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Abstract

This paper presents a hybrid dialog state

tracker enhanced by trainable Spoken

Language Understanding (SLU) for slot-

filling dialog systems. Our architecture

is inspired by previously proposed neural-

network-based belief-tracking systems. In

addition we extended some parts of our

modular architecture with differentiable

rules to allow end-to-end training. We hy-

pothesize that these rules allow our tracker

to generalize better than pure machine-

learning based systems. For evaluation

we used the Dialog State Tracking Chal-

lenge (DSTC) 2 dataset - a popular belief

tracking testbed with dialogs from restau-

rant information system. To our knowl-

edge, our hybrid tracker sets a new state-

of-the-art result in three out of four cate-

gories within the DSTC2.

1 Introduction

A belief-state tracker is an important component

of dialog systems whose responsibility is to pre-

dict user’s goals based on history of the dialog.

Belief-state tracking was extensively studied in

the Dialog State Tracking Challenge (DSTC) se-

ries (Williams et al., 2016) by providing shared

testbed for various tracking approaches. The

DSTC abstracts away the subsystems of end-to-

end spoken dialog systems, focusing only on the

dialog state tracking. It does so by providing

datasets of Automatic Speech Recognition (ASR)

and Spoken Language Understanding (SLU) out-

puts with reference transcriptions, together with

annotation on the level of dialog acts and user

goals on slot-filling tasks where dialog system

tries to fill predefined slots with values from

a known ontology (e.g. moderate value for a

pricerange slot).

In this work we improve state-of-the-art results

on DSTC2 (Henderson et al., 2014a) by com-

bining two central ideas previously proposed in

different successful models: 1) machine learn-

ing core with hand-coded1 rules, an idea already

explored by Yu et al. (2015) and Vodolán et al.

(2015) with 2) a complex neural network based

architecture that processes ASR features proposed

by Henderson et al. (2014b). Their network con-

sist of two main units. One unit handles generic

behaviour that is independent of the actual slot

value and the other depends on slot value and can

account for common confusions.

When compared to Henderson et al. (2014b)

that inspired our work: 1) our model does not re-

quire auto-encoder pre-training and shared initial

training on all slots which makes the training eas-

ier; 2) our approach combines a rule-based core of

the tracker and RNNs while their model used only

RNNs; 3) we use different NN architecture to pro-

cess SLU features.

In the next section we describe the structure of

our model, after that we detail how we evaluated

the model on the DSTC2 dataset. We close the

paper with a section on the lessons we learned.

2 Hybrid dialog state tracker model

The tracker operates separately on the probability

distribution for each slot. Each turn, the tracker

generates these distributions to reflect the user’s

goals based on the last action of the machine, the

observed user actions, the probability distributions

from the previous turn and an internal hidden state.

The probability distribution hs
t [v] is a distribution

over all possible values v from the domain of slot

1For historical reasons we adopted the hand-coded rules
term used throughout the belief tracking community. From
another viewpoint, our rules can be seen as a linear combina-
tion model.
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s at dialog turn t. The joint belief state is repre-

sented by a probability distribution over the Carte-

sian product of the individual slot domains.
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Figure 1: The structure of the Hybrid tracker at

turn t. It is a recurrent model that uses the proba-

bility distribution hs
t−1

and hidden state lst−1
from

the previous turn (recurrent information flow is

depicted by dashed blue lines). Inputs of the

machine-learned part of the model (represented by

functions G and F based on recurrent L) are the

turn and value features ft, fv and the hidden state.

The features are used to produce transition coeffi-

cients a for the R function which transforms the

output of the SLU us
t into belief hs

t .

In the following notation ist denotes a user

action pre-processed into a probability distribu-

tion of informed values for the slot s and turn t.

During the pre-processing, every Affirm() from the

SLU is transformed into Inform(s=v) depending

on a machine action of the turn. The ft denotes

turn features consisting of unigrams, bigrams,

and trigrams extracted from the ASR hypotheses

N -best list. They are weighted by the probability

of the corresponding hypothesis on the N -best

list. The same approach is used in Henderson et al.

(2014b). To make our system comparable to the

best-performing tracker (Williams, 2014) we also

included features from batch ASR (recognition

hypotheses and the unigram word-confusion ma-

trix). The batch ASR hypotheses are encoded in

the same way as hypotheses from the regular ASR.

The confusion matrix information is encoded as

weighted unigrams. The last part of the turn fea-

tures encodes machine-action dialog acts. We are

using trigram-like encoding dialogact-slot-value

with weight 1.0. The other features are value

features fvi
created from turn features, which

contain occurrence of vi, by replacing occurrence

of the value vi and slot name s by a common tag

(inform-food-italian → inform-<slot>-<value>).

This technique is called delexicalization by Hen-

derson et al. (2014b).

From a high-level perspective, our model con-

sists of a rule-based core represented by a func-

tion R that specifies how the belief state evolves

based on new observations. The rules R depend on

the output of machine-learned SLU and on tran-

sition coefficients2 avi,vj
that specify how easy it

would be to override a previously internalized slot

value vj with a new value vi in the given situa-

tion. The avi,vj
transition coefficients are com-

puted as a sum of functions F and G where F

accounts for generic value-independent behavior

which can however be corrected by the value-

dependent function G. The structure of the tracker

is shown in Figure 1.

In the next subsection, we will describe the

rule-based component of the Hybrid tracker. Af-

terwards, in Section 2.2, we will describe the

machine-learned part of the tracker followed by

the description of the trainable SLU in Section 2.3.

2.1 Rule-based part

The rule-based part of our tracker, inspired

by Vodolán et al. (2015), is specified by a function

R(hs
t−1

, us
t , a) = hs

t , which is a function of a slot–

value probability distribution hs
t−1

in the previous

turn, the output us
t of a trainable SLU and of tran-

sition coefficients a which control how the new be-

lief hs
t is computed. The first equation specifies

the belief update rule for the probability assigned

to slot value vi:

hs
t [vi] = hs

t−1
[vi]−h̃s

t [vi]+us
t [vi]·

∑

vj 6=vi

hs
t−1

[vj ] · avivj

(1)

where h̃s
t [vi] expresses how much probability will

be transferred from hs
t−1

[vj ] to other slot values in

hs
t . This is computed as:

h̃s
t [vi] = hs

t−1
[vi] ·

∑

vj 6=vi

us
t [vj ] · avjvi

(2)

where avivj
is called the transition coefficient be-

tween values vi and vj . These coefficients are

computed by the machine-learned part of our

model.

2These coefficients were modelled by a so called durabil-
ity function in Kadlec et al. (2014).
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2.2 Machine-learned part

The machine-learned part modulates behavior of

the rule-based part R by transition coefficients

avivj
that control the amount of probability which

is transferred from hs
t−1

[vj ] to hs
t [vi] as in Vodolán

et al. (2015). However, our computation of the co-

efficients involves two different functions:

avivj
= F (lt−1, ft, vi, vj) + G(ft, vi, vj) (3)

where the function F controls generic behavior of

the tracker, which does not take into account any

features about vi or vj . On the other hand, func-

tion G provides value-dependent corrections to the

generic behavior described by F .

Value Independent Model. F is specified as:

F (lt−1, ft, vi, vj) =

{

cnew if vi = None

coverride if vi 6= vj

(4)

where the F function takes values of cnew and

coverride from a function L. The function 〈cnew,

coverride, lt〉 = L(lt−1, ft) is a recurrent function

that takes its hidden state vector lt−1 from the pre-

vious turn and the turn features ft as input and it

outputs two scalars cnew, coverride and a new hidden

state lt. An interpretation of these scalar values is

the following:

• cnew — describes how easy it would be to

change the belief from hypothesis None to an

instantiated slot value,

• coverride — models a goal change, that is, how

easily it would be to override the current be-

lief with a new observation.

In our implementation, L is formed by 5

LSTM (Hochreiter and Schmidhuber, 1997) cells

with tanh activation. We use a recurrent network

for L since it can learn to output different values

of the c parameters for different parts of the dialog

(e.g., it is more likely that a new hypothesis will

arise at the beginning of a dialog). This way, the

recurrent network influences the rule-based com-

ponent of the tracker. The function L uses the turn

features ft, which encode information from the

ASR, machine actions and the currently tracked

slot.

Value Dependent Model. The function

G(ft, vi, vj) corrects the generic behavior of F .

G is implemented as a multi-layer perceptron

with linear activations, that is: G(ft, vi, vj) =
MLP (ft, fvi

)|vj
. The MLP uses turn features ft

together with delexicalized features fvi
for slot

value vi. In our implementation the MLP com-

putes a whole vector with values for each vk at

once. However, in this notation we use just the

value corresponding to vj . To stress this we use

the restriction operator |vj
.

2.3 Spoken Language Understanding part
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Figure 2: The SLU consists of two units. The first

unit processes turn features ft, per-value features

fv, original informs is and belief from the previous

turn hs
t−1

by a bidirectional LSTM B and outputs

a vector u1. The second unit maps turn features ft

by an MLP M (with two linear hidden layers of

sizes 50 and 20 - effect of the first layer is to regu-

larize information passed through the M ) onto u2.

Softmaxed sum of those output vectors is used as

a probability distribution of informed values us
t .

The SLU part of the tracker shown in Figure 2

is inspired by an architecture, proposed in Hen-

derson et al. (2014b), consisting of two separate

units. The first unit works with value-independent

features fvi
where slot values (like indian, italian,

north, etc.) from the ontology are replaced by tags.

This allows the unit to work with values that have

not been seen during training.

The features are processed by a bidirectional

LSTM B (with 10 tanh activated cells) which en-

ables the model to compare the likelihoods of the

values in the user utterance. Even though this is

not a standard usage of the LSTM it has proved

as crucial especially for estimating the None value

which means that no value from the ontology was
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mentioned3. The other benefit of this architecture

is that it can weight its output u1 according to how

many ontology values have been detected during

turn t.

However, not all ontology values can be re-

placed by tags because of speech-recognition er-

rors or simply because the ontology representa-

tion is not the same as the representation in nat-

ural language (e.g. dontcare~it does not matter).

For this purpose, the model uses a second unit that

maps untagged features directly into a value vector

u2. Because of its architecture, the unit is able to

work only with ontology values seen during train-

ing. At the end, outputs u1, u2 of the two units

are summed together and turned into a probabil-

ity distribution u via softmax. Since all parts of

our model (R, F , G, SLU) are differentiable, all

parameters of the model can be trained jointly by

gradient-descent methods.

3 Evaluation

Method. From each dialog in the dstc2 train data

(1612 dialogs) we extracted training samples for

the slots food, pricerange and area and used all of

them to train each tracker. The development data

dstc2 dev (506 dialogs) were used to select the ft

and fv features. We took the 2000 most frequent

ft features and the 100 most frequent fv features.

The cost that we optimized consists of a track-

ing cost, which is computed as a cross-entropy be-

tween a belief state hs
t and a goal annotation, and

of an SLU cost, which is a cross-entropy between

the output of the SLU us
t and a semantic annota-

tion. We did not use any regularization on model

parameters. We trained the model for 30 epochs

by SGD with the AdaDelta (Zeiler, 2012) weight-

update rule and batch size 16 on fully unrolled di-

alogs. We use the model from the best iteration ac-

cording to error rate on dstc2 dev. The evaluated

model was an ensemble of 10 best trackers (ac-

cording to the tracking accuracy on dstc2 dev) se-

lected from 62 trained trackers. All trackers used

the same training settings with difference in initial

parameter weights only). Our tracker did not track

the name slot because there are no training data

available for it. Therefore, we always set value for

the name to None.

3We also tested other models, such as max-pooling over
feature embeddings (to get extra information for None value),
however, these performed much worse on the validation
dataset.

Results. This section briefly summarizes re-

sults of our tracker on dstc2 test (1117 dialogs) in

all DSTC2 categories as can be seen in Table 1.

We also provide evaluation of the tracker without

specific components to measure their contribution

in the overall accuracy.

In the standard categories using Batch ASR and

ASR features, we set new state-of-the-art results.

In the category without ASR features (SLU only)

our tracker is slightly behind the best tracker (Lee

and Stent, 2016).

For completeness, we also evaluated our tracker

in the “non-standard” category that involves track-

ers using test data for validation. This setup was

proposed in Henderson et al. (2014a) where an en-

semble was trained from all DSTC2 submissions.

However, this methodology discards a direct com-

parison with the other categories since it can over-

fit to test data. Our tracker in this category is a

weighted4 averaging ensemble of trackers trained

for the categories with ASR and batch ASR.

We also tested contribution of specialization

components G and M by training new ensembles

of models without those components. Accuracy of

the ensembles can be seen in Table 1. From the re-

sults can be seen that removing either of the com-

ponents hurts the performance in a similar way.

In the last part of evaluation we studied impor-

tance of the bidirectional LSTM layer B by en-

sembling models with linear layer instead. From

the table we can see a significant drop in accuracy,

showing the B is a crucial part of our model.

4 Lessons learned

Originally we designed the special SLU unit M

with a sigmoid activation inspired by architecture

of (Henderson et al., 2014b). However, we found

it difficult to train because gradients were propa-

gated poorly through that layer causing its output

to resemble priors of ontology values rather than

probabilities of informing some ontology value

based on corresponding ASR hypotheses as sug-

gested by the network hierarchy. The problem re-

sulted in an inability to learn alternative wordings

of ontology values which are often present in the

training data. One such example can be “asian

food” which appears 16 times in the training data

as a part of the best ASR hypothesis while 13 times

it really informs about “asian oriental” ontology

value. Measurements on dstc2 dev have shown

4Validation was used for finding the weights only.
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Hybrid Tracker – this work
√ √

.810 .318
√ √

DST2 stacking ensemble (Henderson et al., 2014a)
√ √

.798 .308
√ √

Hybrid Tracker – this work
√ √

.796 .338
√

Williams (2014)
√ √

.784 .735

Hybrid Tracker – this work
√

.780 .356
√

Williams (2014)
√

.775 .758
Hybrid Tracker without G – this work

√

.772 .368
√

Hybrid Tracker without M – this work
√

.770 .373
√

Henderson et al. (2014b)
√

.768 .346
Hybrid Tracker without bidir – this work

√

.763 .375
√

Yu et al. (2015)
√

.762 .436
√

YARBUS (Fix and Frezza-buet, 2015)
√

.759 .358
√

Sun et al. (2014)
√

.750 .416
Neural Belief Tracker (Mrkšić et al., 2016)

√

.73? ???
√

TL-DST (Lee and Stent, 2016) .747 .451
√

Hybrid Tracker – this work .746 .414
√

Vodolán et al. (2015) .745 .433
√

Williams (2014) .739 .721
Henderson et al. (2014b) .737 .406
Knowledge-based tracker (Kadlec et al., 2014) .737 .429

√

Sun et al. (2014) .735 .433
Smith (2014) .729 .452
Lee et al. (2014) .726 .427
YARBUS (Fix and Frezza-buet, 2015) .725 .440

√

Ren et al. (2014) .718 .437

Focus baseline .719 .464
HWU baseline .711 .466

Table 1: Joint slot tracking accuracy and L2 (denotes the squared L2 norm between the estimated belief

distribution and correct distribution) for various systems reported in the literature. The trackers that used

ASR/Batch ASR have
√

in the corresponding column. The results of systems that did not participate

in DSTC2 are marked by
√

in the “post DSTC” column. The first group shows results of trackers that

used dstc test data for validation. The second group lists individual trackers that use ASR and Batch

ASR features. The third group lists systems that use only the ASR features. The last group lists baseline

systems provided by DSTC organizers.

that the SLU was not able to recognize this alias

anytime. We managed to solve this training issue

by simplifying the special SLU sigmoid to linear

activation instead. The resulting SLU is able to

recognize common alternative wordings as “asian

food” appearing more than 10 times in training

data, as well as rare alternatives like “anywhere”

(meaning area:dontcare) appearing only 5 times

in training data.

5 Conclusion

We have presented an end-to-end trainable belief

tracker with modular architecture enhanced by dif-

ferentiable rules. The modular architecture of our

tracker outperforms other approaches in almost all

standard DSTC categories without large modifi-

cations making our tracker successful in a wide

range of input-feature settings.
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