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Abstract

Consider communicating a correlated Gaussian source over a Rayleigh fading channel with no knowledge of the

channel signal-to-noise ratio (CSNR) at the transmitter. In this case, a digital system cannot be optimal for a range of

CSNRs. Analog transmission however is optimal at all CSNRs, if the source and channel are memoryless and

bandwidth matched. This paper presents new hybrid digital-analog (HDA) systems for sources with memory and

channels with bandwidth expansion, which outperform both digital-only and analog-only systems over a wide range

of CSNRs. The digital part is either a predictive quantizer or a transform code, used to achieve a coding gain. Analog

part uses linear encoding to transmit the quantization error which improves the performance under CSNR variations.

The hybrid encoder is optimized to achieve the minimum AMMSE (average minimummean square error) over the

CSNR distribution. To this end, analytical expressions are derived for the AMMSE of asymptotically optimal systems. It

is shown that the outage CSNR of the channel code and the analog-digital power allocation must be jointly optimized

to achieve the minimum AMMSE. In the case of HDA predictive quantization, a simple algorithm is presented to solve

the optimization problem. Experimental results are presented for both Gauss-Markov sources and speech signals.

Keywords: Hybrid digital-analog coding, Predictive quantization, Transform coding, Fading channels, Speech coding

1 Introduction
In digital communication over a fading channel, the best

performance is achieved when both the transmitter and

the receiver are adapted to the channel state. If the

channel-state information (CSI) is available, the trans-

mitter can adapt coding and modulation to maintain the

optimal performance at all times. However, there are com-

mon situations in which the transmitter adaptation is not

an option. One obvious example is broadcasting where a

single transmitter sends information to multiple receivers.

Since the channels to different receivers may not be the

same, it is not possible to adapt the transmitter to a spe-

cific channel state. Another example is when there is

no possibility of CSI feedback from a mobile receiver to

the transmitter. In either case, the receiver suffers from

the “cliff effect” [1]—when channel signal-to-noise ratio

(CSNR) decreases, at some point, a less than 1 dB drop
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in CSNR can take the decoder from perfect operation to

complete failure (threshold effect), and when the CSNR

increases from this point, the decoder output quality

remains fixed regardless of the CSNR (see for example [2]

(Fig. 5)). One solution to this problem is multi-resolution

coding and modulation [1, 3, 4]. This scheme does not

entirely eliminate the cliff effect but improves it to a

stair-case effect. For analog sources, a better alternative is

hybrid digital-analog (HDA) coding [1, 5, 6] which is the

focus of this paper.

It is known that uncoded or analog transmission

achieves the optimal performance theoretically attain-

able (OPTA) in MMSE sense when both the source and

the channel are Gaussian and memoryless and have the

same bandwidths [7]. Clearly, uncoded transmission can-

not be optimal for sources with memory and when the

source and channel bandwidths are not matched. For

sources with memory, widely used digital source-coding

techniques such as predictive quantization (PQ) trans-

form coding (TC) [8] exploit source memory to achieve

a coding gain and will outperform uncoded transmission
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if both the transmitter and the receiver have CSI. How-

ever, systems based on these techniques still suffer from

the aforementioned cliff effect when the transmitter has

no CSI. On the other hand, implementing good analog

codes for sources with memory is difficult. A promising

approach to benefit from both the robustness of analog

transmission against CSNR variations and the source-

coding gain due to source correlation is HDA coding.

Fundamentally, HDA transmission involves the simulta-

neous transmission of a source in both digital and ana-

log forms. Most previous work on HDA coding have

used a form of layered transmission in which the base

layer is digitally coded, and the quantization error of

the base layer is transmitted as a refinement layer, using

analog pulse amplitude (PAM) modulation [2, 9–12].

While a considerable amount of research has focused

on HDA transmission of memoryless sources, much less

work has been devoted to developing good HDA codes

for sources with memory. In particular, when the source

has memory, the optimal HDA coding involves a very

different design trade-off compared to coding a memo-

ryless source. The main goal of this paper is to design

HDA systems which can simultaneously benefit from high

coding gain of PQ or TC and the CSNR-independent opti-

mality of a parallel analog transmission. PQ is the stan-

dard technique for moderate to high bit-rate (16–40 kbs)

speech coding [13] while TC is a staple in image and

video compression.

We consider the transmission of a correlated Gaus-

sian source over a block-fading Gaussian channel whose

bandwidth is greater than or equal to the source band-

width (channel memory is however not considered). In

the proposed approach, the source is digitally transmit-

ted using either PQ or TC. The quantization error of

the digital encoder is transmitted by linear analog coding

over the same channel bandwidth as the digital transmis-

sion, by using superposition and power sharing. Given

that the transmitter cannot be adapted to the instan-

taneous CSNR at the receiver, we determine the best

analog-digital power allocation by minimizing the aver-

age MMSE (AMMSE) with respect to the receiver-CSNR

distribution. A closer look at this problem reveals an inter-

esting trade-off between digital and analog transmissions

when the source has memory. On the one hand, allo-

cating more power to the digital transmission allows a

higher quantization rate and hence a higher predictive

or transform coding gain. On the other hand, allocating

more power to the analog transmission makes it possi-

ble to achieve a greater reduction in distortion as the

CSNR increases. The not so obvious variable here that also

affects this trade-off is the outage CSNR which is the low-

est CSNR at which a receiver can decode the digital signal.

For the same power allocation, a higher quantization

rate can be chosen at the expense of increased outage

CSNR. Therefore, there exists a non-trivial trade-off

between the power allocation, quantization rate, and the

outage CSNR.

We also address the problem of determining the power

allocation and the outage CSNR (or equivalently the quan-

tization rate) inHDA-PQ andHDA-TC systems to achieve

optimal (in AMMSE sense) trade-off. To this end, we

obtain analytical expressions for the AMMSE of HDA-PQ

and HDA-TC systems by relying on the high-rate model

of entropy constrained scalar quantizers [14]. Our solu-

tions are therefore asymptotically (in rate) optimal. In

general, finding a closed-form solution for the optimal

power allocation and outage CSNR appears intractable.

However, in the case of HDA-PQ, we identify a simple

co-ordinate descent algorithm [15] to determine the opti-

mal solution. This algorithm converges rapidly, typically

in 2–3 iterations. We demonstrate that it is quite possi-

ble to implement good practical finite-rate HDA-PQ and

HDA-TC systems using the asymptotically optimal solu-

tions. Experimental results obtained with Gauss-Markov

processes as well as speech signals modeled as a Gaussian

auto-regressive (AR) process show that both the system

AMMSE and the MMSE of a receiver operating at a given

CSNR of practical designs closely match those given by

the asymptotic expressions, when the quantization rate is

higher than about 1 bit/sample. Our results show that, for

highly correlated sources, the HDA systems can substan-

tially outperform both purely digital and purely analog

transmission over a wide range of receiver CSNRs.

1.1 Main contribution and related previous work

Compared to previous work on HDA coding of Gaussian

sources with memory, the main contribution of this paper

is the joint optimization of power allocation and quantiza-

tion rate of HDA systems based on PQ or TC, with respect

to the AMMSE criterion. This optimization problem does

not arise when the source is memoryless. We also pro-

vide a lower bound to the AMMSE achievable for source

with memory, which can be numerically computed for a

Gauss-Markov source.

Previously, HDA coding of correlated sources have

appeared in [2, 9–12, 16–18]. With the exception of [18],

none of these work uses the AMMSE as a criterion for

power allocation. While [18] uses the AMMSE, their

problem is analog-only transmission of unquantized video

DCT coefficients over a fast fading channel. The objec-

tive of the power allocation in that case is to benefit from

channel-diversity. Therefore, power is allocated among

consecutive analog transmissions. As a result, their for-

mulation leads to a mixed discrete and continuous opti-

mization problem which has been solved by a heuristic

approach unrelated to ours. The other work cited above

does not consider the joint optimization of the power allo-

cation and the quantization rate. Phamdo and Mittal [2]
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present an implementation of an HDA system for low-

bit-rate speech transmission based on the standard FS

1016 CELP codec, by using two independent channels

with identical CSNRs for digital and analog transmissions

(hence identical power allocations). Yu et al. [9] present

similar HDA scheme for video transmission based on

H.264/AVC codec but use channel superposition of ana-

log and digital components the power allocation between

which is determined by assuming a worst-case CSNR.

In [10–12], channel optimized vector quantizers (COVQ)

are used as the digital encoder whose quantization error is

transmitted in analog form. However, no method for opti-

mizing the power allocation is given. An HDA transform

coding scheme is considered in [16], where the analog and

digital components are transmitted by time-division mul-

tiplexing using equal powers. To the authors’ knowledge,

HDA schemes based on linear predictive quantization

have not been reported so far.

The rest of this paper is organized as follows. Section 2

describes the HDA system considered in this paper and

derives an expression for the decoder MSE. Section 3

finds expressions for the MMSE of asymptotically optimal

HDA-PQ and HDA-TC over a Rayleigh fading channel.

Section 4 considers the main optimization problem and

presents a simple algorithm for solving the problem in the

case of HDA-PQ. Section 5 presents some performance

bounds for HDA-PQ and HDA-TC systems. Section 6

presents numerical and experimental results, and con-

cluding remarks are given in Section 7.

2 HDA transmission of correlated Gaussian
sources over fading channels

A block diagram of the HDA transmission system consid-

ered in this paper is shown in Fig. 1. Let the source {xn}
be a discrete-time Gaussian process obtained by Nyquist

sampling of a correlated analog signal with bandwidthWs.

Let E{xn} = 0, E{x2n} = σ 2
X , and the correlation coeffi-

cients rX(i) = E{xnxn−i}/σ 2
X , i = 1, 2, . . .. This source is to

be transmitted over a Rayleigh fading channel with band-

width Wc using an average power of PT . It is assumed

that the channel has slow fading so that the channel gain

does not significantly change during a single codeword.

We are concerned with systems which allow bandwidth

expansion. That is, Wc ≥ Ws, and each source sample

is transmitted in b = Wc
Ws

channel uses, where b is the

bandwidth expansion factor.

Fig. 1 The baseband equivalent of the HDA system considered in this paper
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In our HDA system, the source {xn} is quantized by

using either a PQ or a TC (ŴŴŴq in Fig. 1) to exploit the

memory. The resulting bitstream is entropy coded (ŴŴŴe)

and transmitted after channel coding and modulation

(ŴŴŴc). In addition, analog quantization error ǫn = xn − x̂n
(x̂n is the quantized value of xn) is also transmitted over

the same channel bandwidth as the digital modulator out-

put by using superposition. This is achieved as follows.

Since the sequence {ǫn} has a bandwidth of Ws, band-

width expansion by a factor of b is first applied to {ǫn}.
The expanded sequence of samples are then converted

to a channel signal by using pulse amplitude modulation

(PAM) which is superimposed on the digital modula-

tor output for transmission. Bandwidth expansion can be

achieved by using an L × M linear transform matrix FFF

such that L
M = b, which maps a vector of M consec-

utive quantization error samples ǫǫǫ to an L-dimensional

channel sample vector. In this paper, the frame operator

of a uniform tight frame (UTF) [19] is used as FFF . For a

UTF, one has FFFTFFF = bIIIM, where IIIM denotes the M × M

identity matrix. A simple class of UTFs is the harmonic

frames; see [19] for details. The PAM channel input vec-

tor (in discrete-time baseband equivalent form) vvv = αFǫFǫFǫ

is superimposed on the L-dimensional digitallymodulated

vector uuu which is the result of applying entropy coding,

channel coding, and modulation to M quantizer outputs

whose errors are in ǫǫǫ. The amplification factor 0 ≤ α ≤ 1

controls the power output of the analog modulator. Given

a total average transmitter power ofPT , letPa = ρPT and

Pd = (1 − ρ)PT be the fractions of total power allocated

to analog and digital transmissions, respectively, where

0 ≤ ρ < 1,

Pd = 1

L
E{‖uuu‖2}, (1)

Pa = 1

L
E{‖vvv‖2} = α2σ 2

ǫ , (2)

and σ 2
ǫ = E{ǫ2n} is the quantization error variance. There-

fore, the amplification factor α =
√

ρPT

σ 2
ǫ
.

The channel input is the sum yyy = uuu + vvv (see Fig. 1).

For simplicity, we will assume that the baseband equiva-

lent of the channel input and output are real valued, but

they could equally well be complex valued. The channel

output is given by

yyy′ = guuu + gvvv +www, (3)

wherewww is the L-dimensional Gaussian channel noise vec-

tor with the covariance matrix CCCw = σ 2
c IIIL and g is the

channel gain which is assumed to remain constant for

the duration of an L-dimensional channel symbol yyy. Let

the CSNR at the receiver input be θ = γPT

σ 2
c

, where

γ = g2 is the channel power gain. It is assumed that

θ is known to the decoder (but not to the transmitter).

The total noise component at the input to the digital

channel decoder ŴŴŴ−1
c consists of Gaussian channel noise

www and the interference gvvv from the analog transmission

which in general will not be Gaussian1. The distribution

of the combined noise zzz = gvvv + www is difficult to find.

However, for a given noise variance, the capacity of a

channel is the lowest when zzz is an iid Gaussian vector

([20], Theorem 7.4.3). This capacity lower bound can be

found by evaluating the capacity of an AWGN channel at

the CSNR (1 − ρ)γPT/(σ 2
c + ργPT ), which is given by

Cmin(ρ, θ) = 1
2 log2

(

1 + (1−ρ)θ
1+ρθ

)

bits/channel use [21].

We assume that, for a given ρ, the maximum allowable

transmission rate at a given θ is Cmin(ρ, θ). Suppose the

channel code used for digital transmission is designed for

some channel state θo ≤ θ . It follows that the maxi-

mum allowable bit-rate (in bits/sample) of the quantizer is

given by

R(ρ, θ0) = b

2
log2

(

1 + θo

1 + ρθo

)

. (4)

Therefore, the quantization error variance is a function

both ρ and θo, which we denote by σ 2
ǫ (ρ, θo).

For estimating the analog quantization error at the

receiver, the digital signal is first canceled out from the

channel output by using a locally generated digital channel

signal. The quantization error is then linearly estimated

from the residual vvv′ = gαFFFǫǫǫ +www as

ǫǫǫ′ = GGGvvv′, (5)

whereGGG is aM× Lmatrix. Finally, the source samples are

reconstructed as x̂′
n = x̂n + ǫ′

n. From [22] (Theorem 11.1),

it follows that the optimal estimator which minimizes

E‖ǫǫǫ − ǫǫǫ′‖2 is given by

GGG∗ = gαCCCǫFFF
T

(

g2α2FFFCCCǫFFF
T +CCCw

)−1
, (6)

whereCCCǫ is the covariance matrix of ǫǫǫ. Assuming that the

quantization error vector ǫǫǫ is uncorrelated, we haveCCCǫ =
σ 2

ǫ IIIM, and hence,

GGG∗ = 1

gα
FFFT

(

FFFFFFT + 1

ρθ
IIIL

)−1

. (7)

The covariance matrix of the corresponding estimation

error is given by ([22], Eq. 11.35)

CCCerr =
(

1

σ 2
ǫ

IIIM + g2α2

σ 2
c

FFFTFFF

)−1

. (8)
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The minimum possible end-to-end source reconstruc-

tion MSE at CSNR θ for given ρ and θo is

D(ρ, θo, θ) = 1

M
trace {CCCerr}

= σǫ2

1 + bg2α2σ 2
ǫ

σ 2
c

= σ 2
ǫ (ρ, θo)

1 + bρθ
, θ ≥ θ0. (9)

Notice that the numerator is independent of the receiver

CSNR θ . The denominator is the factor by which the over-

all distortion at the receiver is reduced due to the analog

transmission of the quantization error. Unlike a purely

digital system whose MSE will depend only on θo inde-

pendent of the instantaneous CSNR θ , an HDA system

will have D(ρ, θo, θ) → 0 as θ → ∞. In the following,

we first derive expressions for σ 2
ǫ (ρ, θo) of asymptotically

optimal PQ and TC. We then consider determining opti-

mal ρ and θo for a Rayleigh fading channel whichminimize

the AMMSE.

3 Asymptotically optimal quantization in HDA
systems

3.1 HDA-PQ

A detailed description of predictive quantization (PQ) can

be found in [8]. In summary, a PQ quantizes the predic-

tion error en = xn − x̃n rather than the input sample xn,

where x̃n =
∑K

i=1 aix̂n−i is the predicted value of xn using

a K-th order linear predictor with coefficients a1, . . . , aK .

As usual, the prediction is carried out using the quantized

values of the past inputs. Let the quantized value of en be

ên and the quantization error be ǫn = en − ên. The quan-

tized value of xn is given by x̂n = x̃n + ên, and the overall

quantization error is xn − x̂n = ǫn. The optimal quantizer

and the predictor can be found by minimizing the MSE

σ 2
ǫ = E

{

ǫ2n
}

. Owing to its non-linear feedback structure,

the exact analysis of a PQ is a well-known difficult prob-

lem [23, 24]. However, an analytical expression to which

theMSE of the optimal PQ converges as the quantizer rate

R grows can be found noting the fact that, as R → ∞
(that is, as the size of the maximum quantization interval

approaches zero), the closed-loop prediction error for a

Gaussian source is also Gaussian and therefore the quan-

tizer MSE approaches the Gish-Pierce asymptotic [14]. In

this case, the quantization error variance is given by

σ 2
ǫ = hσ 2

e 2
−2R, (10)

where R is the rate and h =
√
3π
2 for fixed-rate scalar quan-

tization and h = πe
6 for entropy constrained scalar quan-

tization [8] (in the latter case, R = H(q) is the entropy of

the quantizer output qn).

At high rate, the optimal closed-loop predictor

approaches the optimal (open-loop) predictor for the

source. It can be shown that the error of the optimal infi-

nite memory linear predictor is an uncorrelated process

(error whitening property) [8]. We assume that K is cho-

sen large enough so that the optimal K-th order predictor

is close to the infinite memory predictor. In this case, the

closed-loop prediction error variance σ 2
e = E

{

e2n
}

can be

given by

σ 2
e = A2σ 2

ǫ + σ 2
o , (11)

where σ 2
o is the prediction error variance of the optimal

predictor and A2 =
∑K

i=1 a
2
i is the energy of the predic-

tor impulse response. The coefficients of the optimal K-th

order predictor for {xn} are given by a = R
−1
X rX , where

a = (a1, . . . , aK )T , (i, j) element of the K × K Toeplitz

matrix RX is rX(|i − j|), and rX = [rX(1), . . . , rX(K)]T [8].

The variance of the optimal prediction error is given by

σ 2
o = σ 2

X

(

1 − r
T
XR

−1
X rX

)

. Now, from (10) and (11), it

follows that the MSE of the optimal PQ as R → ∞ is

given by

σ 2
ǫ = hσ 2

o 2
−2R

1 − c02−2R
, (12)

where for convenience, we define the constant c0 � hA2.

We refer to a PQ which satisfies (12) as an asymptoti-

cally optimal PQ. The related work on high-rate analysis

of predictive quantizers can be found in [23–25].

The maximum allowable quantization rate of the HDA

system is given by (4). Relying on the asymptotic expres-

sion (12), the minimum possible quantization error

variance for given ρ and θo is therefore given by

σ 2
ǫ (ρ, θo) = hσ 2

o

φ(ρ, θo)b − c0
, (13)

where φ(ρ, θo) =
(

1+θo
1+ρθo

)

> c
1/b
o . Clearly, φ is monotonic

increasing with θo and monotonic decreasing with ρ. In

order for the high-rate expression (13) to be accurate, we

need that σ 2
ǫ /σ 2

o ≪ 1, and therefore,

φ(ρ, θo) ≫
[

h
(

1 + A2
)]1/b

. (14)

In other words, sufficient channel bandwidth must be

available to support a high enough quantization rate.With

b and θo fixed, increasing ρ reduces the allowable quanti-

zation rate. Hence, the high-rate model (13) is valid only

for “small” ρ. However, as will be seen in Section 6, HDA-

PQ provides a useful coding gain only in this regime

(typically ρ < 30%) anyway, as higher ρ results in low

quantization rates at which predictive coding does not

yield a considerable gain over pure analog transmission.

Before proceeding, it is worth noting that when predic-

tion is good, the prediction error resembles a white Gaus-

sian process [8]. For the transmission of the latter, analog

transmission will be nearly optimal (exactly optimal if the

source and channel are bandwidth matched). However,
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transmitting the open-loop prediction error itself in ana-

log form is not possible in predictive quantization as it

would result in channel error propagation in a closed-loop

decoder.

3.2 HDA-TC

A detailed description of transform coding (TC) can be

found in [8]. For stationary Gaussian sources, it is known

that both PQ and TC can asymptotically (in rate) achieve

the same MMSE, provided that PQ uses infinite memory

linear prediction and TC uses a Karhunen-Loeve trans-

form (KLT) of infinite dimension [8]. However, at low bit-

rates, the performance of PQ for Gaussian sources drops

below that of TC, due to the degradation of closed-loop

predictions based on quantized samples.

Consider an HDA-TC system which transforms a Gaus-

sian input vector XXX ∈ R
M using a M × M orthonormal

transform TTT . Suppose that the transform coefficients SSS =
TXTXTX are quantized by ECQs with a bit allocation rrr =
(r1, . . . , rM)T , where R = 1

M

∑M
i=1 ri is the bit-rate in

bits/sample. If we assume asymptotically optimal ECQ,

then the quantization error variance of the i-th trans-

form coefficient si is
πe
6 σ 2

si
2−2ri where σ 2

si
is the variance

of the transform coefficient si. Note that SSS is an uncor-

related Gaussian vector whose covariance matrix is given

by TTTTCCCXTTT where CCCX is the covariance matrix of XXX. Let

the reconstructed value of Xi from the quantized value

of SSS be X̂i and the quantization error be ǫi = Xi − X̂i.

Since TTT is an orthonormal transform, the error variance

E(Xi − X̂i)
2 = σ 2

ǫ is the same for all i = 1, . . . ,M. In

the HDA-TC system, the quantized values of SSS are trans-

mitted digitally and the analog quantization error vector

ǫǫǫ = XXX − X̂XX is transmitted over the same bandwidth by

using linear bandwidth expansion, as in the case of HDA-

PQ. Now for given ρ and θo, the maximum allowable rate

can be found by (4) for which the optimal bit allocation r∗i ,
i = 1, . . . ,M can be found by minimizing

σ 2
ǫ (ρ, θo) = πe

6M

M
∑

i=1

σ 2
si
2−2ri , (15)

subject to
∑

ri = R(ρ, θo) and ri > 0. The Lagrangian for-

mulation of this problem leads to the well known reverse

water-filling solution [21]. Without a loss of generality,

assume that σ 2
s1

≥ σ 2
s2

. . . ≥ σ 2
sM
. Let Gm =

(
∏m

i=1 σ 2
si

)1/m

be the geometric mean of them largest variances. Suppose

we find m ≤ M such that σ 2
si

≥ hGm2
−2R/m for i ≤ m

and σ 2
si

< hGm2
−2R/m otherwise, where h = πe

6 . Then the

optimal bit allocation is given by [8]

ri =

⎧

⎨

⎩

1
MR(ρ, θo) + 1

2 log2

(

σ 2
si

Gm

)

i = 1, . . . ,m

0 i = m + 1, . . . ,M.

(16)

The total MSE of the optimal bit allocation is given by

σ 2
ǫ (ρ, θo) = hGm2

−2R(ρ,θo), (17)

where the integer m ≤ M and hence Gm is a function of

ρ and θo. While this solution is simple to determine for

any given (ρ, θo), unlike (13), it does not seem to have a

closed-form expression in terms of ρ and θo.

4 Robust HDA systems for fading channels
Consider the MSE D(ρ, θo, θ) in (9), where θ is a random

variable (but assumed to remains constant at least for the

duration of a single channel codeword), where σ 2
ǫ (ρ, θo)

is given by either (13) or (17). This is the MMSE of an

asymptotically optimal HDA-PQ or HDA-TC for a par-

ticular (ρ, θo). The choice of ρ and θo determines how

the MMSE varies with the CSNR θ . If θ is known to the

transmitter, ρ = 0 (purely digital) will achieve the lowest

MMSE for any θ , since in this case ,D(0, θo, θ) = σ 2
ǫ (0, θo)

can be minimized by choosing θo = θ . In this case, both

PQ and TC achieve the maximum possible coding gain.

If however the receiver CSNR θ is not available to the

transmitter, a purely digital system must be designed for

some θo which will be different to θ , resulting in a sys-

tem that is not robust against CSNR variations. On the

one hand, the receiver MSE of such a system remains

constant even when θ > θo despite the increase in the

available channel capacity. On the other hand, the channel

code and hence the system fail when θ < θo, i.e., sys-

tem goes into outage. We refer to θo as the outage CSNR

of the digital decoder. When the transmitter cannot be

adapted to varying θ , allocating power to the analog trans-

mission (ρ > 0) while keeping θo fixed will increase the

quantizationMSE σ 2
ǫ (ρ, θo) but will make the overall MSE

D(ρ, θo, θ) to decrease with θ . For fixed ρ, increasing θo
reduces σ 2

ǫ (ρ, θo) but will increase the outage probability

and hence the AMMSE. In order to obtain a robust sys-

tem which is optimal in some sense over a range of θ , we

design the transmitter for ρ and θo which minimizes the

AMMSE E{D(ρ, θo, θ)} with respect to the distribution of

θ . Such a design is ideal for a system with a single receiver

which experiences slow fading or a broadcast environ-

ment with a large number of receivers whose empirical

CSNR converges to the fading distribution [26].

The AMMSE of HDA-PQ or HDA-TC is given by

D̄(ρ, θo) =
{

E{D(ρ, θo, θ)|θ ≥ θo}(1 − Po) + σ 2
XPo ρ < 1

E{Da(θ)} ρ = 1

(18)

where Da(θ) = σ 2
X

1+bθ
is the MMSE of the optimal analog

system and Po = Pr(θ < θo) is the outage probability, and

we assume that in the event of an outage, the decoder out-

put is set to x̂′
n = E{xn}. It is assumed that the distribution

of θ is a priori known to the system designer. Our main
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focus is the Rayleigh fading channel in which the CSNR θ

is exponentially distributed [27]. The pdf of θ is given by

p(θ) = 1

θ̄
exp

(

−θ

θ̄

)

, (19)

where θ̄ = E{θ} is the mean CSNR. For the case of

Rayleigh fading, from (9), (18), and (19), it follows that

D̄(ρ, θo) = σ 2
ǫ (ρ, θo)

∫ ∞

θ0

exp
(

− θ

θ̄

)

θ̄ (1 + bθρ)
dθ + σ 2

XPo (20)

= σ 2
ǫ (ρ, θo)

exp
(

1
bρθ̄

)

bρθ̄
E1

(

1 + bρθo

bρθ̄

)

+ σ 2
XPo,

(21)

where Po =
(

1 − exp
(

− θo
θ̄

))

and E1(x) =
∫ −∞
x

exp(−t)
t dt

is the exponential integral [28]. E1(x) is available as

a standard function in most numerical software [e.g.,

expint(x) in Matlab]. The AMMSE depends on the

choice of the power allocation ρ and the outage probabil-

ity, or equivalently θo. We define the optimal robust HDA

system as the one which achieves the minimum AMMSE.

The optimal values of ρ and θo can be found by solving the

problem
(

ρ∗, θ∗
o

)

= argmin
ρ,θo

D̄(ρ, θo) (22)

subject to 0 ≤ ρ < 1

θ0 > 0.

For fixed θo, D̄(ρ, θo) is convex in ρ ∈ (0, 1). This can

be deduced from (20): σ 2
ǫ (ρ, θo) monotonically increases

with ρ while the term inside the integral monotonically

decreases. This represents the trade-off between the cod-

ing gain of PQ or TC due to source memory and the

robustness against CSNR variations. There must be a

value for ρ ∈ (0, 1), which minimizes the AMMSE. Now

if ρ is fixed, D̄(ρ, θo) is quasi-convex in θ > 0. This is

because, as θo is increased (Po increases), the first term

of the sum in (18) E{D(ρ, θo, θ)|θ ≥ θo} decreases while
the second term σ 2

XPo increases. A minimum for D̄(ρ, θo)

occurs for some θo < ∞. The quasi-convexity follows

from the fact that, as θo → ∞, the system will be always

in outage and hence D̄(ρ, θo) → σ 2
X . Figure 2 shows the

AMMSEs of HDA-PQ andHDA-TC as a function of ρ and

θo for the Gauss-Markov process, which we will refer to as

the GM(a) source,

Xn = aXn−1 + Wn. (23)

Figure 2 illustrates the convexity with respect to ρ and

quasi-convexity with respect to θo. Below we present an

efficient method to determine the optimal solution for

(ρ, θo) in the case of HDA-PQ. Due to the lack of a closed-

form expression for the AMMSE, such a simple procedure

cannot be devised for HDA-TQ.

4.1 Optimal HDA-PQ

In general, it is difficult to find a closed-form solution

to the constrained non-linear minimization problem in

(22). In the following, we present a simple coordinate-

descent (CD)method [15] to solve this problem. In the CD

method, D̄(ρ, θo) is minimized alternately with respect to

ρ (for fixed θo) and θo (for fixed ρo), until the solution

converges. Unlike the joint minimization problem in (22),

these two sub-problems are much easier to solve. Since

the solution to each problem is conditionally optimal, the

CD algorithm is guaranteed to converge to the minimum

of D̄. In actual numerical examples, it was found that this

method only required 2–3 iterations to converge. In the

Fig. 2 AMMSE of HDA-PQ (left) and HDA-TC (right) for a Gauss-Markov source with a = 0.9, as a function of the analog power allocation ρ and the

outage CSNR θo . Mean CSNR of the channel is 15 dB, and the bandwidth expansion factor is b = 4. HDA-PQ prediction order is 1, and HDA-TQ

transform block size is 8
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following, we present the solutions to two sub-problems

solved in each CD iteration.

Before proceeding, it should be noted that in the case

of HDA-PQ, an additional constraint is required to ensure

that (14) is not violated. This can be stated as

f1(ρ, θo) < 0, (24)

where f1(ρ, θo) � c1 − φ(ρ, θo) with c1 = ν[ h(1 + A2)]1/b

and ν > 1 is a sufficiently large constant chosen to

ensure that (14) is not violated at low quantization rates.

In our experiments, we have used ν = 2. If the con-

straint (24) becomes active, the solution is not guaranteed

to be optimal. However, note that, as the quantization rate

decreases, the HDA-PQ performance approaches that of

analog-only transmission. Therefore, when HDA-PQ out-

performs purely analog transmission, (24) is unlikely to be

active. For example, with both Gauss-Markov sources and

speech signals, numerical results presented in Section 6

show that when ρ exceeds about 30%, the difference

between HDA-PQ and analog systems becomes negligi-

ble. It is in this range of ρ that (24) becomes active.

4.1.1 Optimal power allocation for fixed outage CSNR

For a fixed θo, optimal power allocation can be found by

solving

ρ∗ = argmin
ρ

D̄(ρ, θo) (25)

subject to 0 ≤ ρ < ρmax,

where ρmax ∈ (0, 1]. In this case, (24) simplifies to

ρmax < ρ1 �
(1 + θo)c

−1
1 − 1

θo
. (26)

and therefore

ρ∗ = min{ρ′, ρ1, 1}, (27)

where ρ′ is the solution to f2(ρ) � ∂D̄/∂ρ = 0. Using

(9) and (13), it can be readily shown that f2(ρ) = 0 is

equivalent to
[

bθo

hσ 2
o

σ 2
ǫ (ρ, θo)φ

b(ρ, θo)

1 + ρθo
− (1 + bρθ̄)

bρ2θ̄

]

E1

(

1 + bρθo

bρθ̄

)

+
exp

(

− 1+bρθo
bρθ̄

)

ρ (1 + bρθo)
= 0,

which can be solved in the interval 0 ≤ ρ < ρmax using a

single-variable root-finding method.

4.1.2 Optimumoutage CSNR for fixed power allocation

For fixed ρ, the optimal outage CSNR can be found by

solving

θ∗
o = argmin

θo
D̄(ρ, θo) (28)

subject to θ ≥ θo,min,

where, from (24)

θo,min ≥ θo1 � max

{

0,
c1 − 1

1 − ρc1

}

. (29)

Using (9) and (13), it can be verified that ∂D̄/∂θo = 0 is

equivalent to

σ 2
X

θ̄
− σ 2

ǫ (ρ, θo)

[

σ 2
ǫ (ρ, θo)

(1 − ρ)

hσ 2
o

(1 + θo)
b−1

(1 + ρθo)b+1

exp
(

(1+bρθo)

bρθ̄

)

ρθ̄
E1

(

1 + bρθo

bρθ̄

)

+ 1

θ̄ (1 + bρθo)

⎤

⎦=0 (30)

for 0 < ρ < 1 and

σ 2
X − σ 2

ǫ (0, θo)

(

1 + bθ̄
)

1 + θo
= 0 (31)

for ρ = 0. Given ρ, optimal θo can be found by locating

the root of (30) or (31) in the interval θo ∈ [θo,min, θo,max),

where θo,max is a suitable value chosen to truncate the pdf

p(θ).

5 Comparisons and performance limits
5.1 Analog transmission with block decoding

Consider using only the analog part of the HDA system to

transmit the Gaussian AR source. To be useful, any HDA

systemmust perform better than this analog system. Since

the sequence of analog channel samples being transmitted

is now correlated, the optimal (MMSE) decoder is given

by x̂n = E{xn|YYY o, θ} where YYY o is the observed sequence

of channel outputs and θ is the receiver CSNR. As {xn} is
a Gaussian sequence, the optimal decoder is linear. In a

system with bandwidth expansion b = L
M , a vector of M

samples XXX from the source is mapped to L analog chan-

nel symbols YYY = αFFFXXX where FFF is a UTF and α is chosen

such that the variance of the channel symbols is σ 2
Y = PT .

Let CCCX be the covariance matrix of XXX. The covariance

matrix of YYY is CCCY = α2FFFCCCXFFF
T . Therefore, it follows that

σ 2
Y = 1

L trace{FFFTFFFCCCX} = α2σ 2
X . Let the corresponding L-

dimensional channel output vector be YYY ′. With a linear

decoder, the decoded source vector is given byXXX′ = GGGaYYY
′,

whereGGGa is aM×Lmatrix. Following along the same lines

as for (6), we find that the optimal linear decoder is

GGG∗
a = 1

gα
CCCXFFF

T

(

FFFCCCXFFF
T + σ 2

X

θ
IIIL

)−1

, (32)

whose MSE is

Danalog(θ) = 1

M
trace

⎧

⎨

⎩

(

CCC−1
X + θ

σ 2
X

FFFTFFF

)−1
⎫

⎬

⎭

. (33)

We can write CCC−1
X = UUUUUUT , where UUU is the M × M

matrix whose columns are unit-norm eigenvectors ofCCC−1
X
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and  the M × M diagonal matrix whose diagonal ele-

ments are 1
λ1
, . . . , 1

λM
where λi, i = 1, . . . ,M are the

eigenvalues ofCCCX . It can be verified that

Danalog(θ) = σ 2
X

M

M
∑

i=1

λ̃i

1 + λ̃ibθ
, (34)

where λ̃i = λi/σ
2
X . For a Rayleigh fading channel with

the average CSNR θ̄ , the AMMSE of the analog system is

given by

D̄analog = σ 2
X

M

M
∑

i=1

λ̃i

exp
(

1

λ̃ibθ̄

)

λ̃ibθ̄
E1

(

1

λ̃ibθ̄

)

. (35)

This analog system achieves no coding gain from source

correlation, but it does achieve a gain at the receiver due

to linear block decoding. Therefore, (35) is not necessarily

worse than (21), though it will be so when source cor-

relation is high. However, since sample-by-sample analog

encoding and decoding is a special case of HDA coding,

(35) is an upper bound to (21) when the source correlation

is ignored in (32), that is when λ̃i = 1 in (35).

5.2 HDA vector quantization (HDA-VQ) lower bound

HDA systems considered in this paper can asymptotically

achieve performance (AMMSE) that cannot be achieved

with either purely analog transmission or purely digital

transmission. On an absolute scale, the upper bound to

HDA system performance is the optimum performance

theoretically attainable (OPTA) when CSI is only available

at the receiver. Unfortunately, this bound cannot be deter-

mined in any reasonable way, even for a Gaussian source.

One obvious upper bound that is easily computed for a

Gaussian source is the OPTA when the CSI is available at

both transmitter and receiver. This can be found by evalu-

ating the distortion-rate function of the Gaussian process

[29] at the rate equal to the capacity of an AWGN chan-

nel with the given channel power gain. Amoremeaningful

upper bound for the case when CSI is only available to

the receiver can be obtained by replacing the PQ or TC

in the HDA coding setup by an optimal (rate-distortion

achieving) VQ for the source. The HDA-VQ of a memo-

ryless Gaussian source over a non-fading AWGN channel

has previously been studied in [11, 12]. Below, we derive

an expression for the AMMSE of HDA-VQ for theGM(a)

source and Rayleigh-fading AWGN channel.

Let the distortion-rate function of GM(a1) be DG(R).

The latter function is known in closed-form for rates R ≥
1
2 log2(1 + a1)

2σ 2
X and in parametric form otherwise [29].

Suppose we use an optimal VQ as ŴŴŴq in the HDA sys-

tem in Fig. 1. The maximum possible rate achievable at an

outage CSNR of θo is given by (4). From (9), it follows that

the MMSE of the HDA-VQ system at a CSNR of θ is

DHDA−VQ(ρ, θo, θ) = δG(ρ, θo)

1 + bρθ
, (36)

where δG(ρ, θo) is DG(R) expressed as function of ρ and

θo. The AMMSE of the HDA-VQ over a Rayleigh fading

channel with a mean CSNR of θ̄ is given by

D̄HDA−VQ(ρ, θo) = δG(ρ, θo)

∫ ∞

θo

1

θ̄

exp(−θ/θ̄)

1 + bρθ
dθ + σ 2

XPo

= exp(1/(bρθ̄))

bρθ̄
E1

(

1 + bρθ0

bρθ̄

)

δG(ρ, θo)

+ σ 2
XPo.

(37)

Since neither PQ nor TC can outperform optimal VQ,

the AMMSE in (18) is bounded below by the minimum

value of D̄HDA−VQ(ρ, θo). There is no apparent simple way

to determine this minimum value since a closed-form

expression for δG(ρ, θo) is not available for all ρ and θo.

Numerical values of this bound shown in Section 6 have

been obtained by performing a grid-search over the (ρ, θo)

space where 0 ≤ ρ ≤ 1 and 0 ≤ θo ≤ θo,max (a suitable

upper limit) to determine the minimum of (37).

6 Numerical results and discussion
In this section, we use numerical examples to demon-

strate the theoretical performance achievable with asymp-

totically optimal HDA systems as well as the actual

performance of finite-rate HDA systems designed using

power allocations and quantizer rates obtained through

asymptotic analysis. It is useful to compare the minimum

AMMSE of actual HDA-PQ and HDA-TC designs with

the HDA-VQ bound for the same source-channel pair.

While the latter bound can be difficult to evaluate for a

general Gaussian source, it can be numerically evaluated

for a Gauss-Markov source (Section 5.2). We also com-

pare the HDA systems with the purely analog system in

Section 5.1 and purely digital systems (PQ and TC). We

do so for both GM(a) source and speech signals modeled

by a Gaussian AR source.

6.1 Performance for Gauss-Markov sources

Figure 3 shows the AMMSE as a function of mean CSNR

for HDA-PQ and HDA-TC together with the correspond-

ing HDA-VQ upper bound for the GM(0.9) source. These

figures show both the AMMSEs of the asymptotically

optimal HDA systems (labeled analytical) obtained by

minimizing the expression (18) with respect to ρ and θo,

as well as the experimental AMMSE of actual HDA-PQ

and HDA-TC systems which use these (ρ, θo) values. For

HDA-PQ, a prediction order of 1 has been used while in

HDA-TA, a transform block size of 8 has been used. For
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Fig. 3 A comparison of analytical and experimental AMMSEs of HDA systems designed for the unit variance GM(0.9) source, HDA-PQ (left), and

HDA-TC (right) (b is the bandwidth expansion). ρ and θo values for HDA-PQ and HDA-TC systems shown here are listed in Table 1. HDA-PQ

prediction order is 1, and HDA-TQ transform block size is 8

solving (22) for HDA-PQ, the CD algorithm presented in

Section 4.1 was used. On the other hand, for HDA-TC,

an exhaustive grid search over the solution space of (ρ, θo)

was used to locate the minimum. Table 1 shows the power

allocations (ρ∗) and outage CSNRs (θ∗
o ) in this man-

ner. Practical HDA PQ/TC systems used ECQs designed

(using training set 105 of source samples) for the rates

corresponding to optimal (ρ, θo) values, by combining the

algorithms in [30] and ([8] Table 13.1). These quantizers

were used to simulate the HDA encoders and decoders.

In order to simplify the simulations, the equivalent digi-

tal channel (with channel coding and digital modulation)

was assumed error-free for source-coding rates below the

capacity of the AWGN channel. The channel output was

assumed undecodable at CSNRs below the outage CSNR.

Table 1 The power allocations and outage CSNRs of HDA-PQ

and HDA-TC systems shown in Fig. 3

HDA-PQ HDA-TC

θ̄ (dB) b ρ∗(%) θ∗
o (dB) ρ∗(%) θ∗

o (dB)

15 3 27 –1.9 40 –3.8

20 3 27.5 –1.3 42 –3.0

25 3 27.5 –0.8 43 –2.8

30 3 27.5 –0.4 44 –2.5

15 6 28.5 –4.6 43 –6.5

20 6 28.5 –4.1 45 –6.0

25 6 28.5 –3.8 47 –5.3

30 6 28 –3.4 48 –5.5

The AMMSEs of practical HDA-PQ/TC systems were

estimated by numerical integration of the receiver MSE

D̂(θ) over the pdf of CSNR θ , where D̂(θ) for each θ value

was determined by Monte-Carlo simulation of the HDA

system. As usual, Karhunen-Loeve transform (KLT) [8]

has been used as the transform in HDA-TC. Since trans-

form dimensions larger than 8 provided no significant

improvement in AMMSE of HDA-TC, the performance

shown in Fig. 3 is for K = 8. Notice that the experi-

mental AMMSE values observed for finite-rate HDA-PQ

and HDA-TC systems closely agree with those predicted

by high-rate analysis when the available channel capac-

ity is high. At lower mean CSNRs and small bandwidth

expansion factors, the AMMSEs of the practical designs

are in fact lower than that predicted by high-rate analysis.

This is because, at low rates (below about 2 bits/sample),

high-rate expressions overestimate the MSE of quantiz-

ers. The performance of HDA systems degrades (relative

to HDA-VQ bound) as the quantization rates become low,

i.e., when the bandwidth expansion and mean CSNR are

low. However, at low bit-rates, the gain achieved by cod-

ing of a source with memory diminishes as well, and since

the quantization error is no longer small compared to the

source variance, a large fraction of the transmitter power

gets allocated to the analog transmission. In this regime,

neither HDA-PQ nor HDA-TC is worth the effort since

similar performance can be achieved by the simple purely

analog system described in Section 5.1. This observation

also shows that the use of asymptotic quantizer expres-

sions to determine the optimal power allocation is indeed

reasonable.
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Table 1 lists the ρ and θo values of HDA-PQ and HDA-

TC systems whose AMMSEs are shown in Fig. 3. In

general, the power allocated to the analog component

of both HDA-PQ and HDA-TC increases with average

CSNR θ̄ , but decreases with the increasing bandwidth.

The former effect is due to the fact that, when θ̄ of a

Rayleigh fading channel increases, so does the variance of

the CSNR. The latter effect can be explained as follows.

When more channel bandwidth is made available, the

AMMSE can be reduced by increasing the quantization

rate and hence the prediction gain.

We have used the AMMSE as a design criterion to

achieve a good (asymptotically optimal) trade-off between

the digital coding gain and the analog robustness over a

wide range of CSNRs. This design procedure determines

the best power allocation factor ρ and the outage CSNR

Fig. 4 Experimental RSNR of asymptotically optimal designs as a function of RX-CSNR for GM(0.9) source. HDA-PQ prediction order is 1, and HDA-TQ

transform block size is 8. a θ̄ = 15 dB, left: b = 3, right: b = 5. b θ̄ = 25 dB, left: b = 3, right: b = 5
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θo (or equivalently the quantization rate) to be used over a

given fading channel (θ̄ ). However, given that the channel

has slow fading, an important performance measure from

the point of view of the individual users in the system

is the MSE D(θ) of a receiver with a given instanta-

neous CSNR θ (which we refer to as RX-CSNR in figures).

Consider a receiver operating in an AMMSE-optimized

system, whose CSNR is θ . Figure 4 shows several exam-

ples for receiver reconstruction signal-to-ratio (RSNR)

10 log10
σ 2
X

D(θ)
as a function of the RX-CSNR, where the top

two figures are for a channel with θ̄ = 15 dB and the bot-

tom ones are for a channel with θ̄ = 25 dB. The figures

also show the performance of purely digital systems and

the analog system in Section 5.1 with a decoding block

size of 8. Other than the HDA-VQ bound, these results are

experimentally measured performance of actual systems

designed with asymptotically optimal power allocations

and outage CSNRs. The purely digital systems have been

designed with the same procedure as the HDA systems,

but by setting ρ = 0 and optimizing only with respect

to θo. To have a perspective of CSNR variations, these

figures show the values of CSNR above which each chan-

nel remains 90 and 99% of the time, respectively (CSNR90%

and CSNR99%). The effect of designing HDA systems to

minimize the AMMSE can be clearly seen. Unlike the dig-

ital systems, the performance of HDA systems increases

limitlessly while having lower outage probabilities.

HDA systems outperform the digital-only counterparts

85 − 90% of the time in all cases. Increasing the band-

width expansion on a given channel (hence increasing the

capacity) not only boosts the instantaneous RSNR at all

RX-CSNRs above the outage value but also reduces the

outage CSNR. The gap between the HDA systems and the

analog system is due to the source-coding gain of HDA

systems (of course, for memoryless Gaussian sources and

unit bandwidth expansion, purely analog transmission is

optimal [7]).

In order to highlight the fact that HDA-PQ and HDA-

TC proposed in this paper are useful only with correlated

sources, Fig. 5 presents the dependence of RSNR on the

correlation coefficient a at 20 dB RX-CSNR. Note that

as a, and hence the source-coding gain drops, the per-

formance of both HDA-PQ and HDA-TC approach that

of the analog system. On the other hand, for high a,

the HDA systems substantially improve over the ana-

log system. Tables 2 and 3 present the ρ and θo val-

ues of HDA-PQ and HDA-TC systems shown in Fig. 5.

As the source correlation increases, the optimal solu-

tion allocates more power to the digital transmission to

benefit from the resulting source-coding gain. In inter-

preting these results, note also that that higher θ̄ and

b means higher overall channel capacity. Therefore, the

higher the channel capacity, the higher the gap between

HDA systems and the analog system. Note that the ana-

log power allocation of HDA-TC does not monotoni-

cally decrease with increasing a (see Tables 2 and 3).

This is because, as the source correlation increases, the

Fig. 5 Experimental RSNR of HDA systems for GM(a) source, as a function of the correlation coefficient a at RX-CSNR = 20 dB. Left: θ̄ = 15 dB, right:

θ̄ = 25 dB. Dash-lines: b = 3, solid-lines: b = 5. ρ and θo values for HDA-PQ and HDA-TC systems shown here are listed in Tables 2 and 3. HDA-PQ

prediction order is 1, and HDA-TQ transform block size is 8
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Table 2 The power allocations and outage CSNRs of HDA-PQ

and HDA-TC systems shown in Fig. 5 (left)

HDA-PQ HDA-TC

a b ρ∗(%) θ∗
o (dB) ρ∗(%) θ∗

o (dB)

0.60 3 100 – 61 –3.3

0.80 3 30 –1.2 48.5 –3.4

0.85 3 28 –1.4 44.5 –3.5

0.90 3 27 –1.9 39.5 –3.8

0.95 3 25.5 –2.7 45 –5.1

0.98 3 23.5 –3.7 33 –5.5

0.60 5 100 – 62.5 –5.2

0.80 5 28.5 –3.1 51 –5.4

0.85 5 28.5 –3.4 47 –5.6

0.90 5 28 –3.9 42 –5.8

0.95 5 27.5 –4.8 35.5 –6.3

0.98 5 25.5 –5.9 36 –7.6

The average CSNR is 15 dB

number coefficients with non-zero bit allocations shrink.

Therefore optimal ρ is not a continuous function of

a. Note also that there is a sharp decrease in analog

power allocation in HDA-PQ when the source correla-

tion coefficient a changes from 0.6 to 0.8. For a = 0.6,

the prediction gain achievable is too small for digital cod-

ing to be useful. For a = 0.8, the prediction gain is

significant. It was observed that when ρ exceeds about

30%, the low quantization rates result in poor predic-

tions through the feedback loop, making predictive coding

ineffective. Hence, the sharp increase of analog power

allocation from 28 − 30% to 100% is seen in Table 2.

Table 3 The power allocations and outage CSNRs of HDA-PQ

and HDA-TC systems shown in Fig. 5 (right)

HDA-PQ HDA-TC

a b ρ∗(%) θ∗
o (dB) ρ∗(%) θ∗

o (dB)

0.6 3 29.5 0.7 63 –2.2

0.8 3 28 0.1 53 –2.3

0.85 3 27.5 –0.3 48 –2.5

0.9 3 27.5 –0.8 43 –2.8

0.95 3 27.5 –1.7 36.5 –3.3

0.98 3 26.5 –2.9 38.5 –4.6

0.6 5 25.5 –1.2 55 –3.4

0.8 5 27 –2.0 45.5 –3.8

0.85 5 27.5 –2.4 50.5 –4.7

0.9 5 28 –2.9 45.5 –5.0

0.95 5 28.5 –3.9 39 –5.5

0.98 5 28 –5.1 41 –6.9

The average CSNR is 25 dB

6.2 HDA speech transmission

One of the key applications of predictive coding is

in moderate-to-high bit-rate speech coding [13]. We

designed and simulated HDA-PQ, and for comparison

HDA-TC systems, for 4 kHz speech signals sampled at

8 kHz. It is known that speech can be well modeled by

a 10th-order auto-regressive process [31]. Therefore, a

10th-order linear predictor was used in predictive coding,

while a transform block size of 10 was used for transform

coding. In the latter case, the discrete cosine transform

(DCT) [8], which is a more practical choice than the KLT

for non-Gaussian vectors, was used. The designs were

then carried out using a source covariance matrix esti-

mated from an actual training set of 4 × 105 speech

samples. This training set consisted of short sentences

spoken by a number of male and female English speak-

ers. As in the case of GM(a) source, the quantization rate

(entropy) found by the asymptotic analysis for Gaussian

sources were used to design the actual ECQs for HDA-PQ

and HDA-TC. For experimentally evaluating the perfor-

mance of the practical designs, two different test sets (test

set 1 and test set 2), each of 4×105 samples, were used. The

test set 1 includedmale and female English speakers, while

the test set 2 included male and female French speakers.

Figure 6 compares the experimental AMMSEs for both

test sets and the analytical values which are based on

the source covariance matrix estimated from the train-

ing set (training and test sets have been normalized to

unit-variance). Table 4 lists the power allocations and out-

age CSNRs of HDA-PQ and HDA-TQ designs shown in

Fig. 6. HDA-TCs shown here use a transform block size

of 10 (the same as predictor order in HDA-PQ). In all

cases shown here, the AMMSEs for both test sets are

nearly identical. However, while for HDA-PQ, there is a

close agreement between analytical and experimental val-

ues, this is not so with HDA-TC. The actual HDA-TC

systems perform noticeably better at low bit-rates (low

mean CSNR) than the high-rate analysis predicts. This

is in contrast to the performance of HDA-TC for Gauss-

Markov processes where there is no model mismatch.

In the case of speech signals, the asymptotic analysis

assumes a stationary Gaussian process while the speech

signals are in reality neither Gaussian nor stationary. In

this case, Gaussian high-rate analysis of HDA-TC consid-

erably exaggerates the average quantization distortion at

the lower rates. Nonetheless, both HDA-PQ andHDA-TC

designs perform well, with HDA-TC being slightly better.

The main advantage of HDA-PQ is the simplicity of both

the design and the implementation. Furthermore, it may

be possible to improveHDA-PQ performance at low rates,

since in that case, the quantization errors in an HDA-

PQ system contain some residual correlation. One idea is

to use a linear block decoder in the analog part (it is of

course difficult to assume such a decoder during system
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Fig. 6 A comparison of analytical and experimental AMMSEs of HDA systems designed for unit-variance speech signals, HDA-PQ (left) and HDA-TC

(right). ρ and θo values for HDA-PQ and HDA-TC systems shown here are listed in Table 4. Both HDA-PQ prediction order and HDA-TQ transform

block size are 10

optimization). Another possibility is to use a decoder of

the form [32].

Figure 7 presents the decoder performance as a func-

tion of RX-CSNR in systems with b = 3 (12 kHz channel

bandwidth) and b = 5 (20 kHz channel bandwidth). Both

HDA-TC systems and the decoder in analog-only systems

had their block size set to 10. In this case, the performance

of decoded speech has been evaluated by using the short-

term or segmental SNR (seg-SNR) given by ([33], Eq. 9.7)

which is known to better reflect the perceptual quality

of speech at moderate to high-bit-rates than the RSNR.

In our experiments, we used a segment size of 240 sam-

ples, which corresponds to 30 m. Despite the fact that

speech is non-Gaussian, the results in Fig. 7 are qualita-

tively consistent with those in Fig. 4. For example, HDA

system outperform analog system at all RX-CSNRs and

digital systems 85–90% of the time. We also performed

listening tests which supported the trends in Fig. 7. The

Table 4 The power allocations and outage CSNRs of HDA-PQ

and HDA-TC systems shown in Fig. 6

HDA-PQ HDA-TC

θ̄ (dB) b ρ∗(%) θ∗
o (dB) ρ∗(%) θ∗

o (dB)

15 3 20 –0.7 38 –2.2

20 3 21.5 –0.1 39 –1.7

25 3 22 0.3 40 –1.0

30 3 22 0.7 33 –0.2

15 5 22 –2.9 39 –4.2

20 5 23 –2.4 34 –3.2

25 5 23 –2.0 35 –3.0

30 5 23 –1.7 35 –2.5

decoded speech from the HDA systems sounded the best,

though when the available channel capacity is relatively

low (e.g., when θ̄ = 15 dB and b = 3, see Fig. 7a), HDA-

TC sounded less noisier than HDA-PQ. Both HDA-PQ

and HDA-TC systems produced speech with white back-

ground noise (but free from any quantization noise) that

dropped rapidly as the RX-CSNR is increased. Indeed,

this “graceful” variation of the output quality is the goal

we hoped to achieve with the proposed HDA designs.

In comparison, the analog-only systems produced notice-

ably more background noise. The digital-only systems

produced comparatively poor quality speech, with objec-

tionably harsh quantization noise being clearly audible,

except when the available channel capacity is relatively

high (e.g., when θ̄ = 25 dB and b = 5, see Fig. 7b).

7 Conclusions
This paper presented an approach to designing HDA-PQ

and HDA-TC systems for transmitting correlated Gaus-

sian sources over frequency-flat, block Rayleigh fading

channels, when CSI is not available to the transmitter.

In this case, the encoder is designed to minimize the

AMMSE over the receiver-CSNR distribution, so that the

system operates well over a range of CSNRs. The main

issue addressed in this paper is the joint optimization of

the analog-digital power allocation and the outage CSNR

(or equivalently the quantization rate) to minimize the

AMMSE of HDA-PQ and HDA-TC systems. In particular,

a simple algorithm for solving the optimization problem

in the case of HDA-PQ was presented. While the power

allocations and quantization rates obtained as suggested

in this paper can only be asymptotically (in rate) optimal,

they were found to be effective in actual HDA systems

with finite rates.
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Fig. 7 Experimental seg-SNR of speech test set 2 on channels with different mean CSNRs. Both HDA-PQ prediction order and HDA-TQ transform

block size are 10. a θ̄ = 15, left: b = 3, right: b = 5. b θ̄ = 25, left: b = 3, right: b = 5

Our experimental results showed that, despite the Gaus-

sian assumption, the proposed HDA design approach also

worked well with the speech signals. HDA-PQ in partic-

ular can be a good approach to adaptive speech coding

(e.g., similar to ADPCM [13]) over fading channels and

in broadcasting. HDA-PQ is amenable to adaptive quan-

tization in real time due to the simplicity of the system

optimization algorithm presented in Section 4.1. A sim-

ple approach to adaptive speech coding with HDA-PQ is

to use a finite-state model for the source signal, where the

state is determined by a segment of consecutive speech

samples and each state has a particular set of HDA-

PQ parameters (predictor coefficients, quantizer-rate, and

power allocation). Themethod described in this paper can
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be used to determine optimal parameters for each state.

Since unvoiced speech segments resemble white noise,

experimental results in this paper suggest that purely

analog transmission can likely be as nearly as good as

HDA-PQ for such segments. On the other hand, for highly

correlated voiced speech segments, a significant amount

of total power will get allocated to the digital component.

Endnote
1Since the elements of vvv are linear combinations of M

quantization errors, they will be approximately Gaussian

ifM is sufficiently large.
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