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Abstract—To enable fast and accurate models of SiC MOS-
FETs for transient simulation, a hybrid data-driven modeling
methodology of SiC MOSFETs is proposed. Unlike conventional
modeling methods that are based on complex nonlinear equa-
tions, data-driven Artificial Neural Networks (ANNs) are used in
this paper. For model accuracy, the I-V characteristics are mea-
sured in the whole operation region to train the ANN. The ANN
model is then combined with behavior-based equations to model
the cutoff region and to avoid overfitting the ANN. In addition,
the C-V characteristics are modeled by ANNs with a logarithmic
scale for accuracy. The proposed model is implemented and
simulated in SPICE simulator SIMetrix. The simulation results
are compared with experimental results from a double-pulse
tester to validate the proposed modeling methodology. The model
is also compared with the Angelov model created by the Keysight
MOSFET modeling software. The comparison results show that
the proposed model is more accurate than the Angelov model.
Besides, when compared to the Angelov model, the proposed
model requires 30% less computation time when simulating a
double pulse tester. In addition, the proposed modeling method
also has better adaptability to model different types of SiC
MOSFETs.

Index Terms—SiC MOSFET, transient model, hybrid model-
ing, artificial neural network.

I. INTRODUCTION

S
ILICON Carbide (SiC) metal-oxide-semiconductor field-

effect-transistors (MOSFETs) are gaining popularity in

recent years. This is due to the superior material properties

of SiC compared to Silicon. For example, SiC features higher

switching speed, lower switching losses, higher thermal con-

ductivity and higher operation temperature capability [1]. Such

properties help increase power density and efficiency of power

electronics converters such as traction inverters and on-board

chargers in electric vehicles [2].
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High-power-density design of power electronics converters

requires accurate power losses analysis of SiC MOSFETs,

especially switching losses [3]. High-speed operation of SiC

MOSFETs increases the dv/dt and di/dt of the switching tran-

sients [4], which causes electromagnetic interference (EMI)

problems to the converters [5]. Although switching losses and

EMI can be examined experimentally, it is often required

to build multiple hardware prototypes for testing, which is

very expensive and time consuming. An alternative approach

is computer aided design [6]. Compared to the experimental

approach, the computer-aided-design methodology is more

time-efficient, as it can be used to simulate the power losses

and EMI for converter optimization. However, this approach

requires accurate and fast SiC MOSFET model to predict the

switching waveforms to nanosecond level accuracy. Such SiC

MOSFET model can be also used to optimize the design of

gate driver [7], heat sink [8] and EMI filters [9].

Many modeling methods of SiC MOSFETs have been

reported in previous literature and a review of SiC MOSFETs

model was presented in [10]. The available modeling methods

are based on either physics-based, numerical or behavior

models. Among them, physics-based and numerical models

can provide accurate simulation results based-on the carrier

transportation in the channel and drift regions [11], [12].

Physics-based and numerical-based models are built based on

the device geometry such as the channel length and width,

the thickness of the gate oxide layer and N-drift region,

doping concentration of different regions, etc [13]. Therefore,

the model built for one device can be extended to another

device with different current or voltage levels by adjusting

the physical parameters of the model [14]. But these models

are complex and have slow computation speed so are not

suitable for transient simulation. Also, the information of

device geometry is usually not available to users [15]. As

a result, they are mostly used at the design stage of SiC

MOSFETs [16].

Instead, behavior models are widely used in transient circuit

simulation due to their simplicity and fast computation speed

[17], which is therefore the focus of this paper. Most existing

behavior models are implemented using mathematical equa-

tions to match the measured device characteristics, such as I-

V and C-V characteristics [18]. Complex nonlinear equations

are firstly designed according to the device characteristics.

Afterwards, the equation parameters are extracted using math-

ematical curve fitting methods [19].
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In [7], a SPICE Level 1 behavior model was used to model

SiC MOSFETs but the I-V characteristics in the high voltage

region were not considered, which deteriorates the model

accuracy for transient simulation. To overcome this problem,

an improved Angelov model was proposed in [20], in which

the I-V characteristics in the high voltage region were used to

improve the model accuracy. The Angelov model parameters

can be automatically extracted in a commercially available

parameter extraction tool (IC-CAP; Keysight Technologies,

Inc.) using the Levenberg-Marquardt algorithm [21]. However,

the automatically extracted parameters may not be accurate

enough and the parameters often need to be manually tuned,

which is time-consuming and requires expert experience. Also,

some behavior models like the Angelov model [22] have more

than 80 parameters, making the parameter extraction very

difficult even for users with expert experience. In addition,

compared to physics-based and numerical-based models, the

behavior models have limited generality due to the lack of

physical information. Therefore, if behavior models built for

one device are used to model another device with different

current or voltage levels, parameters of the models need to be

extracted again based on device characteristics.

A new behavior modeling algorithm based on ANNs was

proposed in [23]–[25] which aimed to give a simple and

fast data-driven method. Thanks to the data-driven approach,

such ANN-based models can potentially overcome the afore-

mentioned challenges of the conventional behavior modeling

methods. Complex equation design is avoided and the ANN

parameters can be extracted easily and automatically by train-

ing the ANN using many well-developed toolboxes such as

the Neural Net Fitting Toolbox in MATLAB. In addition,

ANNs have good adaptability to model SiC MOSFETs with

different characteristics because ANNs can approximate any

mathematical functions [26]. However, the existing ANN-

based modeling methods are only suitable for static simulation

but not for transient simulation due to the insufficient training

dataset and inaccurate data-driven model.

In this paper, a hybrid data-driven behavior modeling

methodology is proposed to achieve fast and accurate transient

simulation. At its core, an ANN-based data-driven model

is used to model the I-V and C-V characteristics in the

whole operation region, which is overlaid with behavior-based

equations to accurately model the cutoff region. Two samples

of the SiC MOSFET module CAS120M12BM2 were used to

validate the proposed modeling methodology on accuracy and

repeatability. The training dataset of ANNs were measured

from one sample and the transient switching waveforms were

measured from another sample. The accuracy of the proposed

hybrid modeling method is verified by comparing simulated

and measured switching waveforms from the SPICE simulator

SIMetrix and a double pulse tester (DPT), respectively. The

proposed model is also compared with the Angelov model in

[20]. It is shown that the proposed model can achieve 1.5∼ 3

times more accuracy and better adaptability than the Angelov

model. Besides, the computation time of the proposed model

is compared with the Angelov model through simulating the

same DPT circuit in SIMetrix. The runtime of the proposed

model is found to be 30% faster than Angelov model.

The main contribution of the paper is that, for the first

time, an ANN-based hybrid data-driven modeling method is

proposed and verified for accurate transient simulation of SiC

MOSFETs. The proposed method improves accuracy of SiC

MOSFET models by 1.5∼ 3 times, compared to the widely

used Angelov model. It is found that simply using the data

measured from a curve tracer to train the ANNs cannot

generate an accurate transient model of SiC MOSFET. The

accuracy of the model is largely determined by two factors,

i.e., high-quality training dataset and proper data-driven model,

which are detailed as follows:

1) For the training dataset of the I-V characteristics,

compared to existing methods [23], it is identified that

the I-V characteristics in the high voltage region (i.e.

saturation region up to the maximum DC voltage across

the MOSFETs) must be included to obtain accurate

simulation results across the whole operation region of

SiC MOSFETs in transient simulation.

2) It is identified that a proper data-driven model is critical

for accurate modeling of the I-V characteristics. Since

the cut-off region of the I-V characteristics is hard to be

modeled correctly by a pure data-driven model presented

in existing methods, a hybrid data-driven model is

proposed to model the cutoff region accurately.

3) The training dataset and proper data-driven model are

also identified for the C-V characteristics which are not

considered in existing methods. The C-V characteristics

are measured in the whole VDS region in logarithmic

scale as the training dataset, and logarithmic transfor-

mation is applied in ANN models for accuracy.

As a result, the proposed modeling method improves the

accuracy of transient simulation, which in turn can be used

for accurate analysis of power losses and EMI in computer-

aided design of power converters based on SiC MOSFETs.

II. REVIEW OF THE EXISTING ANN MODEL

It was noted in the conclusions of [23] that the existing ANN

model is not suitable for transient simulation. In this section,

the existing ANN model is reviewed from the structure to the

limitations on transient simulation. A 1200V 120A module

CAS120M12BM2 from Wolfspeed was selected to facilitate

the analysis.

A. Structure of artificial neural network

As shown in Fig. 1, a single-hidden-layer ANN was used to

model the I-V characteristics of SiC MOSFETs. The single-

hidden-layer ANN consists of an input layer, a hidden layer

and an output layer. The input layer has two neurons to receive

two input variables: the drain-to-source voltage VDS and gate-

to-source voltage VGS . The output layer has one neuron which

outputs the drain-to-source current IDS . The hidden layer has

10 neurons. Each neuron in one layer is connected with each

neuron in the next layer. Each connection has a weight. Each

neuron computes the sum of the weighted inputs and the

bias. Afterwards, it uses an activation function (e.g. sigmoid

function) to compute the output of the neuron and sent the
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Figure 1. ANN topology.

output to the next layer. The ANN can be represented by the

following mathematical equation:

IDS = fANN (VDS , VGS) =
9
∑

j=0

(wojhj) + bo (1)

=
9
∑

j=0

(

woj

(

sigmoid

(

1
∑

i=0

(wijxi) + bj

)))

+ bo.

where
[

x0 x1

]

=
[

VDS VGS

]

; woj is the weight

between the j-th hidden-layer neuron and the output neuron;

bo is the bias of the output neuron; hj is the output of the j-th

hidden-layer neuron; bj is the bias of the j-th hidden-layer

neuron; wij is the weight between the i-th input neuron and

the j-th hidden-layer neuron. A sigmoid function is used as the

activation function in the hidden layer: sigmoid (x) = 1
1+e−x .

The training process is to tune the weights and biases in

the ANN to fit the training data, which are a set of mea-

sured characteristics of SiC MOSFETs. A back-propagation

algorithm is widely used in the training process [27]. Many

software programs have toolboxes to automatically train the

ANN, such as the Neural Net Fitting Toolbox in MATLAB.

B. Limitations of the existing ANN model

In the existing ANN model for static simulation [23], the

I-V characteristics in a low VDS region are measured by a

curve tracer to train the ANN. As shown in Fig. 2a, the ANN

model can match the measurement data accurately, which is

adequate for static simulation. However, for accurate transient

simulation, the model has the following three limitations.

Firstly, the existing ANN model is trained by the I-

V characteristics measured in a low VDS region only (0-

40 V). However, due to the poor extrapolation ability of

the used ANN, the I-V characteristics in the high VDS

region from 40 V to the maximum DC voltage (≥ 600 V

for CAS120M12BM2) cannot be accurately modeled, which

causes inaccurate transient simulation. As shown in Fig. 2b,

the existing ANN model has abnormally large saturation

current and incorrect off-state current in high VDS region,

which are physically wrong for SiC MOSFETs.

Secondly, the off-state, i.e., the cutoff region cannot be

accurately modeled. The existing ANN has large errors in the

cutoff region as shown in Fig. 2c. There is still significant

(even negative) IDS when VDS = 0V or VGS is lower

than threshold voltage VGS(th), which is physically wrong

according to the physical characteristics of SiC MOSFETs in

cutoff region. This is because the ANN is a data-driven model

without considering any specific physical characteristics. Also,

the training process of ANN is an optimization process to

minimize overall error but the local error at a specific region,

e.g., cutoff region where IDS is zero, can still be very large.

Thirdly, the C-V characteristics are not considered in the

existing ANN model, which are essential for transient simula-

tion. The large variations of C-V characteristics in the whole

VDS region must be considered in the modeling method for

accuracy.

III. PROPOSED HYBRID MODELING METHODOLOGY FOR

TRANSIENT SIMULATION

A hybrid modeling methodology is proposed to correspond-

ingly solve the aforementioned three limitations of the existing

ANN model described in [23]. The subcircuit model of SiC

MOSFETs is presented in Fig. 3. The I-V characteristics of

SiC MOSFETs are modeled by the voltage-controlled current

source IDS in the subcircuit model. The C-V characteristics

are modeled by three variable capacitors CGS , CGD, CDS .

Drain-source current IDS and the variable capacitors are

modeled as functions of voltages:


















IDS = fIV (VDS , VGS)

CGS = fCGS
(VDS)

CGD = fCGD
(VDS)

CDS = fCDS
(VDS).

(2)

In this paper, the above functions are modeled by the pro-

posed hybrid data-driven method and then applied in SPICE

simulator SIMetrix using Verilog-A language.

A. Data-driven modeling of I-V characteristics in the whole

VDS region

The I-V characteristics, including the IDS-VDS charac-

teristics and the IDS-VGS characteristics, were measured by

a curve tracer (B1505A; Keysight Technologies, Inc.). The

IDS-VDS characteristics measure the drain current IDS by

sweeping the drain voltage VDS , while the gate voltage VGS

is fixed. The IDS-VDS characteristics can be measured under

different gate voltages. In this study, the measurement was

performed with VDS between [0, 40] V in steps of 0.8 V

and VGS between [0, 20] V in steps of 1 V. The IDS-VGS

characteristics measure IDS by sweeping VGS , while VDS is

fixed. The IDS-VGS characteristics can be measured under

different drain voltages. In this study, the measurement was

performed with VGS between [0, 20] V in a step of 0.4 V

and VDS between [0, 40] V in a step of 2 V. The circuit to

measure the I-V characteristics using the curve tracer B1505A

is shown in Fig. 4. It should be noticed that the power supply

unit connected to the drain voltage has the output resistance
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Figure 2. Existing ANN model [23] that is trained with measured I-V characteristics in a low VDS region. (Solid lines denote the simulated data. Dots
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Figure 4. Configuration of the curve tracer B1505A to measure I-V
characteristics.

of around 120mΩ. Due to the voltage drop on this resistance,

the actual drain voltage applied to the SiC MOSFET is lower

than the targeted drain voltage. Therefore, the actual drain

voltage were measured via a Kelvin connection and used

in the training data. Due to the limited power rating of the

curve tracer and self heating of the device under test, the I-V
characteristics can only be measured in the low VDS region

(VDS < 40 V).

However, the I-V characteristics in the high VDS region

(up to the maximum DC voltage across the MOSFETs) have

significant impact on the transient simulation [6], [20], [28],

[29]. It is shown in Fig. 2b that the existing ANN model cannot

simulate the high VDS region correctly. This is caused by

the poor extrapolation ability of data-driven-based ANN. The

output of ANN is not reliable when the ANN works beyond the

region of the training data. The measurement method proposed

in [20] was used to measure the I-V characteristics in the
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Figure 5. Experiment waveforms of turn-on process to measure the I-V
characteristics in the high voltage region.

high VDS region during the turn-on transients. A double pulse

tester with a large gate driver resistor (100 Ω) was utilized

to slow down the turn-on transients so that the gate plateau

can be clearly observed and the effect of parasitic inductance

can be ignored. IDS was measured as a function of VDS

and VGS at the gate plateau voltage highlighted as Point

B in Fig. 5. The turn-on waveforms of IDS and VGS with

different turn-on currents under VDC = 600 V is shown in

Fig. 6. Finally, the I-V characteristics in the high voltage

region with VDS = 50, 100, 200, 300, 400, 500, 600, 700V
and VGS = 4, 5, 6, 7, 8V were used as training data. It is

worth mentioning that although the breakdown voltage of

the device under test is 1200 V, the I-V characteristics at

VDS = 1200V cannot be measured using this method because

overshoot voltage during the switching transient might exceed

the breakdown voltage and damage the device. In practice, the

maximum allowable DC voltage across the device is derated to

avoid breakdown. Therefore, the I-V characteristics up to the

designed maximum DC voltage were measured. In this paper,

the DC source voltage is 600V. The I-V characteristics up to

700 V were measured and used to train the model considering

the voltage overshoot.

The measured I-V characteristics in the whole operation

region (i.e., both low and high VDS regions) were used to train

the ANN model in Fig. 1. The Neural Net Fitting Toolbox in

MATLAB based on backpropagation algorithm was used. The

performance of the trained ANN model is shown in Fig. 7. In
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Figure 7. ANN model trained with I-V characteristics in whole VDS region.
(Solid lines denote the simulated data. Dots denote the measured data.)

Fig. 7a , it can be seen that the trained ANN model can match

the I-V characteristics in the whole VDS region. However, the

cutoff region still cannot be correctly modeled in Fig. 7b.

B. Hybrid modeling with behavior-based model for cutoff

region

As discussed in Section II, the cutoff region cannot be

modeled correctly by the ANN shown in Fig. 1. One possible

solution is to increase the number of neurons to reduce the

errors, but it might cause overfitting problems which will be

discussed in Section III-D. Instead of the ANN model which is

purely data-driven without considering any physical behaviors,

simple equations are very suitable for cutoff region due to

the simple physical characteristics in this region. Therefore,

we propose a hybrid modeling method that uses equations

to model the low-voltage cutoff region and a DPT-data-based

ANN to model the high voltage behavior. According to the

semiconductor characteristics of SiC MOSFETs, the cutoff

region can be divided into two parts:

1) Part I: VGS < VGS(th)

When VGS < VGS(th), the drain-to-source current is

pinched off since a conductive current channel is not formed

due to the insufficient gate-to-source electrical field. To in-

corporate this physical behavior with the ANN model, a

hyperbolic function is used to model the cutoff region when

VGS < VGS(th):

IDS = fANN (VDS , VGS) · fcutoff (VGS) . (3)

fcutoff (VGS) =
1

2

(

1 + tanh
(

α
(

VGS − VGS(th)

)))

. (4)

The threshold voltage can be measured by a curve tracer. The

hyperbolic function is used to keep the model continuous. α
is set large enough (α = 10) to make sure that IDS ≈ 0
when VGS < VGS(th) and IDS ≈ fANN (VDS , VGS) when

VGS > VGS(th).

2) Part II: VDS = 0V
IDS should be zero when VDS = 0V. To model this

physical behavior, the linear region where VDS is close to 0V
is modeled together. According to the physical characteristics

of SiC MOSFETs, when VGS > VGS(th) and VDS is smaller

than the saturation voltage Vsat, the MOSFET operates like

a resistor controlled by VGS . Therefore, the linear region can

be modeled by the following proportional function:

IDS =
fANN (Vsat, VGS)

Vsat

· VDS if 0 ≤ VDS < Vsat. (5)

For the selected power module CAS120M12BM2, the linear

region is 0V 6 VDS 6 2V. Therefore, Vsat = 2V is selected.

This equation is valid in the linear region of the SiC MOSFET

and it can also guarantee that the SiC MOSFET is cut off when

VDS = 0V. fANN (Vsat, VGS) /Vsat is used as the slope of

the proportional equation to keep it continuous with the ANN

model for convergence of the whole model.

Finally, the hybrid data-driven model for I-V characteristics

can be built by combining (4) and (5) with the ANN model

in (1). The hybrid model is written as follows:

IDS =















fANN (VDS , VGS) · fcutoff (VGS) ,
if VDS ≥ Vsat,

fANN (Vsat, VGS) ·
VDS

Vsat
· fcutoff (VGS) ,

if 0V ≤ VDS < Vsat.

(6)

As shown in Fig. 8a, the I-V characteristics where 0V ≤
VDS < Vsat or VGS < VGS(th), i.e., the region in purple, is

modeled by behavior-based model. The remaining part, i.e.,

the region in gray, is modeled by data-driven ANN model.

As shown in Fig. 8, the I-V characteristics in the whole VDS

region and cutoff region can be accurately modeled by the

proposed hybrid modeling method.
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Figure 8. Performance of the proposed hybrid modeling methodology.
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Figure 9. ANN capacitance models trained in logarithmic scale.

C. Modeling of C-V characteristics

C-V characteristics are essential for transient simulation

[30], which were built with ANNs in this study for accuracy

and adaptability. It is worth noting that the measured CGD

reduces by almost 20 times from 2600 pF to 150 pF when

VDS changes from 0 V to 20 V but has only minor variations

when VDS > 20 V. The characteristics of CDS are similar.

Therefore, for model accuracy, the training data were measured

in logarithmic scale and the logarithmic transformation is

adopted in the ANN models to balance large data variations.

The ANN models with logarithmic transformation are shown

in Fig. 9. The number of neurons in the hidden layer to model

CGD, CGS and CDS are 2, 1 and 1 respectively. The C-V
characteristics were measured using the curve tracer B1505A.

The input capacitance Ciss, output capacitance Coss and

reverse transfer capacitance Crss were measured as a function

of VDS from 0.01 V to 1000 V in logarithmic scale with 251

data points. The gate-to-source capacitance CGS , gate-to-drain
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Figure 10. Results of ANN capacitance models trained in logarithmic scale.
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Figure 11. Flowchart of the proposed hybrid modeling methodology.

capacitance CGD and drain-to-source capacitance CDS can be

calculated accordingly:











CGD = Crss

CGS = Ciss − Crss

CDS = Coss − Crss.

(7)

The calculated CGD, CGS and CDS were used as training

data to train the ANN models. As shown in Fig. 10, the ANN

models can simulate the capacitance characteristics accurately.

D. Modeling flowchart and neural network selection

The flowchart of the proposed modeling methodology is

summarized in Fig. 11. The I-V characteristics were measured

by curve tracer and DPT to train the ANN model. Behavior-

based model for cutoff region was built with measured VGS(th)

and Vsat. The hybrid IDS model was built by combining the

behavior-based model with ANN model. C-V characteristics

were measured to train the ANN models of CGD, CDS and

CGS in logarithmic scale.

For the neural network selection, there is no exact standard

to follow to determine the number of layers and neurons of the

ANN for a certain application [23]. In this study, it is shown

that ANNs with single hidden layer are sufficient to model

the nonlinear I-V and C-V characteristics of SiC MOSFETs.

The analytical formulas of single-hidden-layer ANNs can also

be obtained straightforwardly. ANNs with more than one

hidden layer can also be used, but the analytical formulas

become more complex. The investigation of ANN models with

different number of hidden layers is beyond the scope of this

paper.
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Figure 13. Experimental setup.

After the single-hidden-layer ANN was selected, the number

of neurons in the hidden layer should be chosen. The trial-and-

error method was used, which was achieved by training ANNs

with different number of neurons and selecting the minimum

number of neurons that can provide accurate approximation.

Although using more neurons can help reduce the training

errors of ANNs, it will increase the computation time and

might cause overfitting problems of ANNs [31]. The over-

fitting phenomenon of the ANN with 16 hidden neurons to

model the I-V characteristics is shown in Fig. 12. It can be

seen that the ANN has unexpected output current, although

the measurement data of I-V characteristics can be matched

accurately. In this paper, single-hidden-layer ANN with 10

neurons was selected to model the I-V characteristics. ANNs

with 2, 1 and 1 neurons were selected to model CGD, CGS and

CDS of a SiC MOSFET module, respectively. It is expected

that a similar number of neurons is enough to model any

SiC MOSFETs as they have similar shapes of I-V and C-V
characteristics, although voltage and current levels are distinct.

Note that temperature characteristics of SiC MOSFETs are

not considered here. The I-V characteristics, C-V charac-

teristics and the switching transients of SiC MOSFETs were

all measured at 25 °C. The temperature characteristics can be

easily added into the model through adding a third input node

to the ANN model in Fig. 1 and then training the model with

temperature-dependent I-V data, which can be measured using

a curve tracer and DPT.

IV. EXPERIMENTAL MODEL VERIFICATION

In this section, the simulated and experimental waveforms

of the switching transients of SiC MOSFETs were compared

using a double-pulse tester (DPT) to verify the proposed mod-

eling method. To demonstrate the repeatability of the proposed

modeling method, two samples of 1200 V SiC half-bridge

modules from Wolfspeed, i.e., CAS120M12BM2, were used to

SiC MOSFET models

 Load 

inductor

Parasitic 

inductor of PCB

 Gate loop 

resistor and 

parasitic inductor

Figure 14. Simulation circuit of DPT in SIMetrix.

facilitate the verification. One sample was used to measure the

training dataset. The training dataset was then used to train the

ANN-based model. After the model was trained, the switching

transients of SiC MOSFETs were simulated and compared

with the switching waveforms measured from another sample.

The proposed modeling method can be adopted in widely-

used simulation tools such as SPICE simulators. A transient

model of the power module CAS120M12BM2 was built

based on the proposed hybrid modeling method. It was then

implemented in SIMetrix using Verilog-A language. Verilog-A

is a widely-used modeling language for analog circuits, which

can be used in a SPICE environment [32]. It is flexible with

user defined functions and variable data types like arrays [33].

As a result, the matrix-based analytical equations in the trained

ANN and cut-off region models can be easily implemented

using Verilog-A. The anti-parallel diode model in [7] and the

stray inductance of CAS120M12BM2 in [34] were used in

the model. The internal gate resistor is 1.8 Ω measured using

the Keysight curve tracer B1505A. Experiment and simulation

platforms of DPT were built to verify the proposed modeling

method for transient simulation.

In the experimental platform shown in Fig. 13a, a DPT with

low stray inductance was designed for the half-bridge module

CAS120M12BM2. A commercial gate driver CGD15HB62P1

for half-bridge module from Wolfspeed was used. Two air-

core inductors were designed and connected in series as the

load inductor as shown in Fig. 13b. For this inductor, the

total inductance is 55.7 µH with equivalent series resistance

of 0.064 Ω and equivalent parallel capacitance of 140 pF.

The DPT circuitry was simulated using SPICE simulator

SIMetrix as shown in Fig 14. Q1 and Q2 are the proposed

SiC MOSFET models. The DC-bus stray inductance was

obtained by simulating the S-parameter of the PCB board in

Keysight Advanced Design System. The proposed model was

simulated and then compared with the experimental results

from DPT. As shown in Fig. 15, the simulated turn-on and

turn-off waveforms of the proposed model can match the

experimental results accurately. The turn-on/off delay time

Td(on) and Td(off), rise/fall time Tr and Tf , turn-on/off

losses Eon and Eoff of the proposed model were calculated

according to the IEC 60747-8 definitions and compared with

experimental results in Table I. It is shown that the errors of

the proposed model are all within 11%.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2021.3101713, IEEE

Transactions on Power Electronics

-10

0

10

20

30

0 100 200 300 400

V
G
S

(V
)

Time (ns)

Proposed model
Angelov model

Experiment

-50

0

50

100

150

200

0 100 200 300 400

I D
S

(A
)

Time (ns)

Proposed model
Angelov model

Experiment

0 100 200 300 400
-100

0

100

200

300

400

500

600

700

Proposed model
Angelov model

Experiment

V
D
S

(V
)

Time (ns)

-50

0

50

100

150

200

I D
S

(A
)

0 100 200 300 400
Time (ns)

-100

0

100

200

300

400

500

600

700

V
D
S

(V
)

0 100 200 300 400
Time (ns)

-10

0

10

20

30

V
G
S

(V
)

Proposed model
Angelov model

Experiment

0 100 200 300 400
Time (ns)

(a)

(b)

Proposed model
Angelov model

Experiment
Proposed model
Angelov model

Experiment

Figure 15. Measured and simulated (a) turn-off and (b) turn-on transients.

Table I
COMPARISON RESULTS OF SWITCHING TRANSIENTS.

Test conditions Experiment Proposed model
Errors of

proposed model
Angelov model Errors of

Angelov model

Turn on
Td(on) = 87.6 ns Td(on) = 78.6 ns 10.27% Td(on) =57.1 ns 34.82%

Tr = 44.0 ns Tr = 48.7 ns 10.68% Tr = 53.0 ns 20.45%

Eon =2.649 mJ Eon =2.818 mJ 6.39% Eon =2.072 mJ 21.78%

Turn off
Td(off) = 155.5 ns Td(off) = 156.1 ns 0.39% Td(off) =126.3 ns 18.78%

Tf = 46.3 ns Tf = 45.2 ns 2.38% Tf = 43.5 ns 6.05%

Eoff =1.556 mJ Eoff =1.637 mJ 5.21% Eoff = 1.738 mJ 11.70%
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Figure 16. Comparison of Drain-Source voltage spectra of experimental and
simulation results.

To conduct the EMI analysis, the EM noise induced by

the switching transients needs to be calculated in frequency

domain [9]. For this purpose, the simulated and experimental

switching waveforms of the Drain-Source voltage presented in

Fig. 15 were used for spectrum analysis. The spectra of the

experimental and simulated Drain-Source voltage waveforms

were computed via fast Fourier transformation in MATLAB.

The comparison of the Drain-Source voltage spectra is shown

in Fig. 16. The red line represents the spectrum of experi-

mental result, and the blue one represents the spectrum of

the simulation result derived from the proposed model. It is

found that the simulated spectrum by the proposed model

matches well with the experimentally obtained spectrum. The

relative RMS error of the simulated spectrum extracted using

the proposed model is 2.82%, which is calculated according

to (8).

V. COMPARISONS WITH ANGELOV MODEL

In this section, the proposed hybrid data-driven model was

compared with the commercial Angelov model proposed in

[20] to further demonstrate the accuracy and speed of the pro-

posed model. The Angelov model was selected for comparison

because it is a standard industry behavior model from Keysight

to simulate transient waveforms of SiC MOSFETs accurately

[28]. To facilitate the comparison, the same measured data

were used to build the proposed model and the Angelov

model. The parameters of the Angelov model was extracted

in IC-CAP. Although the parameters of Angelov model can

be automatically extracted in IC-CAP by fitting the simulated

data to the measured data, the accuracy of the fitting results
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Table II
RELATIVE RMS ERRORS OF SWITCHING TRANSIENTS.

Test
conditions

Transient
waveforms

Proposed
model

Angelov
model

Turn off
VDS 3.84% 5.96%

IDS 3.82% 12.07%

VGS 12.07% 35.24%

Turn on
VDS 6.33% 13.76%

IDS 10.78% 20.80%

VGS 7.83% 11.85%

Table III
RELATIVE RMS ERRORS OF C-V AND I -V CHARACTERISTICS.

Ciss Coss Crss IDS

Proposed model 0.37% 1.7% 1.8% 2.81%

Angelov model 1.31% 4.99% 10.02% 9.63%

was not satisfactory. The parameters still need to be tuned

manually to achieve the required accuracy. Afterwards, the

Angelov model is used as Q1 and Q2 in Fig. 14 to simulate

the switching transient waveforms in a DPT circuit.

A. Model accuracy

The transient simulations of both models are compared in

Fig. 15, against experimental results from DPT. It can be seen

that the proposed model is more accurate than the Angelov

model comparing to the experimental turn-on/off waveforms.

The turn-on/off delay time Td(on) and Td(off), rise/fall time Tr

and Tf , turn-on/off losses Eon and Eoff of both models were

calculated and compared with experimental results in Table I.

The comparison shows that the proposed model has smaller

errors than Angelov model. The errors of the proposed model

are reduced by at least two times comparing to the Angelov

model.

The relative root-mean-square (RMS) error were used to

quantitatively compare the accuracy of switching waveforms

of these two models. The relative RMS Error can be calculated

as follows:

RelativeRMSError =

√

√

√

√

∑N

i=1 |mi − si|
2

∑N

i=1 |mi|
2

× 100%. (8)

where mi and si denote the measured and simulated values

(VDS , VGS and IDS in Fig. 15) at the i-th data point,

respectively; N denotes the total number of data points.

The calculated relative RMS errors of the simulated switch-

ing waveforms in Fig. 15 are shown in Table II. The relative

RMS errors of the proposed model are 1.5∼ 3 times smaller

than those of the Angelov model.

In Fig. 16, the relative RMS error of the simulated Drain-

Source voltage spectrum obtained via the proposed model is

2.82%. As a comparison, the RMS error of the simulated

spectrum obtained via the Angelov model is 4.26%, which

is about 1.5 times higher compared to the proposed model.

Although both models were built with the same measured

I-V and C-V characteristics, the proposed model is more
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Figure 17. Comparison of C-V characteristics of proposed model and
Angelov model.
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Figure 18. Comparison of I-V characteristics of proposed model and Angelov
model.

accurate than the Angelov model in transient simulation. This

is because the proposed model can match the measured I-

V and C-V data more accurately than the Angelov model.

The simulated I-V and C-V characteristics of the proposed

model and Angelov model were compared with the measured

characteristics in Fig. 17 and Fig. 18, which show that the

proposed model can match the measured data more accurately

than the Angelov model.

The relative RMS errors of the C-V and I-V characteristics

of the proposed model and Angelov model are calculated

according to Fig. 17 and Fig. 18 and the results are shown in

Table III. The relative RMS errors of the proposed model are

much smaller than those of the Angelov model. Consequently,

the proposed model can provide more accurate transient sim-

ulation results for switching losses and EMI analysis.
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Table IV
COMPARISON OF COMPUTATION TIME BETWEEN THE PROPOSED MODEL

AND ANGELOV MODEL.

Proposed model Angelov model

Simulation runtime (s) 3.13 4.46
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(b) MSC025SMA120S from Microsemi.

Figure 19. Simulated and measured CGD characteristics of two different
devices.

B. Computation time

The computation time of the proposed model was compared

with the Angelov model through simulating the same DPT

circuit in SIMetrix for 40 µs. The runtime of the simulations

was recorded, which was directly captured by SIMetrix. For

accuracy, the simulation of each model was repeated 20 times

in SIMetrix and the average runtime was used. The computer

configuration used for the comparison is: Intel Core i7-8650U

CPU@1.9GHz, 16-GB RAM. The version of SIMetrix is 8.00g

and the default solver parameters of SIMetrix were used. It is

shown in Table IV that the runtime of the proposed model

when simulating the DPT circuit is about 30% less compared

to the Angelov model.

C. Model adaptability

SiC MOSFETs from different manufacturers might have

different device characteristics due to technology differences.

Although both the proposed model and Angelov model can

be used to model different SiC MOSFETs, the parameters of

both models must be adjusted according to the characteristics

of each MOSFET. For the proposed model, the weights and

biases of the ANNs are trained by different device character-

istics according to the flowchart in Fig. 11. For the Angelov

model, the parameters are extracted based on the curve fitting

method to match specific device characteristics.

In Fig. 19, the CGD characteristics of two SiC MOSFETs

were measured and modeled by the proposed model and the

design 
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Figure 20. Modeling processes of Angelov and proposed ANN-based model.

Angelov model. The first device is CAS120M12BM2 from

Wolfspeed and the second one is MSC025SMA120S from

Microsemi. It is shown that these two devices have different

CGD characteristics. As the conventional behavior model, the

Angelov model can well match the CGD characteristics of

CAS120M12BM2, but it failed to accurately match the CGD

characteristics of MSC025SMA120S. The proposed ANN-

based model has much better adaptability comparing to the

Angelov model. The different CGD characteristics of both

devices can be simulated accurately by the proposed model.

D. Modeling process

Both Angelov and the proposed ANN-based models are

parameter based models. Parameters of the proposed model

are more difficult to be manually altered because there are no

clear relationship between the ANN parameters and the model

behavior. However, thanks to the well-developed Neural Net

Fitting Toolbox in MATLAB, the parameters of the ANN-

based model can be trained automatically. The general model-

ing processes of the Angelov model and the proposed ANN-

based model are shown in Fig. 20. The difference between

the modeling processes of two models is highlighted in blue

dashed blocks.

For the Angelov model, the mathematical equations are

firstly designed according to the device characteristics. Af-

terwards, the parameters of the equations are extracted. If the

parameter extraction results are not accurate enough after the

manual tuning, the equations in the original Angelov model

need to be modified and the parameters need to be extracted

again. As a result, there is potentially a lot of manual work,

which is time-consuming and requires expert experience.

On the other hand, for the proposed ANN-based model,

the single-hidden-layer ANN is used so there is no need to

design complicated equations. The training of ANN is fully

automatic based on Neural Net Fitting Toolbox in MATLAB.

If the training results are not accurate enough, the ANN model

can be modified by simply revising the number of neurons

in the hidden layer and the modified model can be trained

quickly. Comparing to the conventional modeling process, the

ANN-based modeling process requires less manual work so is

more time-efficient.
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VI. CONCLUSION

In this paper, a hybrid data-driven modeling methodology

has been proposed to model SiC MOSFETs for accurate and

fast transient simulation. To accurately model the high-speed

switching transients, the required training dataset were identi-

fied and then measured to train the proposed ANN model. The

trained ANN was combined with the behavior-based equations

to accurately model the cut-off region and to avoid overfitting

the ANN model. In addition, the C-V characteristics were

modeled in logarithmic scale using ANNs for accuracy. The

accuracy and repeatability of the proposed modeling method

have been verified through modeling and testing two SiC

MOSFET module samples of CAS120M12BM2. One sample

was used to measure the training dataset and the other sample

to perform experimental verification. The simulated transient

waveforms were compared with the experimental turn on/off

waveforms from a DPT to demonstrate the accuracy of the

proposed modeling methodology.

To further demonstrate the accuracy and speed of the

proposed model, it has been compared with the Angelov model

in detail. The switching transients of the proposed model

are 1.5∼ 3 times closer to the experimental results compared

to the Angelov model. The runtime of both models was

compared through simulating the same DPT circuit in SPICE

simulator SIMetrix. The simulation runtime of the proposed

hybrid model is found to be 30% reduced compared to the

Angelov model. Besides, the proposed hybrid data-driven

modeling method has better adaptability to model devices

from different manufactures and the modeling process of the

proposed method is more convenient and time-efficient.
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