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ABSTRACT With the growing amount of chronic patients, consistent monitoring for health care profes-

sionals has been a major concern and a direct incentive to develop mobile health systems that are adaptive

and energy-efficient. The data collected from these devices is extremely important and may be affected by

wireless communication environments encouraging a preliminary stage that adapts transmission of data to

network dynamics. The paper provides compression and classification schemes for data based on a Hybrid

Deep LearningModel (HDLM) that represents data characteristics, acquired data, and energy efficiency data

delivery dynamics. Further, the EEG and EMG signals are compressed and classified based on Hybrid Deep

Learning Model (HDLM) has been mathematically analyzed. Hence, The system is specifically based on the

Stacked Auto-Encoder (SAE) architecture which extracts discrimination in the multimodal representation of

data; it reconstructs data from the latent description with the help of encoder-decoder layers for data analysis.

Furthermore, Multi-Modality Adaptive Compression shows its performance, computational complexity and

response to different network states has been experimentally analyzed at lab scale numerical analysis. This

method is therefore appropriate for mHealth applications, which can improve energy efficiency, minimize

capacity, and minimize transmission latency in the mHealth cloud with intelligent preprocessing.

INDEX TERMS Deep learning model, wireless network, auto-encoder, data compression, and classification.

I. INTRODUCTION

In the present area of research, the global effort and growth

for comprehensive healthcare is rapidly growing and demon-

strates the need for efficient and precise systems to meet

the increasing demand for better medical infrastructure for

researchers and businesses [1]. Even if health surveillance

systems are increasingly being introduced, they tend to be

challenging in medical settings. Following this contentious

accomplishment, the concept of how clinicians will respond

inmedical emergencies has changed in technology [2]. Trans-

port incidents are becoming a major worldwide cause of

death, requiring improved emergency care [3], [4]. TheWorld

health organization (WHO) estimated in 2012 that road acci-

dents were the leading causes of death rates among people

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wei .

between the ages of 15 to 29. The WHO has estimated by

2030, where road accidents will become the world’s seventh-

largest cause of death [5].

Besides, people with chronic and congenital diseases,

especially as the elderly, need for better healthcare [6], [7].

The examples of chronic disease and congenital disorders

that limit people from their daily exterior activity are dia-

betes, high blood pressure, and cardiovascular diseases. The

development of better emergency and health care facilities is,

therefore, the technical opportunity for people to live safely

and economically [8], [9].

Monitoring of health care is one way of improving emer-

gency services and health care. Health monitoring allows

early disease diagnosis and prompt medical attention in emer-

gencies, which can result in a reduction in injury and medical

costs [11]. For recognizing patients at risk it is important

to use sensors to track and transmit important symptoms of
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FIGURE 1. mHealth framework design [10].

the patient [12]. The medical staff can recognize measures

to ensure the health of the patient utilizing sensor data. The

availability of appropriate medical care could be the differ-

ence from life to death [13], [14].

Advances in mHealth systems incorporate wireless body

sensor network (WBSN) (Figure 1) based technologies to

provide a centralized resource for remote data transmission

to medical facilities in emergencies [15]. The WBSN gathers

data via a user-friendly interface from biomedical cameras

and sensors. The WBSN enables images, physiological sig-

nals, and video transmission.

Data supply is generally prevented due to limitations on

mobile devices and network resources. However, due to var-

ious wireless network impairments, congestion of a network,

patient mobility, etc., network condition continually varies.

Therefore, it must be adjusted to network dynamics for data

compression to be effective [16]. Due to the availability of

consumer wearable devices and variants coming from sev-

eral methods, biomedical data has now become extensive.

For commercial equipment, even the most complex medical

monitoring systems that involve in bedding procedures are

now feasible. For example, portable, noninvasive, accessible

commercial devices such as Emotive headsets can record

EEG [17], [18].

To overcome the above issues, and efficient data compres-

sion system using the Hybrid Deep LearningModel (HDLM)

has been proposed for single and multiple data methods,

following the edge computing paradigm that takes knowledge

closer to patients to maximize performance [19], [20]. This

system is dynamically customized to the differences in wire-

less networks to maximize overall energy consumption and

to sustain application constraints. The main contributions of

the paper are discussed as follows,

1. Provide an energy-efficient system to accommodate

mHealth Cloud (mHC) multi-user data compression

2. The hybrid deep learning method (HDLM) has

been suggested for PDA single and multiple data

compression modalities, it uses the interrelationship

between multiple modalities to improve compression

effectiveness.

3. Design amulti-user resourcemanagement system struc-

ture that determines the optimum compression ratio

depends on network complexity while reducing overall

energy consumption.

4. The suggested optimization system demonstrates that

efficiency in reducing total energy consumption when

optimizing the allocation to multiple users of network

resources.

II. RELATED WORK

The use of wireless devices in all aspects of human life around

the world is growing every day. The majority of these devices

are based on small sensors that automatically collect infor-

mation from the environment without human intervention

when deployed in the environment and create networks for

wireless sensors. Due to their low battery capacity, storage,

processing capacity, and communication, these small sensors

are highly energy controlling. The constraint makes ‘‘Energy

Efficiency’’ one of the issues most studied by wireless sensor

networks researchers. In [21] the author presented a quantita-

tive evaluation of the recent developments achieved in WSN

information collection methods (ICM). The analysis catego-

rizes each of the techniques based on the topology behind

it. The energy savings strategy is used for a second level

grouping of these techniques. For a qualitative assessment of

these methods, a comparison is made.

In recent years, wireless sensor networks had developed

a significant interest and represent several applications. The

reliability of data collection is paramount as sensors are

severe energy-controlled tools and current inequities of the

protocol lead to substantial packet loss. In [22], the author

reduced the information sensors required through the use of

condensed detecting values. However, the principle of matrix

completion effectively restores lack of information due to

the loss of packets. The performance analysis shows that the

reconstruction error for high compression and fairly large

packet losses when such advanced signal processing methods

are used simultaneously. At that same time, the network’s

total energy consumption decreases significantly.

In [23], the author suggested energy-aware allocation

heuristics that provide customer applications with data cen-

ter resources to improve the data center’s energy effective-

ness while providing established Quality of Service (QoS).

Here, they define an architecture and design and energy-

efficient cloud services mechanism. Based on this architec-

ture, they present the vision, opening research challenges

and resource algorithms to handle cloud systems energy effi-

ciency. In particular, they are performing a research survey

into energy-efficient technology in this paper, which pro-

poses: (a) structural theory for energy-efficient cloud man-

agement; (b) energy-efficient allocation policy and system

algorithms that take account of the efficiency and energy

consumption requirements of facilities.
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The Wireless Body Sensor Networks (WBSN) is the main

enabler of patient-oriented or mobile cardiology information

and information and communication to the next generation.

The advanced WBSN-enabled ECG monitoring systems are

nevertheless still less than necessary functionality, miniatur-

ization and electricity performance. Energy efficiency can

be increased, among other things, via integral ECG com-

pression, to reduce the time slots through mobile connec-

tions [24], [25]. The paper estimates the potential on the

state-of-art SHIMMER WBSN mote for low-complexity,

energy efficiency ECG compression for the emerging com-

pressed signal acquisition/compression design. The results

indicate that CS needs to stand for a highly competitive

approach to state-of-the-art DWT (digital wavelet transfor-

mation) WBSN-based ECG monitoring systems.

Based on the above survey, this paper proposed that the

Hybrid Deep Learning Model (HDLM) has been proposed to

improve the performance of Data compression and classifi-

cation of EEG and EMG signals with efficient data delivery

and better energy consumption.

III. MOBILE HEALTHCARE APPLICATION AND ITS

IMPORTANCE IN THE HEALTHCARE SECTOR

This section describes the main components of our

health framework, explains individual or collective rules

and addresses their needs in order to build a whole

energy-efficient system for the requirement of critical signs.

Figure 2, which contains three major systems, gives a

high-level system overview:

A. Network Edge: Most consumers of PDAs receive

vital signals from wearable devices. The PDA uses

the wearable device communication, collects, prepares

and transfers data via the network infrastructure to

the mHC subsystem. Preprocessing consists of a com-

pression algorithm that converts original data into

another image. It proposes a numerous method of

hybrid deep learning compression that takes advan-

tage of the accessibility of multiple modes of data

and captures inter-modals in a compression strategy.

In particular, it suggests compression schemes based

on the Stacked AE (SAE), which are intended to com-

press medical records before they are sent to the mHC,

taking the Quality of Service (QoS) condition and

application-level into consideration.

B. Infrastructure for the network: PDA communica-

tion with the mHC subsystem is enabled. The PDA is

battery-operated; therefore it is important to maximize

its transmission of energy. It reduces the cost to a mini-

mum, by modeling the energy generated by the various

systems entities and each allocated resources as per the

wireless state of each user. In addition, with regard to

the existing network structure, the feature model allows

you to choose the compression configuration.

C. mHealth Cloud (mHC): The medical system that col-

lects, disconnects and stores patient data for review by

medical personnel.

FIGURE 2. Structure of proposed model.

IV. HYBRID DEEP LEARNING MODEL FOR DATA

COMPRESSION

The design specifications and methods of the suggested com-

pressor system are carried out in this section. In particular,

it suggests the use of Stacked Auto-Encoders (SAE), and

unique data compression technique. Instead, it expands the

methodology suggested for a multi-modal case to address

the changes in system performance achieved. Eventually,

it discusses the efficiency of the proposed methodology in

order to evaluate its performance for low system complexity.

A. DESIGN SPECIFICATIONS

The following criteria facilitate the development of a com-

pression method, used in accordance with network and appli-

cation requirements before transferring vital signs into the

mHealth Network

• Compression: The dimensionality of the input data must

be reduced to the level that the Network Identity and

Capacities require.

• Reversibility: the reversal of the compression pro-

cess (uncompressed) on the recipient’s side should be

possible in compliance with the application’s efficiency

requirements.

• Effectiveness: the necessary computational burden is to

be divided into an edge node and the mHC.

1) STACKED AUTO ENCODER (SAE)

For supervised learning applications, it is a specific type of

neural network. This consists of an input layer, a hidden layer,

and an output layer, as shown in Figure 3. Until the output

layer is reached, the output of every layer is supplied with a

next input layer. Within hidden layers, the level with both the

minimal neuron number is defined as a bottleneck. The 1st

layer obtained the 1st order functions, the 2nd layer received
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FIGURE 3. Stacked autoencoder.

the 2nd order attribute from the 1st order and more. SAE is

designed to capture hierarchical knowledge abstractions.

SAE can be implemented in the mHealth model for com-

pression because it meets the design specifications. Data can

be compressed at different ratios by changing the bottleneck

layer number of neurons (complying to S1), by reverting

the compression process by optimal decoding (complying

to S2), and specifically encoding that for the technical and

expense burden between all the border network and the

mHC during the training and decoding (complying with

S3). Let’s consider an Encoding SAE with a P layer and

P layer with a decoding input a with m samples such as

a = [a (1) , a (2) . . . . . . a (m)]T . SAE aims to restore one

through two operations: decoder and encoder, while mHC is

capable of the first operation within an edge network, and

mHC (S3 compliance). First of all, the encoder increasingly

transforms the a of a bottleneck layer to the compressed

representation, c = [c (1) , c (2) . . . . . . c (n)]T , in which n <

m. At each layer q, the intermediate compressed signal cp is

generated with the following terms of the encoding method:

cp = f
(

Zpcp−1 + xp
)

(1)

When the active function is f , p = [1, 2, · · ·,P], c0 =

a, cp has np, samples have the following samples: n = np <

· · · < n1 < n0 = m, cP = c, Zp = np − np−1 vectors, and xp
is a np−1 × 1, bias vector.

The decoder then alters c slowly to generate a value of â.

Based on the decoding process, the following expression

provides an intermediate approximation of âp at every layer p:

ap = f
(

Z ′
pap−1 + x ′

p

)

(2)

When the active function is f , p = [1, 2, · · ·,P], c0 =

a, cphasmp, samples have the following samples: m = mp <

· · · < m1 < m0 = n, cP = c, Zp = mp − mp−1 vectors, and

xp is a mp−1 × 1.

The previous processes are simplified with greedy layer

training for the SAE. Each layer is trained to minimize recon-

struction of L∅(a, â)(compatibility to S2) by means of an

optimal set of parameters ∅ = [∅1, ∅2, . . . ..,∅p] modified by

Eq(4) and descent algorithm can be reduced at the minimum,

with each layer weight and bias. Usually, this problem is

FIGURE 4. Data compression over single modality.

modeled using cross-entropy Eq(3) or Eq(4).

L∅

(

a, â
)

=
∥

∥a− â
∥

∥

2
(3)

L∅

(

a, â
)

= −
∑m

j
ajlog(âj +

(

1 − aj
)

log
(

1 − âj
)

) (4)

2) DATA COMPRESSION OVER SINGLE MODALITY

It is called the SAE-S method. In this sense, each signal of

every device with a stacked autoencoder is compressed auto-

matically. Let us take into consideration a scenario without

loss of generality where two modality a and b signal with

the number of samples ma and mb are present. Two different

SAEs can be implemented to compress a and b, see Figure 4.

It is called the SAE-S method. In this sense, each signal

of every device with a stacked autoencoder is compressed

automatically. Moreover, the drawbacks are mentioned as

follows:

• For eachmodality, it is appropriate to store separate SAE

models for each PDA.

• The SAE-S uses only the intra-correlation of the modal-

ity.

3) DATA COMPRESSION OVER MULTIPLE MODALITIES

This technique will be called SAE-M. In this regard, It uses

one StackedAuto-Encoder to compress acquired signals from

several modes. SAE-M enables multiple modalities to be

combined into a single definition, resulting in better com-

pression by intermodality correlations. Two modes A and B

are available. This vector is subjected to an SAE as shown

in Figure 5 below. Multiple modal compressions are an easy

solution that ensures ideal local conditions of health.

• For all modes for a specific application, only one

SAE-M configuration needs to be saved on the PDA of

the user.
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FIGURE 5. Data compression over multiple modalities.

• SAE-M operates together to optimize the use of both

intra- and intermodal differences.

4) EVALUATION OF COMPLEXITY

The SAE training is expensive which can be performed

off-line on an mHC server-side to achieve maximum weight

and preferences which can be displayed in real-time on the

PDA of the patient. This evaluates the complexity of the

device of the SAE-S and the SAE-M during evaluation:

If linear function activation f is taken as follows, write

Eqs (1) and (2):

c =

(

∏P

p=1
ZP−p+1

)

a+
∑P

r=1

(

∏P−r

p=1
ZP−p+1

)

xr (5)

c =

(

∏P

p=1
Z ′
P−p+1

)

a+
∑P

r=1

(

∏P−r

p=1
Z ′
P−p+1

)

x ′
r

(6)

δ = PnP +
∑P

p=1
(pnp−1np (7)

where n0 to nP decay number of encoding samples or increase

number of decoding samples.

5) OPTIMIZATION OF ENERGY CONSUMPTION

It suggests a multi-user mHealth device design framework

in this section that takes into account the requirements of

the network and applications. In particular, it adapts the

SAE-M methodology to the dynamic grid and the specifi-

cations of the application, to achieve optimum compression

ratios, by choosing the DL configuration to ensure that the

DL ratio is retained. First, the network/application limits

are summarized and the necessary total energy consumption

formalized. Formulate the problem of optimization then and

use convex optimization techniques.

a: CONSTRAINTS ON NETWORK AND APPLICATION

The proposed scheme only aims to provide a methodology

of compression with low complexity, hence it adapts to net-

work conditions and application requirements. The mHealth

framework is designed to reduce total energy usage and to

maximize the transfer rates and bandwidth of all PDAs. The

following specific requirements should be satisfied for the

given assignment: distortion threshold PRDth.

b: CALCULATION OF ENERGY CONSUMPTION

Take mHealth multi-user with M users in which each of

the samples (samples) A = [a1, a2 . . . . . . .aM ]T and M is

collected in such a way that m = [m1,m2 . . . . . . .mM ] and

n = [n1, n2 . . . . . . .nM ] and the number of bits transmitted by

this device is L = γ n, where L = [l1, l2 . . . . . . .lM ] contains

the number of bits transmitted by whole customers, and

γ = [γ 1, γ2 . . . . . . .γM ]. Note that all vectors in this section

use the same indexing form.

The total energy consumed by consumer I referred to

as X (j), is as follows:

X (j) = X
(j)
t + X (j)

z + X (j)
p (8)

where X
(j)
t ,X

(j)
z andX

(j)
p are energy consumed in module j for

the transmission, compression, and encoding of data. The

following equations can be computed for X
(j)
t :

X
(j)
t =

ϑjlj

kjhj
(2

kj
hj − 1) (9)

where kj is the transmitted PDA j data rate over band-width

ϑj and hj is the gain in the channel. In addition, X
(j)
t can be

computed with its proportionality to the complexity of the

compression algorithm is expressed as follows:

X (j)
z = δjXq (10)

where δj is the complexity of compression algorithm, j

encoder and Xr is the consumed energy per system. For

r an SAE-M Q-layered module Eq(7) modifies Eq(10)

to:

Where the compression algorithm j encoder is complex, Xr
is the energy consumed by a system. Eq(7) changes Eq(10) to

an SAE-M Q layered module:

X (j)
z =

(

Pn
(P)
j +

∑P

p=1

[

pn
(p−1)
j n

(p)
j

]

)

Xr (11)

Finally, the number of converting steps proportional to nj is

required and the energy consumed by Xs depends on X
(j)
p .

Therefore X
(j)
p can be defined as follows:

X (j)
p = njXs (12)

c: PROBLEM DEFINITION

Compression efficiency is quantified by the compression

ratio (CR) and distortion by the Root Medium Square Dif-

ference (PRD) for the following reasons:

CRj = 100 × (1 −
nj

mj
) (13)

PRDj = 100 ×

∥

∥aj − âj
∥

∥

∥

∥aj
∥

∥

(14)
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FIGURE 6. Hybrid deep learning for intermodal correlation.

The exponential operator d will estimate PRD from CR using

regression analysis, such that:

PRDj = d
{

CRj
}

= xeyCR
j

(15)

where x and y are the parameters of regression.

Considering the application specifications and network

constraints i.e. maximum permissible distortions PRD
j
th, time

period D
j
th and total bandwidth βt , It is expressed as follows,

min
CRj,kjhj

(
ϑjlj

kjhj

(

2

kj
hj − 1

)

+ Pn
(P)
j +

∑P

p=1

[

pn
(p−1)
j n

(p)
j

]

Xr

+ njXs (16)

where,

xeyCR
j

≤ PRD
j
th (17)

lj

hj
≤ D

j
th (18)

∑M

J=1
βt ≤ βt (19)

V. APPLICATION OF THE EEG AND EMG DATA

COMPRESSION AND CLASSIFICATION BASED ON HYBRID

DEEP LEARNING MODEL

Multimodal auto-encoder architecture is shown in Figure 5.

It consists of two processes of EEG and EMG. Each route

indicates a unimodal auto encoder associated with the corre-

lation between data and intra-modality while the joint level

merges the functions at a higher level.

A. PRE-TRAINING OF UNIMODAL DATA

The SAE is applied separately for each model; the sigmoid

activation function and Euclidean square distance are used as

a loss feature that is controlled by the term for weight loss.

c1 = sigmoid (N1a1 + x1) j = 1 (20)

c1 = sigmoid (N1a1 + x1) j = 2...M (21)

The SAE is formed with a training technique in soft layers

which feeds the latent representation of the auto-encoder to

the layer below. This deep architecture makes the system

scalable and efficient while the data are extracting higher

functionality progressively.

B. HYBRID DEEP LEARNING

Intermodal correlation (Figure 6), which can relate to proper

representation of the high-level features, is not involved

throughout the single modal pre-training. This allows, in par-

ticular, the encoding of the various modalities by a single

joint layer common representation. The consequence of this

layer involves the input in the code representing the com-

pressed data for each modality. The common representation

is achieved as follows:

c =
∑

j∈{e,n}
sigmoid(N

j
M + c

j
M+1 + x

j
M+1) (22)

where e and n relate individually to EEG and EMG. In

addition, the multi-modal autoencoder is trained in increased

noise, in which additional examples lead to individual sample

modes. In practice, it adds zero in value to one model, while

maintaining the original in the other model and vice versa.

Consequently, only a third of the training data is EEG, a third

is EMG, and the remaining data are EEG and EMG. The

framework that denotes the autoencoder is justified in two

ways:

• It is very likely that the association between multiple

modes is nonlinear.

• This non-linearity contributes to the activation of hidden

units by a single-mode.

Subsequently, the initial and corrupted input is distributed

separately to high levels, which are then slowly reconstructed

on both inputs to regenerate the clean image.

C. FINE-TUNING

The compressed data can be used for classification by attach-

ing the bottleneck layer to a softmax classification, according

to a monitoring criterion.

Q̂ =
exp(Xb+ y)

∑T
t=0 exp(X

tb+ yl)
(23)

where Q̂ is the predicted label for the object, y describes the

compressed information and T is the number of labels for

classification. The performance of the Hybrid Deep Learning

Model (HLDM) is evaluated using different metrics as men-

tioned below.

VI. RESULTS AND DISCUSSIONS

A. DATA COMPRESSION OVER SINGLE MODALITY

Figures 7 (a&b) demonstrate ICM, DWT, WBSN, and SAE

with HDLM compression distortions at various EEG and
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FIGURE 7. (a). EEG compression performance (b). EMG compression
performance.

FIGURE 8. 50% compression ratio of EEG using SAE.

EMG compression ratios, respectively. Figure 7(a) reveals,

on the one hand, that the findings of DWT and WBSN are

similar together without a huge difference and that SAE

with HDLM increases output at a high compression rate

FIGURE 9. (a). EEG compression performance (b). EMG compression
performance.

with a 20.04% average distortion, demonstrating that it can

compress non-stationary signaling. In Figure 7(b), however,

DWT and ICM show a contrasting performance of up to 80%

compression, with lower distortions than 80% compression.

The latter shows a better performance than compression. SAE

with HDLM both show higher performance than the former

with DWT distortion and WBSN compression capacities for

stationary signals.

Ultimately, figures 8 display the compressed versus the

initial EEG signals by 50% SAE, respectively, hence a per-

ceptual evaluation for the low distortions can be obtained by

SAE

B. DATA COMPRESSION OVER MULTIPLE MODALITIES

Figures 9(a) and 9(b) show multiple DWT, ICM, and SAE

with HDLM modality distortions at different compression

ratios. Averaging results of the individual modalities by linear

interpolation are determined for multiple modal results of

VOLUME 8, 2020 94763



Y. Cao et al.: HDLM Assisted Data Compression and Classification for Efficient Data Delivery in Mobile Health Applications

FIGURE 10. (a). EEG compression computational complexity (b). EMG
compression computational complexity.

the DWT and ICM. When you analyze the data, SAE with

HDLM shows improved overall performance with an average

distortion of 15.05% at all compression ratios. It shows the

effectiveness of SAE with HDLM for multimodality com-

pression, showing relative performance improvements com-

pared to DWT and ICM.

C. OPTIMIZED COMPRESSION COMPUTATIONAL

COMPLEXITY

The processing times required for each modality algorithm

are shown in figures 10(a) and 10(b) at different EEG and

EMG compression rates, respectively. Firstly, all compres-

sion scenarios (EEG and EMG compression) need less time

to work. Further, the compression rate depends on theWBSN

and DWT curves, while the compression rate decreases and

increases with ICM and SAE in HDLM compression com-

pliance. Therefore, with HDLM Data form time (EEG and

EMG) ICM and SAE do not change significantly, Therfore

FIGURE 11. Total energy consumption validation.

in each modality DWT changes because of the different

optimum parameters.

D. TOTAL ENERGY CONSUMPTION

It illustrates how the proposed SAE-M methodology leads to

a reduction in energy consumption in different network areas.

Energy use is assessed on the basis of the network topology

in Figure 2 using simulated conditions at different distortion

levels and usable bandwidths. Figure 11 (a) illustrates the

energy consumed at multiple distortion thresholds. SAE can

significantly decrease the overall energy consumption with

HDLM, as is shown by greater tolerance for high distortion.

SAEwith HLDMenables multiple modalities to be combined

into a single definition, resulting in better test and training

rates by intermodality correlations. Figure 11(b) shows the

test and training analysis of SAE with HLDM.

The above result analysis shows the Hybrid Deep Learning

Model (HDLM) has better performance in EEG and EMG

signals compression and classification. The system is specif-

ically based on the Stacked Auto-Encoder (SAE) architecture

which extracts discrimination in the multimodal representa-

tion of data.
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VII. CONCLUSION AND FUTURE WORK

This paper proposed the use of Stacked Auto-Encoder tech-

niques for mHealth systems. It examined the compression

of single and several modes of data for use intra and

inter-relation modalities. It suggested a medical data pro-

vision Energy and resource-sensitive system given ongo-

ing changes in network dynamics. The algorithm has been

adapted to the following network limitations: the time limit,

the available bandwidth and the application conditions for the

maximum distortion. Our methods are analyzed by standard

compression methods like ICM, DWT, and WBSN. They

proved that the proposed single-and multiple-modal com-

pression techniques are respectively adapted to network and

application constraints. Results from single SAEwith HDLM

show that it can disjoint stationary and non-stationary com-

pression signals while multiple SAE andHDLMcan combine

inter-signal correlations and make them important in real-

life applications. Single SAE with HDLM and multiple SAE

with HDLM light computer complexity allow for the instal-

lation on an edge device and optimization in real-time for

applications. The SAEM technique reduced the total energy

consumption when adapted to its compression ratio based on

different network conditions. In future, improved version of

algorithm will be implemented in mHealth Applications for

data compression and classifications.
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