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Abstract: Facial expression recognition (FER) has received increasing attention. However, multiple
factors (e.g., uneven illumination, facial deflection, occlusion, and subjectivity of annotations in image
datasets) probably reduce the performance of traditional FER methods. Thus, we propose a novel
Hybrid Domain Consistency Network (HDCNet) based on a feature constraint method that combines
both spatial domain consistency and channel domain consistency. Specifically, first, the proposed
HDCNet mines the potential attention consistency feature expression (different from manual features,
e.g., HOG and SIFT) as effective supervision information by comparing the original sample image
with the augmented facial expression image. Second, HDCNet extracts facial expression-related
features in the spatial and channel domains, and then it constrains the consistent expression of
features through the mixed domain consistency loss function. In addition, the loss function based
on the attention-consistency constraints does not require additional labels. Third, the network
weights are learned to optimize the classification network through the loss function of the mixed
domain consistency constraints. Finally, experiments conducted on the public RAF-DB and AffectNet
benchmark datasets verify that the proposed HDCNet improved classification accuracy by 0.3–3.84%
compared to the existing methods.

Keywords: facial expression recognition; attention mechanism; attention consistency; JS divergence

1. Introduction

Currently, with the rapid progress of deep learning algorithms and computer vision
technologies, the accuracy of FER has improved gradually. As a result, FER is now being
applied in various human-computer interaction systems, e.g., social robots, medical equip-
ment, and fatigue driving monitoring. In the online learning field, facial expressions are
important explicit state characteristics of the learners. Thus, determining how to improve
the capability of learners’ emotion–state perception based on FER has attracted increasing
attention in the online learning field [1]. However, when applied to online learning, the
FER task faces the following problems [2]: (1) Images obtained under natural conditions
meet low-quality problems. (2) FER must consider certain differences due to different
usage scenarios. For example, in a natural scene with uncertain lighting and occlusion, it
is necessary to adjust the parameters of the image adaptively and eliminate the influence
of occlusion. In contrast, in a laboratory environment, better classification results can be
obtained because there is less environmental interference. (3) Manual labeling processes
are easily affected by the subjectivity of labelers, which results in noisy labels and affect
classification accuracy. (4) Due to the interclass similarity and annotation ambiguity of
facial expression data, the FER task is more challenging than traditional classification tasks.

Typically, traditional face recognition methods include four parts, i.e., the raw image
input, data preprocessing, feature engineering, and expression classification [3]. Feature
engineering, which is the most important process in traditional methods, needs to be ex-
tracted manually and input into the classifier for learning. The quality of feature extraction
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is closely related to the level of classification performance; thus, adaptability is weak, and
the recognition accuracy is typically limited.

The end-to-end supervised deep learning method is the most common classification
paradigm for FER, and its classification performance largely depends on a large amount of
high-quality labeled data [4]. However, collecting large-scale datasets with highly accurate
annotations is generally an expensive and time-consuming process, and training with
an insufficient amount of data will result in poor generalization performance caused by
overfitting. Thus, it is necessary to collect and clean data on a large scale or expand
the number of samples using data augmentation techniques. In recent years, due to the
powerful feature learning ability of deep learning methods, FER methods based on deep
neural networks have made remarkable progress. For example, Wang et al. proposed
SCN [5] to suppress the uncertainty of facial expression data to learn the robust features of
FER. This network includes self-attention importance weighting, ranking regularization,
and relabeling. The network uses a self-attention importance weighting module to learn the
weight of each face image to capture the importance of the sample for training and for loss
weighting. The ranking regularization module is employed to highlight certain samples
and suppress uncertain samples, and the relabeling module attempts to identify mislabeled
samples and modify their labels. Wang et al. proposed RAN to solve the FER problem
under occlusion conditions and pose changes in natural scenes [6]. This network divides the
input face image into several areas and inputs them to the backbone convolutional neural
network (CNN) for feature extraction. It then uses a self-attention and relational attention
module to summarize the facial region features in static images, and it introduces region-
biased features to enhance the region weights for classification. Wen et al. proposed DAN
to address the low recognition performance problem caused by the interclass similarity
of facial expression images [7]. This network learns to maximize the class separability
of the backbone facial expression features using a feature clustering network. Then, a
multi-head cross-attention network captures multiple distinct attentions, and an attention
fusion network punishes overlapping attentions and fuses the learned features. Zhang et al.
proposed EAC to handle noisy labels from a feature-relearning perspective [8]. Their study
exploits erasing attention consistency by designing an unbalanced framework to prevent
the model from memorizing noisy labels. Liao et al. proposed a locally improved residual
network attention model (RCL-Net). They introduced LBP features in the facial expression
feature extraction stage to extract texture information on the expression image, emphasizing
facial feature information and improving the model’s recognition accuracy [9]. Qiu et al.
proposed a local sliding window attention network (SWA-Net) for FER. They proposed
a sliding window strategy for feature-level cropping, which preserves the integrity of
local features without requiring complex preprocessing. Their proposed local feature
enhancement module mines fine-grained features with intra-class semantics through a
multiscale, deep network. They introduced an adaptive local feature selection module to
guide the model to find more of the essential local features [10].

Due to the limitation of network structure, the above methods cannot make full use
of spatial information and channel information in facial images, and lack of attention
consistency constraints, resulting in a certain limitation on the recognition accuracy of the
model. Therefore, the proposed HDCNet firstly extracts facial expression-related features
in the spatial and channel domains, and then it constrains the consistent expression of
features through the mixed domain consistency loss function. Finally, the network weights
are learned to optimize the classification network through the loss function of the mixed
domain consistency constraints. Unlike EAC, which only constrains feature learning in
the spatial domain, the proposed HDCNet method further strengthens the consistency
of the channel representation probability distribution in the channel domain and further
enhances the contribution of image label-related regions to FER. Our primary contributions
are summarized as follows:

(1) A simple and effective mixed-domain consistency constraint is proposed. Here, by
extracting facial expression features in the spatial and channel domains and constraining
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the consistent expression of features by designing a mixed-domain consistency loss func-
tion, state-of-the-art FER accuracy is obtained. (The best SOTA accuracy on RAF-DB and
AffectNet datasets reach 90.35% and 60.40%, respectively).

(2) In the spatial domain, the network is constrained, and the loss function is designed
based on the prior assumption of spatial attention consistency. In the channel domain, the
loss function is constrained. The loss function is designed based on the consistency of the
channel representation’s probability distribution before and after image transformation.

(3) Multiple evaluation and ablation experiments are conducted on multiple benchmarks
to verify the effectiveness of mixed domain consistency (demonstrating that 0.39–3.84% and
0.13–1.23% improvement is achieved on RAF-DB and AffectNet, respectively).

The remainder of this paper is organized as follows. Section 2 introduces the research
on the attention mechanism, the principle of attention consistency, and applications of
class activation maps. Section 3 describes the proposed methods and modules, as well
as the overall architecture and design of the loss function. In Section 4, we discuss the
experimental process and analyze the experimental results. Finally, the paper is concluded
in Section 5.

2. Related Works

In this section, we introduce the attention mechanism, attention consistency, JS diver-
gence, and other technologies involved in the proposed HDCNet.

2.1. Attention Mechanism

The essence of the attention mechanism is a set of weight coefficients independently
learned by the network and a dynamic weighting method to emphasize the areas of interest
while suppressing irrelevant background areas. Attention mechanisms can be broadly
classified into channel attention, spatial attention, hybrid attention, and self-attention [11].

Channel attention can strengthen important features and suppress unimportant fea-
tures by modeling the correlation between feature maps of different channels and assigning
different weight coefficients to each channel. For example, SENet adjusts the feature re-
sponse between channels adaptively through feature recalibration [12], and SKNet was
inspired by Inception-block and SE-block, and it considers multiscale feature representation
by introducing multiple convolution kernel branches [13,14]. The attention to feature maps
at different scales allows the network to focus more on important scale features. In addition,
ECANet uses one-dimensional sparse convolution operations to optimize the “upgrade
first and then reduce dimensionality” strategy adopted by SENet using two multilayer
perceptrons to learn the correlations between different channels [15].

Spatial attention attempts to improve the feature expression of key areas. Essentially,
it transforms the spatial information in the original image into another space using a spatial
transformation module and retains key information. It generates a weight mask for each
position and weights the output, thereby highlighting specific target regions of interest
while attenuating irrelevant background regions. For example, CBAM connects a spatial
attention module based on the original channel attention [16]. Generally, spatial attention
ignores the information interaction between channels because it treats the features in each
channel equally.

Self-attention is a variant of the attention mechanism. The purpose of self-attention
is to reduce the dependence on external information and utilize the inherent information
of the feature as much as possible to interact with attention. It first appeared in the
transformer architecture proposed by Google. Later, He et al. applied self-attention to the
CV field and proposed the Non-Local module, which models the global context through
the self-attention mechanism and effectively captures long-distance feature dependencies.
Generally, the process of acquiring attention is mapped into three vector branches through
the original feature map, i.e., Q (query), K (key), and V (value). First, the correlation weight
matrix coefficients of Q and K are calculated, and then the weight matrix is normalized
using the SoftMax function. Finally, the weight coefficients are superimposed on V to
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model the global context information [17]. The dual attention mechanism proposed by
DANet applies the No-local concept to the spatial and channel domains simultaneously.
Respectively, it uses the spatial pixel points and channel features as Q vectors to realize
context modeling [18].

2.2. Consistency of Attention

Generally, the rationality of class activation mapping (CAM) heatmaps can reflect the
performance of CNN classifiers [19]. If the attention heatmap emphasizes the semantic
regions related to the considered labels, then the CNN classifier will exhibit better clas-
sification performance. However, it is very difficult to label relevant regions accurately
on a large number of training images, and there may be discrepancies between different
annotators when labeling relevant regions. Thus, a straightforward method to improve the
plausibility of the attentional heatmap is to provide explicit supervision of label-related
regions during CNN training.

As discussed in the literature [4], in multi-label classification tasks, various techniques,
e.g., data augmentation and image transformation, are employed to improve the perfor-
mance of CNN classifiers. However, even when the training images are augmented by
these transformations, current CNN classifiers cannot maintain the consistency of attention
under many spatial transformations. In other words, the attention heatmap of the image
before the data augmentation is inconsistent with the inverse transformation of the heatmap
of the image after data augmentation. Thus, we designed an unsupervised loss function
called “Attention Consistency Loss” by considering the consistency of visual attention
under spatial transformation to realize better visual perception rationality and better image
classification performance.

2.3. Class Activation Mapping

The CAM technique is used to generate a heatmap in order to highlight the contribut-
ing regions of discriminative classes in images in a CNN and can realize interpretable
analysis and saliency analysis of the images. CAM algorithms are primarily divided into
activation-based methods and gradient-based methods.

The activation value-based method obtains the heatmap of the corresponding category
by weighting and summing the output feature maps of the convolutional layer. The original
CAM algorithm uses the output of the global average pooling layer as the weight to perform
a weighted summation of the feature map [19]. The ScoreCAM method introduces the
attention mechanism and obtains the attention weight of each channel through repeated
pooling and convolution operations, and then it performs a weighted summation of the
feature maps [20]. The ssCAM method adds a spatial attention mechanism based on
ScoreCAM and further improves the accuracy of attention by performing spatial attention
transformation on the feature maps [21]. In addition, the AblationCAM method calculates
the contribution of each channel to the final result by eliminating channels one by one to
obtain the heatmap [22].

The gradient-based method primarily uses the gradient backpropagation method to
calculate the importance score of each position according to the gradient information of the
output feature map of the convolution layer to the target category to obtain a heatmap. The
GradCAM method performs global average pooling on the gradient of the output feature
map, obtains the weight coefficient, and performs weighted summation on the feature
map [23]. The GradCAM++ method adds the calculation of second-order information
based on GradCAM to obtain a more refined heatmap [24], and the LayerCAM method
involves an element-based calculation process. For each element of each feature map, there
is a corresponding weight coefficient that reflects the importance of the feature map more
finely than previous methods [25].

The above CAM algorithms have achieved good performance in several tasks, e.g., im-
age classification and target positioning; however, they also have their own limitations
and deficiencies. First, the gradient-based methods have certain restrictions in terms of
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the order of the convolutional and pooling layers in the network; thus, they cannot be
directly applied to all types of network structures. Second, the gradient-based methods
are susceptible to background noise, which leads to a reduction in the accuracy of the heat
maps. There are also some problems with the method based on the activation value. For
example, for some unbalanced datasets, the training model will focus on categories with a
large number of samples, which will affect the generalization ability of the model on the
test data. In addition, these algorithms only focus on the target category. In other words,
they do not consider the influence of other categories; thus, some important contextual
information may be ignored.

3. Proposed Method

In this section, we describe the proposed HDCNet method in detail.
Most typical CNN architectures, e.g., the Inception [14] and VGGNet [26] networks,

begin with convolutional layers, and then they perform global average pooling on the
feature maps from the last convolutional layer. The pooled features are then input to the
final fully connected (FC) layer for classification. The structure of the proposed HDCNet
is shown in Figure 1. To learn high-quality features and realize better feature decoupling,
our mixed domain consistency module is divided into two parts, i.e., the spatial domain
consistency (SDC) constraint module and the channel domain consistency (CDC) constraint
module, for short: SDC module and CDC module, respectively.
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Figure 1. Overview of the proposed HDCNet. We note that M represents the heatmap corresponding
to the original image, M′ corresponds to the heatmap after the horizontal flip operation, and T(·)
represents the inverse transformation operation of the horizontal flip.

First, we perform data enhancement processing on a batch of images to obtain image
I and its horizontally flipped image I′ satisfying the condition Ii,j,k = I′ i,j,w−k, where i,
j, k, and w are the channel index, height index, width index, and width of the image,
respectively. The images I and I′ are input to the backbone simultaneously, and after feature
extraction, the feature maps F and F′ of the deep channel and low spatial resolution with
basic category discrimination are obtained. In this study, we refer to the experimental
results of EAC, where images are only processed with horizontal flipping and random
erasing in the data augmentation stage.

The SDC module generates CAM heatmaps M and M′ according to the feature map.
Here, by minimizing the MSE difference between the attention maps, the network can learn
the features related to the label from the spatial domain.

The CDC module generates probability distributions P and Q in the channel dimen-
sion according to the feature map. By minimizing the probability distribution difference,
the network can stably learn the contribution distribution of each channel in the cate-
gory discrimination, thereby reducing the label-independent features that are learned by
the network.

As shown in Figures 1 and 2, we simultaneously input facial expression images pro-
cessed with random erasing and horizontal flipping to the backbone CNN with ResNet50.
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One branch is the feature output from the original image, and the other branch is the
feature output from the horizontally flipped image. The two output feature vectors are
then processed by the CDC and SDC modules, respectively. Note that the CDC and SDC
modules reuse the Global Average Pooling(GAP) layer. To be specific, the CDC module
uses the SoftMax function to compress the features in the spatial dimension and infers
the corresponding channel representation probability distribution. The SDC module inte-
grates the global spatial information through the weighting of the FC layer to obtain the
probability of the classification.
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Figure 2. Overview of the SDC module and the CDC module. The figure shows how the dimensions
of the image change as it passes through the SDC and CDC modules.

3.1. SDC Module

The GAP layer integrates the global spatial information. Here, the mean value after
the GAP is weighted by the weight of the FC layer to obtain the probability of classification,
and CAM weights the feature map before GAP to obtain the classification explanation.
Typically, the rationality of the CAM heatmap can reflect the performance of the CNN
classifier; thus, if the attention heatmap highlights regions that are semantically related
to the considered label, the CNN will demonstrate better classification performance. The
equation for GAP is as follows.

yi =
1

HW

H

∑
j=1

W

∑
k=1

xi,j,k (1)

here, H and W represent the height and width of the feature map, xi,j,k represents the value
of the position of the feature map (i, j, k), and yi represents the pixel mean corresponding
to channel i.

As shown in Figure 3, the areas of interest in the image CAM heatmap before and
after partial horizontal flipping do not overlap, which means that, although the semantic
information before and after the image transformation has not changed, the network model
is not consistent with the area of interest before and after the transformation. This demon-
strates that the model does not fully focus on the label-related regions when performing
the classification.
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Figure 3. GradCAM heatmap of the original image and the corresponding horizontal flip image:
(a) without SDC and CDC modules, and (b) with SDC and CDC modules.

Table 1 are F, F′ ∈ RC×H×W , and the feature maps obtain the corresponding spatial
average value after passing through GAP. Here, Wgap ∈ RC×1×1 is used as the weight of
the feature map channel, and the weight of the FC layer of the final image classification
is W f c ∈ RC×L. The shape of the feature map F, F′ is changed to 1× C× H ×W, and the
shape of the FC weight W f c is changed to L×C× 1× 1, and multiply it linearly by channel.
Combine the feature maps of each label and sum them along the channel dimension C to
obtain the CAM heatmap M ∈ RL×H×W corresponding to each label, formalized as follows.

Ml(i, j) =
C

∑
c=1

W(l, c)Fc(i, j) (2)

here, L, C, H, and W are the number of classification tasks, the number of channels, height
and width of the feature map, respectively. Ml(i, j) indicates the attention heatmap of the
label l at the spatial position (i, j), W(l, c) indicates the weight of the feature map channel c
corresponding to the label l, and Fc(i, j) represents the feature map of channel c from the
last convolutional layer at the spatial position (i, j).

Table 1. Results of ablation experiments on the effectiveness of SDC and CDC modules.

Methods Accuracy (%)

- 88.13
+channel consistency 89.77 (+1.64)
+spatial consistency 90.30 (+2.17)

+channel consistency + spatial consistency 90.74 (+2.61)

We define the spatial domain consistency loss as the distance (Dsdc) between the
attention heatmap before horizontal flipping and the attention heatmap after horizontal
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flipping. By optimizing the loss function, the spatial domain attention of the image is
consistent before and after transformation, which can be expressed as follows.

Dsdc =
1

LHW

L

∑
l=1
‖Ml −M′l‖2 (3)

Equation (3) represents the spatial domain consistency distance for a single facial
expression sample image, and the total spatial domain consistency loss is discussed
in Section 4.3.

3.2. CDC Module

Given that each channel contains a specific feature response whose contribution to
the final classification result is discriminative when exploring the consistency problem
in the channel domain, we propose an a priori hypothesis: for a pair of feature maps
F, F′ ∈ RC×H×W output by the final convolutional layer, the CDC infers that the corre-
sponding channel representation probability distributions P and Q are consistent.

P = so f tmax(GAP(F)) (4)

Q = so f tmax
(
GAP

(
F′
))

(5)

To measure the difference between two probability distributions, we first introduce
the KL divergence to describe the difference from P to Q.

KLD(P ‖ Q) = ∑ p(x)log
q(x)
p(x)

(6)

where (x) and q(x) denote the probabilities of P and Q on the xth event, respectively.
The higher the similarity between P and Q is, the smaller the KL divergence will be.

Note that the difference from Q to P can be obtained in the same manner.

KLD(Q ‖ P) = ∑ q(x) log
p(x)
q(x)

(7)

However, due to the asymmetry of the KL divergence, the training efficiency may
be reduced during the training process, and the convergence speed may be reduced. To
solve this problem, we utilize the JS divergence to represent the difference between the
two distributions.

JSD(P ‖ Q)& =
1
2

KLD(P ‖ M) +
1
2

KLD(Q ‖ M) (8)

where M = 1
2 (P + Q), M represents the intermediate distribution of P and Q. According to

Equations (6)–(8), the simplified Equation (9) is obtained as follows.

JSD(P ‖ Q) =
1
2 ∑ p(x)log

(
p(x)

p(x) + q(x)

)
+

1
2 ∑ q(x)log

(
q(x)

p(x) + q(x)

)
+ log2 (9)

here, P, Q ∈ RC represents the channel feature probability distribution of the feature F, F′.
Note that Equation (9) is the channel-domain consistency constraint loss for a single sample.
Refer to Section 3.3 for the total channel-domain constraint loss.
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3.3. Full Objective Function

We employ the cross entropy function as the classification loss function after the
feature f of the GAP layer and the weight of the FC layer, W f c, as follows.

Lcls = −
1
N

N

∑
i=1

log
eW

(yi)
f c fi

∑L
j=1 eW

(yj)

f c fi

(10)

here, W(yi)
f c represents the yi-th weight of the FC layer, where yi is the label given by the i-th

sample. In addition, fi represents the feature obtained by the feature F of the i-th sample
through the GAP layer.

The loss function derived from Equation (3) can be expressed as follows:

Lsdc =
1

NLHW

N

∑
n=1

L

∑
l=1
‖Mn,l −M′n,l‖2 (11)

here, Mn,l represents the heatmap of the l-th category label of the n-th sample, and M′n,l
is the heatmap of the expression image corresponding to Mn,l , after flipping, where N is
the sample size, L is the total number of classification task categories, and H and W are the
height and width of the expression image, respectively.

The channel domain consistency constraint loss function derived from Equation (9)
can be expressed as follows.

Lcdc =
1
N

N

∑
i=1

{
1
2 ∑ pi(x)log

(
pi(x)

pi(x) + qi(x)

)
+

1
2 ∑ qi(x)log

(
qi(x)

pi(x) + qi(x)

)
+ log2

}
(12)

Then, from Equations (10)–(12), we can clarify that the calculation method of the total
objective function is expressed as follows.

L = Lcls + λsdcLsdc + λcdcLcdc

here, Lcls represents the classification cross-entropy loss function, Lsdc represents the spatial
domain consistency constraint loss function, and Lcdc represents the channel domain
consistency constraint loss function. In addition, λsdc and λcdc are the hyperparameters of
Lsdc and Lcdc, respectively. For additional details, refer to Section 4.5.1, where the ablation
experiments of λsdc and λcdc are discussed.

4. Experiment
4.1. Experimental Platform and Hyperparameter Settings

In this study, we used a PyTorch backend to implement the proposed HDCNet using
a hardware platform with an Intel i7-10900K CPU, an NVIDIA RTX3080-10G GPU, and
64 GB of RAM. We used ResNet50 as the backbone network and fine-tuned the proposed
HDCNet based on the pre-trained MS-Celeb-1M model. To facilitate a fair comparison, we
cropped, aligned, and scaled the face images to 224 × 224 pixels. For data augmentation
during training, we applied horizontal flipping and random erasing to the training images.
During network training, the batch size was set to 64. The initial learning rate was set to
10−4, and the number of iterations was set to 60. In addition, the Adam optimizer was
used to accelerate convergence. Here, a learning rate adjuster was utilized with a gamma
ExponentialLR (a function of exponentially adjusted learning rate in PyTorch) value of 0.9
to reduce the learning rate in each round to prevent the accuracy rate from oscillating due
to an excessively large learning rate during convergence.
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4.2. Dataset
4.2.1. RAF-DB

The RAF-DB is a real-world, large-scale facial expression dataset [27,28] commonly
used in natural scene FER-related papers from the CVPR conference. This dataset contains
approximately 30,000 facial images downloaded from the internet. The labels are based on
crowdsourcing annotations, where each image was labeled by approximately 40 indepen-
dent annotators who provided providing 7 basic and 11 composite sentiment labels. In this
study, 15,339 images were used for expression classification (12,271 training set images and
3068 test set images). The images in this database exhibit significant differences in subjects’
age, gender and race, head posture, lighting conditions, occlusion (such as glasses, facial
hair, or self-occlusion), and post-processing operations (such as various filters and special
effects). RAF-DB has a lot of diversity, abundant and rich annotations.

4.2.2. AffectNet

AffectNet is a large database of facial expressions in the wild, containing more than
one million facial images collected from the internet by querying three major search engines
using 1250 emotion-related keywords in six different languages [29]. About half of the
retrieved images (~440 K) were manually annotated for the presence of seven discrete facial
expressions (classification model) and the intensity of valence arousal (dimensional model).

4.3. Feature Visualization

To evaluate the effectiveness of the proposed HDCNet, we used the PCA-initialized
t-SNE algorithm [5,7,30,31] to visualize the distribution of features learned by the GAP
layer on the test set. This method reduces the original high-dimensional features to two
dimensions nonlinearly and uses the conditional probability of distance to represent the
similarity between points. This distance is obtained by calculating the Euclidean distance.
As shown in Figure 4, we compared the expression feature distributions of different models
on the test set, and the results demonstrate that the proposed HDCNet outperformed the
compared models [5–8] (their main ideas can be found in the Section 1). The expression fea-
ture distribution of the RAF-DB test set showed good intraclass compactness and interclass
separability, i.e., the similarity between the same kinds of expression elements was high,
the similarity between different types of expressions was low, and the classification interval
was large. We believe that this is because HDCNet is forced to learn the features of the
label-related regions and reduce the interaction with the features of the label-independent
regions in the mixed domain consistency constraint, thereby improving the classification
performance. Figure 4 shows the prediction results of the image before and after performing
the flipping augmentation and the region of interest in the heatmap. As can be seen, due to
the constraint effect of the loss function we designed, the network was consistent with the
region of interest of the image before and after the horizontal flipping, which avoids the
reduction in classification accuracy due to the semantic information change caused by the
horizontal transformation of the image.
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4.4. Gradient Class Activation Map Visualization

We used GradCAM to generate the heatmaps to visualize the contribution of the SDC
and CDC modules to the FER task. First, we conducted experiments where the SDC and
CDC modules were utilized independently, and then we conducted experiments in which
both modules were used simultaneously. We then compared the heatmap results for these
three cases. As shown in Figure 5: (a) without the SDC module and CDC module, (b) added
the CDC module, (c) added the SDC module, and (d) both the SDC module and CDC
modules are added.
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Figure 5. Proposed HDCNet’s CAM heatmap of different expressions on the RAF-DB test set.
(a) without the SDC module and CDC module, (b) added the CDC module, (c) added the SDC
module, and (d) both the SDC module and CDC modules are added. In Figure 5, the pictures
in the “fear” category have uneven lighting, while the pictures in the “disgust” and “neutral”
categories show significant changes in facial posture. The official website of the RAF-DB dataset in-
troduces that its dataset has significant variability in head posture, lighting conditions, and occlusion.
(http://www.whdeng.cn/raf/model1.html, accessed on 10 April 2023).

When using only the CDC module, we found that the classification accuracy of
the model increased by 1.64%, and the heatmap results demonstrate that the model’s
attention to the mouth area increased significantly. When using only the SDC module, the
classification accuracy of the model increased by 2.71%, and the heatmap results show that
the model’s attention to the nasal area increased significantly. When the SDC and CDC
modules were used simultaneously, the classification accuracy increased by 2.61%, and the
heatmap results demonstrate that the models’ attention to the overall face area increased.

4.5. Ablation Study
4.5.1. Weight Coefficient of the Loss Function

To explore the influence of the SDC and CDC loss function weight coefficients on the
performance of the proposed HDCNet, we conducted a series of experiments and selected
different weight coefficients in the range of 1.0–10.0. Figure 6 shows the relationship
between the classification accuracy of the proposed HDCNet on the RAF-DB dataset and
different values for λsdc and λcdc. The results show that when λsdc = 2.5 and λcdc = 10.0,
the proposed HDCNet achieved the best performance. These experimental results verify
the influence of the SDC and CDC loss function weight coefficients on the performance of
HDCNet and provide an important reference for further optimization of the network.

http://www.whdeng.cn/raf/model1.html
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with an interval distance of 1.5 and a value range of 1.0–10.0.

4.5.2. Ablation Experiments for the Effectiveness of SDC and CDC Modules

To verify the effectiveness of the SDC and CDC modules, we used ResNet50 as the
benchmark comparison and conducted experiments on the RAF-DB dataset by adding
the SDC module independently, adding the CDC module independently, and using SDC
and CDC modules simultaneously. Without the SDC and CDC modules, the classification
accuracy of ResNet50 on the RAF-DB dataset was 88.13%. When the CDC and SDC
modules were used independently, the classification accuracy increased by 1.64% and
2.17%, respectively. When both CDC and SDC modules were used simultaneously, the
classification accuracy increased by 2.61%. These results demonstrate that both the SDC
and CDC modules have a positive contribution to the accuracy of the test set, and the effect
of using both was better than using either module independently.

4.5.3. CAM Algorithm Selection of SDC Module

Regarding the selection of the CAM algorithm in the SDC module, we considered
the gradient-based GradCAM and LayerCAM algorithms. Although GradCAM is more
general than CAM and does not require modification and retraining of the network, ad-
ditional gradient information is required. The LayerCAM algorithm solves the problem
of significant noise in GradCAM shallow feature maps but requires more computing re-
sources. By comparing the results shown in Table 2, we observe that the original CAM
algorithm obtained the best classification accuracy. The gradient-based CAM algorithm
needs to backpropagate once more to obtain the gradient information, which incurs a huge
computational overhead. However, the performance improvement is very limited. Thus, in
Table 3, we quantify the average speed of each batch of the different CAM algorithms in the
model processing. From the results, we selected the low-overhead original CAM algorithm.

Table 2. Comparison of classification accuracy of different CAM algorithms in the SDC module.

CAM-like Algorithm of SDC Accuracy (%)

GradCAM 88.16
LayerCAM 87.71

CAM 90.30
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Table 3. Performance overhead comparison of different CAM algorithms in the SDC module. A
number in bold represents the best average processing speed result in the column.

CAM-like Algorithm of SDC Average Processing Speed (Batch/s)

GradCAM 0.66
LayerCAM 0.59

CAM 2.46

4.6. Performance Comparison

Quantitative comparisons of performance on the RAF-DB dataset are shown in
Tables 1–3. For a more convincing comparison, in Table 4, we compared the proposed
method to the latest research in the FER field. As can be seen, the proposed method out-
performed the two SOTA methods in classification accuracy, i.e., DAN [7] and EAC [8], by
1.04% and 0.39% on the RAF-DB, respectively. In particular, the fear, disgust, and sadness
categories are 2.1%, 1.9%, and 5.1% higher than the EAC method, respectively.

Table 4. Performance comparison on RAF-DB dataset and AffectNet dataset. * denotes test with
seven classes on the AffectNet dataset. † denotes that the model is pre-trained on MSCeleb. A number
in bold represents the best accuracy result in the column.

RAF-DB AffectNet

Methods Accuracy (%) Methods Accuracy (%)

SCN [5] 87.03 SCN [5] 60.23
RAN [6] 86.90 RAN [6] 59.50
RUL [31] 88.98 ESR-9 [32] 59.30
DAN [7] 89.70 EfficientFace [33] 59.89
EAC [8] 90.35 VGG-FACE [34] 60.40

Baseline1 (ResNet50) 83.46 Baseline1 (ResNet18) 53.81
Baseline2 † (ResNet50) 88.13 Baseline2 † (ResNet18) 56.97

HDCNet (Ours) 90.74 HDCNet * (Ours) 60.53

To further measure the performance of the proposed method, we used a confusion
matrix to evaluate the model’s prediction results. It lists the correspondence between
the model’s prediction results and the real results, which can help us understand the
model’s prediction performance, as well as the accuracy and error of the model on different
categories. Here, each row represents the true label, each column represents the predicted
label, and the diagonal represents the accuracy of the corresponding class. As shown in
Figure 7, on the RAF-DB dataset, the recognition accuracy of happiness was the highest, and
the recognition accuracies for both disgust and fear were the lowest. Note that the number of
happiness samples was the largest in the experimental dataset, and the numbers of disgust
and fear samples were small. As can be seen, disgust is easily confused with sadness,
anger, and neutrality, and fear is easily confused with surprise, sadness, and neutrality.
Compared with EAC, the proposed HDCNet improved the classification performance by
1.9% and 2.1% for both the disgust and fear categories with sparse samples. In addition, the
classification accuracy of the proposed also increased by 5.1% in the sad category. These
results demonstrate that the proposed HDCNet has a good effect in terms of handling
sample imbalance, and it can improve the classification performance of the model. These
results are in line with our expectations. Not only that, but we also made a comparison on
the AffectNet dataset. Due to the long-tail distribution of the data, happiness and neutrality
accounted for the majority. Other categories only occupied a small part, so the recognition
accuracy of other categories was low.
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5. Conclusions

In this paper, we have proposed the HDCNet to solve some difficult problems in
the FER task, e.g., uneven illumination, large facial pose changes, occlusions, and low
recognition accuracy caused by noisy labels in the target dataset. The proposed HDCNet
consists of two parts, i.e., the SDC and CDC modules. The SDC module enhances the
network to learn the label-related regions in the feature map by observing the areas of
interest in the CAM heatmap before and after the feature map is flipped horizontally,
thereby improving the model’s robustness. The CDC module assists the SDC module
by minimizing the difference in the channel representation before and after the feature
map is flipped horizontally such that the probability distribution of channel representation
tends to be consistent. These two modules cooperate to improve both the accuracy and
robustness of the model.

The proposed HDCNet was evaluated experimentally, and the experimental results on
two benchmark datasets demonstrate that the proposed HDCNet achieved state-of-the-art
performance, which highlights the effectiveness and practicality of the proposed method.
We found that the proposed HDCNet can solve difficult problems in FER tasks; thus, it has
broad applicability in practical applications.

Future work will explore new methods to measure channel domain consistency, im-
prove the loss function, and make the model more robust to adapt to complex expression
changes. We also plan to investigate the effectiveness of spatial domain consistency for
feature layers at different depths and explore the effectiveness of using a mixed domain
consistency method on lightweight models.
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