
Hybrid Directed Test Suite Augmentation:
An Interleaving Framework

Yunho Kim∗, Zhihong Xu†, Moonzoo Kim∗, Myra B. Cohen†, Gregg Rothermel†
∗Department of Computer Science, Korea Advanced Institute of Science and Technology

Email: kimyunho@kaist.ac.kr, moonzoo@cs.kaist.ac.kr
†Department of Computer Science and Engineering, University of Nebraska - Lincoln

Email: {zxu,myra,grother}@cse.unl.edu

Abstract—Test suite augmentation techniques generate test
cases to cover code missed by existing regression test suites.
Various augmentation techniques have been proposed, utilizing
several test case generation algorithms. Research has shown that
different algorithms have different strengths, and that combining
them into a single hybrid approach may be cost-effective. In this
paper we present a framework for hybrid test suite augmentation
that allows test case generation algorithms to be interleaved
dynamically and that can easily incorporate new algorithms,
interleaving strategies, and choices of other parameters that
influence algorithm performance. We empirically study an im-
plementation of this framework in which we use two test case
generation algorithms and several algorithm interleavings. Our
results show that specific instantiations of our framework can
produce augmentation techniques that are more cost-effective
than others, and illustrate tradeoffs between instantiations.

I. INTRODUCTION
When software engineers use regression testing to validate

evolving systems, they often begin by running existing test
cases. This may not be adequate, however, because code mod-
ifications can add new functionality and alter test coverage.
Test suite augmentation techniques (e.g., [1], [29], [33], [39])
address this problem, by identifying where new test cases are
needed (i.e, code elements in the new program that are new or
affected by changes – hereafter referred to as “targets”) and
then generating them.

In prior work, we investigated several augmentation ap-
proaches, focusing primarily on test case generation techniques
that reuse existing test cases. The first two approaches utilized
concolic [39] and genetic algorithms [36], respectively. Em-
pirical studies showed that each approach can be effective at
covering code affected by changes.

In subsequent work [37], we compared augmentation tech-
niques while varying factors that affect them, including the
algorithm used to generate test cases, the order in which targets
are considered while generating test cases, and the manner
in which test cases are reused. Our studies showed that the
primary factor affecting augmentation is the test case gener-
ation algorithm utilized; moreover, differences in algorithms
lead them to possess different strengths and weaknesses. We
reasoned that hybrid test case augmentation techniques could
effectively combine these algorithms to produce approaches
that are more cost-effective than any algorithms used singly.

In [38] we investigated this possibility further. We presented
a simple hybrid directed test suite augmentation technique

that operates by applying concolic test case generation to a
program being regression tested, and then applies genetic test
case generation. (We refer to this approach here as the fixed
interleaving approach.) We presented empirical results show-
ing that this approach can be more effective than non-hybrid
techniques; however, in terms of efficiency the approach was
disappointing, failing to outperform non-hybrid techniques.

In addition to problems with performance, another drawback
of our fixed interleaving augmentation approach is that it
assumes that test engineers will employ augmentation tech-
niques to completion – that is, they will continue to try to
augment coverage until no additional avenues for covering
targets avail themselves. When time allows such testing,
this assumption is reasonable. Frequently, however, regression
testing is performed under time constraints. For example,
in modern development practices, regression testing can be
performed during maintenance phases of varying time limits,
such as overnight or over the weekend. In such cases, the goal
is not to find an augmentation technique which, at the end
of its execution cycle, produces the best coverage of affected
elements, but rather, to find an augmentation technique that
can achieve coverage more quickly than others. No prior work
has considered augmentation approaches from this standpoint.

In this paper we address both of the foregoing issues. We
propose a framework for hybrid test suite augmentation that
interleaves test case generation algorithms dynamically, that
can easily incorporate new test case generation algorithms
and interleaving strategies, and that can be parameterized
to adjust target ordering and test case reuse approaches.
While this framework is flexible enough to support the fixed
interleaving approach, it also supports approaches that use
finer-grained, dynamic interleaving. Under this framework,
a controller dynamically makes decisions about which test
case generation algorithm to choose at a given point in time,
and based on this (with knowledge about each algorithm),
it selects a set of targets to cover next and passes that
with other necessary information to the selected algorithm. If
the algorithm succeeds in attaining new coverage, it returns
the new test cases and new coverage information back to
the controller. In this way, the strengths of each test case
generation algorithm can be leveraged dynamically over time.

We empirically study an implementation of this frame-
work in which we apply the dynamic interleaving approach

to several versions of two non-trivial Unix utilities. In our
study, we use two test case generation algorithms and several
different algorithm interleavings. The results of our study
show that our dynamic interleaving framework can be used
to combine different test case generation algorithms, and that
the dynamic interleaving approach that we evaluated almost
always achieves higher branch coverage more quickly than
the fixed interleaving approach.

II. BACKGROUND AND RELATED WORK

A. Test Suite Augmentation

Let P be a program, let P ′ be a modified version of
P , and let T be a test suite for P . Regression testing is
concerned with validating P ′. To facilitate this, engineers
often begin by reusing T , and a wide variety of approaches
have been developed for rendering such reuse more cost-
effective via regression test selection (e.g., [28], [32]) and test
case prioritization (e.g., [12], [23]). Test suite augmentation
techniques, in contrast, are not concerned directly with reuse of
T . Rather, they are concerned with the tasks of (1) identifying
affected elements (portions of P ′ or its specification for which
new test cases are needed), and then (2) creating or guiding
the creation of test cases that exercise these elements.

Various algorithms have been proposed for identifying af-
fected elements in software systems following changes (e.g.,
using models or specifications [4], program slicing or depen-
dence graphs [3], [16], [31]). In this work we are concerned
with generating test cases for these elements.

Appiwattanapong et al. [1] and Santelices et al. [33] com-
bine dependence analysis and symbolic execution to identify
chains of data and control dependencies related to changes,
but present no specific algorithms for generating test cases.
Person et al. (2008) [29] present an approach for program
differencing using symbolic execution that can identify the
effects of program changes and generate relevant test cases.
Person et al. (2011) [30] use program analysis techniques
to identify the parts of new programs that are affected by
changes and apply symbolic execution to those. None of these
approaches are integrated with reuse of existing test cases.

Only a few papers have considered augmentation from the
standpoint of reusing and generating new test cases. We have
already described our own work in this area [36]–[39], in
which adaptations of genetic and concolic test case generation
techniques use test resources and data from prior testing
sessions to generate test cases to cover target code elements.
More recently, Xie et al. [35] presented an approach for using
dynamic symbolic execution to reveal execution paths that
need to be retested, in which existing test cases can be utilized.

B. Automated Test Case Generation

There has been a great deal of research on techniques
for automated test case generation. This includes work on
generating test cases from specifications (e.g., [7]) from formal
models (e.g., [19]) and by random selection of inputs (e.g.,
[8]). Several other techniques (e.g., [9]) use symbolic execu-
tion to find the constraints, in terms of input variables, that

must be satisfied to execute a target path, and attempt to solve
this system of constraints to obtain a test case for that path.

More recently, test case generation techniques that rely on
dynamic information have appeared. Several such techniques
use search-based approaches (e.g. evolutionary algorithms,
tabu search, and simulated annealing) to generate test cases
[2], [14], [26]. Other work (e.g., [6], [15], [34]) combines
concrete and symbolic test execution to generate test inputs.
This second approach is known as concolic testing or dynamic
symbolic execution, and has proven useful for generating test
cases for C and Java programs. In our work, we focus on
these two classes of approaches, because they can make use
of existing test cases, and because such test cases are readily
available in a regression testing scenario. Here, we summarize
these overall approaches.

1) Genetic Algorithms for Test Case Generation: Genetic
algorithms (GAs) for structural test case generation have
become common [14], [26]. GAs begin with an initial (often
randomly generated) test case population and evolve the pop-
ulation toward targets that can be blocks, branches or paths
in a program. Test inputs are represented in the form of a
chromosome, and a fitness function is provided that defines
how well a chromosome satisfies the intended goal. The
algorithm proceeds iteratively by evaluating all chromosomes
in the population and then selecting a subset of the fittest
to mate. These are combined in a crossover stage where
information from half of the chromosomes is exchanged with
information from the other half to generate a new population.
A small percentage of chromosomes in the new population are
mutated to add diversity back into the population. The process
is repeated until a stopping criterion has been met.

In the work of Fraser and Arcuri [14], the full test suite
is targeted at once (the fitness function computes the quality
of a test case relative to all branches rather just an individual
branch). This helps the GA avoid spending too much time
on infeasible or difficult-to-cover branches. While we target
individual branches in this work, we include serendipitous cov-
erage of additional branches [27]. As test cases are generated
for the intended branch, some of the test cases cover other
uncovered branches and we keep these test cases as well. We
also use existing test cases as the starting point for our initial
population, rather than random test cases. This reflects Fraser
and Arcuri’s observation that seeding strategies are important
in test case generation using GAs [13].

2) Concolic Test Case Generation: Concolic testing
(CT) [6], [15], [34] concretely executes a program while
carrying along a symbolic state and performing symbolic exe-
cution of the path being executed. A symbolic path constraint
gathered along the way is used to generate new inputs that
drive the program along a different path on a subsequent
iteration, by negating a predicate in the path constraint.

In the traditional application of concolic testing, test case
reuse is not considered, and the focus of test case generation
is on path coverage. First, a random input is applied to the
program and the algorithm collects the path condition for this
execution. Next, the algorithm negates the last predicate in

this path condition and obtains a new path condition. Calling
a constraint solver on this path condition yields a new input,
and a new iteration then commences, in which the algorithm
again attempts to negate the last predicate. If the algorithm
discovers that a path condition has been encountered before,
it ignores it and negates the second-to-last predicate. This
process continues until no more new path conditions can be
generated. Ideally, the end result of the process is a set of test
cases that cover all paths. (In practice, bounds on path length
or algorithm run-time can be applied). In our application of the
concolic approach (see [37]), we alter the foregoing process
to work with existing test cases and we operate on an ordered
list of targets, at the level of branch coverage.

3) Combinations of techniques: Recently, other researchers
have combined test case generation techniques. Hybrid con-
colic testing [24] combines random and concolic test case gen-
eration. Inkumsah et al. [20] combine a genetic algorithm and
concolic testing to generate test cases for programs. Borges et
al. [5] use a meta-heuristic search technique to help symbolic
execution solve complex mathematical constraints. Symbolic
search-based testing [2] combines symbolic information with
dynamic analysis to construct fitness functions that improve
the efficiency of search-based testing for branch adequate test
data generation. Malburg et al. [25] include constraint solving
in the mutation stage of a genetic algorithm to ensure that
mutated offspring efficiently explore different control flow
in order to improve branch coverage. AUSTIN [22] uses
heuristic search to cover primitive data type targets in C
programs, and symbolic techniques for those with dynamic
data structures. None of this work, however, addresses the test
case augmentation problem.

Other researchers have also combined search-based and
symbolic techniques for other purposes (for example, mutation
testing [17]). The differences between that work and ours
are that we focus on augmentation, and we do not modify
the algorithms (or fitness), but instead we leverage the best
algorithms by dynamically interleaving them at the right time.
Our prior hybrid technique [38] also combines a genetic and a
concolic algorithm, but this is done statically, in a fixed order
(we do not use feedback during execution to select algorithms
or target order). We compare this work with that in this paper.

III. INTERLEAVING FRAMEWORK

The results of our study of a fixed interleaving hybrid
augmentation approach [38] show that when test case genera-
tion algorithms are interleaved, we can harness their different
strengths to cover targets more effectively. The efficiency of
the approach, however, was less (i.e., yielding longer run
times) than that achieved by applying genetic or concolic al-
gorithms individually. This suggests a need for improvements,
particularly if our aim is to increase coverage more quickly
in time-constrained environments. In addition, we want to
allow more dynamic decision-making regarding how test case
generation algorithms are interleaved, how targets are ordered,
and how test cases are reused, and ultimately, we would like to
seamlessly incorporate other test case generation algorithms.

Fig. 1. Dynamic Interleaving Augmentation Framework

A. Dynamic Interleaving Augmentation Framework

Figure 1 depicts the architecture of our dynamic interleav-
ing augmentation framework. A Controller is responsible for
communication between test case generation algorithms and
for selecting target orderings, test cases to reuse, and algorithm
interleaving criteria. The input to the controller is the initial
set of test cases, the set of targets that need to be covered, a
set of criteria that tell the controller when to switch between
test case generation algorithms, and test case selection and
ordering techniques that are used to select next targets.

When the augmentation process begins we bootstrap the
controller by having it call a specific test case generation
algorithm. The controller selects targets for the algorithm and
places them in an order. Then, it sends the ordered list of
targets and test cases to the test case generation algorithm.
After the test case generation algorithm finishes attempting
to cover the given targets, it sends the results, along with
updated coverage information and newly generated test cases,
back to the controller. The controller then updates the coverage
information and determines which algorithm to call next with
which parameters, based on the current interleaving criterion.

There are many ways in which test case generation algo-
rithms can be interleaved in our framework. Possible interleav-
ing criteria include the execution time devoted to a particular
algorithm, the number of targets covered, the number of targets
remaining to be covered, or the number of serendipitous
targets (targets not specifically targeted for coverage in a given
invocation, but that happen to be covered anyway by generated
inputs) covered.

B. Interleaving Criteria

In this work, we focus on interleaving criteria that consider
numbers of uncovered branches. We say that an interleaving
limit IL for test case generation algorithm A is calculated as
the ratio of the number of previously uncovered targets that A
has covered or attempted to cover in its current invocation to
the number of previously uncovered targets that existed when
A was invoked. For example, if A is invoked with a set of
100 uncovered targets, and IL is set to .25, then after A has
covered or attempted to cover 25 of these uncovered targets, it
has reached its interleaving limit. When an interleaving limit

IL has been reached, a test case generation algorithm ceases
execution and returns control to the Controller, which then
determines how to proceed next. The intuition behind this
approach is that as IL decreases, the degree to which test case
generation techniques are interleaved increases, and test case
generation techniques take more frequent “turns” at generating
test cases, which we believe will result in a reduction in overall
test case generation time and increased coverage.

The maximum possible value for IL is 1.0. In [38], our fixed
interleaving approach invoked the concolic test case generation
algorithm first with IL set to 1.0, and then invoked the genetic
test case generation algorithm with IL set to 1.0 (which caused
the genetic algorithm to consider all remaining uncovered
targets). In theory, values of IL can be as small as 1/|S|,
where |S| is the total number of uncovered targets available for
consideration when a test case generation algorithm is invoked;
this value of IL corresponds to a single target. For simplicity,
we denote this particular value of IL as IL = 0.

In this work, we vary IL to determine whether and how
it affects the performance of dynamic interleaving test case
augmentation. We consider the cases in which IL = 0 and
IL = 1.0, and several values of IL in between these.

C. Test Case Generation Algorithms

We briefly describe the concolic and genetic test suite
algorithms that we use in this work. See [38] for a more
complete description and formal algorithms.

1) Concolic Test Suite Augmentation: In our algorithm,
a path condition pc for a target program is a conjunction
bi1 ∧ bi2 ∧ ...bin where bi1 , ...bin are branch conditions in the
target program and executed in order. Let b denote a paired
branch of a branch b (i.e., if b is a then branch, b is the
else branch). Let BR be the initial set of target branches.
The algorithm repeats for each target branch bt ∈ BR that has
not yet been covered. Initially, a set of new test cases, NTC,
is empty and a set of target branches to cover, NBR, is set to
BR. The start of the main procedure selects test cases that can
reach bt from within the set of test cases, TC. If there are no
such test cases, the algorithm terminates. If there are such test
cases, the algorithm obtains path conditions by executing the
target program with the selected test cases From each obtained
path condition pc the algorithm generates niter new path con-
ditions as follows. Suppose the last occurrence of bt is located
in the mth branch of pc. Then, the algorithm generates niter
new path conditions by negating bim , bim−1

, ..., bim−niter+1

and removing all following branches in pc, respectively.1 If
a newly generated path condition pc′ has a solution tcnew (a
new test case) and tcnew covers uncovered branches in NBR.
NBR is then updated to reflect the new status of coverage and
tcnew is added to the set of newly generated test cases NTC

2) Genetic Test Suite Augmentation: Our genetic algorithm
is invoked for each target branch bt ∈ BR that has not yet
been covered. It iterates for a number of generations or until

1niter is a “tuning” parameter that determines how far back in a path
condition the augmentation approach will go, and in turn can affect both the
efficiency and the effectiveness of the approach.

bt is covered. The first step calculates the fitness of all test
cases in the test case population. Since the fitness of a test case
depends on its relationship to the branch we are trying to cover,
calculating the fitness requires that we run the test case. (For
test cases provided initially we can use coverage information
obtained while performing the prior execution of the test
cases, TC, which in our case occurred in conjunction with
determining affected elements.) Next, a selection is performed,
which orders and chooses the best half of the chromosomes to
use in the following step. The population is divided into two
halves (retaining the ranking) and the first chromosome in the
first half is mated with the first chromosome in the second
half and this continues until all have been mated. Finally, a
small percentage of the population is mutated, after which all
test cases in the current population are executed.

D. Test Case Reuse Algorithms

We allow the concolic algorithm to reuse all newly gener-
ated test cases created during the prior executions of any test
case generation algorithms. This is because our prior work [37]
showed that using initial and newly generated test cases allows
the concolic algorithm to achieve higher branch coverage than
if it uses only initial test cases. We allow the genetic algorithm
to reuse newly generated test cases within a limit relative to
the given test case pool size. Our early work showed that, for
the genetic algorithm, using newly generated test cases did
not increase branch coverage much, but did increase execution
time significantly.

E. Target Ordering Algorithms

In prior work [37], we found that a depth first ordering
(DFO) of targets allowed the genetic test case generation
algorithm to generate test cases more efficiently than a random
ordering of targets. This ordering did not provide any benefits,
however, to the concolic test case generation algorithm; for
that algorithm, a random ordering of targets was equally
effective as, but less expensive than, DFO. Therefore, in the
instantiation of our approach that we study in this paper, we
restrict our attention to DFO for the genetic algorithm and
random ordering for the concolic algorithm.

IV. EMPIRICAL STUDY

Our goal is to empirically evaluate our framework, focusing
on the relative cost-effectiveness of technique interleaving
approaches, overall and in the presence of time constraints.
We thus pose the following research questions.

RQ1: How do dynamic interleaving test suite augmentation
techniques compare to one another and to the fixed interleaving
approach in terms of effectiveness and efficiency.

RQ2: How does the performance of the test suite augmentation
techniques considered differ, in terms of effectiveness, as time
constraints differ?

TABLE I
STUDY OBJECTS

of total # of uncovered
branches branches

grep1 3934 1894
grep2 4146 2008
grep3 4234 2076
grep4 4262 2091
grep5 4264 2093
sed1 2646 1612
sed3 2918 1952
sed4 2918 1952

A. Objects of Analysis

To address our research questions we selected two non-
trivial Unix utilities, grep and sed, from the SIR reposi-
tory [11]. grep and sed are written in C and have multiple
versions. The SIR repository provides test suites containing
790 and 359 test cases for the earliest versions of the programs,
grep0 and sed0, respectively. Test cases for grep0 and
sed0 are applicable to all subsequent versions of the two
programs. To investigate our approach in a regression testing
setting, we utilized five versions of grep, grep1 through
grep5, and three versions of sed, sed1, sed3, and sed4.2

Table I provides information about these study objects. The
second column lists the total numbers of branches present
in extended versions (as explained in Section IV-C1) of the
programs, and the third column indicates the number of
branches left uncovered in each version by the test suites. As
the grep and sed versions increase, the number of uncovered
branches typically increases, due to changes made to the code.
Note that, although we do not explicitly analyze changes in
new program versions in order to target them in testing, by
considering the coverage of code in new versions by existing
test cases, we are implicitly considering the impact of code
modifications on testing.

B. Variables and Measures

Independent Variables. Our experiment manipulates two
independent variables: augmentation technique and time con-
straint level.

IV1: Augmentation technique. We compare five augmen-
tation techniques:
• A fully dynamic interleaving technique in which IL = 0.

As noted earlier, this technique is maximally dynamic,
in that it considers each test case generation technique
relative to a single target before allowing the Controller
to switch to another test case generation technique.

• Three intermediate levels of dynamic interleaving tech-
niques, with IL set to .25, .50, and .75, respectively.

• A fixed interleaving technique, in which IL = 1.0.
To standardize the use of our framework in this study, we

allow an algorithm to attempt to cover a target just once;
therefore, once the concolic test case generation algorithm has

2We excluded sed2 and sed5 because the prototype tool [18] that our
genetic algorithm implementation relies on to generate control flow graphs
cannot process them.

attempted to cover all targets, it will not be selected again. By
this approach, a given target branch can be considered at most
twice – once by each algorithm.

IV2: Time constraint level. To consider time constraints
we selected a basic time interval δ and partitioned the overall
time in which techniques execute into sub-intervals of size δ.
As a choice for δ we selected 5000 seconds, which partitions
the total time required to execute the longest running of our
techniques into 15 intervals.

Fixed Factors. To focus on the effects of interleaving,
we chose fixed values for several additional factors that are
parameterizable within our framework, as follows:
• As target orderings we use a random order for concolic

test case generation, and DFO for genetic test case
generation, as these are the orders that have been seen
to be most cost-effective in prior studies [37].

• We allow the concolic algorithm to reuse any test cases
that have been created in prior invocations of test case
generation algorithms. We allow the genetic algorithm to
reuse newly generated test cases within a fixed pool size.

• We use the concolic and genetic test case generation
algorithms utilized in prior work [36], [39], and we
always invoke the concolic test case generation algorithm
first, as it has been shown to be the most efficient.

Dependent Variables. We wish to measure the efficiency
and effectiveness of augmentation techniques when allowed to
run to completion, and the effectiveness of techniques when
restricted to limits imposed by time constraints. To do this we
selected two variables and measures:

DV1: Efficiency in terms of time. To track augmentation
technique efficiency when no time constraints are imposed, for
each application of an augmentation technique we measured
the wall clock time required to apply the technique up until
the point at which it completes its execution.

DV2: Effectiveness in terms of coverage. The test case
augmentation techniques we consider are intended to work
with existing test suites to achieve higher levels of coverage
in P ′ within the amount of time governed by a given time
constraint. To measure the effectiveness of techniques within
a time constraint C, we tracked the number of branches in
P ′ that can be covered by each augmented test suite from the
beginning of execution until time C. The effectiveness of a
technique when run to completion is the coverage achieved
when the technique completes its execution.

While our effectiveness variable concerns only coverage,
when we assess coverage at time constraint intervals we
are essentially assessing the cost-effectiveness of techniques
relative to the costs represented by the given time intervals.

C. Experiment Setup and Operation

To establish the experiment setup needed to conduct our
experiment we followed several steps.

1) Extended Programs: Our concolic test suite augmenta-
tion technique is implemented based on CREST [10]. CREST

transforms a program’s source code into an equivalent “ex-
tended” version in which each conditional statement with
a compound Boolean condition is transformed into multiple
conditional statements with atomic conditions without Boolean
connectives (i.e., if(b1 && b2) f() is transformed into
if(b1) {if(b2) f()}). To integrate the concolic and ge-
netic techniques into our interleaving framework, we opted to
create extended versions of all our object programs, and apply
all techniques to those versions.

2) Iteration Limits: Genetic algorithms iteratively generate
test cases, and an iteration limit governs their termination.
Similarly, the concolic algorithm that we use employs an
iteration limit that governs the maximum number of path con-
ditions that it should attempt to solve. After some exploratory
trials, we found that 15 was a reasonable number of iterations
for the genetic test suite augmentation technique and 11 was
a reasonable number for the concolic test suite augmentation
technique, because expanding the iteration limits beyond these
numbers produces less than a 1% further increase in coverage
in a substantial amount of time.

3) Tool Settings and Tuning: The Controller for our frame-
work is implemented using 500 lines of BASH scripting code,
and 1000 lines of Java code. For this study, we tuned our
genetic algorithm by applying it directly to the extended object
programs absent any existing suites. In our genetic algorithm,
we limit the population size to 20 and we chose “best half”
for selection. Our chromosomes and crossover are specific
to the program input. For grep we divide the chromosome
into three sections (one for the program options, one for the
search pattern, and one for the file that is being searched).
We apply one-point crossover to each of the first two sections
independently (the input file is retained as-is). For sed, we
consider each space-separated element of the input as a gene
and perform a single one-point crossover on this chromosome.

We used the approach level in the fitness function, and
0.05 as a mutation rate. Mutation treats each gene and each
character of the input as possible units of mutation and is per-
formed evenly (with randomness) across the gene and input.
For mutations performed on program options, we restrict the
mutation to be from a valid set (we do not restrict mutations
within the file characters). The genetic augmentation algorithm
is implemented in Java and contains 4000 lines of code. For
details on this implementation see [36]. For concolic testing,
we used CREST-BV [21], which is an extended version
of CREST that supports bit-vector symbolic path formulas.
CREST-BV consists of 8400 lines of C++ code. For each
object and technique, we executed each of our augmentation
techniques five times, to control for randomness.

D. Threats to Validity

The primary threat to external validity involves the repre-
sentativeness of our object programs and test suites. We have
examined only five versions of grep and three of sed. While
these are non-trivial, real C programs with actual versions,
the study of other objects and other test suites may exhibit
different cost-benefit tradeoffs. A second threat to external

validity pertains to our algorithms; we have utilized only one
variant of a genetic test case generation algorithm, and one
variant of a concolic testing algorithm, and we have applied
both to extended versions of the object programs, where the
genetic approach does not require this and might function
differently on the original source code. Subsequent studies are
needed to determine the extent to which our results generalize.

The primary threat to internal validity is possible faults in
the implementation of the algorithms and in tools we use to
perform evaluation. We controlled for this through functional
testing. A second threat involves inconsistent decisions and
practices in the implementation of the techniques studied; for
example, variation in the efficiency of implementations of
techniques could bias data collected.

Where construct validity is concerned, there are other
metrics that could be pertinent to the effects studied. In
particular, our measurements of cost consider only technique
run-time, and omit costs related to the time spent by engineers
employing the approaches.

E. Results

1) RQ1: Effectiveness and Efficiency of Techniques: Fig-
ure 2 presents the results obtained for the five versions of
grep and the three versions of sed. In the graphs, the
x-axes correspond to time in seconds and the y-axes cor-
respond to newly covered branches. The five lines in the
graphs track coverage achieved over time by each of the five
techniques (with each line representing the average coverage
measured per technique across five runs). The dotted and solid
lines represent the results associated with the fully dynamic
interleaving technique and the fixed interleaving technique,
respectively. The dashed lines composed of short dashes,
medium-length dashes, and long dashes represent the results of
the dynamic interleaving technique when associated with IL
settings of .25, .50, and .75, respectively (hereafter referred to
as IL.25, IL.50, and IL.75).

The fully dynamic interleaving technique ultimately
achieved the highest coverage among the five techniques on all
versions of grep and all versions of sed. The IL.25 technique
achieved the second highest coverage on all object programs.
The IL.50 technique achieved the third highest coverage on all
programs other than grep1 and sed3. The fixed interleaving
technique achieved the lowest coverage on all five versions of
grep and on sed4. The fixed interleaving technique covered
five more branches than the IL.75 technique on sed1 and 13
more branches than the IL.50 technique on sed3.

The fully dynamic interleaving technique was the most
efficient technique on all five versions of grep and sed3.
The fully dynamic interleaving technique required longer to
execute than IL.25 on sed1 and required the longest execution
time among all techniques on sed4. The fixed interleaving
technique was the slowest technique on all programs other
than grep1 and sed4. Among the IL.25, IL.50, and IL.75
interleaving techniques, none clearly outperformed the others
on our object programs. For example, the IL.25 technique

Fig. 2. Effectiveness and Efficiency of Hybrid Augmentation Techniques

required the longest time among the three interleaving tech-
niques on grep2 and grep3, but the IL.25 technique was
the fastest of the three techniques on grep1 and grep4.

As a further source of insight into the data, Table II shows
the numbers of times in which the different augmentation
approaches switched between concolic and genetic algorithms.
The first column lists object program versions. Columns 2 –
6 represent the fully dynamic, IL.25, IL.50, IL.75, and fixed
interleaving techniques, respectively. Considered alongside
the graphs shown in Figure 2, increased switching between
techniques does appear to be associated with increased final
coverage achieved. This result likely occurs because the con-
colic and genetic algorithms are able to use test cases newly
generated by prior invocations of the other algorithms.

2) RQ2: Technique Performance Considering Time Con-
straints: We now consider results under different time con-

TABLE II
CONTEXT SWITCHES BETWEEN CT AND GA

Programs Dynamic IL.25 IL.50 IL.75 Fixed
grep1 2466 51 22 9 1
grep2 2743 52 21 8 1
grep3 2841 51 23 9 1
grep4 2895 53 21 9 1
grep5 2787 54 21 7 1
sed1 2119 50 23 8 1
sed3 2489 53 20 8 1
sed4 2502 53 24 10 1

Average 2605.3 52.1 21.9 8.5 1.0

straints. The graphs in Figure 2 show that the fully dynamic
interleaving technique achieved coverage fastest except during
the earliest stages of execution of sed1. The IL.25 technique
was the second most cost-effective, for almost all time periods
on all programs, with exceptions occurring in the time period

TABLE III
EFFECTIVENESS OF AUGMENTATION TECHNIQUES OVER TIME CONSTRAINT LEVELS

Programs Technique Accumulated coverage across time constraint levels (5000 seconds per interval)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

grep1

Dynamic 414 524 579 642 667 696 703 734 745 - - - - - -
IL.25 339 425 503 608 640 670 677 710 722 - - - - - -
IL.50 350 364 401 462 511 536 553 557 568 570 570 - - - -
IL.75 336 371 390 408 435 500 511 533 547 574 574 - - - -
Fixed 338 372 391 391 393 417 458 508 531 564 570 - - - -

grep2

Dynamic 436 500 570 609 656 680 705 734 750 751 752 - - - -
IL.25 278 338 522 587 621 647 670 690 715 731 732 733 - - -
IL.50 278 345 377 419 466 490 515 544 560 561 565 579 - - -
IL.75 278 345 378 402 417 447 502 534 546 570 577 579 - - -
Fixed 278 345 378 402 406 407 417 447 502 534 546 570 577 577 -

grep3

Dynamic 482 526 560 586 636 661 702 728 750 752 752 - - - -
IL.25 356 455 479 495 525 556 566 573 580 614 627 640 661 673 -
IL.50 353 383 395 456 507 525 546 583 594 602 605 605 - - -
IL.75 354 382 395 400 406 433 490 512 529 570 584 592 595 - -
Fixed 354 384 394 400 401 406 406 490 504 515 564 583 592 593 -

grep4

Dynamic 438 499 553 615 640 675 692 699 724 724 - - - - -
IL.25 341 416 530 584 616 639 670 675 705 716 - - - - -
IL.50 340 381 407 451 495 528 551 591 613 626 628 - - - -
IL.75 342 382 406 410 471 523 544 566 584 614 616 - - - -
Fixed 340 382 407 410 415 420 459 500 508 540 578 599 - - -

grep5

Dynamic 416 512 617 653 681 698 735 744 765 773 781 - - - -
IL.25 352 473 537 563 627 658 675 688 694 703 703 - - - -
IL.50 353 396 410 456 491 498 543 569 577 595 611 - - - -
IL.75 354 398 408 412 444 487 494 528 573 582 582 - - - -
Fixed 353 396 408 412 421 422 456 491 498 543 577 582 - - -

sed1

Dynamic 376 457 509 527 554 555 558 558 - - - - - - -
IL.25 381 416 509 510 544 544 548 - - - - - - - -
IL.50 386 402 426 428 436 440 448 455 455 - - - - - -
IL.75 388 397 419 421 421 423 425 426 429 - - - - - -
Fixed 386 391 396 418 421 421 423 434 434 434 - - - - -

sed3

Dynamic 416 512 617 672 697 699 701 705 705 - - - - - -
IL.25 271 283 378 427 482 507 509 511 515 515 - - - - -
IL.50 286 365 374 383 385 412 427 427 428 432 433 - - - -
IL.75 284 370 429 435 443 446 447 447 447 447 447 - - - -
Fixed 284 371 421 433 443 444 446 446 447 447 447 447 - - -

sed4

Dynamic 195 237 277 301 315 326 345 356 368 380 385 387 387 394 394
IL.25 117 160 176 210 231 272 299 320 322 322 322 - - - -
IL.50 115 152 174 207 222 230 264 279 300 305 316 316 - - -
IL.75 114 155 173 219 242 260 270 276 290 302 307 307 - - -
Fixed 115 153 174 219 235 251 277 292 300 304 306 306 - - -

ranging from 37,000 to 48,000 seconds on grep3, and the
time period ranging from 3,300 to 22,000 seconds on sed3.
The IL.50 technique was the third most cost-effective on all
versions of grep and sed1. The IL.50 technique was least
cost-effective after 14,000 seconds on sed3 and in the time
periods from 22,000 to 43,000 seconds on sed4. The IL.75
technique followed behind the IL.50 technique. The least cost-
effective technique was the fixed interleaving technique, in all
time periods of all versions of grep, and sed1.

Table III presents the corresponding data more precisely.
The first column lists the target programs and the second col-
umn lists the names of the augmentation techniques. Columns
3 – 17 represent the 15 time constraint levels, and the entries in
each column list the cumulative number of branches covered
up through the end of that time constraint level. Hyphens (-)
in the table mean that the corresponding technique finished
prior to that time period. The best coverage for each version
and time period is displayed in bold font.

On all target programs except sed1, the fully dynamic
interleaving technique achieved the highest coverage across
all time constraint levels. On sed1, the fully dynamic inter-
leaving technique also achieved the highest coverage across
all time constraints levels except the first (i.e., the first 5,000
seconds), during which IL.50 covered 12 branches more.

V. DISCUSSION AND IMPLICATIONS

A. Performance of Dynamic Interleaving Techniques

As shown in Section IV-E, the fully dynamic interleaving
technique achieved greater coverage more quickly than the
IL.25, IL.50, IL.75, and fixed interleaving techniques. We
believe that the primary reason for this difference in effec-
tiveness is that the concolic test case generation algorithm
used in the dynamic interleaving technique is able to better
utilize new test cases generated by the genetic algorithm. As
Xu et al. [37] report, utilization of new test cases can boost
the effectiveness of the concolic approach in general. This
cannot occur in the fixed interleaving technique because in
this case, the concolic technique runs first and only once.
For example, for grep3, concolic testing with the fixed
interleaving technique covered 406.4 branches while concolic
testing with the fully dynamic interleaving technique covered
562.2 branches (38.3% more, see Table IV). In the IL.25,
IL.50 and IL.75 techniques, the concolic algorithm cannot
utilize new test cases on the first 25%, 50%, and 75% of
target branches considered, respectively, in its first run, and
this decreases its effectiveness in these cases as well.

Regarding the improved efficiency of the dynamic interleav-
ing technique we draw the following observations. The total

TABLE IV
TIME COSTS AND COVERED BRANCHES FOR grep3

Augmentation Serendipitously Tried Time Covered
technique covered branches targets cost (secs) branches

Concolic in Dynamic 511.4 1433 24267.2 562.2
Genetic in Dynamic 151.6 1161 27048.8 190.2
Concolic in IL.25 411.4 1544 30620.6 471.2
Genetic in IL.25 148.8 1218 32315.4 194.8

Concolic in IL.50 365.6 1487 28224.0 422.0
Genetic in IL.50 145.2 1183 28712.0 182.6

Concolic in IL.75 361.2 1565 36137.4 410.6
Genetic in IL.75 151.0 1266 32570.6 188.0

Concolic in Fixed 355.4 1598 35063.2 406.4
Genetic in Fixed 147.8 1279 33873.8 188.2

number of target branches that concolic test case generation
attempted to cover in the fully dynamic interleaving technique
was less than the number attempted by the IL.25, IL.50, IL.75
and fixed techniques, due to higher serendipitous coverage.
Serendipitous coverage by the concolic algorithm in the fully
dynamic interleaving technique was greater because the con-
colic algorithm utilizes the test cases generated in the prior
execution of the genetic algorithm. Test cases generated by
the genetic algorithm have different characteristics from test
cases generated by the concolic algorithm, because the two
algorithms use different approaches to generate test cases. For
example, on grep3, serendipitous coverage achieved by the
fixed interleaving technique was 1598, while for the dynamic
interleaving technique it was 1433 (11.5% fewer).

Similarly, for the genetic algorithm, the total number of
trials needed by the fully dynamic interleaving technique to
cover targets was less than the number needed by the genetic
algorithm in the fixed interleaving technique. For example,
on grep3, the number of attempts to cover targets by the
genetic algorithm in the fixed interleaving technique was 1279
while the number in the fully dynamic interleaving technique
was 1161 (10.2% fewer, see Table IV). This difference occurs
because concolic testing in the dynamic interleaving technique
covers more branches than concolic testing in the fixed inter-
leaving technique, leaving fewer branches to be covered by
the genetic algorithm.

One exceptional case in the data regarding efficiency in-
volves the IL.50 technique, whose execution time was less
than that of the IL.25, IL.75, and fixed interleaving techniques.
We believe that this occurred because the target branches on
which the concolic and genetic algorithms required significant
execution were covered serendipitously by the other algorithm.

From these observations, we can confirm that a fully dy-
namic interleaving of different test case generation techniques
can improve both the effectiveness and efficiency of augmen-
tation to a large degree.

B. Effect of Test Pool Diversity on the Genetic Algorithm

One possible reason for the low effectiveness of the fixed
interleaving technique involves the diversity of the test case
population. In the fixed interleaving technique we use initial
test cases and test cases newly generated by the concolic
algorithm to form an initial population of test cases for the
genetic algorithm. The test cases generated by the concolic

TABLE V
EFFECT OF TEST POOL DIVERSITY ON THE GA

Program Diversity GA using GA using
Init. TCs Init. TCs + CT TCs

Init. Init. TCs Time(s) Cov. Time(s) Cov.
TCs + CT TCs

grep1 11.97 8.37 28394.4 221.4 30124.2 179.0
grep2 11.97 7.98 31745.6 214.4 35781.2 169.0
grep3 11.97 6.82 29878.8 219.8 33873.8 188.2
grep4 11.97 9.13 26984.2 227.6 28896.4 177.8
grep5 11.97 9.11 26374.4 193.0 28164.4 150.0
sed1 13.66 10.12 29856.4 58.8 31022.4 42.4
sed3 13.66 9.33 39672.6 86.2 41611.2 75.6
sed4 13.66 9.17 26113.0 67.0 27571.0 56.8

algorithm, however, tend to differ only slightly from existing
test cases, because the concolic algorithm attempts to modify
only the parts of a test case that are needed to generate a new
test case executing the negated branch. Thus, it is more likely
that an initial population of test cases for the genetic algorithm
in the fixed interleaving technique will lack diversity, and this
can reduce the effectiveness of the genetic algorithm. This
argument can also be applied to the IL.25, IL.50 and IL.75
interleaving techniques, but to a lesser degree, because they
begin with the concolic algorithm, and the generated test cases
when the concolic algorithm tries a given K% of branches are
passed to the next invocation of the genetic algorithm.

To investigate the effects of test case diversity on the genetic
algorithm, we performed an additional set of experiments
using the genetic approach with two different variants of test
case reuse. First, we employed a genetic algorithm that uses
only initial test cases on target branches that are not covered by
the concolic algorithm. This setting is the same as that of the
genetic algorithm in the fixed interleaving technique, but here,
the genetic algorithm does not use test cases generated by the
concolic algorithm. Second, we employed a genetic algorithm
that uses initial test cases and test cases generated by the
concolic algorithm. This second approach is the same as that of
the genetic algorithm in the fixed interleaving technique. Note
that in both approaches, the genetic algorithm does not try to
cover branches already covered by the concolic algorithm.

Table V shows the diversity of test cases and results of the
genetic algorithm. Column 1 indicates program and version
names. Columns 2 and 3 show the diversity of the initial test
cases and of the initial test cases plus test cases generated by
the concolic algorithm, respectively. We calculated the sum
of the pair-wise edit distances between test cases divided by
the total number of possible test case pairs, and we use the
resulting value as the diversity of test cases. Columns 4 and
5 show the results of the genetic algorithm using only initial
test cases. Columns 6 and 7 show the results of the genetic
algorithm using both initial test cases and test cases generated
by the concolic algorithm.

As the data shows, test cases generated by the concolic
algorithm decreased the diversity of the test pool (see the
second and third columns), and decreased the effectiveness
of the genetic algorithm (see the fifth and seventh columns).
For example, in grep1, the use of test cases generated by
the concolic algorithm decreased diversity from 11.97 to 8.37

(-30.1%, see the second and third columns in the first row)
and decreased the number of newly covered branches from
221.4 to 179.0 (-19.2%, see the fifth and seventh columns in
the first row).

From these results, we can confirm that, contrary to our
initial expectations when configuring our techniques, the test
cases generated by the concolic algorithm can decrease the
effectiveness of the genetic algorithm by decreasing the diver-
sity of the initial test pool for the genetic algorithm. In future
work we intend to explore alternative reuse mechanisms for
achieving greater diversity.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a dynamic interleaving framework for
test suite augmentation, that can utilize different algorithms
for test generation, while also being parameterizable for
other factors potentially affecting the success of augmentation
techniques. The core of our framework is a controller that
selects the algorithm and next target at each iteration. We
implemented a variant of this framework. Experiments on five
versions of grep and three versions of sed show that a
technique in which two test case generation algorithms are
fully dynamic interleaved outperforms other techniques.

Future work includes adding algorithms to the framework,
and experimenting with different orderings, different methods
for providing or manipulating initial test suites, and addi-
tional software subjects. In particular, we intend to inves-
tigate whether the results of specific test case generation
techniques have particularly high impact on others in particular
circumstances, in order to better understand the synergies
between them. We also plan to further investigate the time
differential that was observed in our individual algorithms
when covering different branches, and how that impacts the
overall performance of the interleaving framework.

ACKNOWLEDGEMENTS

This work was supported by the AFOSR through award
FA9550-10-1-0406 and by the NSF through awards CCF-
1161767 and CCF-0747009 to the University of Nebraska
- Lincoln. The work was also supported by the NRF
Mid-career Research Program funded by the MSIP Korea
(2012R1A2A2A01046172) and the MSIP (Ministry of Sci-
ence, ICT & Future Planning) of Korea in the ICT R&D
Program 2013.

REFERENCES

[1] T. Apiwattanapong, R. Santelices, P. K. Chittimalli, A. Orso, and M. J.
Harrold. Matrix: Maintenance-oriented testing requirements identifier
and examiner. In TAIC-PART, Aug. 2006.

[2] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, P. Tonella,
and T. Vos. Symbolic search-based testing. In ASE, 2011.

[3] D. Binkley. Semantics guided regression test cost reduction. TSE, 23(8),
Aug. 1997.

[4] S. Bohner and R. Arnold. Software Change Impact Analysis. IEEE
Computer Society Press, Los Alamitos, CA, 1996.

[5] M. Borges, M. d’Amorim, S. Anand, D. Bushnell, and C. Pasareanu.
Symbolic execution with interval solving and meta-heuristic search. In
ICST, 2012.

[6] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
Exe: Automatically generating inputs of death. In CCCF, Oct 2006.

[7] J. Chang and D. Richardson. Structural specification-based testing:
Automated support and experimental evaluation. In FSE, Sept. 1999.

[8] T. Y. Chen and R. Merkel. Quasi-random testing. TR, 56(3), 2007.
[9] L. Clarke. A system to generate test data and symbolically execute

programs. TSE, 2, May 1976.
[10] CREST - automatic test generation tool for C. http://code.google.com/

p/crest/.
[11] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimen-

tation with testing techniques: An infrastructure and its potential impact.
ESEJ, 10(4), 2005.

[12] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioritiza-
tion: A family of empirical studies. TSE, 28(2), Feb. 2002.

[13] G. Fraser and A. Arcuri. The seed is strong: Seeding strategies in
search-based software testing. In ICST, 2012.

[14] G. Fraser and A. Arcuri. Whole test suite generation. TSE, 39(2), 2013.
[15] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated

random testing. In PLDI, June 2005.
[16] R. Gupta, M. Harrold, and M. Soffa. Program slicing-based regression

testing techniques. JSTVR, 6(2), June 1996.
[17] M. Harman, Y. Jia, and W. B. Langdon. Strong higher order mutation-

based test data generation. In FSE, 2011.
[18] M. J. Harrold, L. Larsen, J. Lloyd, D. Nedved, M. Page, G. Rothermel,

M. Singh, and M. Smith. Aristotle: A system for the development of
program-analysis-based tools. In ASC, Mar. 1995.

[19] A. Hartman and K. Nagin. Model driven testing - agedis architecture
interfaces and tools. In CMDSE, Dec. 2003.

[20] K. Inkumsah and T. Xie. Improving structural testing of object-oriented
programs via integrating evolutionary testing and symbolic execution.
In ASE, 2008.

[21] M. Kim, Y. Kim, and Y. Kim. Industrial application of concolic testing
approach: A case study on libexif by using CREST-BV and KLEE. In
ICSE SEIP, 2012.

[22] K. Lakhotia, M. Harman, and H. Gross. AUSTIN: A tool for search
based software testing for the C language and its evaluation on deployed
automotive systems. In SSBSE, pages 101–110, 2010.

[23] Z. Li, M. Harman, and R. Hierons. Search algorithms for regression
test case prioritization. TSE, 33(4), Apr. 2007.

[24] R. Majumdar and K. Sen. Hybrid concolic testing. In ICSE, 2007.
[25] J. Malburg and G. Fraser. Combining search-based and constraint-based

testing. In ASE, 2011.
[26] P. McMinn. Search-based software test data generation: A survey.

JSTVR, 14(2), 2004.
[27] C. C. Michael, G. McGraw, and M. A. Schatz. Generating software test

data by evolution. TSE, 27(12), Dec. 2001.
[28] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large

software systems. In FSE, Nov. 2004.
[29] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Păsăreanu. Differential

symbolic execution. In FSE, Nov. 2008.
[30] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental

symbolic execution. In PLDI, June 2011.
[31] G. Rothermel and M. J. Harrold. Selecting tests and identifying test

coverage requirements for modified software. In ISSTA, Aug. 1994.
[32] G. Rothermel and M. J. Harrold. A safe, efficient regression test

selection technique. TOSEM, 6(2), Apr. 1997.
[33] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J.

Harrold. Test-suite augmentation for evolving software. In ASE, Sept.
2008.

[34] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine
for C. In FSE, Sept. 2005.

[35] K. Taneja, T. Xie, N. Tillmann, J. Halleux, and W. Schulte. eXpress:
Guided path exploration for regression test generation. In ISSTA, July
2011.

[36] Z. Xu, M. B. Cohen, and G. Rothermel. Factors affecting the use of
genetic algorithms in test suite augmentation. In GECCO, July 2010.

[37] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. Cohen. Directed test
suite augmentation: Techniques and tradeoffs. In FSE, Nov. 2010.

[38] Z. Xu, Y. Kim, K. M, and G. Rothermel. A hybrid directed test suite
augmentation technique. In ISSRE, 2011.

[39] Z. Xu and G. Rothermel. Directed test suite augmentation. In APSEC,
Dec. 2009.

