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Abstract
Rapid growth in data storage technologies created the modern
data-driven world. Modern workloads and application have
influenced the evolution of storage devices from simple block
devices to more intelligent object devices. Emerging, next-
generation Key-Value (KV) storage devices allow storage and
retrieval of variable-length user data directly onto the devices
and can be addressed by user-desired variable-length keys.
Traditional reliability schemes for multiple block storage de-
vices, such as Redundant Array of Independent Disks (RAID),
have been around for a long time and used by most systems
with multiple devices.

Now, the question arises as to what an equivalent for such
emerging object devices would look like, and how it would
compare against the traditional mechanism. In this paper,
we present Key-Value Multi-Device (KVMD), a hybrid data
reliability manager that employs a variety of reliability tech-
niques with different trade-offs, for key-value devices. We
present three reliability techniques suitable for variable length
values, and evaluate the hybrid data reliability mechanism
employing these techniques using KV SSDs from Samsung.
Our evaluation shows that, compared to Linux mdadm-based
RAID throughput degradation for block devices, data reli-
ability for KV devices can be achieved at a comparable or
lower throughput degradation. In addition, the KV API en-
ables much quicker rebuild and recovery of failed devices,
and also allows for both hybrid reliability configuration set au-
tomatically based on, say, value sizes, and custom per-object
reliability configuration for user data.

1 Introduction
Modern applications require a simpler, fast and flexible stor-
age model than what the traditional relational databases and
file systems offer, and key-value stores have emerged as the
popular alternative and the backbone of many scalable storage
systems [1–3]. To meet the needs of such applications and
to simplify the process of storing such user data even fur-
ther (without added software bloat), modern storage devices
have undergone a new key-value face-lift [4–8].

The Samsung Key-Value (KV) SSDs [4, 5] have incorpo-
rated the key-value store logic with the NAND flash SSD
firmware, and has adopted a key-value user interface, instead
of the traditional block interface to store and retrieve user data.
The commercial success and widespread adoption of devices
such as these will be the first step towards more intelligent
and smart storage devices. A practical issue in the adoption of
these devices is the identification and evaluation of suitable
data reliability techniques for data stored in these devices.

Traditional systems with multiple block storage devices em-
ploy fixed-length, block-based data reliability techniques to
overcome data loss due to data corruptions and device failures,
and Redundant Array of Independent Disks (RAID) [9] has
been the de-facto standard for these devices. KV devices,
on the other hand, allows for the storage and retrieval of
variable-length objects associated with variable-length user
keys. Their storage semantics and as such, the data reliabil-
ity techniques/recovery mechanisms are different from tradi-
tional block devices.

In this work, we address this need for a tailored data reliabil-
ity solution for KV devices and present KVMD, a hybrid data
reliability manager for such devices. KVMD is to KV devices
as RAID is to block devices. We present four different config-
urable reliability techniques, all suitable for variable-length
data addressed by variable-length keys, to be used in KVMD:
Hashing, Replication, Splitting and Packing. These techniques
serve as counterparts to the traditional RAID0, RAID1, and
RAID6 architectures. We also present the different through-
put, storage and reliability trade-offs of these mechanisms,
enabling the users to make an informed decision.

In addition, we present three different modes of KVMD op-
eration: a standalone mode, where the workload size and char-
acteristics may remain more or less the same and is known
beforehand to the user, and the user can choose a single relia-
bility technique for all data, a hybrid mode, where the user can
configure different reliability techniques for KVs with value
sizes in different pre-configured ranges, and a custom mode,
where the user can specify a reliability technique per KV pair
and can be used in combination with either the standalone
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mode or the hybrid mode.
We also evaluate the above individual techniques for dif-

ferent value sizes, in both the standalone and the hybrid
mode (since custom mode is just a functional extension and
the performance characteristics does not require a separate
evaluation), using Samsung’s NVMe Key-Value SSDs (KV
SSDs). We show that, when compared to the Linux mdadm-
based RAID throughput degradation for block devices, data
reliability for KV devices can be achieved at a comparable or
lower throughput degradation. KVMD, enabled by the flex-
ible KV interface, also provides much quicker rebuild and
recovery compared to Linux mdadm-based RAID. Finally, we
conclude that, thanks to the flexible, modern device interface,
KVMD for KV devices not only provides custom configura-
tion convenience for the users, but is also either equivalent or
superior to schemes for block devices in many ways.

2 Key-Value SSDs
Storage device technologies have undergone tremendous
changes since the first disk drive was introduced several
decades ago. Yet, the traditional random access block inter-
face is still being used to access most modern storage devices,
even the NAND flash SSDs, until recently. Here, we describe
the enterprise grade NVMe Key-Value Solid State Drives
from Samsung [4].

Figure 1: Key-Value SSD IO path. Key Lookup logic is
added to the device.

NAND flash density has grown tremendously over the
years; internal parallelism and read/write bandwidth of the
devices have improved drastically. In addition, a NAND flash
memory cell can be read and programmed only in units of
pages of size 8-32 KB, and a page can be programmed only
after an erase, done in larger units of size 4-8 MB. To han-
dle such device characteristics and manage the placement

API Kind APIs
Device API kvs_[open/close]_device,

kvs_get_device_[info/capacity/utilization],
kvs_get_[min/max]_[key/value]_length,
kvs_get_optimal_value_length

Container API kvs_[create/delete/open/close]_container,
kvs_list_containers,
kvs_get_container_info

Key-Value API kvs_[store/retrieve/delete]_tuple[_async],
kvs_get_tuple_info,
kvs_exist_tuples[_async]

Iterator API kvs_[open/close]_iterator,
kvs_iterator_next[_async]

Table 1: Samsung Key-Value SSD API

and retrieval of the host-addressable 4 KB logical blocks to
the storage media, traditional NAND flash solid state drives
already come equipped with very capable hardware and en-
hanced firmware.

The KV SSDs used for evaluation in this paper use the
same hardware resources as those of their block SSD coun-
terparts used for evaluation. The KV firmware is based on
the block firmware and has modifications to support the stor-
age, retrieval and cleanup of variable-length values and key.
Whether the KV IO throughput matches the block IO through-
put, or what the effects of increased hardware resources on
KV IO throughput would be, are the topics for another pa-
per altogether, and will not be discussed here for the sake of
brevity.

Figure 1 illustrates the major components in the IO path
of a KV SSD. The Samsung KV-SSDs use the Non-Volatile
Memory express (NVMe) interface protocol, developed for
low-latency, high-performance non-volatile memory devices
connected via PCIe. As seen in the figure, the variable-length
KV pair is stored along with any internal metadata in the
NAND flash page in a log-like manner, and the index stores
the physical location/offset of this variable-length blob, in-
stead of storing a fixed 4 KB data in a log-like manner and
indexing the 4 KB block location. The firmware now also has
hash-based key lookup logic instead of the traditional logical
block number based lookup. In addition, the garbage collec-
tion logic is also equipped to deal with variable-length KV
pair cleanup. Kang et al. [5] describe the design and benefits
of these devices in more detail.

User applications in the storage server can use the KV
library API, and the KV library in turn talks to the KV SSD
device driver to talk to the KV SSDs. The open-source KV-
SSD host software package provides the KV API library and
access to both a user-space and kernel device driver for the
KV SSDs [10]. Samsung Key-Value SSD API is listed in
Table 1 and the detailed description of the API can be found
in the KV API spec provided with the host software package.

As can be seen in the table, the API provides management
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calls to open/close a device and get information such as device
capacity/utilization, min/max key and value lengths supported
and optimal value length. The API also includes the concept
of containers to group KV pairs. The KV API includes both
asynchronous and synchronous calls to store, retrieve and
delete KV pairs. Further, a user can get information about KV
pair or check the existence of keys in the device. Finally, a
user can open an iterator set on a predicate and can iterate
over either key only or key and value in lexicographic key
ordering.

3 KVMD Design
KVMD is a virtual device manager for multiple KV devices.
As shown in Figure 2, KVMD handles the KV operations sent
to the virtual device and stores the user data chunks in under-
lying KV devices it manages. KVMD’s reliability manager
relies on multiple pluggable reliability mechanism (RM) im-
plementations, and can handle huge value sizes unsupported
by the underlying KV devices. It can also have an optional
data/metadata caching layer to improve performance.

Figure 2: KVMD Reliable Device. Reliability device en-
capsulated the underlying KV devices and employs a hybrid
reliability manager.

The virtual device layer works in a stateless manner, i.e., it
does not have to maintain any KV to device mapping to work.
KVMD can operate in three modes:

• A standalone mode, where the workload size and char-
acteristics may remain more or less the same and/or is
known beforehand to the user, and the user chooses a
single reliability mechanism for all KV data stored in
the group of devices,
• A hybrid mode, where the user pre-configures different

reliability mechanisms for KVs in different value size
ranges, and
• A custom mode, where the user can by default set either

the standalone mode or the hybrid mode, and in addition
specify a reliability technique per KV pair, upon which
the specified technique will be used for the KV pair
regardless of the default setting.

The size-thresholds and the corresponding reliability mech-
anisms of the hybrid mode are specified using a configuration

file. The custom mode is activated if the individual store call
specifies a RM different than the default configuration. The
configuration file is also used to specify any RM specific pa-
rameters and the erasure code implementation to use for the
RM.

The KVMD manager is responsible for the creation and
deletion of the underlying device abstraction layer, which
handles queue-depth maintenance and calls to the underlying
storage devices. The individual RMs share the underlying
device abstraction objects owned by the hybrid manager. The
underlying device order specified during the virtual device
creation is retained by the KVMD manager. This ordering is
used to determine the adjacent devices (preceding and follow-
ing devices) in a circular manner. The virtual device’s API is
designed to be very similar to that of the KV SSD API as seen
in Table 1, with an additional rebuild device call, to recover
from entire device failure and rebuild the device contents,
and the ability to optionally specify custom RM for stores.
KVMD supports both the synchronous and asynchronous ver-
sions of the store, retrieve and delete calls, in addition to the
synchronous rebuild device call.

3.1 Hybrid-Mode Operations
We will describe the operations of KVMD in the hybrid mode,
since custom mode is similar and the standalone mode is the
simpler straightforward version.

RM Determination. Since KVMD is stateless and can op-
erate without the optional caching layer, when the user issues
a KV call, KVMD does not know if the key already exists.
The underlying RMs can handle inserts and updates differ-
ently. Hence, all Store/Retrieve/Delete operations has to first
determine which RM was used to write a KV pair previously,
if the KV pair already exist. This information, along with
other metadata is stored in the beginning of all values, as
shown in Figure 3, the structure of internal values.

Figure 3: Internal Key and Value Structures. KVMD Meta-
data is stored along with user key and values.

’RM ID’ identifies the RM used to store the KV pair, ’EC
ID’ identifies the erasure code used by the RM, ’Total splits’
stores the number of splits a huge object was split into (dis-
cussed next under ’Huge Object Handling’), and ’Checksum’
field stores checksum and ensures that the data read back
hasn’t been corrupted and is used to detect failure. Individual
RMs determines how the checksum is calculated and stored.
Other RM specific metadata is also stored with the value,
followed by padding.

KVMD reads part/entire KV pair for every operation, to
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determine the RM used to write the KV pair and then proceed
with the operation, by forwarding the request to the corre-
sponding RM. To aid in this determination by the hybrid
manager, all RMs adhere to the below rules:

1. Place the first copy/chunk of the KV pair on the primary
device, determined using the same hash function on the
key, modulo the number of devices,

2. Store at-least the first copy/chunk/info using the same
key as the user key,

3. Store metadata such as RM identifier, EC identifier, at
the beginning of the value.

Huge Object Handling. Underlying KV SSD devices may
have limits on the max value sizes supported, owing to their
internal limitations. For example, the Samsung KV SSD used
in this work has an upper size limit of 2 MB. Individual RMs
may also have a maximum value size it can support for a KV-
pair, based on the underlying device’s maximum size minus
the metadata size and its own configuration parameters, such
as the number of devices a value is split and stored into. If
the value size exceeds the maximum size supported by a RM,
then KVMD splits the KV pair into multiple KV pairs, where
each split’s size is determined by maximum size supported
by the RM and stores them all using the same RM no matter
the residual size of the splits.

As Figure 3 shows, internal keys have additional metadata
bytes in addition to the user key field, such as ’split number’
and any ’RM specific metadata’. Split number is zero for both
the first split of a huge value and a KV that does not have any
splits. Thus, the min and max key sizes supported by KVMD
are 2 bytes lesser than the underlying KV SSD supported key
sizes. During a read, if the metadata in the value indicates
that it is part of a huge object, KVMD issues additional IO
requests to deal with the huge objects as needed.

Store. After huge objects are split into multiple objects,
the RM to use to store the key is determined using the con-
figured size-threshold. The KV pair is then read from the
primary device. If the KV already exists, RMprev that was
previously used to store the KV pair is extracted from the
metadata stored with the value, along with the number of
splits stored. Then, RMprev’s update (for matching split num-
bers) and delete (for excess splits stored previously) methods
are called to let RMprev handle these in a RM specific way.
Finally, the new RM’s store method is called to store all the
KV pair splits.

Retrieve. The KV pair is read from the primary device. If
it exists, RMprev is determined, along with the user value size
and the number of splits for the KV pair. The retrieve request
could require additional calls to read from multiple splits, or
just call RMprev’s complete_retrieve method to complete the
initial read as the RM sees fit. Finally, the user requested data
is assembled to the user value buffer.

Delete. The KV pair is first read from the primary device.
If it exists, RMprev and the number of splits are determined
from the metadata. Then, RMprev’s delete method is called
for all the splits.

Rebuild Device. On device failure, KVMD can rebuild all
the KVs that would have been present in the failed device to a
new device by iterating over all the keys present in the devices
adjacent to the failed device, and performing per-KV repairs.
Some RMs may require iterating over both the device in front
of a failed device and that which is after, while some may
require iterating over just one of device. The hybrid manager
first obtains the list of drives to iterate from, from all of the
underlying RMs, before starting the rebuild process.

3.2 Reliability Mechanisms
This section describes the 4 different reliability mechanisms
we implemented and can be plugged into our framework. Ta-
ble 2 shows the metadata information stored with the different
RMs, and will be discussed further below.

3.2.1 Hashing

Hashing does not add any redundancy/data protection. Similar
to RAID 0, its purpose is load balancing and request distri-
bution to all underlying devices. It simply hashes the key
and stores a single copy in the primary device, and directs
all retrieve and delete calls to the primary device. When a
device fails, any recovery attempt fails and user data stored in
the device will be lost.

3.2.2 Single Object Replication

Replication is a simple, popular redundancy mechanism in
many storage systems that is applied per object (KV pair).
The primary device, determined by the key hash, stores the
primary copy of the object. As shown in Figure 4, copies of the
object are written to r−1 consecutive devices when any write
happens, in addition to the primary copy, where r is the user-
configurable number of replicas, and consecutive devices are
determined in a circular fashion. Since 3-way replication is a
popular configuration in many systems, including distributed
systems, r is set to be 3, by default.

Figure 4: Replication stores r copies (3 here) of the data in r
consecutive devices.

All copies are identical and stored under the same key in
the different devices. r, the number of replicas, is also stored
along with other metadata, as shown in Table 2. All RM’s
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also have a num_user_key method to return the number of
devices from the primary device that would store the user key
as is, without any RM specific key-metadata. Replication’s
num_user_key returns r, for example. The update method of
all RMs obtain uknew, the return value from the new RM’s
num_user_key method. If uknew is less than r, Replication
deletes the final r−uknew KVs. Finally, the store is passed on
to the new RM, and its store method is called.

The retrieve method reads the entire value from the pri-
mary device, verifies the checksum, strips the metadata from
the value and copies the user requested data onto the user
buffer and returns it, if the checksum verifies. If checksum
error occurs, the value is retrieved from one of the replicas,
rewritten to the device that failed, and the correct data is re-
turned to the user. The delete method issues delete calls on
all r consecutive devices starting from the primary device.

Replication has high storage costs and write overhead, but
low read and recovery costs. Since the mechanism works per-
object and does not have any dependency on any other KV
pair, there is no added update overhead. Replication is a good
choice for very small values, where the high storage overhead
is not a big strain on the system, and keeping the object intact
in one piece and independent of other objects is better for
performance.

Figure 5: Splitting splits the value into k equal-sized objects
and add r parity objects.

3.2.3 Single Object Erasure Coding - Splitting

Splitting is a single object erasure coding mechanism, that
splits the user object into k equal-sized objects, adds r par-
ity objects using a systemic MDS code and writes the k+ r
objects to k+ r consecutive devices using the same user key.
The code is (4,2) Reed Solomon code, by default, similar to
RAID 6, though the code and parameters are configurable by
the user.

As shown in Figure 5, the first data shard is placed in the
primary device determined by the hash, and the other data
and parity shards are placed in consecutive devices in a circu-
lar fashion. The size of the shard has to be supported by the
erasure code implementation and the underlying devices, and
the final shard is zero padded for parity calculation purposes,
if shards cannot be evenly divided into k shards of supported
size. The ec in Table 2 indicates the erasure code implemen-
tation to use with splitting. Due to space considerations, we
will only describe one ec implementation, our best performing
equivalent to RAID 6 that is used for all evaluations in the
Evaluation section. The original user value size before split-
ting is also stored as part of the metadata, to be of use when
the last shard is lost or needs recovery, in order to recover the
right value content without the zero padding.

Similar to Replication, the update method obtains uknew
from the new RM and if uknew is less than k + r, deletes
the final k+ r−uknew devices. Delete method issues deletes
for all k+ r KVs. The retrieve method reads all splits from
the k data devices asynchronously. If all their checksums
verify, then metadata is stripped from the splits and they are
reassembled and sent to the user. If f <= r checksums fail,
the required number of parity shards are read and the failed
shards are recovered, rewritten to the failed devices and the
user requested value is returned back to the user. If the number
of failures, f > r, then recovery will fail and an error will be
returned back to the user.

Splitting reduces the storage overhead. The read and write
overhead and throughput reduction is determined by the era-
sure coding mechanism, code parameters and the size of the
values. Similar to replication, splitting does not have any
dependency to any other object; hence, no added update over-
head. Splitting is recommended for big value sizes where the
multiple request processing overhead does not have a huge
impact on overall throughput.

3.2.4 Multi-Object Erasure Coding - Packing

Packing is a multi-object erasure coding mechanism that
packs up-to k independent objects from k different devices
into a single reliability set. The packing is a logical packing,
purely for the sake of parity calculation. The user objects are
stored in their own primary devices as determined by their
hash values, independent of each other, and thus, do not intro-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 · · ·
RM Value Metadata Key Metadata
Hashing 1 0 Splits Checksum Padding None
Replication 2 r Splits Checksum Padding None
Splitting 3 ec Splits Checksum Value Size k r Padding None
Packing 4 ec Splits Checksum k r Padding U/M/P

Metadata Value
Packing ck r Key Size Var-length Key Value Size Repeat · · ·(k+ r−1 more KVs)

Table 2: KVMD Metadata stored per RM.
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duce any privacy concerns. It adds r parity objects to every
reliability set and stores them in r devices different from the
original k devices. Erasure code can be any implemented us-
ing any systemic MDS code. The default, as before, is (4,2)
Reed-Solomon code, similar to RAID6 erasure coding.

Figure 6: Packing packs k different objects into a single relia-
bility set.

Figure 6 shows different keys placed in different KV SSDs
based on their hashes, say key i in KV SSD 1, key j in KV-
SSD 2 and key k in KV-SSD 4, etc.,. Packing queues recent
write requests for each device, and chooses up-to k objects,
each from a different device’s queue, to be erasure coded in a
set (for example, keys x, y, b, and c, the ones marked in blue
in the figure, can form a reliability set). Erasure coding of the
set of selected objects results in r parity objects, which are
written to r different devices.

Erasure coding requires the data sizes to be the same, but
there is a difference in size of the objects in a set. This chal-
lenge is overcome by virtual zero padding, i.e., the objects are
padded with zero’s for erasure coding, but the zero padding is
not actually written to the device, as shown in Figure 7. The
object value buffers and the parity objects are of the same size
as the largest object in the set, rounded to a size supported by
the erasure code implementation and the underlying devices.

Figure 7: Packing pads the different values virtually with
zeroes, for the sake of erasure coding.

Retrieve is straightforward; the object is read from the
primary device and the checksum is verified to ensure the
value isn’t corrupted. Object recovery, in case of device failure
or checksum failure, and recalculation of parity, in case of
updates to an object in a set, requires knowledge of the erasure
code set. The RM needs to know which keys were grouped
together to calculate parity, and hence are in a set.

Set information together with the actual size of each ob-
ject (to recreate the objects with actual size without any zero
padding) is stored as metadata objects in each of the devices.
The metadata objects store the number of user objects, ck and

parity objects, r in the set, along with all keys in the set, and
their value sizes, as shown in Table 2. Here, ck stands for
current k. We want k objects to be packed every time, but we
don’t want to wait too long in the queue. Hence, after a wait
time threshold, available number of objects, ck <= k is cho-
sen to be packed. The RM specific identifier byte in the key
is used to store indicators identifying the key as a user object
or parity object or metadata object. The Metadata object for
each user key is replicated and the number of replicas is set
be r.

The update method first regroups the erasure code set the
key is part of, without the key, before the write can be passed
on to the new RM that will be used to store the key. First,
the metadata object is read from the device, followed by the
rest of the KV objects in the set and they are rewritten into
a new reliability set. Once complete, the metadata object for
the key is deleted, following which the store if forwarded
to the new RM. Delete happens in a similar manner, except
the user object is also deleted along with the deletion of the
metadata object. While KVMD supports both synchronous
and asynchronous calls, the underlying grouping operation
in case of updates and deletes are synchronous in our current
implementation, affecting performance. Hence, it is recom-
mended to use packing for objects not expected to be updated
much; reads are fast for such objects and storage overhead is
also small. Similar to splitting, write throughput degradation
is determined by the erasure code implementation, parameters
and the size of the objects.

4 Evaluation
In this section, we evaluate both software RAID for block
devices and KVMD reliability mechanisms for KV SSDs and
present the results. The evaluation is done on a Linux server
running CentOS 7.4. The machine has Intel(R) Xeon(R) Gold
6152 CPU @ 2.10GHz with two NUMA nodes and 22 cores
per CPU, and 64 GB memory. The machine has 6 NVMe
SSDs, and the same SSDs are used in both the RAID and
KVMD evaluations. For the RAID evaluation with block
devices, enterprise-grade block firmware is used, while a KV
firmware is used for the KVMD evaluation with KV-SSDs.
The KVMD virtual device is formed with all 6 devices for all
tests in all evaluations. Replication is configured with total
3 replicas, while packing and splitting is configured to use 4
data devices and 2 parity devices.

KVMD is implemented as a user-space reliability library
that works on top of Samsung’s open source KVAPI library to
access the KV-SSD devices. Unlike RAID, KVMD has hash
calculation and 32-bit checksum calculation and verification
overhead for every operation. After a test of couple of differ-
ent implementations, we settled on the crc32 IEEE checksum
calculation function using Intel’s ISA-L library [11], since
we found it to have the least performance degradation. For
erasure coding, we use a Reed Solomon coding implementa-
tion for any k and r using the Intel ISA-L library [11]. Ad-

314    18th USENIX Conference on File and Storage Technologies USENIX Association



ditional KVMD overhead includes memory allocations/frees
and memory copies during external to internal key/value con-
versions and vice-versa.

The goal of the experiments in this section is to evaluate the
performance degradation incurred by the different RMs under
different settings and to compare it against the performance
degradation incurred by Linux software RAID. But, a RAID
vs KVMD comparison is not an apples-to-apples comparison.
The device capabilities and internal operations are different.
Hence, their absolute throughput numbers are also different.
In more realistic KVS settings, KV SSDs outperform block
SSDs with host KV software stack. To learn more, we refer
the readers to the work by Kang et al. [5].

The results in this section are presented with 2 y-axis. The
left-hand y-axis and the bar plots show the absolute through-
put numbers, and the secondary right-hand y-axis represents
the percentage throughput achieved and is the axis for the
lollipop plot (the red sticks with the small spheres at the end,

on top of the bars). The lollipops on top of each bar shows the
percentage throughput achieved by the RM or RAID scheme
represented by the bar, with respect to the first bar in the
category, and provides a sense of the performance overhead.
Since this work is not about the device implementation, and
the numbers are from prototype firmware, and absolute per-
formance numbers of final products are likely to be different
from those presented here, we encourage the readers to fo-
cus on the lollipop plots rather than the bar plots, as we
do in the rest of the section.

Our evaluation uses Fio’s [12] asynchronous engine for
RAID device and kvbench’s [13] asynchronous benchmark
supplied with the KV SSD host software package for KVMD
device. Hence, we use fixed block and value sizes for our
experiments. Since, this is a new emerging device, we also
do not make any assumptions regarding the popularity of KV
sizes based on previous studies, and have chosen 1 KB, 4 KB,
16 KB and 64 KB value and block sizes.

Figure 8: RAID Throughput for block sizes from 1 KB to 64 KB.

Figure 9: KVMD RM throughput for various value sizes. The Hybrid mode runs of each RM shows the performance impact due
to the extra reads in the mode.

USENIX Association 18th USENIX Conference on File and Storage Technologies    315



4.1 Block Device RAID Performance
Mdadm software RAID is used to create RAID devices on top
of NVMe block devices, in striping, mirroring, raid4, raid5
and raid6 configurations, and were tested with both 4 KB
and 256 KB chunk size. Mirroring is configured as 2 virtual
devices each with 3 physical devices, for 3-way mirroring
similar to 3-way replication, with default settings. We mea-
sured performance with a total of 6, 12, 24 and 36 threads
and found 24 threads to be lowest number of threads to per-
form the best. The results shown in the Figure 8 are all with
24 fio threads. Our workload sequence was sequential write,
followed by sequential read, followed by random write and
finally random reads.

Striping achieves the aggregated throughput of all 6 devices.
As can be seen from the figure, most RAID writes incur
heavy throughput degradation and perform at a much lower
rate, compared to striping. The throughput degradation of
mirrored writes is as expected, roughly 1/3rd of the aggregated
throughput. But all other writes are unexpectedly worse, due
to ready-modify-write operations.

Reads perform much better, though we can see significant
performance degradation for small block sizes and for small
stripe sizes, even though no additional functionality such as
read verification or decoding is performed. Read performance
is degraded even for larger block sizes, if the stripe size is
smaller than the block size.

We observe mirroring to be the best option for performance,
with a constant, understandable performance degradation for
writes of all block sizes and best read performance in most
cases, but has high storage costs. While erasure coding has
better storage costs, very high write throughput degradation
and uncalled for read throughput degradation in some configu-
rations makes mdadm RAID erasure coding very undesirable
for high performance NVMe SSDs.

4.2 KV SSD KVMD Performance
In the presented results, ’None’ signifies pure KV SSD
read/write throughput, obtained with 6 threads (one for each
device). The same number of threads (6) is used to issue IO
to the KVMD device, in all cases.

4.2.1 Fixed Value Sizes

KVMD is evaluated only in the standalone (configured only
with the RM tested) and the hybrid (configured with all RMs,
but only the RMs being tested are exercised) mode, since
custom mode is only a functional extension. Even though only
one RM is being exercised in the hybrid mode, the possibility
of multiple RMs triggers an additional read request for every
operation (to check if it already exists) before continuing
with the operation. Hence, we observe a slight throughput
degradation in the hybrid mode, compared to the standalone
mode.

Store and Retrieve. Figure 9 shows the store and retrieve
performance for the RMs. Replication achieves roughly 1/3rd

the aggregated 6 drive throughput, since it writes 3 objects for
every object the user writes, similar to RAID 3-way mirroring.
As seen in the figure, the write performance degradation is
as expected, in spite of the additional hashing, checksum
calculation and memory copy operations. Replication-Hybrid
issues 4 requests for every write operation and hence incurs
a higher, but expected performance degradation. The read
throughput is very close to that of the drives without any
reliability, and the slight performance degradation observed
is due to checksum verification and memory copy operations
for every read operation.

Packing issues the additional read request in both the stan-
dalone and the hybrid mode. Hence, the write throughput is
similar in both modes. In the tested configuration, it groups
every 4 user write into 14 total writes to the device - 4 user
writes + 2 parity writes + 8 metadata object writes. The meta-
data writes are of smaller size than user writes; hence, for
small value sizes where metadata write throughput is simi-
lar to object write throughput, the write throughput is close
to 4/14 of the aggregated device throughput, but for larger
value sizes where metadata writes are not as significant as
object writes, the write throughput is close to 1/2 of the ag-
gregated device throughput. The read throughput is similar
to replication read throughput, since both read the user ob-
ject in a similar fashion without any other dependency and
additional IO requests. Hence, performance characteristics
become similar to replication in many cases, even though the
space amplification is way less.

Splitting splits the objects into 4 equal parts of size 1/4th
the user object size and writes 2 more parity objects of same
size as the splits. Hence, splitting issues 6 writes 1/4th the size
of the user object, and its write throughput can only be 1/6th
of the KV-SSD throughput for the smaller value size. As can
be seen in the figure, its write throughput is the lowest among
all the RMs for small value sizes, but catches up as value size
increases and becomes better than others for larger value sizes.
As in the case of replication, additional read request in case of
hybrid mode results in slightly more throughput degradation.
Reads have the same pattern as writes, but the smaller object
performance is better than writes, because every user read
only issues 4 read requests to the devices (to read all 4 splits),
while every user write issues 6 write requests to the device (to
write the 4 splits + 2 parity objects).

Updates and Deletes. For updates and deletes, we show
the 4 KB value size results only in Figure 10, since other
value sizes follow a similar pattern. The normalized through-
put degradation of replication and splitting is similar to the
read and write pattern observed earlier. This is because there
are no other special update and delete handling procedure
for both and they are both limited by the underlying device
throughput for the workload and the number of IO requests.
But packing performs poorly in both cases, as expected, be-
cause our current implementation operates synchronously and
has to rewrite objects in a group to new groups before the
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update/delete could proceed. We believe packing’s update
and delete performance can be improved further with more
engineering effort, but will still be inherently limited.

Figure 10: Update and delete throughput for 4 KB values.

4.2.2 Mixed Value Sizes

In this section, we measured the store and retrieve throughput
for mixed value sizes, 4 KB, 16 KB and 64 KB in the ratio
30:40:30, and present the results in Figure 11. KVMD was
configured in the hybrid mode with value size thresholds
configured in such a way that 4 KB objects are handled by
replication, 16 KB objects by packing and 64 KB objects by
splitting. As can be seen in the figure, the read and write
throughput degradation is as expected, retaining the perfor-
mance characteristics of the underlying RMs exercised by the
workload.

Figure 11: Mixed value size throughput measured in hybrid
mode configured with all 3 RMs.

4.3 Rebuild Performance
In this section, we present the time taken to rebuild a failed
device with very little user data. For this test, we write 1
million 4 KB user objects using the individual RMs/blocks
for RAID that is roughly about 4 GB of user data, and then
format/fail one of the underlying devices. We present the
run time of RAID device repair and KVMD rebuild device
functionality in Figure 12. As shown, KVMD reduces repair
time drastically compared to RAID, since it is able to and is
designed to rebuild only the user data that was written to the
failed device as opposed to RAID which traditionally rebuilds
the entire failed device. Reduced repair time further increases
the reliability of the data stored, as shown in next section.

Time taken, in case of KVMD, is proportional to the RM
read/write throughput, decode speed and the number of user

Figure 12: Single device failure rebuild times for RAID and
the various KVMD RMs.

objects in the device. Replication has higher write through-
put, no decode cost and fewer user objects in the devices and
is the quickest. Packing has fewer user objects, but slightly
lower write throughput than replication and decode cost, and
hence, is slightly slower than replication. Splitting has the
lowest write throughput for the workload size, decode size
and number of objects, and hence, takes the most time among
the RMs. While these KVMD measurements are done using
a synchronous, one key at-a-time recovery implementation, it
can be improved further with a multi-threaded and/or asyn-
chronous implementations.

5 Analysis
In this section, we provide reliability analysis for KVMD and
provide a comparison between the RAID levels and KVMD
reliability mechanisms.

5.1 Reliability Analysis
We provide reliability analysis for KVMD, using standard
Markov model, and follow the methodology commonly fol-
lowed by other researchers [14, 15]. As is common in lit-
erature, for the sake of simplicity, we are going to assume
that data failures are independent and are exponentially dis-
tributed, and do not consider correlated failures, even though
we are aware that correlated failures are common, and their
presence changes the model.

We use the metric mean time to data loss (MTTDL), to
compare the reliability of the different mechanisms against
each other. The MTTDL of the system is determined by the
MTTDL of a reliability set, MTTDLset, normalized by the
total number of reliability sets in the system, NRS.

MT T DL =
MT T DLset

NRS
(1)

Let the average size of a user object be O, and the capac-
ity of the underlying devices be C. Then, under replication,
NRS =C/nO, where n is the number of replicas. Under split-
ting, NRS = C/n(O/k), where n is determined by the code
parameters, k and r, and is equal to k + r. Under packing,
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NRS =C/n(O+M), where n is equal to k+ r as well and M
is the average size of a metadata object.

MTTDLset is a function of mean time to failure (MTTF),
mean time to repair (MTTR), the total number of objects in
the set (N), and the number of parity/redundant objects in the
set (G). MTTF is the average interval of time that an object
will be available before failing, and MTTR is the average
amount of time needed to repair an object after a failure.

Since MTTF is out of our control and is dependent on the
underlying device failure rates, MTTDLset is affected by two
factors: a) the number of object failures that can be tolerated
before losing user data, and b) the speed at which objects can
be repaired. The reliability of the system is also dependent on
the number of valid sets stored in the system, unlike RAID
which is dependent on the capacity of the system, and not just
valid data.

Figure 13: The Markov model used to calculate MTTDLset.

We compute MTTDLset using a standard Markov model
depicted in Figure 13. The numbers on the states represent
the number of objects lost in the set, and f denotes the number
of object losses that result in a failure and unrecoverable data
loss for data in the set. The number of states for a given system
depends on the configuration parameters and characteristics
of the reliability mechanism. For replication, f = n, where
n is the number of replicas, and for splitting and packing,
f = r + 1, where r is the number of parities in the erasure
code configuration.

The forward state transitions happen on failures and back-
ward transitions happen on recovery. Failures are assumed to
be independent, at the rate λ = 1/MT T F . Since the objects
in a set are distributed to N different devices, when the state is
i, there are N− i objects intact in a set, and the rate at which
an object is lost, λi is equal to (N− i)λ. For recoveries, we
assume a fixed recovery rate, µ for recovering a single object
and moving from state i to i−1. While it is possible for some
RMs to recover chunks in parallel and/or to move from state
i to 0 directly with slightly different recovery rates, for the
sake of simplicity, we model only serial recovery.

MT T DLset '
µ f−1

(N)( f−1)λ
f (2)

In equation 2, (a)(b) stands for (a)(a−1) · · ·(a−b).
Table 3 lists the factors affecting the reliability of the sys-

tem and how. While increasing the MTTF of the underlying

Control Factors Impact on MTTDL
↑MT T F/ ↓ λ ↑
↑ N ↓
↑ f ⇑
↓MT T R/ ↑ µ ⇑
↓ µ×NRS ⇑
↓Write Amplification (WA) ⇑

Table 3: Factors affecting the reliability of the system.

devices will increase the reliability of the system, and vendors
try their best to do the same, for a given hardware type they
do not change much and out of user control. But the rest can
be controlled by the user. For same number of parity objects,
increasing the number of data objects decreases MTTDL, but
not so much. But, adding an additional parity/replica to a set
increases MTTDL by orders of magnitude.

Reducing the time taken to recover an object has a high
positive impact on the reliability system. Because µ >> λ,
reducing MTTR by half has a much higher impact on MTTDL
than doubling MTTF. Similarly, reducing the total time taken
to repair and rebuild a device by working only on the reli-
ability sets instead of the entire device as done by RAID,
improves reliability tremendously.

Finally, for devices such as SSDs, write amplification has
a negative impact on the lifetime of the device and reduces
the MTTDL. Even though increased space utilization reduces
MTTDL, it has been shown that data protection provided
by parity improves data lifetime if the configurations are
right [16]. Replication has a high space utilization negatively
affecting the MTTDL. Splitting can be configured to have
lower space utilization for the same MTTDL. The space uti-
lization of packing can vary based on how many writes are
available in the device queues and can be higher than config-
ured. Further, updates on packed objects can increase write
amplification even further, as the parity needs to be updated
again.

5.2 RAID vs KVMD Comparison
Table 4 provides a comparison between the characteristics
of RAID for block SSDs and KVMD for KV SSDs. For the
read/write characteristics of RAID, we refer the readers to the
original RAID publication [9]. KVMD calculations are given
for the standalone mode, derived by calculating the number
of IO requests issued for a given number of user requests.

Since Replication writes everything r times, its write over-
head and space utilization is 1/r, but reads are straight-
forward, with no additional overhead. Splitting has N writes
for every user write and k to 1 reads for every read based
on the whether the read is a partial read or not. Packing can
end up packing 1 to k user object in a group, and in case
of updates can rewrite the whole group for a single update
similar to RAID6. Similar to RAID6 calculation, we do not
show additional reads required. While metadata writes are
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Block SSD KV SSD
RAID 1 RAID 6 Replication Packing Splitting

Writes 1/r [1/N,(N−2)/N] 1/r [1/(N +m),
k/(N +m)]

where m (metadata)
= [r,rk)]

1/N

Reads 1 1 1 1 [1/k,1]
Rebuild Time ⇑⇑ (∝ Device

capacity)
⇑⇑ (∝ Device

capacity
↓ (∝ Number of

user objects)
↑ (∝ Number of

user objects)
⇑ (∝ Number of

user objects)
Space
Utilization

1/r (N−2)/N 1/r [1/(r+1),k/N]
metadata is

additional, but
assumed small

k/N

Write
Amplification

⇑ [↑ for stripe aligned
and sized writes,
⇑⇑ for most writes]

⇑ ↑ for inserts
⇑⇑ for updates

↑

Pros & Cons Similar writes
for all sizes. Best

reads. Low
MTTDL due to

WA.

Very poor writes
and good reads.
Poor, workload-

dependent MTTDL
due to WA.

Similar to RAID
1. Best for small,

hot objects.

Best reads. Best
inserts. Very poor

updates. Good,
workload-dependent

MTTDL.

Writes/reads ∝

value & request
sizes. Best

MTTDL. Best for
large values.

Table 4: Comparison between RAID levels and KVMD RMs. Here, N is the total number of devices in a group, r is the number
of replicas or parity devices, and k = N− r.

additional, it is the cost paid for high read performance while
keeping space overhead lower than Replication. But as seen
from the results, bigger the objects, lesser the metadata impact.
Variable sizes complicate the space overhead calculation, but
we keep it rounded and simple and ignore metadata space
since it is assumed small (but is dependent on the key sizes).

The RM specific factors affecting MTTDL are also shown,
for easier comparison and informed selection. Finally, the pros
and cons of each and how they compare against each other
is given. The comparison shows KVMD can provide for KV-
SSDS all that RAID provides for block SSDs and more. While
the table provides the characteristics of individual RMs under
KVMD, the overall read/write performance and MTTDL in
the hybrid mode in the presence of mixed value sizes will be
determined by the RM configuration for value size ranges,
ratio of the user requests and the average size of the objects
served by the different RMs configured.

6 Related Work
Plenty of Maximum Distance Separable (MDS) block erasure
codes exist to add data redundancy and failure tolerance, such
as Reed-Solomon codes [17], Cauchy Reed-Solomon [18],
Blaum-Roth [19], etc.,. Our work presents ways to use them
all for variable-length key-value data as well. Qin et al., [20]
investigated reliability issues in object-based storage devices,
but considers them only as network-attached devices and
study mechanisms for very large systems with thousands of

nodes. While they provide reliability analysis for replication
and object grouping, they do not discuss practical considera-
tions such as variable length handling while grouping, or the
impact the various schemes have on read/write performance.

Even though many modern distributed, cloud scale systems
are built on top of an object-based model, they still use block
storage devices underneath and either rely on the redundancy
mechanism the underlying block devices employ, such as
RAID [21], or provide redundancy at a higher level such as
file-level redundancy rather than at a variable-length object
level [15, 22, 23], where, the writes are buffered until a fixed-
length block (mostly append-only large blocks) is full and
replication/erasure coding is applied to these blocks and the
resultant blocks are spread across different storage nodes.

In recent years, researchers have proposed a number of
resilient, in-memory, distributed key-value caching solutions.
Though they need to maintain key to physical location map-
pings, which is not required for KV devices, and do not have
the same performance characteristics and workloads as that
of our target system, they do share commonalities such as
variable-length values and addressing scheme. Cocytus [24]
uses replication for metadata and keys, and erasure coding for
values by splitting the value into k parts, adding m parity parts
and storing the resulting k+m parts. EC-Cache [25] erasure
codes the variable-length objects by splitting and storing the
k+m resulting parts in k+m servers. KVMD also explores
both replication and splitting as one of the options.
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7 Limitations & Future Directions
While we cover a variety of reliability techniques and a hybrid
reliability manager to use the different techniques simultane-
ously, for different user needs and value sizes, by no means is
the work complete. In this section, we will discuss some of
the limitations of the current design and implementation, and
directions for future enhancements of our work.

Concurrency Control. Currently, KVMD does not imple-
ment concurrency control, and assume that the applications
will implement concurrency control at their desired level.
While the device guarantees consistency in case of concur-
rent asynchronous operations on the same key, it does not
guarantee any ordering. If the application does not implement
concurrency control, KVMD can be in an inconsistent state.
Though Packing synchronizes all updates and deletes to pro-
tect against the concurrent update of two members in a group,
it does not protect against concurrent inserts of the same key.
Replication might result in different versions of the data in
different devices. Splitting might have shards from two dif-
ferent versions in a mingled state, resulting in an inconsistent
state. This can be avoided by a lock-based implementation,
or through a multi-version implementation.

Crash Consistency. KVMD returns a success only after all
replicas/shards (including the parity shards)/entire reliability
sets (including the parity objects) are written to the device.
It is once again assumed that the user/application can replay
the write if it receives a failure. In cases where it cannot do
so, such as during a crash, a consistency check module and
KV restoration mechanism is required. While implementing
a consistency check module similar to device rebuild is sim-
ple, an efficient mechanism requires design changes. Once
detected, inconsistency in case of Replication can be resolved
using a consensus algorithm. In case of Packing, inconsistent
groups can be regrouped as long as the KV pair (actual or
recovered) checksum can be verified. Partial writes in case
of Splitting that has <= r shards in a different version can
also be recovered, others can’t be. A multi-version based up-
date mechanism can provide crash consistency with some
additional impact on performance.

Optional Data/Metadata Caching Layer. The optional
data/metadata caching layer shown in Figure 2 has also not
yet been implemented. The benefits of a read cache is known.
KVMD’s value metadata is small in size and caching the
metadata can avoid the initial read in case of hybrid mode
and reduce the performance gap between the hybrid mode
and the standalone mode. While the read of non-existent keys
is quick in Samsung KV SSDs, it might not be the case with
other devices, and the metadata cache could be very useful
in those cases. Packing’s metadata object can also be cached
in the metadata caching tier, and can help improve the up-
date/delete performance by eliminating the metadata object
reads. With the metadata objects in memory and with addi-

tional in-memory only metadata per object and group, better
regrouping of objects across multiple sets can be performed.

Performance. Current Packing implementation has high
update and delete performance penalty, due to inefficient syn-
chronous regrouping. A multi-version based design can en-
able delaying the regrouping and make room for more effi-
cient regroup operations. Combined with the above metadata
caching and in-memory metadata, current Packing inefficien-
cies can be greatly reduced making it a viable and competing
choice. Since the current update performance of the device
is roughly half the insert/delete performance, a new version
insert and old version delete should have similar performance
as the current update, and can solve many of the current limi-
tations.

Picking the Right RM. Picking the right RM can be chal-
lenging for users, since the throughput is a function of the
device capabilities, the RM parameters, and workload charac-
teristics. Users usually have some intuitive knowledge about
the average size of the objects in their system, and their update
and delete characteristics. With some performance measure-
ments of the underlying devices, workload information and
our evaluation, the right size thresholds can be picked by an
informed user. The application/user can also use the custom
mode for outliers in a size threshold. Nevertheless, in real-
ity, manual picking is hard due to the changing nature of
the workload and/or limited user knowledge. Automatic size
threshold determination, size threshold outlier detection and
outlier custom mode utilization, to minimize space overhead
while maintaining a performance level, are promising future
directions for our work.

Capacity Utilization. We have also not considered the
value sizes and capacity utilization of the underlying devices.
Object distribution that avoids uneven capacity utilization,
while maintaining the stateless design is an important future
work as well.

8 Conclusion
KVMD, our hybrid reliability manager for multiple key-value
storage devices, is configurable per the user needs and work-
load needs. KVMD can be used in the standalone mode by
tiered storage systems that have fixed object size/other work-
load characteristics, while the hybrid mode enables object-
size based configuration for a more general setting. The cus-
tom mode can be used to switch RMs for objects with certain
characteristics, say hot objects, and is applied per object, giv-
ing maximum control to the user. We presented four RMs
for KVMD: hashing, replication, packing and splitting, all
suitable for variable-length KV objects, with different stor-
age, throughput and reliability trade-offs. We also presented
a theoretical analysis and practical evaluations of the RMs
using Samsung KV SSD prototypes. Finally, we conclude
that KVMD is superior to schemes for block devices in many
ways.
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