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Hybrid Detectors Based on Selective Endmembers
Liangpei Zhang, Bo Du, and Yanfei Zhong

Abstract—Subpixel target detection is a challenge in hyperspec-
tral image analysis. As the spatial resolution of hyperspectral
imagery is usually limited, subpixel targets only occupy part of
the pixel area. In such cases, the spatial characteristics of the
targets are hard to acquire, and the only information we can
use comes from spectral characteristics. Several kinds of method
based on spectral characteristics have been proposed in the past.
One is the linear unmixing method, which can provide the abun-
dances of different endmembers in the hyperspectral imagery,
including the target abundance. Another focuses on providing
statistically reliable rules to separate subpixel targets from their
backgrounds. Recently, hybrid detectors combining the aforemen-
tioned two methods were put forward, which cannot only figure
out the quantitative information of the endmembers but also put
this quantitative information into an adaptive matched subspace
detector or adaptive cosine/coherent estimate detector to separate
the target pixels from the background with statistically reliable
rules. However, in these methods, all the endmembers are used
to construct the statistical rule, while in most cases only some of
the endmembers are actually contained in the pixels. This paper
proposes hybrid endmembers selective detectors in which different
kinds of endmembers are used according to different pixels to
ensure that the true composition of endmembers in each pixel is
applied in the detection procedure. Three different types of hyper-
spectral data were used in our experiments, and our proposed hy-
brid endmember selective detectors showed better performances
than the current hybrid detectors in all the experiments.

Index Terms—Fully constrained least squares (FCLS), hyper-
spectral data, linear mixture models (LMMs), target detection.

I. INTRODUCTION

S PECTRAL imaging, airborne or spaceborne, can acquire
data with a wide spatial coverage of ground objects with a

much larger spectral range and a much higher spectral resolu-
tion than is possible with multispectral sensors. Therefore, the
ability to detect individual features or objects is dramatically
better than with multispectral imagery, particularly when the
spectral differences of the materials are minor. However, due
to the limitations of the spatial resolution of hyperspectral
imagery, the targets are often smaller than the pixel size and
resolved within a pixel. In such cases, the targets are called
subpixel targets. Subpixel target detection is very important
in civil and military applications, such as agricultural yield
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estimation, mineral exploration, fire monitoring, battleground
reconnaissance, and so on.

The existing subpixel target detection methods mainly de-
pend on the spectral characteristics of the targets to be detected
[1]–[6]. One kind of subpixel detection method is the linear
unmixing (LU) analysis methods. These methods are based on
the linear mixture model (LMM), in which a pixel’s spectrum
is assumed to be composed of several pure materials’ spectra,
called endmembers. In this model, pixels in the imagery are
called mixed pixels, and the signal of a mixed pixel is the
sum of the different endmembers’ spectral signals. Different
endmembers’ weighted values are assigned according to their
fractions in the pixel. This model is based on the assumption
that the signals acquired by the sensor are reflected directly
from the ground objects’ surfaces, not reflected twice or more
times by surfaces on the ground. If multiple reflections are taken
into consideration, the LMM has to be extended into a nonlinear
model. However, the LMM is suitable in most cases, and it
has clear physical meaning. Based on LMM, several spectral
LU methods were developed [7]–[15]. Among them, the fully
constrained least squares (FCLS) method is one that has been
successfully used in subpixel target detection. In this method,
two constrained conditions are used: each endmember’s abun-
dance is nonnegative and all the endmembers’ abundances in
each pixel sum to one. With these two constraining conditions,
the abundance results have physical meanings and can be
weighted as the percentages of different materials in each pixel.
In this method, the subpixel target is assumed as an endmember
in the imagery and its percentage in each pixel is figured out
by the least squares estimation (LSE) method [10]. In this way,
a quantitative detection result is determined.

Another kind of subpixel target detection method is based
on a statistical hypothesis test. Adaptive matched subspace
detector (AMSD) is such an algorithm that formulates the target
and background subspaces and uses the LMM and the gener-
alized likelihood ratio (LR) approach to separate a probable
subpixel target [16], [17]. The key factor in AMSD is the target
abundance and the noise variance, which can be estimated
by the maximum likelihood (ML) method, and with which a
Neyman–Pearson detector can be designed to maximize the
probability of detection for a certain given false alarm prob-
ability. Due to the complexity of the changes in atmospheric
conditions, sensor geometry, surface defects, and films, target
variability is not negligible and can have an impact on the
detection result. However, by the use of the subspace model,
AMSD can resolve the problem and provides a reliable rule to
separate the target pixels from nontarget ones.

Adaptive cosine/coherent estimate (ACE) is another statisti-
cal hypothesis test-based method [3], [18]. Unlike AMSD, ACE
assumes no structured background. Instead, ACE models the
background as a multivariate normal distribution. ACE discards
both the sum to one constraint and the nonnegative constraint.
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This characteristic allows it to provide a better separability
between targets and background as the target abundance can
be fully expressed by a large enough value.

Recently, hybrid subpixel target detection methods have
been proposed, which combine the advantages of LU-based
methods and statistical hypothesis test-based methods [19].
Hybrid detectors model the background with both physically
meaningful abundance and the statistical hypothesis test. In this
way, the background is better characterized and the separability
of targets and background is improved. In [19], Broadwater
and Chellappa used FCLS, AMSD, and ACE to develop two
hybrid detectors. Compared to the aforementioned two kinds of
method, the two hybrid methods proved to be less sensitive to
the number of endmembers used, and provided a better sepa-
rability and improved receiver operating characteristic (ROC)
curves [19], [20].

All the aforementioned methods use a fixed number of
endmembers in the formulation of the background model. How-
ever, in reality, not all the pixels contain all the endmembers. In
fact, in most cases, many pixels contain only some of the end-
members. Thus, it is natural to formulate the background struc-
ture with the actual kinds of endmembers. This paper develops
the aforementioned two hybrid detectors into a novel version
with actual endmembers. With better formulated background
structures, they are expected to have a better performance. The
rule for choosing the true kinds of endmembers is obviously
the key factor in the procedure. A cross-correlogram spectral
matching (CCSM) technique is used to determine the true kinds
of endmembers of the individual pixel. The technique focuses
on evaluating the similarity between the endmember’s signal
and the pixel’s signal by computing their response value. It is
used to find the orthogonal response signal that is in accordance
with an endmember, since the endmembers’ signals are inde-
pendent of each other. Our hypothesis is that with true kinds
of endmembers, the better formulated background structure
combined with a physical meaningful LMM and statistical hy-
pothesis test can provide a higher separability between targets
and background.

The remainder of this paper is organized as follows. The
current hybrid algorithms are described in Section II. Section III
describes our proposed hybrid selective endmembers detectors.
Section IV details the experiments used to test our hypothesis
and presents the results of the experiments showing that the
hybrid detectors excel in these areas: endmember insensitivity,
the ability to increase the separation between targets and back-
ground, and improved ROC performance over multiple images.
Section V summarizes this paper.

II. CURRENT HYBRID DETECTORS

A. LMM

Several analytical models for the mixing of different mate-
rials have been proposed [21] among which the LMM is the
most widely used one, and it is the basis of current hybrid
detectors. All the models, however, assume that within a certain
scene, the surface is dominated by a limited number of distinct
substances, each of which has a relatively constant spectrum.
Here, the substances and their according fraction are called
endmembers and fractional abundances, respectively. Suppose

that the scene area of a pixel is divided proportionally according
to the fractional abundances of the endmembers in the scene
area. Moreover, the reflected radiation signals received in the
sensor are from the scene area after only one reflection. Then,
the reflected radiation of the pixel will convey the characteris-
tics of these endmembers with the corresponding proportions.
In this sense, there exists a linear relationship between the
fractional abundance of the substances comprising the area
being imaged and the spectra in the reflected radiation [22].
Therefore, the spectrum of such a mixed pixel is composed
of different endmembers, which are the pure spectra of certain
materials. The spectrum signature of an observed mixed pixel
is expressed as

x = Mα + n (1)

where M is the endmember signature matrix composed of
[m1m2, . . . ,mj , . . . ,mp], and mj is an l × 1 column vector
representing the jth endmember in the image scene. α =
(α1, α2, . . . , αp)

T is a p × 1 abundance column vector, which
is composed of each endmember’s abundance in an observed
pixel. n is a l × 1 noise vector. l is the band number of the image
and p is the number of endmembers in the image.

To make the LMM have physical meaning, two constraints
are defined: the abundance nonnegative constraint (ANC) and
the abundance sum-to-one constraint (ASC).

P
∑

j=1

αj = 1 (2)

αj ≥ 0 for 1 ≤ j ≤ p. (3)

The ANC and ASC constraints only hold for physically
meaningful endmembers. For example, the AMSD algorithm
proposed for hyperspectral imagery by Manolakis [9] does not
use such physical endmembers. With these two constraints,
the linear mixture spectrum analysis methods can extract the
exact abundances of endmembers in different mixed pixels.
For example, the FCLS separates the different endmembers’
abundances by the least squares method. The abundance in-
formation is useful in the estimation of different materials
in the scene. However, for the target detection domain, the
exact estimation of abundances is not so necessary. In fact, the
target detection task focuses on the separation of target and
background. However, the information extracted by the linear
mixture spectrum analysis methods does give a basis for further
separation analysis.

B. FCLS

There are two ways to implement the FCLS. One is to
impose the ANC after the SCLS (sum-to-one constrained least
squares) called normalized SCLS, or by imposing the ASC
after NCLS (nonnegatively constrained least squares) called
normalized NCLS [23], [24]. The second is to execute both the
constraints simultaneously [25]. It has been shown in [26] that
relative to the former way, the latter produces a more optimal
solution. In this paper, we carry out the latter in which FCLS
is developed from the nonnegativity constrained least squares
(NCLS) method. Neither FCLS nor NCLS produce a closed-
form solution, but they do provide a reliable numerical solution.
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In FCLS, the endmember matrix M mentioned in the previous
section is added with a new dimension and thus is expressed as

N =

[

σM

1T

]

where 1 = (1, 1, . . . , 1)T is a p × 1 vector and the pixel signal
is expressed accordingly as

s =

[

σr

1

]

.

Within the aforementioned expression, the parameter σ con-
trols how close the resulting abundances would sum to one. The
smaller the parameter, the closer the result is to the physical
reality but with a slower convergence rate. After the aforemen-
tioned procedure is introduced into the NCLS, the FCLS equals
the following optimal problem:

Minimize LSE = (Nα − s)T(Nα − s) over α

subject to α > 0. (4)

The key solution to the aforementioned problem involves
Lagrange multipliers. We define a cost function J as

J =
1

2
(Nα − s)T(Nα − s) + λ(a − c). (5)

Let a = c, and (∂J/∂α)|α̂FCLS = 0
Then, we obtain

α̂FCLS = (NTN)−1NTs − (NTN)−1λ

= α̂LS − (NTN)−1λ (6)

λ = NT(s − Nα̂FCLS). (7)

As shown in [13], iterating the aforementioned two equations
gives the solution to (4). Moreover, only when the Lagrange
multiplier vector satisfies the Kuhn–Tucker conditions can the
optimal solution to the aforementioned problem be found. In
order to satisfy the condition, two index sets are formulated
in the FCLS solution. One is named positive set R containing
all indices (Lagrange multipliers) corresponding to positive
components in the estimate α̂LS , which can be computed by
the least squares projection method in [26] and [27]. The least
squares estimate of abundance α̂, α̂LS is expressed as

α̂LS = (NTN)−1NTs. (8)

The other set is called active set P , which consists of all
indices corresponding to negative and zero components in the
estimate α̂LS . Then, the Kuhn–Tucker conditions are defined as

λj = 0, j ∈ P (9)

λj < 0, j ∈ R. (10)

Iterating (6) and (7) until all the Lagrange multipliers in the
passive set are zero and all Lagrange multipliers in the active set
are either zero or negative, the Kuhn–Tucker conditions are then
satisfied. In this way, an optimal mean-squared error solution
for the unmixing of the image can be obtained.

C. Hybrid Detector With Structured Background

In order to formulate the structured background, the LMM is
separated and a series of hypothesis is built

H0 : x = Bαb,0 + n

H1 : x = Sαs + Bαb,1 + n (11)

where the hypotheses H0 and H1 are according to the absence
of the target and the presence of the target, respectively. B is
a L × P′ matrix representing the P′ background endmembers’
spectra, while S is a L × Q matrix representing the Q targets’
spectra. Thus, M is the concatenation of S and B. In the
hypotheses H0, P ′ equals p and in the hypotheses H1, P′ +
Q = p. In this way, the pixels containing the target spectrum
and the ones solely containing the background spectrum are
separated.

In addition, in this model the noise is assumed as a zero-
mean normal distribution with covariance matrix σ2I. Then, the
hypotheses are expressed as

H0 : x ∼ Ñ
(

Bαb,0, σ
2
w,bI

)

H1 : x ∼ Ñ
(

Sαs + Bαb,1, σ
2
wI

)

. (12)

With known noise variance σ2
w and abundance vector α,

we can use the LR method to formulate a Neyman–Pearson
detector, which maximizes the probability of detection under
a given probability of false alarm. However, in practice, these
variables are usually unknown and are estimated from the
image data by the ML method. The estimation of σ2

w and α
can be obtained using the same method as in FCLS [9].

a⌢ = (MTM)−1MTx = PMx (13)

σ⌢2
w =

1

L − P
SSE(a⌢) (14)

where

SSE(α̂) = ‖e‖2 = xTx − x̂Tx̂

= xT(I − PM )x = xTP ′
Mx (15)

PM = M(MTM)−1MT (16)

L band number
P endmember number

Then, by the use of the LR method, a Neyman–Pearson
detector maximizing the detection probability under a given
false alarm probability is designed [28]

GLR(x) =
L1(.)

L0(.)
=

L
(

α̂, σ2
w;x

)

L
(

α̂b, σ2
w,b;x

) =

(

xTP ′
Bx

xTP ′
Mx

)L/2

.

(17)

We have to define a threshold η′ to decide on the hypoth-
esis H1 when GLR(x) > η′, or the hypothesis H0 otherwise.
The Neyman–Pearson detector has a constant false alarm rate
(CFAR) property. In this sense, the threshold η′ decides the
detection probability and the false alarm probability. In order
to determine η′, the probability distribution of GLR(x) has
to be determined. As GLR(x) is a nonnegative, monotonically
increasing function, we drop the L/2 power and subtract ONE

Authorized licensed use limited to: Wuhan University. Downloaded on May 26,2010 at 12:46:58 UTC from IEEE Xplore.  Restrictions apply. 



2636 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 6, JUNE 2010

from it, which does not change its outcome. Then, we get the
adaptive subspace matched detector (AMSD)

TAMSD(x) =
xT (P ′

B − P ′
M ) x

xTP ′
Mx

(18)

P ′
B = I − PB = I − B(BTB)−1BT. (19)

This expression of (18) does not change the effect of the out-
put of (17). However, the distribution of the adaptive subspace
matched detector (AMSD) is much easier to determine, since
the numerator and denominator are independent.

TAMSD(x) ∼ FP,L−P−Q

(

‖P ′
BSαS‖

2

σ2

)

. (20)

Of course, the test data are assumed to have a multivariate
normal distribution. There are several methods to evaluate
the normality and correlation properties of vector data, such
as multivariate techniques for evaluating joint normality, and
techniques using unidimensional projections of multivariate
data [29]

The hybrid structured detector (HSD) uses the same struc-
tured background but substitutes the endmembers and the
estimation of their respective abundances with the real end-
members and their abundances from the FCLS method. In this
case, the HSD uses the following hypotheses:

H0 : x ∼ N
(

Bαb,0, σ
2
0Γ

)

H1 : x ∼ N
(

Sαs + Bαb,1, σ
2
1Γ

)

. (21)

The noise is Gaussian with covariance σ2Γ. With this covari-
ance matrix, the likelihood hypothesis is formulated as in ACE,
given in the next section.

L(x, Y |H0) = (2π)−
1

2
L(N+1)|Γ|−

1

2
(N+1)

(

σ2
0

)− 1

2
L

· exp

{

−
(x − Bab,0)

TΓ−1(x − Bab,0)

2σ2
0

−
1

2

N
∑

i=1

yT
i Γ−1yi

}

(22)

L(x, Y |H1) = (2π)−
1

2
L(N+1)|Γ|−

1

2
(N+1)

(

σ2
1

)− 1

2
L

· exp

{

−
(x − Ea)TΓ−1(x − Ea)

2σ2
1

−
1

2

N
∑

i=1

yT
i Γ−1yi

}

(23)

where Γ = (1/N)
∑N

i=1 yiy
T
i . yi (1 � i � N) is a set of train-

ing background pixels, which are independently and identically
distributed. Ea is the concatenation of the appropriate Sas and
Bab,1 spaces. To avoid confusion, we use E to stand for the
whole endmember matrix in the following text.

The variance estimations under the individual hypotheses are

σ
⌢2

0 =
1

L
(x − Bab,0)

TΓ−1(x − Bab,0) (24)

σ⌢2
1 =

1

L
(x − Ea)TΓ−1(x − Ea). (25)

The abundance estimations are obtained by the FCLS algorithm
mentioned before. However, with the new covariance matrix,
the new iterating equations are where

a⌢ = (ETΓ−1E)−1ETΓ−1x − (ETΓ−1E)−1λ (26)

λ = ETΓ−1(x − Ea
⌢

). (27)

We substitute all the aforementioned estimations into (22)
and (23). Then, the hybrid detector based on structured back-
ground, or HSD, can be derived from the traditional AMSD

DHSD(x) =
(x − Ba

⌢′
b)

T
Γ−1 (x − Ba

⌢′
b)

(x − Ea
⌢′)TΓ−1(x − Ea

⌢′)
. (28)

D. Hybrid Detector With Unstructured Background

The hybrid detector with unstructured background, or the
hybrid unstructured detector, is derived from the adaptive co-
sine/coherent (ACE) detector. In this algorithm, the background
is not structured but modeled as a statistical distribution, usually
the multivariate normal distribution. It removes all the back-
ground structure information by setting B = 0. In addition, the
background is assumed to be a zero-mean Gaussian distribution
with a covariance Γb. However, the HSI data often have a
nonzero mean, so we remove the estimated mean to comply
with this assumption. The according hypotheses are

H0 : x ∼ N(0,Γb)

H1 : x ∼ N(Sαs,Γb). (29)

In order to obtain the ML estimation of the covariance ma-
trix, it is assumed that a set of training pixels with independent
and identical distributions are available and that the training
pixels x(n) and the test pixel x are also statistically independent.
Then, following the work of Kelly [30], [31], by the way of a
generalized LR method, we obtain

DK(x) =
xTΓ

⌢−1

b S
(

STΓ
⌢−1

b S
)−1

STΓ
⌢−1

b x

N + xTΓ
⌢−1

b x
(30)

where Γ
⌢

b = (1/N)
∑N

n=1 x(n)xT(n) and is the ML estimation
of the covariance matrix. N is the number of training back-
ground pixels in the image. In addition, a threshold ηA is also
defined. Then, we decide on the hypothesis H1 if DK(x) > ηA,
and the hypothesis H0 otherwise. This threshold determines
both detection probability PD and false alarm probability PFA.
The matrix S consists of the targets’ spectra in the target sub-
space. When the dimension of target subspace P increases to L
(band number of the data), the matrix S becomes full rank and
thus invertible. Therefore, we only need to find deterministic
targets in the data subspace and (30) is simplified to

DK(x) = xTΓ
⌢−1

b x. (31)

This detector was derived first by Kelly and Forsythe [32],
and its theory is similar to that of Reed and Xiaoyu [33], who
also use the Mahalanobis distance between the test pixel and
the mean of the background. This detector has been a widely
used algorithm in anomaly detection [34], which is not the
domain of this paper. Like the anomaly detection algorithms,
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a key assumption of (29) is that the covariance matrices of the
background in the two hypotheses are the same. However, as to
the subpixel targets, the background of the two hypotheses are
different. In this case, the two hypotheses are expressed as

H0 : x = b

H1 : x = SaS + σb. (32)

Therefore, the backgrounds of the two hypotheses have
the same covariance structure but different variances:
x ∼ Ñ(0, σ2

0Γb) according to hypothesis H0 and

x ∼ Ñ(SaS , σ2
1Γb) according to hypothesis H1. The

abundance and covariance are estimated by MLE

a⌢s =
(

STΓ−1
b S

)−1
STΓ−1

b x (33)

σ
⌢2

0 =
1

L
xTΓ−1

b x (34)

σ
⌢2

1 =
1

L
(x − SaS)TΓ−1

b (x − SaS). (35)

Then, we obtain the ACE detector, by the GLR method
[28], [29].

DACE(x) =
xTΓ

⌢−1

b S
(

STΓ
⌢−1

b S
)−1

STΓ
⌢−1

b x

xTΓ
⌢−1

b x
. (36)

Considering the hypothesis H0, DACE(x) fits the distribu-
tion as

DACE(x) ∼ Beta

(

P

2
,
L − P

2

)

where P and L have the same meaning as before. Since the
ACE statistic depends only on P and L, it also has the CFAR
property. Furthermore, we can find a threshold to determine the
false alarm rate for the CFAR detection.

By simply replacing the abundances estimations with the
abundances from the FCLS, we can obtain the ACE-based
hybrid unstructured detector

DHUD(x) =
xTΓ

⌢−1

b Sa′
S

xTΓ
⌢−1

b x
(37)

where a′
S is a replacement for aS , and aS = (STΓ

⌢−1

b S)−1ST ·

Γ
⌢−1

b x. a′
S is obtained by using FCLS to calculate all the

abundances a′ = [a′
S a′

B ], concatenation of the target and back-
ground abundances.

III. HYBRID DETECTORS BASED ON

SELECTIVE ENDMEMBERS

Both of the aforementioned hybrid algorithms use a fixed
number of endmembers in the formulation of the detectors.
In the HSD, the background structure is composed of a fixed
number of endmembers for each pixel in the imagery and
the abundances are also extracted using a fixed number of
endmembers. Accordingly, the detection strategy is constructed
by the fixed number of endmembers and their abundances. In
the unstructured background hybrid algorithm, the abundances
a
⌢

, which is the replacement for a, also comes from FCLS with
a fixed number of endmembers. However, it has been shown
that, in most cases, the individual pixel contains only some of

the whole endmember set. In fact, Chang and Du [35] revealed
that most of the pixels in the imagery usually contain only some
of the endmembers. Therefore, the traditional fixed endmember
analysis can violate the actual structural composition of the
pixels. The redundant endmembers may then seriously affect
the extraction of the endmembers’ abundances. In the structured
hybrid detector, the structure of the background using the wrong
kinds of endmembers cannot represent the real relationship of
the endmembers in the scene and thus decreases the separability
of targets and background. In the unstructured hybrid detector,
although the removal of background structure with ASC and
ANC enhances the separability of target and background, the
plausible abundances of endmembers coming from conven-
tional FCLS, which has both constraints but fixed endmembers,
may also counteract its effort.

In this case, we use a dynamic selection strategy for endmem-
bers to develop hybrid detectors based on selective endmem-
bers. In [36], D. A. Robert proposed a multiple endmember
spectral mixture analysis, which focuses on accurately estimat-
ing the abundances of the endmembers by dynamically select-
ing optimal endmembers for each pixel from an endmember
data set before unmixing. In our method, the real composition
of endmembers in each pixel is extracted, and this endmembers
selection information is introduced into the current hybrid
detectors. Then, the new formulated HSD can represent the
composition of endmembers in each pixel as truly as possible.
In addition, the new formulated hybrid unstructured detector
also uses the endmember abundances that tally better with the
actual situation. The aforementioned strategy aims at increasing
the separability of targets and background.

Given that we have a full set of endmembers in the scene, a
straightforward method of identifying the endmember kinds in
a pixel is by an examination of all the possible combinations of
endmembers and the optimal one is that with the least residual
error. However, it is obvious that as the number of endmembers
increases, the number of combinations would become so large
that the computational burden would become unacceptable. In
this paper, we use the theory of the CCSM technique to identify
the proper subset of endmembers according to the real compo-
sition in the scene. The CCSM technique was first proposed by
Meer and Bakker [37] and was used in mineralogical mapping
applications. It provides a statistical measure for the spectral
similarity between a known reference material (either a labora-
tory spectrum or a pixel spectrum from the imagery to represent
the material of interest) and an unknown material underlying a
pixel. The cross correlation is calculated at different matching
positions by moving the reference spectrum over m channels
to the shorter wavelength end or to the longer wavelengths. In
this paper, we follow the theory of the CCSM but only compute
the cross correlation at the matching position 0. We propose a
process to extract the endmembers in each pixel of the scene
and introduce information on the kinds of endmembers to the
traditional hybrid detectors. The procedure for extracting the
kinds of endmembers is as follows.

1) Given the full set of endmembers of the scene, we calcu-
late the cross correlations between the test pixel and each
of the endmembers in the set

r =
n

∑

RrRt −
∑

Rr

∑

Rt
√

[n
∑

R2
r − (

∑

Rr)2] . [n
∑

R2
t − (

∑

Rt)2]
(38)
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Fig. 1. Computational structure of the hybrid selective endmembers detectors.

where Rr is the reference spectrum or endmember signal
that accords to each column of M in (1) and Rt is the test
spectrum, which accords to the observed pixel x in (1).
n is the number of overlapping positions and equals the
number of spectral bands at the matching position 0.

2) The endmember having the largest cross correlation is
chosen as the preferred one.

3) The influencing factors of the chosen endmembers are
subtracted from the test pixel spectrum signal as follows,
to obtain the remaining test pixel spectrum signal:

xr = x − rmaxAmax (39)

where Amax is the largest endmember and rmax is its
corresponding effect in the pixel. xr is the residual signal
after the subtraction.

However, for the algorithm’s flexibility, we add an
adjustment coefficient η, and the remaining test pixel
spectrum signal is expressed as

xr = x − ηrmaxAmax (40)

where η controls the weight of the endmember in the pixel
spectrum signal. It adjusts the endmembers to a suitable
scale to reflect their real proportion in order to extract the
right kinds of endmembers. We confine it in [0, 1]. In
our experiments, we used synthetic data first with known
kinds of endmembers to figure out the optimal numerical
range of η. It was then used in the detection experiments
that followed.

4) The cross correlations were calculated between the re-
maining test pixel spectrum signal and the endmembers,
except for the selected ones.

5) Steps 2) to 4) were repeated. The terminal conditions
are that one component of xr is negative or the change
after subtraction is minor. Then, we have obtained all the
selective endmember kinds in each pixel.

After the aforementioned procedure, we can get the full
endmember matrix ES and background endmember matrix BS

for each pixel, which are only comprised of those endmembers
selected from the endmember matrix that are particular to the
pixel under test. Then, we can introduce the matrices ES and
BS into the HSD and the hybrid unstructured detector. The
hybrid selective endmembers structured detector (HSESD) is
formulated as

DHSESD(x) =
(x − BSaBS)TΓ−1(x − BSaBS)

(x − ESaS)TΓ−1(x − ESaS)
(41)

where aS is the abundance vector according to the selected end-
members matrix ES , and aBS is the corresponding abundance
vector of BS .

Using the dynamic matrices ES for each pixel in FCLS, we
can also get more accurate abundances vector aTS of the targets
endmembers. Therefore, we replace the abundance in equation
(37) with aTS and get the hybrid selective endmembers unstruc-
tured detector (HSEUD)

DHSEUD(x) =
xTΓ

⌢

q
−1
b SaTS

xTΓ
⌢−1

b x
. (42)

The computational structure of the implementation of the
HSEDs is shown in Fig. 1.

IV. EXPERIMENT AND ANALYSIS

A. Data Description

Three kinds of data are used in our experiments.

1) Synthetic data: composed of several kinds of typical
ground objects’ spectra from the ENVI software library.
This data are used to determine the value of the adjust-
ment coefficient η in the endmembers kind extraction
procedure. The adjustment of η is simple as we have exact
information on the targets and the composition of end-
members in each pixel before detection. The formulation
of this synthetic data is described in detail in Section IV-C.

2) Simulated data: composed of real-world hyperspectral
imagery with added targets’ spectra in some pixels. This
imagery was the PHI imagery taken of the Changzhou
area, China. For the convenience of subpixel target detec-
tion, the targets are spectra of typical ground objects in
the same imagery, and they are added to certain pixels
with a determined percentage. In the experiment, the
spectrum of cement is selected as the target’s signature
to be added in 100 pixels, and the original signature in
these pixels would be taken as background and reduced
accordingly. The 100 pixels are divided into ten groups
according to their target’s abundance. The first group of
pixels has 10% target and 90% background. The second
group has 20% target and 80% background. The third
group has 30% and 70%. Similarly, the abundance of tar-
get increases to 100% in steps of 10% and the abundance
of background decreases to 0% in steps of 10%, as the
group number increases to ten. The 100 targets are placed
in ten columns with each column of ten targets at the same
position. The positions of these targets are shown in Fig. 2
and denoted by white circles.
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Fig. 2. PHI image in our experiments.

TABLE I
DETAILS OF THE IMAGES

3) Real-world hyperspectral data: The real-world hyper-
spectral data were acquired by the Nuance Cri hyper-
spectral sensor. This sensor can acquire imagery with
a spectral resolution of under 10 nm, which is very
suitable for hyperspectral imagery. Its spectral imaging
scope covers 650 to 1100 nm. The imaging spatial range
of the sensor is not so wide, so we use a small scale scene
with comparatively smaller targets in the acquisition of
Cri data. Moreover, to test the generality of the proposed
algorithms, we acquired Cri imagery with different tar-
gets in different backgrounds. The details of the Cri data
are listed in Table I, and the imagery of Cri data is shown
in Fig. 3. There are three kinds of target and two kinds
of background, and the detailed information about targets
and background is also listed in Table I. The fill factors
of different targets are also presented in the table with the
number of targets present in the last column.

The PHI hyperspectral imagery covers a large area and
contains a variety of endmembers. This point is in accordance
with practical applications. Furthermore, a plentiful number

of endmembers is necessary in the imagery to analyze end-
member sensitivity. However, there were insufficient suitable
subpixel targets. Therefore, the subpixel targets were simulated
by adding targets’ spectra into certain pixels with a known
abundance. In addition, a series of data sets of Cri hyperspectral
imagery was also used to enhance the evaluation of the methods
in our experiments. These data sets were imaged in different
real-world scenes where we had positioned enough subpixel
targets and these data can be considered as real-world data.
Moreover, these subpixel targets have known scales and there
are plenty of them, which makes the quantitative comparison
between different methods possible. However, these Cri images
actually have fewer ground objects (according to many end-
members) than the PHI data. That is why we used both PHI
data and Cri data in our experiments.

B. Background Endmembers and Target Signature Estimation

The proposed hybrid selective endmembers detectors require
the estimation of background endmembers. However, in actual
application, we cannot find the background endmembers in
advance. There have been several commonly accepted meth-
ods to estimate the endmembers such as IEA, N-Finder, PPI,
CCA, and so on [38], [39]. There is literature presenting these
different methods’ effects in detail. In order to make our new
hybrid detectors comparable with the current hybrid detectors,
we followed the work of Broadwater and Chellappa and used a
developed IEA method proposed by Neville et al. [40].

As to the estimation of target signature, the three kinds of
data have different cases. The synthetic data and simulated
data contain the targets’ spectrum signatures. For the real-world
Cri data, as we could visit the imaging scene, we can easily
determine the position of targets in the imagery and furthermore
select the targets’ spectrum signatures directly from the im-
agery. However, due to the targets’ subpixel scale, it is not easy
to select the pure spectrum signature from the imagery. In this
case, we also measured the targets’ spectra in the imaging scene
by FieldSpec Pro spectroradiometer. This spectroradiometer is
portable and can collect the spectrum of a wide range of ground
object, including those in the near-infrared, visible, and mid-
infrared. Since the Cri sensor only covers a range between 650
and 1100 nm, the corresponding imagery has digital numbers
in certain wavelengths. Therefore, we resampled the spectrum
signature of the targets measured to the matching positions
in the spectrum. Another problem was that the Cri data are
in the form of radiance values while the FieldSpec Pro data
provide reflectance values. We chose to change the targets’
spectrum reflectances to radiances for computational simplicity
as we then do not have to change the whole imagery. We
first measured the spectrum of a “white” object (a standard
whiteboard in our experiments); this spectrum was taken as
the solar illumination term. Then, the spectrum of the target
was measured and the solar illumination term was removed
from it to obtain the reflectance of the target. This removal
processing was automatically done by the ViewSpec Pro soft-
ware in the FieldSpec Pro spectroradiometer. This software also
could convert the reflectance to radiance, so we just had to
convert the reflectance to match the sensor. In addition, we used
another way to acquire the targets’ radiance in our experiments.
We fixed the targets with the same materials but with much
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Fig. 3. Cri images in our experiments. (a) Image 1. (b) Image 2. (c) Image 3. (d) Image 4. (e) Image 5. (f) Image 6.

larger scale and imaged another image with our Cri sensor to
formulate pure target pixels in the same scenes at the same time.
Then, we selected the targets’ radiances from the images.

C. Determination and Sensitivity of the Adjust Coefficient

In the new proposed hybrid detectors, the adjustment coeffi-
cient η is a very important parameter. It adjusts the selected end-
members’ weights in the test pixel. Too low a value would not
affect the real abundances of the endmembers, while too high
a value would cause the omission of other important endmem-
bers. Moreover, too low a value would also increase the compu-
tational burden. Therefore, a suitable value of η should balance
the algorithm’s speed and the selected endmembers’ weights. In
our experiments, the synthetic data were used to determine the
suitable value of η so that it could be used in the experiments
employing simulated data and real-world hyperspectral data.
The synthetic data were images composed of several kinds of
ground objects’ spectrum signatures from the ENVI software
spectrum library. We chose five kinds of object spectrum to
compose this data: Jasper Ridge grassland soil, Coyote bush,
drygrass, lawn grass, and Blackbrush leaves. Their spectrum
plots are shown in Fig. 4. We calibrated their spectra to the
corresponding bands of Aviris in the overlapping parts of their
spectrum and chose 100 bands with high quality. In this way, we
obtained five spectrum signatures, which were vectors with a
dimension of 100. Then, using similar methods to those in [10],
we obtained the synthetic hyperspectral data set composed
of these five spectrum signatures. The data set contained
400 pixels, divided into four groups each containing 100 pixels
of the same mixture. The first group contained 50% soil and 50%
bush. The second group contained 50% bush and 50% grass.
The third group contained 50% soil and 50% grass. The fourth

Fig. 4. Reflectance of five signatures.

group contained 50% soil and 50% leaves. Then, we chose
the first 25 pixels from each group and added 10% drygrass to
them. For example, for the 25 chosen pixels in the first group, we
added 10% drygrass and then the abundances of soil and bush
were both reduced to 45%. In this way, we obtained 100 subpixel
targets of drygrass in the synthetic data set. In addition, we also
added Gaussian white noise with an SNR of 30 : 1.

As we know the composition of the synthetic pixels before-
hand, we can easily define the selective endmember matrices
MS and MBS by introducing the corresponding actual kinds
of endmembers’ spectra in the right-hand column. After that,
we can use the hybrid selective endmembers detectors in the
detection. Considering the HSESD, we changed the value of
the adjustment coefficient η from 0.35 to 0.8 with steps of 0.05
and obtained a series of detection results. The probability of
detection under different η is shown in Fig. 5. We found that
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Fig. 5. Detection rate under different η.

TABLE II
PERFORMANCE OF REMOVING UNNECESSARY ENDMEMBERS I

as η increases from 0.35 to 0.55, the probability of detection
increases significantly from 0.3 to 0.95. However, as η increases
from 0.55 to 0.65, the probability of detection almost remains
stable. As η increases further above 0.65, the probability of
detection begins decreasing. It is inferred that the suitable value
of η is in [0.55, 0.65]. In the case of the hybrid selective
endmembers unstructured detector, the analysis procedure is
similar and the resulting determination of η was [0.54, 0.60].
In the following experiments, we used these numerical ranges
for HSESD and HSEUD.

D. Analysis of Endmembers Selection

The main point of this paper is that by selecting the correct
endmembers for a particular pixel out of the entire endmember
matrix will improve subpixel target detection performance.
However, FCLS can promote sparsity when calculating abun-
dances, and many of the abundances are driven to zero auto-
matically, which essentially does the same thing as selecting
the correct endmembers from an endmember matrix. There-
fore, what would be convincing would be some experiments
comparing the endmembers selection using FCLS with the
proposed method. We choose 100 pixels from the Cri image
1 and get definite composition of endmembers in each pixel
from field work. The real numbers of pixels not containing
certain endmembers (unnecessary endmembers) are listed in
the second column of Table II. We use FCLS to find the number
of zero abundance for each unnecessary endmember and use
our method to calculate the number of the removals of each
unnecessary endmember in these pixels. Both results are listed
in the last two columns of Table II. Our method performs
obviously better than that of FCLS.

In the aforementioned experiment, we use the most optimal
endmembers estimated from IEA. However, since we have
exact ground true information, we also use the endmembers’
spectrums selected from the pure pixels in the image. Then,
the results are listed in Table III. This time, FCLS has little
difference with our method. Therefore, we can conclude that
FCLS’s performance of removing unnecessary endmembers is
sensitive to the accuracy of the endmembers’ spectrums. As to
the target detection practice, since the estimation of background
endmembers can be only done to a certain degree, our method

TABLE III
PERFORMANCE OF REMOVING UNNECESSARY ENDMEMBERS II

TABLE IV
PERFORMANCE OF REMOVING UNNECESSARY ENDMEMBERS III

would be more practical than FCLS in removing unnecessary
endmembers.

Additionally, we investigate effect of noise in hyperspectral
imagery to the removal of unnecessary endmembers. This time,
we use the same synthetic data with that in this paper. In
addition, we synthesize other two images by the same method
but one with no additional Gaussian noise, the other with an
SNR of 100 : 1. We choose 100 pixels, none of which contains
bush, and investigate their removal performances of bush and
list them in Table IV. It shows in Table IV that with more
noise FCLS presents less number of zero abundances which
indicates its sensitivity to noise. Meanwhile, our method is not
so sensitive to noise.

Above all, since we cannot avoid from estimation error of
background endmembers and the noise effect in the imagery,
ours seems to be more promising than FCLS in removing the
unnecessary endmembers.

E. Detection Results

Under the optimal case, we can estimate the correct number
of endmembers in the image. In this case, it is expected that
all the hybrid detectors will output the best results for the
separation of targets and background. Since we have real data
concerning the ground targets, we can accurately estimate the
number of endmembers. We first compared the results of these
hybrid detectors with the accurate number of endmembers.
The detection results of Cri Image 2 are shown in Fig. 6,
which shows that all the hybrid detectors performed well since
each of them can attain a target detection of 100%. The only
difference is the number of false alarms. However, all of the
hybrid detectors suppress the number of false alarm to under
two. Moreover, the detection results of other Cri images and of
the PHI data also show that all the hybrid detectors can detect
100% of the targets with a similar low number of false alarms,
which is shown in Table V. That is to say, there is hardly any
difference in performance between these hybrid detectors.

F. Endmember Sensitivity Analyses

In practical detection, it is difficult to determine the accurate
number of endmembers in the imaging scene. We have to resort
to algorithms to estimate it [19]. However, underestimation or
overestimation of the number of endmembers is unavoidable.
In order to implement our proposed algorithms in the real-
world detection environment, we would need to evaluate their
sensitivity to varying numbers of endmembers. We first took
the PHI simulated imagery into consideration. The choice of
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Fig. 6. Detection results of hybrid detectors using Cri Image 2. (a) HSD. (b) HUD. (c) HSESD. (d) HSEUD.

TABLE V
NUMBER OF FALSE ALARMS FOR HYBRID DETECTORS

Fig. 7. False alarm rates versus number of endmembers. (a) HSD. (b) HUD.
(c) HSESD. (d) HSEUD.

this imagery is due to there being enough prior information
concerning the ground truth. We had detailed information about
the land cover types in the imaging scene, and we found that
there were 12 main kinds of ground objects. In addition, the
complexity of the land objects makes it approximate to a real-
world detection application. In the experiments, we changed
the number of endmembers from 1 to 55 and applied the HSD,
HUD, HSESD, and HSEUD to the PHI simulated data. Then,
by fixing the probability of detection to 100%, we obtained a
series of numbers of false alarms. Fig. 7 shows the number of
false alarms of the three detectors when the number of endmem-

bers varies from 1 to 55. In the experiments, all the algorithms
showed a steady downward trend approaching the number 55
and this trend continues above that number. Therefore, we did
not take numbers above 55 into consideration.

It is shown in Fig. 7 that HSD shows a most irregular
distribution of the number of false alarms. HUD does well
in the detection, as the number of false alarms is well under
ten across the whole range. In addition, when the number of
endmembers is above ten, the number of false alarms is regular,
which indicates a good insensitivity to a variation in the number
of endmembers. However, when the number of endmembers
is under ten, the values of false alarms are somewhat random
and even a minor change in the number of endmembers would
cause a distinct change in false alarms, which vary from zero
to ten. HSESD and HSEUD both show a regular trend no
matter whether the number of endmembers is under ten or not.
Moreover, their numbers of false alarms are below five over
the whole range, while the number of false alarms of HUD
exceeds five several times over the range and HSD exceeds five
most times. That is to say, the proposed HSESD and HSEUD
are even more insensitive to the number of endmembers than
HUD. Fig. 7 also shows that HESUD does best among the
three. This is very interesting as it is revealed in [18] that the
hybrid unstructured detector is more insensitive to the number
of endmembers than the structured hybrid detector. Therefore,
our detection results concerning endmember sensitivity also
prove that the removal of background structured information
enhances the insensitivity to the number of endmembers. From
the ground truth information, we know that there are no more
than 12 kinds of ground objects. However, the number of
subclasses is much larger. For example, the class of Roads
has as many as 35 subclasses, some of which have similar
spectral features to those of the targets. When the number of
endmembers was taken as under ten, these subclasses were
mixed together, which made them difficult to separate from the
targets and caused more false alarms. Fig. 7 shows that both
HSESD and HSEUD overcame this limitation.

To evaluate the algorithms’ sensitivity to endmember num-
bers for different targets with different backgrounds, we also
inspected the detection results of Cri hyperspectral imageries.
This time we calculated the frequency of occurrence of the best
detection results as the number of endmembers varied from 2
to 20. The best performances are defined as a probability of
detection approximating 100% with a FAR as low as possible.
The larger the frequency, the more insensitive is the algorithm.
The number of 20 was chosen as the upper boundary due to the
obvious downward trend of all three algorithms when the
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TABLE VI
NUMBER OF FALSE ALARMS FOR HYBRID DETECTORS

number of endmembers approached 20. The number of ground
objects is much lower than in the PHI imagery as the imaging
range is much smaller, so the best number of endmembers is
also dramatically reduced. Table VI shows the numbers of the
best performances of the three kinds of targets in six images.
The gray cells mean that the according imagery in the same row
does not contain the target. In addition, the occurrence numbers
of the best performance of HSD, HUD, HSEED, and HSEUD
for a particular kind of target in these images are listed in the
right parts of the rows.

Images 5 and 6 are the easiest ones among the six images.
That is because all the targets in them were positioned on a
plane and simple background. The background was composed
of bare soil and cement, which were not overlapping with
and none of the targets were hidden by the background. The
other four images are more difficult, not only because their
backgrounds were composed of more ground objects but also
because the background ground objects were uneven, which
caused partial hiding of targets. Among the other four images,
Image 3 is the most difficult because there were more kinds of
target in it and more targets were hidden. Table VII shows the
number of targets that were partially hidden by the background
in these six images. From Table VII, we find that for Image 5
and Image 6 the three hybrid detectors all performed well
with a number near 20. However, as the images become more
difficult, these detectors performed differently. HSD performs
worst among the four detectors. HUD shows a lower number
than HSESD and HSEUD in Image 2, and the performance of
HUD reduces to under ten in Image 1 and Image 3. Meanwhile,

TABLE VII
NUMBER OF PARTIALLY HIDDEN TARGETS

HSESD and HSEUD both keep a higher number in these two
images and HSEUD performs best. Above all, these experimen-
tal results again indicate that HSESD and HSEUD are more in-
sensitive to the number of endmembers than are HSD and HUD.

G. Separability Analysis

In our experiments, we found all the hybrid detectors per-
formed well as measured by the probability of detection.
However, following the work of [3], we know that a good
algorithm would present a better separability between targets
and background. In addition, a robust detector with better
separability is defined as one to show a steadily suppressed
background through all images. In the same way as [3], we
analyzed the detecting results for different images with different
hybrid detectors and calculated the targets’ and background’s
statistical ranges. For each detector, there are six groups of bars
in the graph, which accord to the six Cri images. Except for
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Fig. 8. Separability analysis of four hybrid detectors. (a) HSD. (b) HUD. (c) HSESD. (d) HSEUD.

Group 3, each contains two bars: the target on the left and the
background on the right. Group 3 has four bars as it has two
kinds of target and two backgrounds. All the background bars
are colored black and the targets have different colors according
to their kind: plastic is gray, metal is white, and stone is black
alternating with white. Fig. 8 shows the separability differences
for these images. Considering Image 4, Image, 5 and Image
6, all the detectors perform well since there is an obvious gap
between the target bar and the background bar for each of them.
However, these three images are the comparatively easy ones
since the targets are rarely overlapping their backgrounds and
their spectra are distinct from the background. Referring to the
more difficult ones, things begin distinctly. For Image 2, HUD
shows an obscure gap between target bar and background bar,
while the other three hybrid detectors keep sufficient gaps. For
Image 1, HUD presented two false alarms and HSD presents an
obscure gap. Meanwhile, HSEUD and HSESD still present sat-
isfactory separability. For Image 3, the separability differences
are much larger. Since Image 3 has two kinds of target, which
means more spectral variety, and has most hidden targets, this

makes it the most difficult one. Both HSD and HUD exhibit
obvious overlap between target and background, while HSESD
and HSEUD still have discriminatable gaps.

We also analyzed the background range, which suggests the
performance of suppressing the background. A good perfor-
mance is one suppressing the background into the same range
across images. This time, the same kind of targets and their
background are taken into consideration. First, the targets of
plastic are referred to, represented by the gray bars in Fig. 8.
All the hybrid detectors suppressed the background of plastic
to a low value. However, both HSD and HSESD suppress the
background to nearly the same range across Images 1, 3, and
6, while the unstructured ones HUD and HSEUD provide a
comparable irregular background range. Secondly, for targets
of metal (white bars in Fig. 8), the same conclusion can be
drawn. Although the HSEUD suppresses the background into
a comparable fluctuating range, the range of the background
is obviously smaller than with the other three. Above all, the
hybrid detectors based on selective endmembers show better
separability than the conventional hybrid detectors.
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Fig. 9. ROC curves for hybrid detectors. (a) Metal. (b) Stone. (c) Plastic.

H. ROCs Analysis

The CFAR detector is one of the most important methods in
subpixel target detection whose property is often measured by
ROCs curves. Reference [19] has shown that the conventional
structured and unstructured hybrid detectors have a property
similar to the CFAR detector. It is easily concluded that the
hybrid detectors based on selective endmembers also have such
a property, since the only difference is that the new proposed
hybrid detectors introduce a more reasonable background struc-
ture than the conventional hybrid detectors. Following the work
of [19], we further analyzed the CFAR-like property of the
proposed hybrid detectors by ROC curves. In our experiments,
as the number of targets is small, we added two other images
containing 27 stone targets, 10 metal targets, and 9 plastic
targets altogether, and the total number of the three kinds of
targets are 37, 44, and 41, respectively. Then, we calculated
the total statistics of different hybrid detectors for each kind of
targets in all the images with successive thresholds and plotted
the ROC curves.

Fig. 9(a)–(c) shows the ROC curves for the three different
kinds of targets: metal, stone, and plastic. It is revealed that
our proposed hybrid detectors lie on top of the conventional
hybrid detectors in all the figures. However, due to the paucity
of targets, the generated ROC curves improvement would not
be statistically significant. Moreover, the stricter method is
to evaluate the corresponding confidence bands of the ROC
curves for different detectors. The best detector should have
confidence bands nearest to the upper-left and with little overlap
with the other detectors’ confidence bands in ROC space. There
are many methods of constructing the confidence bands for
ROC curves, which is beyond our research focus in this paper.
Nevertheless, Fig. 9 shows our proposed hybrid detectors are
CFAR-like, and are useful for ROC analysis.

V. CONCLUSION

In this paper, we further investigated the background’s real
composition of endmembers for each pixel and introduced the
endmembers selection information into the hybrid detectors
to develop the hybrid selective endmembers detectors. With
the selective endmembers for each pixel, the proposed hybrid
detectors characterize the background according to reality. A
background modeled with the selected dynamic endmembers is
assumed to be characterized better than the traditional strategy
with fixed endmembers and conforms to reality. Experiments

reveal that the hybrid selective endmembers detectors are even
more insensitive to changes in the endmembers’ number, par-
ticularly in the case when the endmembers’ number is underes-
timated, which is the special superiority of our proposed hybrid
detectors. That is to say, our proposed hybrid detectors can
overcome the inexact estimation of endmembers, which is the
usual case in practical detection. The hybrid selective endmem-
bers detectors also have better separability than conventional
hybrid detectors and suppress the background consistently
across images. They even show a considerable separability
when the target’s spectrum and the background’s spectrum are
very similar, while the conventional hybrid detectors show a
dramatic decrease as the targets become more similar to their
background. The last measurement for the hybrid selective
endmembers detectors is the CFAR property, which is presented
by the ROC curve. Another important improvement is that
the hybrid selective endmembers detectors have overcome the
inevitable reduction of performance when the targets become
more similar to the background, as shown in [19]. However,
endmembers in each pixel need to be accurately identified in
our proposed approach; otherwise, the inaccurate identification
of endmembers will cause poor detection results. That is the
limitation of our methods. Moreover, research still needs to be
done on the endmember selection since correlation coefficient-
based method is not the best method in providing per-pixel
endmember selection. In addition, those are the focus of our
future work.
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