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Global navigation satellite systems (GNSSs) can provide reliable positioning information under optimum conditions, where at least
four satellites can be accessed with sufficient quality. In critical situations, for example, urban canyons or indoor, due to blocking
of satellites by buildings and severe multipath effects, the GNSS performance can be decreased substantially. To overcome this
limitation, we propose to exploit additionally information from communications systems for positioning purposes, for example,
by using time difference of arrival (TDOA) information. To optimize the performance, hybrid data fusion and tracking algorithms
can combine both types of sources and further exploit the mobility of the user. Simulation results for different filter types show
the ability of this approach to compensate the lack of satellites by additional TDOA measurements from a future 3GPP-LTE
communications system. This paper analyzes the performance in a fairly realistic manner by taking into account ray-tracing
simulations to generate a coherent environment for GNSS and 3GPP-LTE.

1. Introduction

Position information of mobile stations (MSs) in a com-
munications system has become a very important feature in
recent years. Services and applications based on very accurate
location knowledge will play a fundamental role in future
wireless systems [1]. Besides the well-known location-based
services it is stated by the United States Federal Communica-
tions Commission (FCC) that wireless service providers have
to deliver the locations of all enhanced 911 (E911) emergency
callers with specified accuracy [2]. To meet this requirement,
global navigation satellite systems (GNSSs) [3]—like the
current Global Positioning System (GPS) and the future
European Galileo system—can deliver very good position
estimates under optimum conditions. However, especially
in critical positioning scenarios with severe multipath prop-
agation and blocking of several satellites by buildings the
performance loss can be very high [4]. For instance, in urban
canyons the number of visible satellites can be below the
required four. In these situations, we propose to include
timing measurements from a communications system to
compensate the lack of satellites.

As a supplement to GNSS or as stand-alone solution,
already available communications systems can be included
in the MS localization process. Generally, measurements
in terms of time of arrival (TOA), time difference of
arrival (TDOA), angle of arrival, or received signal strength,
provided by the base stations (BSs) or the MS, can be used
[1]. Of very high interest is TDOA positioning as it is already
included in several systems (e.g., GSM, UMTS, CDMA2000)
[5, 6], in the standardization process for 3GPP-LTE (cf.
[7–9]), and also under discussion for positioning in future
systems (cf. [10, 11]).

The hybrid data fusion (HDF) of measurements from
GNSS and communications systems is important for seam-
less positioning and navigation in critical environments [12].
The additional utilization of tracking algorithms will further
improve the performance for mobile users [13]. In this paper,
we investigate a joint HDF and tracking based on different
filter types, where we focus on Positioning Kalman filter
(PKF), extended Kalman filter (EKF) [14], and particle filter
(PF) [15], that combine GNSS measurements with TDOA
measurements from a future 3GPP-LTE communications
system. Contrary to state-of-the-art work (e.g., [13]), this
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paper analyzes the performance in a fairly realistic manner,
especially by taking into account ray-tracing simulations and
mobility models for the pedestrian use-case. Since combined
channel models for GNSS and communications systems are
not yet available, this procedure allows to generate a coherent
and correlated environment for both considered systems.

Section 2 starts with a description of the system mod-
els for GNSS and the communications system, including
also an overview of positioning methods in current and
future systems. Section 3 discusses the HDF and tracking
algorithms that are employed for this investigation. Finally,
simulation results in Section 4 show the performance for
the developed approaches in coherent environments for
pedestrian positioning in urban canyons.

2. System Model

2.1. Global Navigation Satellite Systems. GPS and the future
European Galileo system will be considered in our investiga-
tions [3]. The distances between the NSat = NGPS + NGalileo

visible satellites located at the positions xµ= [xµ, yµ, zµ]T,µ ∈
{1, 2, . . . ,NSat}, which are assumed to be under line-of-sight

(LOS) conditions, and the MS at position x = [x, y, z]T are
given by

rµ(x) =

√
(xµ − x)2 + (yµ − y)2 +

(
zµ − z

)2
. (1)

The resulting pseudoranges between the satellites and MS
can then be modeled as

r̂µ = rµ(x) + bclock + bmultipath,µ + nµ, (2)

where bclock is the clock bias coming from the time-offset
of the receiver with respect to the satellite clocks, and nµ
is the elevation depending residual error chosen according
to user-equivalent range error (UERE) models for single-
band GNSS receivers and effects like tropospheric errors and
receiver noise [3]. The multipath error is included in terms
of bmultipath,µ. It will be calculated for each channel impulse
response (CIR), assuming noncoherent integration and
a state-of-the-art narrow early-minus-late correlator with
correlator spacing of 0.1 chips, where one chip corresponds
to around 300 m for GPS.

A LOS visibility analysis for GPS and GPS+Galileo cre-
ated by ray-tracing simulations is shown in Figure 1. It shows
the number of LOS-visible satellites in an urban scenario
located in Munich, Germany, where the average building
height is around 26 m. We see that especially inside the urban
canyons there occur several situations, where only less than
four satellites are visible. Hence, only limited performance
of GNSSs can be expected. Additionally, the impact of
multipath propagation to the overall error is comparably
high in these situations. Therefore, supplementation from
communications systems is of high interest and importance
in these GNSS-critical environments.

2.2. Communications Systems. Besides GNSS, also commu-
nications systems have the ability to provide positioning

information about one or several MSs. Especially in environ-
ments with limited GNSS-performance, for example, urban
canyons or indoor, communications systems usually have a
good coverage. Different principles for obtaining positioning
information can be used by communications systems. For
instance, measurements in terms of TOA, TDOA, angle of
arrival, or received signal strength can be exploited [1].
However, most of the communications systems—already
deployed, standardized, or under research—were not fore-
seen for positioning applications in advance. Hence, the
positioning capabilities are usually restricted.

The best performance can be obtained with timing
measurements (e.g., [6]), where the key implementation
is based on TDOA. They can easily be extracted from
system-inherent measurements. The basic idea is to extract
the arriving times of signals from several BSs at the MS.
To do so, the MS listens to appropriate synchronization
channels depending on the system. Then, the TDOAs can
be obtained from that. Nevertheless, many challenges have
to be overcome in real systems. For instance, for positioning
it is assumed that the BSs are fully time and frequency
synchronized which is not foreseen in all systems or only an
optional feature. However, so-called location measurement
units (LMUs) can be used to compute the misalignment
of the BSs and provide this information to the network or
MS. Furthermore, mobile radio systems are designed in a
way that only one strong serving BS should be heard due
to spectral efficiency reasons. From a positioning point of
view, we need at least three BSs with sufficient signal-to-
interference-and-noise ratios (SINRs) for two-dimensional
location estimation. This is usually only given at the cell edge.
Close to a BS the interference of the serving BS can be too
high for detection of the out-of-cell BSs with a reasonable
good quality.

Considering deployed systems, in the GSM EDGE radio
access network (GERAN), three location principles are spec-
ified (cf. [5]): besides the cell identity procedure a TDOA-
based method called enhanced observed time difference
(E-OTD) is standardized. However, due to large cells in
GSM the positioning accuracy can be in the order of
several hundred meters. Another specified method is assisted
GPS (A-GPS). In assisted solutions, parts of the navigation
data—which traditionally is included in the GNSS satellite
signals—can be communicated much faster to the MS by
the network. This can help to reduce the time-to-first-fix
in the acquisition process and to increase the sensitivity
in the tracking stage since longer integration times are
possible. In CDMA-based systems (e.g., UMTS, W-CDMA,
CDMA2000) similar positioning principles as in GSM have
been implemented [6]. However, the technical realization is
different due to the CDMA properties of the system. On the
one hand long integration times can be realized, on the other
hand the well-known near-far problem is hard to overcome.
However, also here TDOA-based positioning techniques are
used to determine the MS position without GNSS support.
Additionally, A-GPS approaches are standardized.

The deployment of CDMA-based mobile radio systems
is still on-going; nevertheless, the successors are completing
the standardization process, where in this paper we focus on
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Figure 1: Number of visible GNSS satellites.

3GPP-LTE [7]. 3GPP-LTE will be an orthogonal frequency
division multiplexing (OFDM) system with bandwidths up
to 20 MHz. For timing-based positioning the synchroniza-
tion and reference channels can be used to determine the
TDOAs at the receiver side (e.g., [8, 9]). Generally, timing-
based positioning relies on known sequences in the signals.
In 3GPP-LTE the primary and secondary synchronization
channels (P-SCH, S-SCH) as well as the downlink reference
signal (DL-RS) could be used [16] (cf. Figure 2 for the frame
structure of 3GPP-LTE, P-SCH in blue, S-SCH in green,
DL-RS in black). For the detection of the different sectors
(we assume three sectors per BS) a searching algorithm is
applied, which builds replicas of the known synchronization
sequences and correlates them with the received signals from
all surrounding sectors in time domain to determine the
arrival time of the sequences and, thus, to determine finally
the TDOAs (e.g., [17]). For our investigations, we simulate a
FDD system with 20 MHz bandwidth, directional antennas,
and transmit powers of 43 dBm (cf. [17]); however, as
specified in the standard, the synchronization sequences only
occupy 1 MHz bandwidth.

It can be expected that also the generation of mobile
radio systems after 3GPP-LTE will be OFDM based, where
the occupied bandwidth will further increase. However, it is
questionable if a target bandwidth of 100 MHz (as proposed
in [10]) can be realized in spectrum as a whole or only
by sophisticated overlay systems. The further integration of
local communications systems for hot spot situations will
also be challenging from a positioning point of view. On the
one hand, the coverage can be really high since an overlap
of these hot spots is naturally given. On the other hand, the
exact location of these plug-and-play devices is not a priori
known which encounters new difficulties in the location
determination process. Another concept under discussion is
relay enhanced cells, especially in urban environments.
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Figure 2: 3GPP-LTE frame structure.

As discussed before, for the measurements from the
communications part we use TDOAs. In TDOA only time-
differences from several BSs are used; thus, the receiver time-
offset with respect to the synchronized BSs is compensated
inherently. Hence, we obtain

dν,1(x) = rν(x)− r1(x), ν ∈ {2, 3, . . . ,NBS}, (3)

where we chose BS 1 as reference BS which gives NBS − 1
linear independent TDOAs. The TDOA measurement model
is determined as

d̂ν,1 = dν,1(x) + nν,1. (4)

Each error contribution nν,1 = nν − n1 depends on two
measurements which results in strong correlations, especially
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Figure 3: Cell layout and simulated scenarios.

with respect to the reference BS. The timing information is
extracted from the synchronization algorithms between the
MS and several BSs at the same time, where—similar as for
GNSS—also here coherent channel conditions are generated
(cf. Section 2.3). Note that both multipath and NLOS
propagation are considered in the TDOA measurements.
However, as multipath is not exploited or mitigated, the
multipath effects are not explicitly denoted in this equation;
that is, all effects are included in the noise. As pointed out
before, we have used a 3GPP-LTE system to provide the
TDOAs (e.g., [17]). The cellular network structure is shown
in Figure 3, where the urban canyon scenario (cf. Figure 1) is
located at two different positions: at the cell edge or close to
a BS.

2.3. Channel and Mobility Models. To assess the performance
of HDF and tracking algorithms, realistic channel models
for GNSSs and communications systems are required, where
strong system-, spatial-, and time-correlations occur. No
current models meet these requirements in an adequate
manner so far. Thus, we created realistic models by using ray-
tracing simulations in an urban canyon scenario to generate
CIRs for satellites and BSs at several points. This allows a
coherent simulation for the HDF and tracking algorithms.
Further, we have adapted and implemented a mobility model
that is based on gas diffusion [18]. This model generates
realistic path tracks of the MS especially for slow moving
pedestrian users. Some of these tracks were already shown
in Figure 1. Typical CIRs for such a track assuming a GPS
satellite and a BS are depicted in Figure 4. We observe, for
example, the high number of reflections and also the clear
LOS situations at time-steps 80–170 and 320–350 for the GPS
satellites. Note that for each simulated track the CIRs from all
satellites and all BSs are calculated to obtain a coherent and
correlated environment.

3. Hybrid Data Fusion and Tracking Algorithms

The MS positions are usually correlated over time. For
instance—considering a pedestrian—certain information
about the position can be derived using the history of past
estimates and suitable movement or mobility models. For
instance, a pedestrian cannot jump from one position to
another in limited time. This behavior can be used as side-
information for position tracking algorithms.

We assume a hidden Markov model with unknown states
sk∈ R

Ns that have to be estimated in each time-step k ∈ N.
The estimation process takes into account the measurements
yk∈ R

Ny in each time-step k in addition to the model
parameters. The measurements yk depend only on the state
vector sk at the current time-step. This dependence is defined
by the so-called measurement model:

yk = gk(sk,nk). (5)

The function gk is a possibly nonlinear function of the state sk
and the measurement noise nk∈ R

Nn . The properties of the
measurement noise nk define the measurement uncertain-
ties. Another equivalent representation of the measurement
model is based on the conditioned probability density
function (PDF) of the measurements given the states, that
is, p(yk | sk).

The state model defines a relation between the previous
state sk−1 and the current state sk. It is given as

sk = fk−1(sk−1, vk−1), (6)

where the function fk−1 is a possibly nonlinear function of
the state sk−1 and the state process noise vk−1∈ R

Nv . The
properties of the state process noise vk−1 define how random
the state changes can be. The equivalent representation of
the state model is based on the conditioned PDF p(sk |

sk−1). In the positioning context the state vector can include
information about the MS position or its velocity. The
corresponding state model includes information about the
mobility or movement of the MS. Therefore, it is often
denoted as mobility model.

Following the Bayesian approach (e.g., [14, 19]), it is
required that the PDF of the current state is estimated by
considering all previous and the current measurements, that
is, the PDF p(sk | y1, y2, . . . , yk) has to be constructed. This
is done recursively by assuming that the prior distribution of
the state s0 is known.

In the first step of Bayesian estimation, the state model is
used to obtain the prior PDF of the state at time-step k by

p
(
sk | y1, y2, . . . , yk−1

)
=

∫
p
(
sk|sk−1

)
p
(
sk−1| y1, y2, . . . , yk−1

)
dsk−1.

(7)

The PDF p(sksk−1) is defined by the state equation and the
known statistics of the state noise vk−1. This step is denoted as
prediction step since the new state is estimated as a prediction
of the old state.

For the second step, it is required that at time-step k
the measurements yk become available. They can be used
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Figure 4: CIRs for one track realization.
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Figure 5: Recursive Bayesian estimation.

to update the prior PDF by the Bayes’ rule resulting in a
normalized product of the likelihood p(yk | sk) and the prior
PDF, that is,

p
(
sk | y1, y2, . . . , yk

)
=

p
(
yk | sk

)
p
(
sk | y1, y2, . . . , yk−1

)

p
(
yk | y1, y2, . . . , yk−1

) ,

(8)

with normalization constant p(yk | y1, y2, . . . , yk−1) .
Therefore, the posterior PDF can be calculated by using
the measurement model and the known statistics of the
measurement noise nk. Since the measurements of time-
step k are used to modify the prior PDF for obtaining the
posterior PDF, this step is called update step. The complete
principle of the recursive Bayesian estimator is shown in
Figure 5 (cf. [20]).

Finally, the solution that maximizes the posterior PDF
is nothing else than the maximum-a-posteriori (MAP)
estimator:

ŝMAP,k=argmax
sk

p
(
sk | y1, y2, . . . , yk

)
. (9)

Contrary to that, the minimum mean square error (MMSE)
estimator calculates the expectation over the PDF, that is,

ŝMMSE,k =

∫
sk p
(
sk | y1, y2, . . . , yk

)
dsk , (10)

where for Gaussian noise distributions both estimators yield
the same result.

Usually there are no closed-form solutions for the general
integrals in Bayes estimation [15]. One option to handle
these integrals is certain assumptions for the models or
approximations: the classical Kalman filter (KF) approach
(Section 3.1) presumes linear models and Gaussian noise
distributions. The EKF approximates non-linear models in
a linearization step which will be shown in Section 3.2.
Another option to handle the integrals is numerical integra-
tion. An approximate solution by Monte-Carlo methods is
the PF being described in Section 3.3.

3.1. Kalman Filter. The KF (cf. [14]) is one of the most
widely used implementation of Bayesian filters. One of the
main advantages of KFs is the computational efficiency in the
implementation using only matrix and vector operations on
the mean and covariances of Gaussian processes.

To perform optimum, it must hold for the system model
in (6) and the measurement model in (5) that the system
process noise vk ∼ N (0Ns

,Qk) and measurement noise
nk ∼ N (0Ny ,Ck) are drawn from zero-mean Gaussian distri-
butions with known covariances. For GNSS the covariance
matrix of the measurement noise is based on the error
model for each satellite (which is, e.g., elevation dependent);
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for the 3GPP-LTE TDOA measurements it is based on the
SINRs. Note that for a general derivation it is not necessarily
required that the noise is zero-mean (e.g., [14]) which is
assumed here for simplicity. Furthermore, fk−1 and gk have
to be known linear functions.

Then, we can rewrite (6) and (5) as

sk = Ak−1sk−1 + vk−1, (11)

yk = Hksk + nk. (12)

The matrix A∈ RNs×Ns is the state matrix and includes the
linear dependencies between the states of time-steps k and
k−1. The measurement matrix H∈ RNy×Ns reflects the linear
relation between the measurements and the state at time-step
k. In general, all matrices can be time-variant. In the context
of positioning applications this could reflect, for example,
changing mobility models over time. The optimum filter
equations can then be written as follows.

In a first step (prediction) the state of the current time-
step is calculated taking into account the state of the previous
time-step and the knowledge of the state matrix given by Ak.
Then, the estimate of the state after prediction is

ŝk|k−1 = Ak−1 ŝk−1|k−1, (13)

with the estimate of the previous time-step ŝk−1k−1. Addition-
ally, the corresponding MMSE or covariance matrix after that
prediction step can be calculated as

Mk|k−1 = Ak−1Mk−1|k−1A
T
k−1 + Qk, (14)

where Mk−1|k−1 is the MMSE matrix of the previous time-
step. From the Bayesian PDF point of view, the prior PDF
can be represented as a Gaussian distribution according to

p
(
sk | y1, y2, . . . , yk−1

)
∼ N

(
ŝk|k−1,Mk|k−1

)
. (15)

The Kalman gain matrix includes a weighting between
the predicted estimate (already calculated) and the current
measurements. It is given by

Kk =Mk|k−1H
T
k

(
Ck + HkMk|k−1H

T
k

)−1
. (16)

Finally, the correction step combines the predicted
estimates with the current measurements weighted with the
Kalman gain matrix. This results in the final estimate of the
state vector:

ŝk|k = ŝk|k−1 + Kk

(
yk −Hk ŝk|k−1

)
. (17)

The corresponding MMSE or covariance matrix after the
correction step is obtained as

Mk|k =
(

INs − KkHk

)
Mk|k−1. (18)

The resulting posterior PDF can then be written as Gaussian
distribution according to

p
(
sk | y1, y2, . . . , yk

)
∼ N

(
ŝk|k,Mk|k

)
. (19)

The KF is initialized with s0|0 and M0|0 determined by the
prior distribution of the initial state.

In the context of position tracking applications, we
assume that the state vector consists of position and velocity,
that is,

sk = [xk, yk, zk, vx,k, vy,k, vz,k]T. (20)

For the mobility model, we choose a very simple model
corresponding to the principle of random walk. For that, the
resulting time-invariant system matrix is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (21)

The sampling time T depends on the application. For
instance, for pedestrian positioning sampling times of
around 1 s are usually sufficient. The covariance matrix of
the process noise is a diagonal matrix including the variance
of the mobility (process drift) in all directions for position
and velocity. This model implies that the change of the MS
position is controlled by process noise of a certain variance.

For the measurement model, we assume that in every
time-step a static position estimate is available. The static
solution (cf. [12]) results in a weighted non-linear least
squares estimation problem. As an analytic solution is not
possible, an iterative procedure based on the Gauss-Newton
algorithm is applied. Hence, for the Kalman equations the
measurements are given in terms of position measurements
and have a linear dependency with the state vector which is
reflected in the time-invariant measurement matrix:

H =

⎡
⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎦. (22)

We do not consider any velocity estimates which are available
from the position estimation entity. Thus, the velocity is
handled as hidden state and estimated implicitly in the filter
equations. The resulting filter in the positioning context is
denoted as positioning KF (PKF).

3.2. Extended Kalman Filter. The performance of the PKF
is optimum if the conditions on Gaussianity and linearity
are fulfilled completely. Further, the KF requires that the
underlying entity which provides the static solutions per-
forms optimum; that is, in each time-step enough sources
(here, at least three) have to be available and the static
position estimation errors have further to fulfill the Gaussian
assumption. Especially in critical positioning situations like
urban canyons or indoor, it may happen quite often that only
less than the required number of sources are available for a
certain time. Then, the PKF would totally fail since the static
solution cannot provide any estimates.
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The EKF (e.g., [14, 21]) is a much more flexible tool being
able to handle directly non-linear models. We assume that
the state model is given by

sk = ak−1(sk−1) + vk−1 (23)

and the measurement model can be written as

yk = hk(sk) + nk. (24)

Basic idea of the EKF is a linearization of ak−1(sk−1) about
the estimate of sk−1. We obtain

ak−1(sk−1) ≈ ak−1

(
ŝk−1|k−1

)
+ Ak−1

(
sk−1 − ŝk−1|k−1

)
(25)

with the Jacobian matrix:

Ak−1 =
∂ak−1(sk−1)

∂sk−1

∣∣∣∣
sk−1=ŝk−1|k−1

. (26)

Equivalently, we linearize hk(sk) about the estimate of sk, that
is,

hk(sk) ≈ hk
(
ŝk|k−1

)
+ Hk

(
sk − ŝk|k−1

)
(27)

with the Jacobian matrix:

Hk =
∂hk(sk)

∂sk

∣∣∣∣
sk=ŝk|k−1

. (28)

Obviously, the Jacobians have to be recalculated in every
time-step since they depend on the estimates of the previous
time-steps. However, the resulting structure of the EKF as
pointed out in the following is very similar to the PKF
solution.

It starts with the prediction, where knowledge of the MS
movement model is applied to obtain

ŝk|k−1 = ak
(
ŝk|k−1

)
, (29)

with the estimate of the previous time-step ŝk−1|k−1. Similarly,
the corresponding MMSE or covariance matrix after that
prediction step is

Mk|k−1 = Ak−1Mk−1|k−1A
T
k−1 + Qk . (30)

Hk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
(Sat)
k − x1

r
(Sat)
1,k (sk)

y
(Sat)
k − y1

r
(Sat)
1,k (sk)

z
(Sat)
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r
(Sat)
1,k (sk)

1
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x
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k − xNBS

r
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. (31)

Due to the linearization step the resulting estimated prior
PDF in the Bayesian sense is a Gaussian approximation of the
true prior PDF. Hence, the estimated prior PDF is given as

p
(
sk | y1, y2, . . . , yk−1

)
∼ N

(
ŝk|k−1,Mk|k−1

)
. (32)

The Kalman gain matrix can be obtained by

Kk =Mk|k−1H
T
k

(
Ck + HkMk|k−1H

T
k

)−1
, (33)

Finally, the correction step combines the predicted estimates
with the current measurements weighted with the Kalman
gain matrix. This results in the final estimate of the state
vector being calculated as

ŝk|k = ŝk|k−1 + Kk

(
yk − h

(
ŝk|k−1

))
. (34)

The corresponding MMSE or covariance matrix after correc-
tion is obtained as

Mk|k =
(

INs − KkHk

)
Mk|k−1. (35)

Also the resulting posterior PDF is a Gaussian distribution of
the true posterior PDF. It is given as

p
(
sk | y1, y2, . . . , yk

)
∼ N

(
ŝk|k,Mk|k

)
. (36)

Compared to the PKF, the EKF has no optimality prop-
erties, where its accuracy depends on the accuracy of the
linearization. Nevertheless, the EKF turns out to be a flexible
and robust approach widely used for position tracking
applications.

Considering position tracking (as shown for the PKF
in Section 3.1), the state vector sk is only extended by
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the unknown clock offset between GNSS satellites and
MS, that is, by bclock. However, in principle we assume
the same state model, that is, a linearization of the state
equation is not necessary. Therefore, the prediction step
is similar for EKF and PKF. As measurements we process
directly the pseudorange measurements from GNSS and the
TDOA measurements from the communications system—
in contradiction to the PKF, where the measurements were
processed beforehand by a static position estimation. Since
the measurements are non-linear with respect to position,
for the update step a linearization of the measurement model
is necessary. For that, the Jacobian matrix including the
derivatives of the measurement model with respect to the
state vector has to be available. For the considered set-up, Hk

is shown in (31) with the corresponding indices for satellites
(Sat) and BSs (BS).

3.3. Particle Filter. Another important class of Bayesian filters
is based on approximation of integrals by numerical integra-
tion. These methods are commonly denoted as PFs ([15, 19,
22]) and became quite popular for position tracking applica-
tions (e.g., [23]). PFs are based on a sequential Monte-Carlo
methodology (cf. [24]) and calculate recursively the relevant
PDFs by importance sampling and approximation of PDFs
with discrete random measures. Compared to KFs the PFs
have usually a much higher complexity depending on the
number of particles that have to be generated to model the
required PDFs. In addition, they can suffer from phenomena
like sample degeneracy or sample impoverishment causing
unstable behavior.

In PFs, the posterior PDF is represented as the weighted
sum:

p
(
sk | y1, y2, . . . , yk

)
=

Np∑

i=1

wi
kδ
(
sk − sik

)
, (37)

where each particle consists of a state sik and a weight wi
k,

and δ(·) is the Dirac delta measure. The particles are drawn
according to the principle of importance sampling from a
proposal density q(sk | sik, yk). The corresponding weights
can then be calculated by

wi
k ∼ wi−1

k

p
(
yk | s

i
k

)
p
(
sik | s

i−1
k

)

q
(
sk | s

i
k, yk

) . (38)

The generic PF applies the optimum proposal density
which in practice is difficult to use. Therefore, often the
so-called sampling importance resampling PF (SIR-PF) is
implemented (cf. [15, 19, 25]). It only requires that the state
and measurement functions fk and gk are known and that
sampling of realizations from the state noise distribution
of vk−1 as well as the prior distribution is possible. In
addition, the likelihood function p(sk|yk) has to be available
for pointwise evaluation.

In the first step of SIR-PF, for each particle i =

1, 2, . . . ,Np, a sample from the proposal density has to be
drawn, that is,

sik ∼ p
(
sk | s

i
k−1

)
. (39)

This can be realized by generating a state noise sample
vik−1 with the corresponding PDF pv(vk−1) and setting

sik = fk−1

(
sik−1, vik−1

)
. (40)

In a second step, for each particle the weights have to
be calculated. With the chosen proposal density, this step
reduces to

wi
k = p

(
yk | s

i
k

)
. (41)

Finally, all weights have to be normalized by

wi
k =

wi
k

W
, (42)

using

W =

Np∑

i=1

wi
k. (43)

A crucial problem of the PF is the degeneracy phe-
nomenon ([15, 19]). It points out that after a few iterations,
all but one particle will have weights very close to zero.
Simply using a very large number of particles is often too
inefficient from a computational complexity point of view.
A much better method is the application of resampling
where degeneracy can be reduced remarkably. The idea is an
elimination of particles with low weights to concentrate on
particles having large weights. In this manner, a new set of
states s̃ik, i = 1, 2, . . . ,Np is created by resampling Np times
from an approximate discrete representation of

p
(
sk | y1, y2, . . . , yk

)
≈

Np∑

i=1

wi
kδ
(
sk − sik

)
. (44)

Given

P
(
s̃
j
k = sik

)
= w

j
k, (45)

the resulting sample is an i.i.d. sample from the discrete
density. Even though the degeneracy can be reduced by
resampling, another effect denoted as sample impoverish-
ment is introduced in practical implementations. Besides the
problem of limited parallelization due to the fact that the
particles have to be combined, particles with large weights
are statistically selected much more often than the other
particles. So the diversity among the particles is reduced
since the resulting sample will contain many repeated points.
Especially for systems with small state noise the sample
impoverishment can be a serious problem and all particles
can be concentrated to a single state after a few iterations.

In addition to the SIR-PF, there exist several other PF
approaches in the literature. Briefly mentioned at this point
should be the auxiliary sampling importance resampling PF
[26] or the regularized PF [27].

Note that in this paper, the PF is not used as an object of
research but solely as lower bound for our positioning algo-
rithms. For that we have used the SIR-PF implementation
using 10000 particles.
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4. Simulation Results

We assume a fixed GNSS constellation during one track and
two different BS constellations. The first scenario is close to a
BS, and the second scenario is at the cell edge (cf. Figure 3).
We assume a cellular network with inter-BS distance of
1500 m, three sectors for each BS, and 3GPP-LTE parameters
following the on-going standardization process [16].

We start with simulation results for positioning with
GNSS. Figure 6 shows the performance of different GNSS
systems averaged over several noise realizations and sev-
eral generated tracks. The cumulative distribution function
(CDF) shows the probability that the position estimation
error is below a certain value x. In particular, all simulations
are performed for the 50 tracks shown in Figure 1 of
290 time-steps each. For each track 100 noise realizations
were generated. All in all this results in 1450000 simulated
estimates for creating the CDFs. As comparison, the curves
for an optimum free space situation are shown in this plot as
well. We observe very high performance losses in the urban
canyon scenario compared to the free space situation, which
comes from lack of satellites and high multipath impacts.
However, we can also see that the EKF clearly outperforms
the static solution for this situation. Furthermore, the large
benefit of additional Galileo satellites with respect to GPS-
only positioning becomes obvious.

Figure 7 compares the performance in the urban canyon
scenario for different tracking filter types using GPS+Galileo.
We observe that with the static solution an accuracy of
better than 40 m can be achieved in 90% of the cases. With
the PKF this can be improved to around 27 m. Using an
EKF implementation, we can achieve around 9 m which
comes very close to the performance bound of the PF.
For this GNSS-only scenario this is not surprising as the
requirement on Gaussianity is met and the nonlinearities are
not severe.

Next, the quality of the TDOA measurements is analyzed
in detail. Figure 8 shows the investigation for the urban
canyon scenario at the cell edge using different filter types
when processing two TDOA measurements (i.e., three BSs).
As expected, the accuracy as well as the availability is worse
compared to GNSS positioning. Nevertheless, using the PF
a 90%-accuracy of around 40 m can be achieved. The EKF
provides a slightly worse performance in terms of availability;
with static solution and PKF no precise positioning is
possible. Note that if the scenario is close to a BS (not shown
here), the performance becomes even worse. In that situation
also EKF and PF cannot provide a reliable position estimates.
Reason for this behavior is that close to a BS usually
out-of-cell BSs cannot be received with sufficient quality
due to the strong interference of the serving BS. In these
situations either a change in the standard is necessary (e.g.,
3GPP-LTE proposes a positioning reference mode with idle
periods and extended pilot grid [28]) or advanced receiver
techniques have to be applied (e.g., [17] proposes to use
interference cancellation to increase hearability of out-of-cell
BSs). From Figures 7 and 8 it can be concluded that the EKF
is a sufficiently good estimator for the considered scenario
and the—much more complex—PF gives no fundamental
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additional performance gains. Hence, in the following we
focus on HDF approaches using EKF tracking.

When using stand-alone TDOA positioning it is rea-
sonable to use two TDOAs (i.e., three BSs) for position
estimation since this is the minimum number of required
measurements. However, when we fuse GNSS with TDOA
measurements, simulations have shown that an adaptive
algorithm can help to improve the performance. Since the
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tracking filters allow a flexible number of measurements
in each time-step, we can adapt the number according to
the received SINR levels. Therefore, we define an SINR-
threshold, where we drop all measurements that are below
this threshold. Hence, unreliable TDOA estimates are not
used for the HDF process. Note that the weighting is only
based on the SINRs; however, also multipath and especially
NLOS propagation have a high impact on the TDOA
estimates which are not completely reflected by the SINRs.
As we do not assume to know the CIRs or do not consider
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any multipath mitigation, the SINR-thresholding results in
different performances. The simulation results in Figure 9
show that an SINR-threshold of −17 dB is a good choice
for the considered scenarios, achieving nearly 10 m for the
90%-accuracy in this scenario using GPS+Galileo+TDOA
compared to around 17 m for only GPS+Galileo. The
adaptive approach which uses the SINR-thresholding also
clearly outperforms the classical approach that uses a fixed
number of three BSs.

Figure 10 shows the location estimation performance
for the GNSS critical situations, where only less than
four satellites are available. In these situations, cellular
support is particular beneficial. Nevertheless, for stand-
alone cellular positioning we observe the high dependency
on the MS position in the scenario. At the cell edge a
reasonable performance can be achieved, whereas close to
the BS the accuracy is very low. Investigating the classical
GNSS-based navigation, we observe the advantage of the
additional Galileo satellites compared to GPS-stand-alone
positioning. The 90%-accuracy can be reduced from 30 m to
around 18 m using both systems. When we further include
TDOA measurements from the communications system, the
performance can be improved to around 15 m if we are close
to the BS and to below 11 m for the cell edge situation.

In Figure 11, the LOS visibility of all GNSS satellites is
plotted over time for one characteristic MS track realization.
We see that in several situations the number of LOS-visible
and, hence, detectable satellites is below four; that is, we
have a critical scenario. Figure 12 shows the corresponding
root mean square errors (RMSEs) over time for GPS+Galileo
and the TDOA supplements. It can be observed that in
critical GNSS situations the RMSE increases as expected.
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This comes on the one hand from the limited number
of visible satellites. On the other hand, these satellites
are affected by severe multipath contributions that cause
additional biases in the timing measurements. Furthermore,
the geometric constellation of these satellites is usually bad as
satellites are only visible above the MS. In this situation the
TDOA measurements can compensate the lack of satellites
and further improve the geometric conditions. However,
if the scenario is close to a BS, the performance gain is
restricted and no fundamental improvement to satellite-only
positioning can be achieved. For the cell edge situation, the
RMSE can be reduced remarkably in the considered critical
situations.

5. Conclusions

In this paper we have analyzed hybrid positioning methods
that combine measurements from GNSS and future 3GPP-
LTE communications systems. As expected, the performance
depends strongly on the location in the network, that is,
cell edge or close to a BS, where TDOA measurements
are exploited for stand-alone positioning and to support
GNSS in critical urban canyon scenarios. The simulations
were performed in a fairly realistic manner. The urban
environment was reflected by CIRs from the satellites
and BSs, which were obtained by ray-tracing. Simulation
results in this coherent and correlated scenario have shown
that in situations where several satellites are blocked, it is
very beneficial to have additional TDOA measurements to
compensate the missing satellites. Besides the static solution,
different tracking filters were investigated, in particular PKF,
EKF, and PF. The simulations showed that the EKF provides
the best trade-off between accuracy and complexity for the
considered scenarios.
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