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Abstract

Background: The progress in the "-omic" sciences has allowed a deeper knowledge on many

biological systems with industrial interest. This knowledge is still rarely used for advanced

bioprocess monitoring and control at the bioreactor level. In this work, a bioprocess control

method is presented, which is designed on the basis of the metabolic network of the organism

under consideration. The bioprocess dynamics are formulated using hybrid rigorous/data driven

systems and its inherent structure is defined by the metabolism elementary modes.

Results: The metabolic network of the system under study is decomposed into elementary modes

(EMs), which are the simplest paths able to operate coherently in steady-state. A reduced reaction

mechanism in the form of simplified reactions connecting substrates with end-products is obtained.

A dynamical hybrid system integrating material balance equations, EMs reactions stoichiometry and

kinetics was formulated. EMs kinetics were defined as the product of two terms: a mechanistic/

empirical known term and an unknown term that must be identified from data, in a process

optimisation perspective. This approach allows the quantification of fluxes carried by individual

elementary modes which is of great help to identify dominant pathways as a function of

environmental conditions. The methodology was employed to analyse experimental data of

recombinant Baby Hamster Kidney (BHK-21A) cultures producing a recombinant fusion

glycoprotein. The identified EMs kinetics demonstrated typical glucose and glutamine metabolic

responses during cell growth and IgG1-IL2 synthesis. Finally, an online optimisation study was

conducted in which the optimal feeding strategies of glucose and glutamine were calculated after

re-estimation of model parameters at each sampling time. An improvement in the final product

concentration was obtained as a result of this online optimisation.

Conclusion: The main contribution of this work is a novel bioreactor optimal control method that

uses detailed information concerning the metabolism of the underlying biological system.

Moreover, the method allows the identification of structural modifications in metabolism over

batch time.
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Background
Knowledge of intracellular metabolic fluxes is crucial to
understand how different pathways interact and their rel-
ative importance within the overall metabolic processes.
Metabolic flux analysis (MFA) is an established method-
ology that allows the quantification of such intracellular
fluxes. In MFA, intracellular fluxes are calculated by apply-
ing steady-state material balances around intracellular
metabolites. In general the number of reactions exceeds
the number of metabolites resulting in undetermined sys-
tems of algebraic equations [1]. Such systems can be
solved after measurement of the missing fluxes, which are
typically uptake rates of substrates and secretion rates of
metabolites, and also intracellular fluxes when the former
are not enough.

The determination of metabolic flux distribution in unde-
termined systems may also be obtained by flux-balance
analysis (FBA) [2]. In FBA, unknown fluxes are deter-
mined by linear programming (LP), whereby a given
objective function, related to a given cellular physiological
state, is optimised. Typically, the maximisation of the
growth flux defined in terms of biosynthetic requirements
is used as the objective function [2-5]. In general, FBA pro-
vides flux distribution for a desirable physiological state,
it is however uncertain that the provided solution is
unique [6]. Frequently multiple optima are obtained
which are a consequence of the existence of redundant
pathways in the metabolic network conferring structural
robustness to cells [7].

Metabolic Pathway Analysis (MPA) is another flux-based
analysis method. MPA, unlike FBA, do not look only at
the properties of solutions selected by the statement of an
objective, but study the full range of achievable biochem-
ical network states that are provided by the solution space.
Network-based MPA has focused on two approaches, ele-
mentary modes (EMs) and extreme pathways (EPs) [8-
10]. These approaches are very similar being EPs a subset
of EMs. In certain network topologies the sets of EMs and
EPs coincide. They are both unique for a given network
and can be considered as nondecomposable steady state
flux distributions using a minimal set of reactions. The
difference is that EP analysis decouples all internal revers-
ible reactions into two separate irreversible reactions (for-
ward and backward directions) and EMs analysis accounts
for reaction directionality. In this work we have adopted
the EMs concept since it has broad application; EPs anal-
ysis can exclude important routes of the network giving
misleading results [10]. MFA focuses on single flux distri-
butions, but in a complex metabolic network of reactions
there is a space of admissible flux distributions. The MPA
allows the transition from a reaction based perspective to
a pathway-oriented view of metabolism because each fea-

sible steady state flux distribution can be represented as a
nonnegative combination of EPs or EMs [8,11].

Although flux-based analysis methods have been mainly
used for metabolic engineering [1,12], they may also be
useful in other phases of the bioprocess development
cycle, namely for advanced bioreactor monitoring and
control [13,14]. The EMs concept is particularly attractive
since it reduces network complexity to a minimal set of
reactions. Provost and Bastin [13] exemplified the use of
the EMs concept for dynamic modeling of a CHO culture.
The main objective of the present study is to derive an
optimal control method that incorporates the knowledge
of the metabolic network of the biological system under
study using the EMs technique. Model-based off- and on-
line control techniques are today well established in both
theoretical and practical terms, and have been widely
applied for bioprocess optimisation (e.g. [15,16]). The
success of such methods is critically dependent on the
quality of the supporting mathematical model. Not only
accuracy in describing previously measured data but
mainly the capacity to predict behaviour in unexplored
states is the key for success. In previous studies [17,18], an
iterative batch-to-batch optimisation scheme was devel-
oped and applied to the optimisation of recombinant
BHK-21 cultures. The method is based on the premise that
in general the biological system under consideration is
only partially known or even poorly known in a mecha-
nistic sense. Following this principle, a flexible hybrid par-
ametric/nonparametric representation of the biological
system was adopted to support the batch-to-batch optimi-
sation scheme. It was verified that the model generaliza-
tion capacity increases as more reliable mechanistic
knowledge of cells is incorporated in the hybrid model.
The algorithm presented here is essentially an extension to
the previous batch-to-batch optimisation scheme
whereby the knowledge concerning the metabolic net-
work is incorporated in the optimisation algorithm. The
methods will be exemplified through the application to a
recombinant BHK-21 culture expressing the fusion glyco-
protein IgG1-IL2.

Results and discussion
Proposed methodology

The proposed methodology for bioprocess monitoring
and control is represented schematically in Figures 1, 2.
The backbone of this methodology is the hybrid semipar-
ametric model structure shown in Figure 1. The main
design principle is flexible integration of knowledge con-
cerning the metabolism, transport phenomena and
empirical process data. The method contemplates the pos-
sibility of missing parts of the metabolism (e.g., the prod-
uct metabolism) and of unknown reaction kinetics and
underlying transduction mechanisms. Whenever knowl-
edge is missing, empirical data modeling is called to fill
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the gaps. The starting point is the establishment of the
metabolic network of the biological system under study.
Firstly, the metabolic network is analyzed using the ele-
mentary modes technique. The overall network is decom-
posed into structural subunits, the EMs, which are the
simplest paths connecting substrates with end-products.
This structural analysis identifies all compounds (sub-
strates, metabolites and products) taken up and/or
secreted to the abiotic phase, which essentially define the
system state space vector. The bioreactor dynamics are
subsequently described by the material balance equations
of each component occurring in the EMs. The EMs kinet-
ics are identified with data from exploratory experiments,
using chemometric techniques.

Once the model is properly validated, it can be used for
on-line intracellular flux distribution monitoring and for
on-line process performance optimisation (Figure 2). So
the next step is the on-line implementation of the newly
developed hybrid model for process monitoring and/or
optimisation in the sense of maximizing the process per-
formance by manipulating the control inputs, i.e., the
optimal control problem [16,18-20]. The performance

function includes a penalty term that accounts for the risk
of model unreliability, i.e., extrapolation outside the
model trust region. The empirical parameters are re-esti-
mated, followed by the re-optimisation of the future proc-
ess time course whenever new measurements of the
process state are performed. In the lines below we describe
in detail the steps involved.

Elementary modes analysis

We consider a generic metabolic network with m metabo-
lites and q reactions such as the network represented in
Figure 3. Assuming balanced growth and negligible dilu-
tion, the fundamental steady state mass balance equations
on intracellular metabolites are expressed as follows:

with N = {nij} a m × q stoichiometric matrix and v = {vj}
the vector of q metabolic fluxes with vj denoting the net
specific rate of reaction j. Some of the q reactions are irre-
versible, thus the respective fluxes must be nonnegative: vk

Nv 0=
>





( )
vk 0

1

General hybrid structure for bioprocessesFigure 1
General hybrid structure for bioprocesses. This hybrid model structure integrates knowledge concerning the metabo-
lism, transport phenomena and empirical process data. The bioreactor dynamics are then described by the material balance 
equations of each component occurring in the EMs. The EMs kinetics are identified with data from exploratory experiments, 
using chemometric techniques.
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Proposed model-based optimisation schemeFigure 2
Proposed model-based optimisation scheme. On-line optimisation supported by the hybrid model. The process per-
formance function includes a penalty term that accounts for the risk of model unreliability, i.e., extrapolation outside the model 
trust region. The parameter estimation as well as the optimisation of the future process course occurs every time a new meas-
urement becomes available.
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> 0 with k denoting the irreversible reactions in the meta-
bolic network. The universe of solutions of system (1)
forms a convex polyhedral cone in the solution space
[21,22]. It is a property of this system that the infinite set
of solutions forming the convex polyhedral cone may be
expressed as nonnegative linear combinations of a finite
set of n fundamental vectors ei called elementary modes
(EMs):

These elementary modes e = {ei} obey to constraints (1)
and additionally to the elementarily constraint stating
that there is no other non-null flux vector involving
proper subsets of the reactions participating in that partic-
ular EM [22]. In the context of the present work, there are

two most important features of the EMs analysis: it allows
to identify all possible pathways for the conversion of sub-
strates into products, and opens the way to the quantifica-
tion of the relative importance of pathways at a given
process stage. The non-null elements in each elementary
mode, ei, define a subset of active reactions of the overall
metabolic network N, which are essentially pathways for
the conversion of substrates into products.

Hybrid dynamical model formulation

The knowledge acquired from the EMs analysis is inte-
grated in the hybrid model structure represented in Figure
1. This structure allows the introduction of the a priori
knowledge concerning the metabolic reactions and intra-
cellular kinetics, but it is also open to the possibility of
existing missing parts in both cases. The EMs analysis pro-
vides a stoichiometric matrix, KEM, that may be aug-

v e vi i
i

n
q= ∀ ∈ℜ ( )

=
∑λ

1

2

BHK cells metabolic networkFigure 3
BHK cells metabolic network. The figure shows important pathways in the central metabolism of BHK cells. The dashed 
arrows indicate lumped pathways towards biomass and desired product synthesis.
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mented (to a K matrix) if important parts of the
metabolism are missing. For instance, the energetic and
biosynthetic metabolism may be known, but product
metabolism may be unknown. In this case the product
concentration or other compounds and respective reac-
tions kinetics are included through matrix I independ-
ently of the EMs.

Even though information about cellular components is
growing rapidly, enzymes concentrations and intracellu-
lar kinetic data are difficult to obtain. In this work the EMs
kinetics are defined by the product of two functions of the
system state: a mechanistic/empirical function (in case it
is available) and a nonparametric function that represents
what is extracted from data without mechanistic interpre-
tation. This model structure can be formulated mathemat-
ically by the following two equations, which may be
regarded as a general hybrid model for ideal bioreactor
systems [18]:

r(c, w) = K�ϕj(c) × ρj(c, w)�j = 1,...,m (3b)

with c a vector of n concentrations in the liquid phase, r a
vector of n volumetric reaction rates, K a n × m coefficients
matrix obtained from the elementary modes analysis, ϕ(c)
are m kinetic functions established from mechanistic
knowledge, ρj(c,w) are m unknown kinetic functions, w a
vector of parameters that must be estimated from data, D
is the dilution rate, and u is a vector of n volumetric input
rates (control inputs).

Identification of EMs kinetics

The reaction rate of elementary mode j is defined by the
product ϕj(c) × ρj(c, w). The function ϕj(c) represents
"known" mechanisms whereas ρj(c, w) represents
unknown mechanisms. Redundancy and degeneracy are
common problems in the determination of fluxes of bio-
logical networks [23,24]. It is very important to define a
priori the conditions under which metabolic fluxes are
identifiable. A rank of matrix K equal to the number of
unknown EMs and an equivalent number of measured
states are necessary conditions for the identifiability of
system (3). If identifiable, the unknown functions ρj(c, w)
can be extracted from data using chemometric techniques
such as multilinear regression, partial least squares, artifi-
cial neural networks and many other. In the frame of
hybrid modeling, neural networks have been the most
widely used technique for reaction kinetics modeling in
biosystems [17,18,25-28]. We used a backpropagation
neural network with a single hidden layer to define ρj(c,
w):

ρ(c, w) = ρmaxs(w2s(w1c + b1) + b2)  (4a)

with ρ = �ρj(c, w)� a vector of m unknown reaction rates,
ρmax a vector of scaling factors with dim(ρmax) = m, w1, b1,
w2 and b2 are parameter matrices associated with connec-
tions between the nodes of the network, w is a vectored
form of w1, b1, w2, b2, and s(·) the sigmoid activation
function. A batch neural network training method was
adopted, whereby the parameters w are estimated in the
sense of least squares employing a quasi-Newton opti-
miser with gradients calculated by the sensitivities
method [25,28,29] as described in the methods section.

Dynamic optimisation of culture operation: optimal control problem

In the dynamic optimisation step the process performance
is optimised with respect to control inputs. This problem
may be formulated mathematically as follows:

with J the performance index, tb the batch time, f(·) a ter-
minal performance function and g(·) a time-dependent
performance function. The algorithm used was the micro-
genetic algorithm [30] coded by Carroll [31]. For simplic-
ity, a piecewise constant approximation of the control
inputs u was adopted. The optimisation (5) is subject to
the constraint defined by the hybrid dynamical model
(3)–(4) (and indirectly by the metabolic network (1)) but
possibly also by other equality and inequality constraints
regarding process states, cellular states and control inputs.
Due to the use of nonparametric functions, namely of the
neural network function (4), it is important to evaluate
the unreliability risk during the optimisation. After the
EM identification step, the measured input space is clus-
tered by ellipsoidal functions (see the methods section).
The clustered input space forms the trust region, wherein
the function (4) is considered to be reliable. Optimisation
(5) is then further constrained by the risk of function (4)
inputs being outside the trust region. The technique is
described in detail in the methods section.

Case study: optimisation of recombinant BHK cultures

Process description

To illustrate the methodology described above it will be
applied to a recombinant Baby Hamster Kidney (BHK-
21A) culture expressing a fusion glycoprotein (an anti-
body type 1 linked to an interleukin type 2, IgG1-IL2)
intended for cancer therapy [32]. The experiments were
carried out in serum free and protein free medium
(SMIF6, Life Technology, Glasgow, UK). The batch cul-
tures were set up in a 2 1 reactor volume and the fed-batch

d
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D
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cultures were set up at 3 different volume scales (2, 8 and
24 1). Sparger aeration was employed. Dissolved oxygen
concentration was set at 15% of air saturation. Agitation
rate used was 60 rpm; pH was set as 7.2 and controlled
through the addition of CO2. Experimental data of viable
cells concentration and six extracellular species (glucose,
glutamine, lactate, ammonia, alanine and desired prod-
uct) were collected. Analytical techniques are described
elsewhere [17].

Elementary modes

BHK-21A cells use glucose and glutamine as major
sources of carbon and energy, and produce lactate and
ammonia as toxic by-products. A reduction of this waste
production will improve both cellular growth and glyco-
protein (IgG1-IL2) synthesis. Figure 3 shows the meta-
bolic network adopted in this work [33,34]. As catabolic
routes, the network includes the glucose and glutamine
fluxes through glycolysis, glutaminolysis and TCA cycle.
The amino acids metabolism was not considered; it was
assumed that all of them are provided by the culture
medium. The elementary modes of the 14 reactions that
compose the catabolism were calculated using the FluxAn-
alyser program [22,35]. This system has five EMs, each one
consisting of collections of reactions steps (Figure 4). The
hypothesis of balanced growth allows the elimination of
the intermediate metabolites resulting in a simplified set
of reactions (see Table 1) connecting extracellular sub-

strates (glucose and glutamine) with end-products (lac-
tate, ammonia, alanine and carbon dioxide). The first
elementary mode corresponds to the glucose flux con-
verted into lactate; the second is the complete oxidation of
glucose via TCA cycle (the most energetic pathway involv-
ing glucose); the third mode is the complete oxidation of
glutamine (the most energetic pathway involving
glutamine) and the fourth and fifth modes are partial oxi-
dations of glutamine in alanine and lactate, respectively.

Biomass and product synthesis

In addition to the catabolism, the anabolism and product
synthesis must also be considered. For the sake of simplic-
ity, the anabolism (biomass synthesis) was represented as
a lumped equation combining the precursors of the main
cellular building blocks (glucose, required for the synthe-
sis of carbohydrates, lipids and nucleotides, and amino
acids required for the synthesis of cellular proteins and
some of them also for the synthesis of nucleotides). The
stoichiometry established by Wei-Shou Hu and coworkers
[36] for an hybridoma cell line was adopted in this work.

0.0208Glc + 0.0377Gln + 0.0133Ala + 0.0165Gly +
0.0096Val + 0.0133Leu + 0.0084Ile + 0.0033Met +
0.0081Pro + 0.0055Phe + 0.004Try + 0.0099Ser +
0.008Thr + 0.0Asn + 0.0077Tyr + 0.0004Cys + 0.0101Lys
+ 0.007Arg + 0.0033His + 0.026Asp + 0.0006Glu → Bio-
mass (7)

Elementary modes of the metabolic network consideredFigure 4
Elementary modes of the metabolic network considered.
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The IgG1-IL2 synthesis was also represented as a lumped
equation as follows:

0.0104Gln + 0.0112Ala + 0.0139Gly + 0.0163Val +
0.0182Leu + 0.0061Ile + 0.0029Met + 0.0147Pro +
0.0072Phe + 0.0037Try + 0.0243Ser + 0.0163Thr +
0.0088Asn + 0.0077Tyr + 0.053Cys + 0.0136Lys +
0.0061Arg + 0.0043His + 0.0083Asp + 0.0096Glu →
IgG1-IL2  (8)

This equation is based on the amino acid composition of
the antibody IgG1 plus the interleukin IL2 (both amino
acid sequences are available at [37]). The carbohydrate
content of this fusion glycoprotein was neglected since the
glucose contribution is extremely small compared to over-
all glucose consumption.

Hybrid model structure

The EMs analysis provides a simplified reaction mecha-
nism based on which the following hybrid model struc-
ture (equivalent to system 3a-b) is formulated:

The state space vector is formed by the concentrations of
compounds that intervene in the final reactions set (glu-
cose, Glc, glutamine, Gln, lactate, Lac, ammonia, Amm,
alanine, Ala) and additionally the concentrations of via-
ble cells, Xv, and product, IgG:

c = [Xv, Glc, Gln, Lac, Amm, Ala, IgG]T.  (10)

Carbon dioxide was excluded because its concentration
was not measured and because it doesn't interfere with the
dynamics of the remaining variables (given that pH is
controlled). The stoichiometric matrix, K, is established
from the elementary modes of Table 1, but it also
accounts for cell growth (5th column) and product forma-
tion (6th column) as lumped equations of glucose,
glutamine and alanine. It should be noted that the 5th EM
was not included in K because preliminary results showed
that this EM has negligible flux. This observation is in
agreement with some published works [38-40], stating

that lactate is mainly produced from glucose, being the
percentage coming from glutamine very low (less than
10%). The volumetric reaction rates of the EMs were
defined on the basis of the following assumptions:

(i) all reaction rates are specific (proportional to the con-
centration of viable cells),

(ii) the metabolic reactions considered are all irreversible
(in this particular problem) and therefore the respective
reaction rates are nonnegative

(iii) uncertainty in relation to kinetic constants and possi-
ble unknown saturation and inhibition effects.

(iv) only the concentrations of glucose, glutamine and
ammonia have a significant impact on the specific reac-
tion kinetics [41]. Lactate never reaches inhibitory levels
in our experiments.

In the reaction rates of eq. (9) the term in parenthesis rep-
resents the a priori knowledge concerning the kinetics of
the particular reaction (points (i) and (ii)) whereas the ρi,
μ and π terms represent the uncertainty concerning the
reaction kinetics (point (iii)) and are functions of three
state variables (point (iv)). With this particular formula-
tion, the vector of known kinetic functions is given by:

ϕ(c) = [XvGlc XvGlc XvGln XvGln Xv XvGln]T,  (11)

whereas the vector of unknown kinetics is given by:

ρ = [ρ1 ρ2 ρ3 ρ4 μ π]T = ρ(Glc,Gln,Amm,w)  (12)

The last term in eq. (9) is the control input vector u that
in our case accounts for the volumetric feeding of glucose,
FGlc, and glutamine, FGln.

Identification of the EM kinetics

An important point for the identification of unknown flux
functions (12) is that the rank of K is 6, thus the measure-
ment of (10) (dim(c) = 7 > rank(K)) is sufficient for the
observability of the EM kinetics. The other relevant point
is the availability of sufficiently "rich" measurements to
identify the "true" fluxes. Preliminary simulation tests
showed that, for the system structure of eq (9), the "true"
fluxes can be identified under typical fed-batch conditions
(results not shown).

Experimental data of seven experiments (three batch and
four fed-batch cultures) were used for the identification of
the EM kinetics. Data of 5 experiments were used for
parameter calibration whereas data of 2 experiments were
used for model validation. The concentrations in the state
space vector (eq. 10) were analyzed off-line according to

d
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Table 1: Elementary modes of the metabolic network 

considered.

EM1 : Glucose→ 2 Lactate

EM2 : Glucose → 6 CO2

EM3 : Glutamine → 5 CO2 + 2 Ammonia

EM4 : Glutamine → 2 CO2 + Ammonia + Alanine

EM5 : Glutamine → Lactate + 2 CO2 + 2 Ammonia
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methods published elsewhere [17]. The neural network
has three inputs, [Glc,Gln,Amm]T and 6 outputs as
defined by eq. (12). The number of hidden nodes was
tuned heuristically in the sense of minimizing the error of
the validation data set. The best result was obtained with
5 hidden nodes giving a total number of network param-
eters equal to 56. The output scaling factors reflect the
maximum kinetic rates and were defined as ρmax = [0.11
0.30 0.05 0.05 0.09 0.11]T.

The hybrid modeling results in terms of measured and
predicted state variables are presented in Figure 5 for both
training and validation data sets. Examples of EM kinetics
identification are provided in Figure 6. The hybrid model
was able to describe simultaneously all seven experiments
with acceptable accuracy. In particular, the results with the
validation data set strengthen the predictive potential of
the model.

Metabolic interpretation

Figure 6 illustrates the EM kinetics identified by the hybrid
model for two experiments, one batch and one fed-batch
culture. The analysis of the flux distribution over the time
course of bioreaction provides valuable information con-
cerning the evolution of BHK metabolism and how to
control the flux distribution through the feeding of glu-
cose and glutamine.

In general, the metabolic activity of BHK cells during the
cell growth phase is higher in the batch culture than in the
fed-batch culture. The EM fluxes in the fed-batch experi-
ments seem to be much more controlled than in the batch
experiments. The high levels of glucose and glutamine at
the beginning of the batch culture are mostly directed
toward the overflow metabolism, i.e., waste production of
lactate and alanine (EM1 and EM4). The fed-batch culture,
which had lower glucose and glutamine concentrations
during the cell growth phase, started with substantially
lower consumption rates of these nutrients, while main-
taining the flux to biomass.

Glucose is consumed for biomass synthesis and is metab-
olized through elementary modes EM1 and EM2. The con-
sumption of this nutrient differs significantly from batch
to fed-batch cultures. Cells use glucose in a more efficient
way in fed-batch than in batch cultures particularly at the
beginning of the culture, since the glucose metabolized to
lactate (EM1) is much higher in the batch experiment.
These results are in agreement with several published
works for other mammalian cells [42-44], where it is
reported that high glycolytic activity of animal cells results
from high residual glucose.

Glutamine is consumed for product and biomass synthe-
sis and is metabolized through elementary modes EM3

Hybrid modeling resultsFigure 5
Hybrid modeling results. Modeling results of all seven state variables for both training (I-V) and validation data sets (VI-VII). 
Experiments I-III are Batch cultures and IV-VII are Fed-batch cultures.
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Kinetic rates identified by the hybrid modelFigure 6
Kinetic rates identified by the hybrid model. The kinetic rates over the time course of bioreaction can provide valuable 
information concerning the evolution of BHK metabolism, (a) Batch culture; (b) Fed-batch culture.
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and EM4. The most energetic pathway involving
glutamine, EM3, is practically inactive during the cell
growth phase of the batch culture, being glutamine pref-
erentially converted into alanine. On the opposite, this
elementary flux mode is an important pathway in the
course of the fed-batch culture, representing 50% of the
total glutamine consumption. The higher production rate
of alanine at high glutamine levels (such as the ones
present at the beginning of batch cultures) is consistent
with observations made by Doverskog et al. [44] and
Vriezen et al. [45].

Concerning the specific formation rate of glycoprotein,
πIgG, the product formation is consistently more stable in
the fed-batch culture than in the batch culture. The prod-
uct synthesis rate oscillates between 0,06 and 0,07 mg 10-

9 cells h-1 in the former case whereas in the latter case the
reaction is much lower in the beginning. This appears to
be correlated with the overflow metabolism in the batch
experiments, which seems to be detrimental for product
synthesis.

On-line culture optimisation

The hybrid model was further used for on-line optimisa-
tion of a fed-batch BHK culture. The model parameters
were re-tuned on-line using the data from the running cul-
tivation. A batch training scheme was adopted, whereby
the data of the running cultivation along with the data of
historical experiments were used for model adjustment
(Figure 2). Some variables, namely glucose, glutamine,
lactate and viable cells concentration, can be measured
off-line, with the results available after a short period of
time (about 10 minutes). Therefore, at sampling times of
6 to 12 h, these measurements were stored in the training
data set and then used for parameter identification using
the same strategy previously described in the Identification
of the EM kinetics section. The only difference was that the
initial parameter values were those obtained in the off-
line training procedure. The ammonia, alanine and IgG
concentrations were exclude form this model adjustment
step because they were quantified only at the end of the
experiment.

After the parameters retuning step, the glucose and
glutamine feeding rates were re-optimised (u = [FGLC,
FGLN]T) in the sense of maximising the total amount of
IgG1-IL2 produced at the end of the experiment (13).

The optimisation (13) is subjected to the constraints of
the process dynamics (equation 9), upper and lower
bounds for the glucose and glutamine feeding rates, and
the maximum risk of model unreliability, RISKmax (see
methods section). The increase in volume is negligible in
this problem, thus it was not considered in optimisation
(13). The risk constraint states that the average risk must
not exceed a given maximum level defined by the user.
This restricts the feasibility domain to low risk regions and
is essential for process optimisation supported by hybrid
models since the black-box model (4a,b) predictions
degrade in regions of the input space with sparse measure-
ments.

The micro-genetic algorithm coded by [31] was used to
solve optimisation (13). The population size and number
of generations was 5 and 2000, respectively. A maximum
risk level of 35% (RISKmax = 0.35) was adopted during the
on-line optimisation experiment. At each sampling time,
the flow rates of the feeding pumps were updated accord-
ing to the re-optimised feeding profiles of glucose and
glutamine.

Figure 7 shows the optimised trajectories and correspond-
ing measurements for the main state variables (viable
cells, glucose, glutamine and product) at cultivation times
of 0 h (i.e., a priori optimised trajectories), 46 h, 75 h, 92
h and 195 h. The comparison of predicted and measured
concentrations shows a very satisfactory performance for
the on-line optimisation. Furthermore, although the
measured product concentration was only available at the
end of the experiment, the predicted time course of this
variable follows closely the product measurements. The
final product titre obtained was 16.4 mg/1 corresponding
to a 10% increase in relation to previous experiments car-
ried out with the same medium (initial glucose and
glutamine concentrations) and without on-line optimisa-
tion.

Medium optimisation

Higher productivities are likely if the initial medium com-
position is optimised. The optimisation results of initial
glucose and glutamine concentrations along with the cor-
responding feeding strategies are shown in Figure 8a. The
medium should have initially low levels of glucose and
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glutamine. As for the feeding strategies, low levels of glu-
cose and glutamine are optimal during the cell growth
phase (glutamine concentration at 0.6 mM and glucose at
1 mM), whereas during the cell death phase, glutamine
should slightly increase and glucose should decrease to a
concentration of 0.4 mM. A significant increase of product
titre was predicted under such cultivation conditions.

The kinetics of the elementary modes for the optimal
strategy is presented in Figure 8b. The optimal strategy can
be interpreted by means of intracellular flux distribution.
The results were not much different from the elementary
flux distribution of the fed-batch culture (Figure 6b). The
main difference arises from the fact that the specific prod-
uct formation (π IgG) increases during the cell death phase
as a consequence of the increase of the glutamine concen-
tration.

Conclusion
The current work presents a hybrid modeling approach
for bioprocesses that integrates information concerning
intracellular metabolic fluxes, bioreactor transport phe-
nomena and measured data. First, elementary flux analy-
sis is used to reduce the biosystem metabolic network into
a set of macroscopic reactions relating extracellular com-
ponents only. A bioreactor dynamical model is then
established from material balance equations of the com-
pounds which intervene in the final reaction set. Nonpar-
ametric techniques are used for identification of the
elementary modes kinetics from measured data. The
method was successfully applied to a recombinant BHK-

21A cell line producing a fusion glycoprotein. A signifi-
cant result is the achievement of the flux distribution over
the runtime of a bioprocess. The so obtained information
can be used to identify conditions that favour product for-
mation. A fed-batch BHK culture performed with on-line
optimisation supported by the proposed methodology
allowed a 10% increase in the final productivity. Higher
productivities are expected if starting nutrients concentra-
tions are optimised. The developed tool promises to be
advantageous for optimising the productivity of fed-batch
biochemical processes since the transfer and adaptation to
different cell lines is reasonably straightforward

Methods
Neural network training procedure

A batch least squares criteria of residuals in concentrations
was adopted

with P the number of measured patterns, n the number of

state variables, (t) and c(t,w) the measured and model

state vectors. The concentrations were previously scaled by

the measurements standard deviations. A quasi-Newton

algorithm with conjugate gradient with line search (MAT-

LAB™ optimisation toolbox) was adopted.

The gradients ∂e/∂w can be evaluated using the sensitivi-
ties equations, which can be obtained by differentiating
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Optimal trajectories during a fed-batch on-line optimizationFigure 7
Optimal trajectories during a fed-batch on-line optimization. Optimised trajectories of process variables for five peri-
ods of cultivation: 0,46, 75, 92 and 195 h (lines are model predictions and symbols are experimental data).
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Optimisation results with optimised mediumFigure 8
Optimisation results with optimised medium. (a) Predicted optimal trajectories of viable cells, glucose, glutamine and 
product concentrations starting with low levels of glucose and glutamine. (b) Distribution of intracellular elementary modes 
over the time course of the process for the optimal strategy.
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eq. (3a) in order to w, yielding, after some manipulations,
the following linear time-varying system:

with

These equations must be integrated along with hybrid
model eqs. (3)–(4). The initial value is (∂c/∂w)t = 0 = 0
because the initial state is independent of parameters w.
The evaluation of matrices A and B require the sensitivi-
ties ∂ϕj/∂c, ∂ρj/∂w and ∂ρj/∂c. The first term is obtained by
analytical derivation of known functions (in our case, by
the derivation of eq. (9)). The other two matrices are
obtained by backpropagating the identity matrix through
the neural network. The backpropagation of a given iden-
tity matrix column 'i' results in the evaluation of vectors
∂ρij/∂w and ∂ρij/∂c.

Evaluation of prediction risk

The trust region is the subspace of the input domain,
where the model was properly validated with experimen-
tal data, showing low modeling error. Model predictions,
c*, outside the trust region may have a high risk, RISK(c*),
of being unreliable. The use of unreliable model predic-
tions for process control should be avoided. For this rea-
son, the value of the risk is used as a constraint to the
optimisation (13). Here, the trust region was defined by
nc ellipsoidal clusters of the form:

with mj the cluster centres and ∑ = diag{σi
2} the diagonal

covariance matrix. The choice of the clusters number (nc)
is done by trial and error according to the criteria of good-
ness of measurement density representation. The rule nc =
P/3, with P the number of measured patterns normally
provides acceptable results. The interpolation tolerances
(IT) defines the distance to measured pattern such that yC

> 0.5. The clusters width is then given by:

σ = [-2 ln(0.5/n)]-1/2 IT  (M6)

The k-means algorithm was used to calculate mj. The final
set of clusters forms a continuous density function f:c→v
by applying the maximum operator:

The output v(c) is a scalar between 0 and 1 that can be
interpreted as the degree of membership of c to the data
set used for training the black-box model (4). Low v val-
ues (i.e. c vectors out of the interpolation tolerance) are an
indication of high risk of the black box model outputs
being unreliable. Finally, the risk of black box model
unreliability is given by: RISK(c) = 1 - v(c)  (M8)
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