGa´ gT pCT3 `CT4 qa´ νNa´ L “ 0 ,
(22)

where:
pCT3qijk “ p∇χi, ηj∇ ¨∇φkqL2pΩq , pCT4qijk “ p∇χi,∇ ¨ ηjp∇φkqT qL2pΩq .

In the dynamical systems defined in (21) and (22), the number of unknowns is Nu`Nsup (in (21))
and Nu (in (22)) for velocity, Np for pressure, and Nνt for the eddy viscosity. However, the number
of equations is Nu `Nsup `Np in (21) and Nu `Np in (22). Thus, there are more unknowns than
equations and the systems are not closed for both the supremizer and the Poisson approach. In
order to close the systems, the eddy viscosity coefficients rgiptqs

Nνt
i“1 can be computed considering

the mapping g “ fpaq through either interpolation or regression techniques.
In the first approach, the reduced eddy viscosity coefficients are interpolated with radial basis

functions [31, 33]. This technique was exploited in [18], following the POD-I approach [56, 55, 49]. In
the regression approach, which is the one used in this paper, the reduced eddy viscosity coefficients
are computed starting from the velocity coefficients raisNui“1 through a feed-forward fully-connected
neural network [22]. The neural network considered has two hidden layers of sizes 256 and 64, the
activation function is ReLU, and the learning rate used for training is 1e ´ 5. The loss function
minimized in the training process is the difference between the output of the neural network (gNN “

fNNpaq) and the values of the known coefficients of the eddy viscosity field (g “ pgiq
Nνt
i“1 ), which are

found from the POD procedure.

6. Hybrid data-driven ROMs

This section introduces the hybrid data-driven approach. The new formulation fuses the purely
data-driven and physically-based data-driven strategies presented in sections 4 and 5, respectively.
The reduced system following the supremizer approach is expressed as follows:
#

M 9a “ νpB`BTqa´ aTCa` gT pCT1 `CT2qa´Hb` τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

` τupaq ,

Pa “ 0 ,

(23)
where:

τupaq “ Ãa` aT B̃a . (24)
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Considering the pressure Poisson approach, the reduced system is written in the following way:
#

M 9a “ νpB`BTqa´ aTCa` gT pCT1 `CT2qa´Hb` τ
´

řNBC
k“1 pUBC,kD

k ´Ekaq
¯

` τupa, bq ,

Db` aTGa´ gT pCT3 `CT4 qa´ νNa´ L` τ ppa, bq “ 0 ,

(25)
where, as described in section 4.2, the correction terms are:

τ tot “ pτupa, bq, τ ppa, bqq “ J̃Aab` abT J̃Bab . (26)

Remark 6.1 We highlight that there is an interplay between the two data-driven techniques used
in the hybrid model:

• the coefficient vector aptq is computed at time t by solving a system in which both purely and
physically data-driven closure terms appear. For example, in the hybrid data-driven PPE-
ROM model:

#

9aptq “ fpaptq,bptq,gptqq ` τupaptq,bptqq

hpaptq,bptq,gptqq ` τppaptq,bptqq “ 0.
(27)

The computed coefficient vector a is then given as input to the neural network and used to
predict the eddy viscosity reduced field (gpt` 1q “ fpaptqq).

• the computed gpt` 1q is then used to solve (27) at time t` 1 and find apt` 1q and bpt` 1q,
and so on.

7. Numerical Results

The case study considered to test the data-driven ROMs described in sections 4, 5 and 6 is an
unsteady flow past a circular cylinder. The case is studied in two dimensions and the mesh used
has 11644 cells. The mesh and the boundary conditions set for velocity and pressure are displayed
in Figure 1 [18]. The diameter of the cylinder is D “ 1 m, the fluid kinematic viscosity ν “

1ˆ 10´4 m2 s´1, and the velocity at the inlet is horizontal and fixed: Uin “ 5 m s´1.

Figure 1: The mesh used in simulations (left) and the mesh zoomed around the cylinder (right), with the
corresponding boundary conditions.

For the offline stage, the software OpenFOAM is used to obtain the full order fields, using the
unsteady solver pimpleFoam and the κ´ ω model for the turbulence treatment. The pimpleFoam
solver is based on a PIMPLE approach for pressure velocity coupling with under-relaxation tech-
nique, which consists of the coupling of a SIMPLE [40] and a PISO strategy [21]. The number of
time instances considered in the offline phase is 5000, considering one FOM snapshot every 0,004 s
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and starting from the second 20 from the beginning of the simulation. Since the time step of the
full order simulation is set to 0,0002 s, we are using undersampling, taking one snapshots every 20
time steps.

Then, the POD is performed. The POD modes for the velocity, pressure, and supremizer fields
are extracted from the numerical data, making use of the library ITHACA-FV [1, 52, 51].

The simulations for the online ROM procedure are computed in a dedicated Python script, and
both the SUP-ROM and the PPE-ROM approaches are tested.

The results of the high-fidelity simulations are compared to the results obtained by solving
the reduced order dynamical systems with or without the data-driven terms and considering the
parameter τ “ 1000, which was introduced in system (9). More specifically, the results are evaluated
in terms of the percentage errors of the reduced pressure and velocity fields with respect to the
correspondent high-fidelity fields, evaluated at each time step, in the L2 norm. Since the projection
of the full order solution on the reduced POD space is the best possible result which can be achieved
with a given number of modes, the solution of the reduced system cannot improve with respect to
that projection. For this reason, the percentage errors with respect to the projection of the full
order solution on the reduced POD space are used in the numerical investigation. The percentage
errors with respect to the full order fields at each j-th time step are evaluated in the following way:

εuptjq “
||uabsr px, tjq ´ uabsd px, tjq||L2pΩq

||uabsd px, tjq||L2pΩq

, εpptjq “
||prpx, tjq ´ pdpx, tjq||L2pΩq

||pdpx, tjq||L2pΩq
, (28)

where the following quantities are considered:

• the reduced velocity and pressure fields:

urpx, tjq “
r
ÿ

i“1

aiptjqφipxq, prpx, tjq “
q
ÿ

i“1

biptjqχipxq,

where the coefficients aiptjq and biptjq are the solutions of the dynamical systems (29) (in the
supremizer approach) and (30) (in the Poisson approach);

• the approximated full order fields of velocity and pressure, which are evaluated starting from
the first d modes, where d “ 100 when a supremizer approach is considered, and d “ 50 when
a pressure Poisson approach is considered. Such a term reads

udpx, tjq “
d
ÿ

i“1

asnap
i ptjqφipxq, pdpx, tjq “

dp
ÿ

i“1

bsnap
i ptjqχipxq.

We remark that when the supremizer approach is considered, tφiu100
i“51 “ tsipχiqu

50
i“1 are the

supremizer modes.

Considering the supremizer approach, the most general form for the dynamical system solved
at each time step is the following:

$

’

’

&

’

’

%

M 9ai “ νpB`BTqa
i ´ paiqTCai ´Hbi ` cuτupa

i,biq `

`ct
`

pgiqT pCT1 `CT2qa
i
˘

`τ
´

řNBC
k“1 pUBC,kD

k ´Ekaiq
¯

at each i “ 1, ...,M ,

Pai “ 0 at each i “ 1, ...,M ,

(29)

where M is the total number of time steps in the online phase.
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Considering the pressure Poisson approach, the reduced dynamical system can be written as
follows:

$

’

’

’

’

&

’

’

’

’

%

M 9ai “ νpB`BTqa
i ´ paiqTCai ´Hbi ` cuτ

upai,biq `

`ct
`

pgiqT pCT1 `CT2qa
i
˘

`τ
´

řNBC
k“1 pUBC,kD

k ´Ekaiq
¯

at each i “ 1, ...,M ,

Dbi ` paiqTGai ´ νNai ´ L` ct
`

pgiqT pCT3 `CT4qa
i
˘

`

`cpτ
ppai,biq “ 0 at each i “ 1, ...,M .

(30)

The matrices and tensors appearing in the two formulations are specified in sections 3, 4, and 5.
In systems (29) and (30), the parameters cu, cp, and ct are introduced to either include or combine
the different data-driven strategies in the reduced formulation.

For the time integration, two different approaches are used. Specifically, the time derivative 9ai

appearing in the momentum equation in (29) and (30) is computed following (i) an Euler first order
time scheme, and (ii) an implicit second order time scheme. It is worth remarking that the second
order time scheme corresponds to the scheme implemented in OpenFOAM and used to solve the
full order problem.

In this section, the numerical results are analyzed with respect to three different criteria:

• in the first part (section 7.1), the accuracy of the data-driven ROMs is analyzed by varying
the number of ROM modes between 1 and 10;

• the second and the third sections (7.2 and 7.3) investigate the accuracy of the data-driven
ROMs by first fixing the number of modes to 5 for the velocity, pressure, and supremizer
fields, and then varying the time. Sections 7.2 and 7.3 investigate the supremizer and the
Poisson approaches, respectively;

• the last section (7.4) is dedicated to the graphical comparison of the velocity and pressure
fields produced by the data-driven ROMs.

The following cases are analyzed and compared, for both the first and the second order time
schemes, and for both SUP-ROM and PPE-ROM approaches:

• ct “ cu “ 0 (and cp “ 0 for PPE-ROM), i.e., standard ROM without the addition of any
data-driven term;

• ct “ 0, cu “ 1 (and cp “ 1 in PPE-ROM), i.e., purely data-driven model;

• ct “ 1, cu “ 0 (and cp “ 0 in PPE-ROM), i.e., physically-based data-driven model;

• ct “ cu “ 1 (and cp “ 1 in PPE-ROM), i.e., hybrid data-driven model.

In sections 7.2, 7.3, and 7.4, the results provided by the combination of the two different data-
driven techniques are compared to those obtained in the previous works [23] and [18], where only
one of these two techniques is used.

7.1. Hybrid data-driven approach in different modal regimes

In this section, a comparison of different modal regimes is carried out for both the supremizer and
the pressure Poisson approaches. The models considered for the investigation are:

• the SUP-ROM, with and without the closure turbulence model and the extra velocity correc-
tion term;
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• the PPE-ROM, with and without the turbulence model, extra velocity correction term (in
the momentum equation), and pressure correction term (in the pressure Poisson equation).

The accuracy is evaluated in terms of percentage integral errors for the absolute value of velocity
and pressure on a time window of 500 time instants. The expressions for the overall time window
L2 errors are the following:

şT

0
||uabsr px, tjq ´ uabsd px, tjq||L2pΩq dt

şT

0
||uabsd px, tjq||L2pΩq dt

ˆ 100 ,

şT

0
||prpx, tjq ´ pdpx, tjq||L2pΩq dt

şT

0
||pdpx, tjq||L2pΩq dt

ˆ 100

where T corresponds to 2 s. The errors defined above are analyzed for all the cases for both the
first and the second order time schemes.

The graphical results are showed in semi-logarithmic plots in Figure 2 for the supremizer ap-
proach, and in Figure 3 for the Poisson approach.

In Figure 2, the number of modes considered in the supremizer approach satisfies Nsup ą Np
when Nu “ Np is equal to 8, 9, and 10, in order to avoid stability issues. From Figures 2 and 3,
one can note that the data-driven corrections have a more significant positive effect when a small
number of modes is considered; the improvement with respect to the standard Galerkin-ROM,
especially for the pressure field, is not visible when the number of modes is larger than 8.

In both the supremizer and the Poisson approaches, the time integration scheme plays an im-
portant role in the evaluation of the data-driven ROM accuracy. In fact, when a first order time
scheme is used, the introduction of the turbulence treatment in the formulation does not improve
the results with respect to the standard ROM and the results obtained in [23] with the DD-VMS-
ROM. This fact is particularly evident for a number of modes between 7 and 10 (Figures 2(a),(b)
and 3(a),(b)).

When the standard ROM is considered, the results obtained with a first-order time scheme
outperform the results obtained with a second-order time scheme: this is likely due to the reduced
numerical dissipation associated with the second-order time scheme, which makes the system more
exposed to numerical instabilities.

When the turbulence modeling is added to the reduced formulation, results improve only if
we consider a second-order time scheme, i.e., if we have consistency with respect to the full order
model.

The analysis in the following section focuses on Nu “ Np “ 5 (and Nsup “ 5 for the supremizer
enrichment), i.e., in the marginally-resolved regime.

7.2. Comparison of data-driven VMS-SUP-ROMs

In this section, the results of different data-driven techniques are compared for the supremizer
approach for a first and a second order time schemes.

For the simulations of the reduced systems (21) and (23), the coefficients of the reduced eddy
viscosity field pgiq

Nνt
i“1 are computed by using a fully-connected neural network, starting from the

velocity coefficients paiqNui“1. The network is composed of two hidden layers, the ReLU function is
used as an activation function in the network, and the learning rate is set to 10´5.

The momentum equation correction term is obtained by solving the constrained optimization
problem (15), since it provides the best performance with respect to the velocity accuracy for a low
number of modes, as pointed out in section 4.1.

Figures 4 (a) and (b) display the results obtained using a first order time scheme. In this
case, the inclusion of a turbulence model does not appear to have a completely positive effect on
accuracy. In addition, coupling the turbulence and correction strategies does not lead to higher

13



1 2 3 4 5 6 7 8 9 10
Nu = Np

100

101

∫ T 0
||u

d
(t

)−
u
r
(t

)||
d
t

∫ T 0
||u

d
(t

)||
d
t

[%
]

1 2 3 4 5 6 7 9 10 15
Nsup

(a) Percentage error of velocity (1st order)

1 2 3 4 5 6 7 8 9 10
Nu = Np

100

101

∫ T 0
||p

d
(t

)−
p r

(t
)||
d
t

∫ T 0
||p

d
(t

)||
d
t

[%
]

1 2 3 4 5 6 7 9 10 15
Nsup

(b) Percentage error of pressure (1st order)

1 2 3 4 5 6 7 8 9 10
Nu = Np

100

101

∫ T 0
||u

a
bs
d

(t
)−

u
a
bs
r

(t
)||
d
t

∫ T 0
||u

a
bs
d

(t
)||
d
t

[%
]

1 2 3 4 5 6 7 9 10 15
Nsup

(c) Percentage error of velocity (2nd order)

1 2 3 4 5 6 7 8 9 10
Nu = Np

100

101

∫ T 0
||p

d
(t

)−
p r

(t
)||
d
t

∫ T 0
||p

d
(t

)||
d
t

[%
]

1 2 3 4 5 6 7 9 10 15
Nsup

(d) Percentage error of pressure (2nd order)

Figure 2: Percentage integral errors of the absolute value of velocity and pressure, varying the number
of modes. The model is the SUP-ROM with a first ((a), (b)) and second ((c), (d)) order
time scheme. The cases represented are the following: without any data-driven term ( );
physically-based data-driven model ( ); purely data-driven model for the velocity (
and unconstrained and constrained, respectively); hybrid model ( ); projection (

).

accuracy, especially when the pressure field is considered. In such a case in fact, the hybrid method
leads to worse results than in the no-correction case, as already pointed out in section 7.1.

When considering a second order time discretization scheme (Figures 4 (c) and (d)), the results
obtained with turbulence modeling or with both correction closure terms and turbulence terms
are more accurate than the results of the standard ROM, and are close to the projection of the
full order solution on the reduced POD space. In particular, in terms of accuracy of the velocity
reduced field, the results are very similar to the projected field.

7.3. Comparison of data-driven VMS-PPE-ROMs

In this section, the combined effect of data-driven terms and turbulence modeling is evaluated for
the PPE approach for a simulation lasting 8 seconds in Figure 5. The correction terms are built
starting from the first 2 seconds and all corrections are constructed by using the approach detailed
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Figure 3: Percentage integral errors of the absolute value of velocity and of pressure, varying the number
of modes. The model is the PPE-ROM with a first ((a), (b)) and second ((c), (d)) order time
scheme. The cases represented are the following: without any data-driven term ( );
physically-based data-driven model ( ); purely data-driven model ( ); hybrid data-
driven model ( ); projection ( ).

in Section 4.2.
The differences between Figures 5 (a),(b) and 5 (c),(d) confirm what observed in the SUP-ROM

investigation. When a first order scheme is used (Figure 5(a),(b)), the hybrid data-driven approach
does not significantly improve the accuracy of the eddy viscosity or purely data-driven approaches.
However, when a second order time scheme is used (Figure 5 (c),(d)), the combination of turbulence
modeling and corrections leads to a significant accuracy improvement.

Remark 7.1 Different behaviours of the reduced system in Figures 2, 3, 4 and 5 when using a first
or second order time scheme, can be justified with the different dissipation associated with the two
numerical time integration schemes.

In fact, from the numerical examples, we deduce that, when considering a ROM which includes
all the stabilizations of the FOM (i.e. data-driven + eddy viscosity), it is important to use the same
temporal scheme employed at the FOM level (i.e. second order scheme). In the case of a ROM with
missing stabilization terms (i.e. missing eddy viscosity for example) a first order scheme introduces
additional numerical stabilization and gives a beneficial contribution.

15



0 1 2 3 4 5 6 7 8
time [s]

101
εf
u
ll

u
[%

]

(a) Percentage error of velocity

0 1 2 3 4 5 6 7 8
time [s]

101

εf
u
ll

p
[%

]

Without corrections

With vel. correction

With turbulence term

With vel. and turbulence terms

Projection

(b) Percentage error of pressure

0 1 2 3 4 5 6 7 8
time [s]

101

εf
u
ll

u
[%

]

(c) Percentage error of velocity

0 1 2 3 4 5 6 7 8
time [s]

101

102

εf
u
ll

p
[%

]

Without corrections

With vel. correction

With turbulence term

With vel. and turbulence terms

Projection

(d) Percentage error of pressure

Figure 4: Percentage errors of the absolute value of velocity and pressure, considering Nu “ Np “ Nsup “

5. The model is the SUP-ROM with a first ((a), (b)) and second ((c), (d)) order time scheme.
Results include the following cases: without any data-driven term ( ); purely data-driven
constrained model for the velocity ( ); physically-based data-driven model ( );
hybrid data-driven model ( ); projection ( ).

We also note that the model has an excellent extrapolation efficiency. Indeed, although the
corrections are constructed with data from the first 2 seconds, they increase the ROM accuracy on
the interval r2, 8s seconds. Finally, we point out that the instability of the second order integration
scheme is damped by the addition of the turbulence model.

Overall, the numerical results in this section show that adding the data-driven velocity and
pressure corrections proposed in [23] can significantly increase the accuracy of the turbulence ROMs
proposed in [18].

7.4. Qualitative results

The inclusion of correction terms and turbulence modeling in the reduced formulations is also
examined from a graphical point of view for the SUP-ROM and PPE-ROM approaches. The results
are graphically represented on the test case grid by using the open-source application Paraview and
the results are compared to those obtained in [23] and [18].

The second order time integration scheme is used since it provides the best results in Sections
7.2 and 7.3.

The POD is performed on the snapshots evaluated at the time instances within the interval
r79.992, 99.992s seconds and the reduced order systems (29) and (30) are solved in the interval
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Figure 5: Percentage errors of the absolute value of velocity and pressure, considering Nu “ Np “ Nsup “

5. The model is the PPE-ROM, with a first ((a), (b)) and second ((c), (d)) order time scheme.
Results include the following cases: without any data-driven term ( ); purely data-driven
model, for both velocity and pressure ( ); physically-based data-driven model ( );
hybrid data-driven model ( ); projection ( ).

r79.992, 87.992s seconds, since the maximum length of the online simulations carried out is 8 seconds.
For this reason, all the fields are captured at the final time step of online simulations, i.e., at 87.992

seconds.
The pressure and the velocity magnitude fields are displayed in Figures 6 and 7, respectively,

for different SUP-ROM and PPE-ROM simulations. The fields computed with the standard ROMs
and those coming from the systems including the data-driven terms are different. In particular, the
fields in panels (e) and (f) of Figures 6 and 7 are closer to the full order fields displayed in panel (g)
of Figures 6 and 7, especially in the region around the cylinder. The improvement of the accuracy
nearby the circular cylinder is an important gain as it leads to a better reconstruction of the ROM
lift coefficient.

8. Conclusions and Outlook

One popular way to increase the accuracy of Galerkin ROMs in the under-resolved or marginally-
resolved regimes is adding closure or correction terms [3]. In this paper, the data-driven modeling
of these correction terms, deeply analyzed in [23], was combined with turbulence modeling, using
the eddy viscosity formulation developed in [18]. This yielded a novel hybrid data-driven closure
strategy, which we tested numerically. In our numerical investigation, we considered the two-
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(g)
Figure 6: Representation of the pressure field for the FOM, the SUP-ROM and the PPE-ROM simulations

with and without the data-driven terms.

dimensional flow past a circular cylinder at Re “ 50 000 in the marginally-resolved regime. We also
considered several model configurations.

First, we tested two fundamentally different ROM pressure formulations: (i) The supremizer
ROM (SUP-ROM), in which additional (supremizer) modes for the velocity approximation are used
in order to satisfy the inf-sup condition. (ii) The pressure Poisson equation (PPE-ROM), in which
the pressure approximation is determined by solving a Poisson equation instead of the continuity
equation.

Secondly, a comparison between a first and a second order integration time scheme, in the
resolution of the reduced system, was performed. In our numerical investigation, we observed that
the numerical dissipation associated with the second order scheme leads to a better reconstruction
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Figure 7: Representation of the velocity magnitude field for the FOM, the SUP-ROM and the PPE-ROM

simulations with and without the data-driven terms.

of the pressure and velocity fields when the novel data-driven terms are added.
In conclusion, the hybrid data-driven closure strategy provides the best performance, leading

to an increased accuracy of the reduced pressure and velocity field with respect to the high-fidelity
solution, in both supremizer and Poisson approaches with a second order time integration scheme.

Outlook There are several research directions that can be investigated:

• The combined effect of correction terms and eddy viscosity modeling is highly influenced by
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the nature of the test case taken into account. The numerical method proposed was tested in
this paper only in the case of a 2D turbulent flow around a circular cylinder. Further tests
with unsteady problems, with a more complex computational setting or with 3D grids will be
analysed in future works.

Moreover, in this paper we focused on a single configuration for the training dataset: the
snapshots are collected in a time interval of 20 seconds, the correction terms are built from data
of 2 seconds and the online simulations last 8 seconds. In particular, the purely data-driven
technique has a good extrapolation efficiency since an interval of 2 seconds (corresponding
to 2 flow periods) collects enough information for the construction of the purely data-driven
terms.

Different settings would intuitively influence the performance of our numerical method and
will be addressed in future works.

• In this paper, the only parameter considered in the reduced order simulations is time. Thus,
the matrices appearing in the correction terms’ ansatzes are parameter independent. An inter-
esting task for the future would be the introduction of a parameter in the reduced formulation
— for instance the velocity at the inlet of the domain — as in [18]. In that case, the goal
would be to express the data-driven terms as a function of both the parameter considered and
the time.
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