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Abstract: The nature of soil varies horizontally as well as vertically, owing to the process of the
formation of soil. Thus, ensuring the safe design of geotechnical structures has been a major challenge.
In shallow foundations, conducting field tests is expensive and time-consuming and often conducted
on significantly scaled-down models. Empirical models, too, have been found to be the least reliable
in the literature. The study proposes AI-based techniques to predict the bearing capacity of a shallow
foundation, simulated using the datasets obtained in experiments conducted in different laboratories
in the literature. The results of the ELM-EO and ELM-PSO hybrid models are compared with that
of the ELM and MARS models. The performance of the models is analyzed and compared with
each other using various performance parameters. The models are graded to each other using rank
analysis and the visual interpretations are provided using error matrices and REC curves. ELM-EO is
concluded to be the best performing model (R2 and RMSE equal to 0.995 and 0.01, respectively, in the
testing phase), closely followed by ELM-PSO, MARS, and ELM. The performance of MARS is better
than ELM (R2 equals 0.97 and 0.5, respectively, in the testing phase); however, hybridization greatly
enhances the performance of the ELM and the hybrid models perform better than MARS. The paper
concludes that AI-based models are robust and hybridization of regression models with optimization
techniques should be encouraged in further research. Sensitivity analysis suggests that all the input
parameters have a significant influence on the output, with friction angle being the highest.

Keywords: shallow foundation; AI; ELM; MARS; PSO; EO

1. Introduction

Foundations are the most important part of a structure, as they transfer the load of the
superstructure to bearing strata. A shallow foundation is generally defined as a foundation
having a depth less than or equal to breadth. Shallow foundations have a large base and
small thickness, apart from the shallow embedment. It is a system in which the resistance
is developed only from its base, and the failure is within the shallow depth extending to
the surface. The bearing capacity of soils, also known as the load-carrying capacity of the
soil, is one of the most significant topics in soil mechanics and foundation engineering.
The greatest value of the load applied for which no point of the subsoil reaches the failure
point is the bearing capacity of a shallow foundation [1]. The frictional resistance has
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a negligible contribution to the bearing capacity in shallow foundations. Constructions
of shallow foundations require less cost, less time, and the least geo-surface disturbance.
The ultimate bearing capacity of a foundation is the load per unit area of the foundation
at which shear failure occurs. The evaluation of the ultimate bearing capacity can be
performed either through field tests such as pile load tests or empirical relations developed
by various researchers in the literature. Experimental studies are typically conducted on
smaller scale models that are highly scaled-down versions of real footings. For evaluating
the final bearing capacity, the size of the foundation is a significant element for both square
and rectangular footings. As a result, laboratory-built micro footing models differ from
real-world footings in terms of behavior and stress distribution. This is known as the scale
effect, and it has been investigated for many years by different researchers [2,3]. Although
testing the actual size footing is crucial to understanding genuine soil–foundation behavior,
it is an expensive, time-consuming, and analytically challenging process. The plate bearing
test, standard penetration test, and pressuremeter test are all field tests that can be used to
measure a soil’s bearing capacity. These field tests, on the other hand, are time-consuming,
costly, and difficult to manage and operate. The expense of testing the structures is so high
that it exceeds the structure’s cost. As a result, contractors frequently supply estimated
footing sizes based on arbitrary assumptions of soil bearing capacity extrapolated from
previous site experiences, which is cost-effective but erroneous. Various researchers in
the literature proposed empirical relations to predict the bearing capacity of a shallow
foundation [4–7]; however, all of these conventional formulations have some limitations
and assumptions. As a result, they do not always produce realistic results when compared
to experimental data [8–11]. As per the study of Rybak and Krol [12], the limit state is rarely
achieved and it is often impossible to estimate the ultimate load.

Soil is naturally heterogeneous and thus uncertainties and variability are involved in
its index and material properties. Uncertainty refers to the assessor’s lack of awareness
(degree of ignorance) of the elements that define the physical system being modeled. The
numerous values a property has at different positions, times, or instances are referred to as
variability. Due to the heterogeneous nature of the soil, various sources of uncertainties, and
various degrees of variability involved, there is a tendency to search for reliable machine
learning (ML)-based soft computing models to predict the bearing capacity of shallow
foundations. The goal of artificial intelligence is to create machine parts that study human
thought patterns and reflect them in reality. Artificial intelligence has found a wide range of
applications in civil engineering in recent years [13–17]. Regression analysis is a statistical
method of curve fitting that analyzes the relationship between the dependent variable(s)
and the predictor variable. Artificial Neural Network (ANN) has been successfully applied
in regression analysis of shallow foundation [18–21]; however, the success of ANN is subject
to various shortcomings, including ‘black-box approach’, ‘overfitting’, low generalization
capability, and local minimum. Adem et al. and Padmini et al. [8,22] applied ANN,
FIS, and ANFIS to predict the bearing capacity of shallow foundations. ANN performs
superior to FIS, but it is proved to be less robust than ANFIS. Baginska and Srokosz [21]
applied a deep neural network (DNN) to improve the performance of the neural networks
and the best results are achieved for the optimal number of layers 5 to 7. Gaussian
process regression (GPR) was tested as a simulation model for the bearing capacity of
a shallow foundation and the developed model was concluded to be robust [23]. To
improve the sluggish learning speed of traditional feedforward neural networks, Huang
et al. [24] proposed an extreme learning machine (ELM), which significantly reduces the
training time and improves the generalization performance of the single layer feedforward
neural network (SLFN). Though the application of ELM in shallow foundation analysis
has been very limited, the model has been found to be robust in various disciplines of
civil engineering [25–29]. Khaleel et al. [30] concluded that hybrid ELM models fare
better than hybrid multiple linear regression (MLR) models. Traditional ML algorithms,
despite yielding better results than statistical techniques, are more vulnerable to being
trapped in local minima than catching the actual global minima. This has unfavorable
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consequences. As a result, researchers are applying optimization methods with the objective
of improving the classical ML parameters and presenting major outcomes to address
this challenge [31–33]. Mesut Gor applied hybrid ANN models for the prediction of the
bearing capacity of shallow foundations and observed significant improvement in the
prediction accuracy post-optimization [34]. Moaeyedi et al. developed a multi-layer
perceptron (MLP) combined with an imperialist competitive algorithm (ICA) and obtained
an improved R2 from 0.83 (for ANN) to 0.983 [35]. ELM-PSO has not been applied to
the pile foundation problems, although its application in other domains has been very
encouraging [36–38]. Several drawbacks of PSO include high computational complexity
and premature convergence [39–41]. EO is a fast and powerful metaheuristic optimization
technique with high population-based performance [42]. ELM-EO have not been applied in
many domains so far; however, it has been proven to be robust in limited applications [43].
The present paper makes a comparative study of the performance of ELM-PSO and ELM-EO
with traditional ELM and multivariate adaptive regression splines (MARS) models. MARS
has been proven as a significant performing model for the analysis of civil engineering
problems [44–49] and also in shallow foundations [47,50].

2. Details of AI-Based Models Used
2.1. MARS

Friedman developed the multivariate adaptive regression spline (MARS) [44,51,52].
MARS is based on the methodology of non-parametric and nonlinear regression techniques.
Multivariate adaptive regression analysis helps a large number of independent parameters
read a continuous output variable. It is the integration of recursive regression, additive
regression, recursive partitioning regression, and spline regression. Multivariate adaptive
regression splines select the factors by algorithms using “forward” and “backward” algo-
rithms. The prediction accuracy of MARS with respect to other methods is relatively high
and it is also highly adaptive. In general, the equation of non-parametric and nonlinear
regression is as follows:

yi = f (xi1, xi2, . . . , xik) + εi (1)

where

f (xi1, xi2, . . . , xik) = regression function and should be a smooth, continuous function.

εi = estimate of error involved.

The developed model using MARS for predicting the output of given input in the
form of y are as follows:

y = C0 +
M

∑
m=1

CmBm(x) (2)

where C0 is a constant, Bm(x) is basis function, x is the input variable, and Cm is the
coefficient of Bm(x). The spline function consists of two parts, i.e., the left-sided truncated
function in Equation (3a) and the right-sided truncated function in Equation (3b), which is
as follows:

b−q (x− t) = [−(x− t)]q+ =

{
(t− x)q

0
if x < t

otherwise
(3a)

b+q (x− t) = [+(x− t)]q+ =

{
(x− t)q

0
if x > t

otherwise
(3b)

where b+q (x− t) and b−q (x− t) are the spline functions and t is the knot location. In general,
any model based on multivariate adaptive regressions spline (MARS) follows three basic
steps such as:

(a) Constructive phase.
(b) Pruning phase.
(c) Selection of optimum MARS.
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At the beginning of the constructive phase, the basis function plays an important role
in the formation of Equation (2) and the selection of the basis function depends on the
generalized cross-validation (GCV). The GCV is adopted as the residual sum of squares
of input parameters. The GCV parameter is used as a penalty for model complexity to
prevent using a large number of spline functions. The GCV value is calculated from the
following Equation (4), which is as follows:

GCV(M) =

(
1
n

) M
∑

m=1
(yi − ŷi)

2

[
1− C(M)

n

]2 (4)

The value of C(M) is calculated from the following equation:

C(M) = M + dM (5)

where
yi = response value for objecti.

ŷi = predicted response value for objecti.

C(M) = penalty factor.

n = total number of data objects.

There is a cost penalty factor for maximizing each basis function in Equation (5).
Overfitting of data is possible for many basis functions. To circumvent this problem, these
basis functions are deleted during the pruning stage. After completing all needed processes,
the best MARS model is selected.

2.2. ELM

Huang developed the extreme learning machine in 2004 and published it in 2006 [24,53].
The sigmoid activation principal is used in ELM and consists of three layers of the neural
network. The advantages of the extreme learning machine compared to the conventional
gradient-based learning methods are as follows:

• It avoids a number of issues that are difficult to deal with in traditional methods, such
as halting criteria, learning rate, learning epochs, and local minimums.

• In most circumstances, it can provide better generalized performance than backpropa-
gation (BP) since ELM is a one-pass learning technique that does not require re-iteration.

• It may be used to activate practically any nonlinear function.

The mathematical model of the ELM is described as follows:
Let us consider N samples of data (xi, ti) where xi = [xi1, . . . . . . , xim] ∈ Rm

ti = [ti1, . . . . . . .., tiq] ∈ Rq. The extreme learning machine (ELM) algorithm consists of
a single hidden layer feedforward neural network with N hidden nodes and the activation
function g(x) is shown as:

−
N

∑
i=1

βigi(xj) =

−
N

∑
i=1

βigi(wi.xj + bi) = oj, j = 1, . . . ., N. (6)

where wi = [wi1, wi2, . . . , wim]
T is the weight vector of the connectors from the input node

to the ith hidden node, and βi =
[
βi1, βi2, . . . , βiq

]T is the weight vector of the connectors
between the ith hidden node and the output nodes. The variable bi is the threshold of the
ith hidden node.
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2.3. PSO

Kennedy and Eberhart [36–38] were the first to suggest particle swarm optimization.
A set of iterative techniques capable of leading the search operation to a quality result is
referred to as a meta-heuristic. PSO models population social and cooperative behavior
(e.g., fish schooling and flocking of birds) during food search. In PSO, each person in the
population is referred to as a particle, and the entire population is referred to as a swarm.
The swarm is defined as a set:

S = {P1, P2, P3, . . . . . . . . . , PN} (7)

of (N) particles (candidate solutions), defined as:

Pi = (pi1, pi2, pi3, . . . . . . . . . , pim)
T ∈ A, i = 1, 2, 3, 4, . . . . . . ., N (8)

where Pi represents an individual particle in defined swarm (S) inside the search space
A. Each Pi contains the required number of dimension/control variables designated by
(pi1, pi2, . . . . . . ., pim)

T

Pi = (xil , xir, αil , αir)
T ∈ A; i = 1, 2, 3, 4, . . . . . . .., N (9)

The position (Xk
i ) and velocity (Vk

i ) are constantly updated as the particles move
inside the search space A. Here,k represents the number of iteration steps in the PSO
algorithm; therefore,

Xk
i =

(
xk

i1, xk
i2, xk

i3, xk
i4

)
∈ A, i = 1, 2, 3, 4, . . . . . . .., N (10a)

Vk
i = ( vk

i1, vk
i2, vk

i3 , vk
i4

)T
i = 1, 2, 3, 4, . . . . . . .., N (10b)

In the early form of PSO, each particle employs Equation (11) to update its velocity.

Vk+1
i = Vk

i + c1 × rand1 ×
(

Xk
pbest− Xk

i

)
+ c2 × rand2 ×

(
Xk

sbest − Xk
i

)
(11)

The problem of premature convergence is observed to plague the early PSO variant [54,55].
To alleviate this problem, another parameter (ω), the inertia weight coefficient is introduced
to the original equation resulting in the newly formed velocity Equation (12) of PSO

Vk+1
i = ωk ×Vk

i + c1 × rand1 ×
(

Xk
pbest− Xk

i

)
+c2 × rand2 × (Xk

sbest − Xk
i

)
(12)

The inertia weight (ω) can be assumed to follow a linearly decreasing pattern between
maximum (ωmax) and minimum (ωmin) values.

ωk = ωmax − (ωmax − ωmin)
k

kmax
(13)

Later, a contemporary standard PSO (CS-PSO) version was developed by Clerc and
Kennedy (2002), in which the velocity of the particles is updated as follows:

Vk+1
i = η ×Vk

i + c1 × rand1 ×
(

Xk
pbest− Xk

i

)
+c2 × rand2 × (Xk

sbest − Xk
i

)
(14)

For all the above cases mentioned, the particle’s positions are updated as follows:

Xk+1
i = Xk

i + Vk+1
i (15)
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The constriction coefficient (η) is determined as suggested by Clerc and Kennedy (2002):

η =
2∣∣∣2− φ−
√

φ2 − 4φ
∣∣∣ (16)

where φ = c1 + c2.
The cognitive (c1) and social (c2) parameters in Equation (10) in the CS-PSO variant is

equal to 2.05. In this present work, contemporary standard PSO with velocity clamping is
used. This is required so that the modified velocity does not make the particle being moved
away from the domain of interest.

2.4. EO

The equilibrium optimizer (EO) is a newly developed meta-heuristics optimization
technique by Faramarzi et al. [42]. The equilibrium optimizer algorithm was developed by
modeling the theory of dynamic mass balance mathematically. The EO functions similarly
to other meta-heuristics in that it searches through a list of potential solutions. Concentra-
tion vectors are the names given to the possible solutions in the EO. The initialization of
these vectors is performed as follows:

Ci = Cmin + rand× (Cmax − Cmin) i = 1, 2, . . . , N (17)

where Ci signifies the ith concentration vector, the value of the uniformly distributed
random number, which is denoted by rand lies 0 and 1; Cmin are lower bound for the
concentration vectors Ci and Cmax are upper bound vectors. After each concentration
vector has been initialized, it is iterated and undergoes updating of parameters to offer an
optimal solution. Equation (18) gives the formula for updating the concentration vectors:

Ct+1
i = Ct

EQ + (Ct
i − Ct

EQ)× Ft
i + (1− Ft

i )×
Gt

i
λt

iV
t
i

(18)

where t and t + 1 denote the concentration vector iterations (Ct
i and Ct+1

i respectively). The
first and second term represents the equilibrium concentrations and the global search in the
exploration phase, respectively. The third and final term aids the exploitation mechanism
by extracting important information from the search space’s examined search areas. Ct

EQ It
is a concentration vector drawn at random from the equilibrium pool.

Ct
EQ =

{
Ct

EQ1, Ct
EQ2, Ct

EQ3, Ct
EQ4

}
(19)

In terms of fitness, Ct
EQ1, Ct

EQ2, Ct
EQ3, and Ct

EQ4 vectors represent the first four best
concentration vectors. When the optimization search process begins, there is no pre-
information of the algorithm’s equilibrium state or state of final convergence. As a result,
these vectors are thought of as approximations of equilibrium states. Ft

i is used to balance
the E&E, and is given mathematically by:

Ft
i = exp((T − T0)λ

t
i) (20)

T =

(
1− t

tmax

)a2× t
tmax

(21)

T0 = T +
1
λt

i
× ln(−a1sign(r− 0.5)(1− eλT)) (22)

where t and tmax indicates the current iteration and the maximum number of iterations,
respectively. The strength of the exploration search is set by the value of a1. A higher value
of a1 stimulates more exploration and vice-versa.sign(r− 0.5) is the factor which controls
the direction of E&E. Here r is a random number distributed uniformly between 0 to1. The
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a1 and a2 are assigned fixed values 2 and 1, respectively, for the optimal model. The final
expression of Ft

i can be obtained now:

Ft
i = a1 × sign(r− 0.5)(e−λt

i T − 1) (23)

Gt
i iteration rate aids in the exploration of the search space and is calculated using

Equation (24).
Gt

i = Gt
0 × exp((T − T0)× λt

i) (24)

Gt
0 = pt

i × (Ct
EQ − λt

i C
t
i ) (25)

Pt
i =

{
0.5r1r2 ≥ gt

p
0 otherwise

(26)

where r1 and r2 are the two random numbers in the range (0,1). Pt
i symbolizes the control

parameters’ iteration rate, which includes the possibility of iteration term contribution
during the search procedure, as well as the probability of this contribution, which specifies
how many particles use generation term to update their states, as determined by iteration
probability (gt

p).

2.5. Regression Optimization

Regression optimization is a method of integrating regression techniques and opti-
mization approaches in a single framework for optimizing process control setpoints. To
obtain accurate results, regression models have various tunable parameters that are un-
known values, such as weight, bias, number of neurons in the intermediate hidden layer,
and linear and nonlinear parameters, all of which must be optimized using a robust and
reliable optimization procedure. The parameters to be optimized in ELM models are input
weights, output weights, and hidden biases. The output weight of ELM is set by random
initialization and the pseudo-inverse matrix; however, optimization techniques such as
PSO and EO can improve its performance further. It is worth mentioning that initialization
weights and biases may have non-optimal values, resulting in poor performance. ELM
requires a large number of hidden layer nodes to achieve an expected result, which might
lead to overfitting. The ELM parameters are optimized using PSO and EO in this study.
In PSO-ELM, the fitness function is the root mean square error (RMSE), and the probable
solution is weight and biases in the hidden layer. Before ML learning parameter optimiza-
tion, the EO algorithm is set up. The population size, maximum iteration count, lower and
higher boundaries, and ELM hidden layer neuron count are all variables to consider.

3. Details of Dataset

This study’s dataset was compiled from experiments conducted in several laboratories
in the literature [21]. These data have five input parameters and one output parameter. The
input parameters are the width of the foundation (B), depth of the foundation (D), length to
width ratio (L/B), density (γ), and angle of friction (ϕ). The output parameter is the bearing
capacity of the foundation (Qu). The descriptive statistics of the data are given in Table 1.
The histogram with Pearson correlation matrix is shown in Figure 1. As can be seen, the
sample variances are scattered in the range of 0, 0.25 to 8860.48, which indicates that the
present dataset has a wide range of input and output parameters. In addition, the values of
standard error (scattered in the range of 0.01 to 13.18) confirm that the present database
consists of a wide range of variables and is hence useful for soft computing modeling.
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Table 1. Descriptive statistics of the field data.

B (m) D (m) L/B (-) γ (KN/m2) ϕ (◦ ) Q (KPa)

Mean 0.11 0.08 3.92 16.45 38.95 192.84
Minimum 0.06 0.03 1.00 15.70 34.00 58.50
Maximum 0.15 0.15 6.00 17.10 42.50 423.60

Standard Error 0.01 0.01 0.35 0.07 0.44 13.18
Standard Deviation 0.04 0.04 2.47 0.50 3.11 94.13

Sample Variance 0.00 0.00 6.09 0.25 9.67 8860.48
Kurtosis −1.55 −0.82 −1.94 −1.28 −1.21 −0.38

Skewness −0.03 0.61 −0.37 −0.22 −0.45 0.65
Range 0.09 0.12 5.00 1.40 8.50 365.10
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4. Research Methodology

The first step in the research methodology is data normalization, i.e., normalizing the
data in the range 0 to 1 using the ‘min-max method’ to bring all the predictor variables
in the same range and to reduce the errors. The goal of data normalization is to achieve
stable convergence of weight and biases in ML models. In the next step, the normalized
data are divided into the training subset (70% of the data) to train the model and the
testing subset (30% of the data) to validate the trained model [56]. The model learns from
the correlation between input and output variables. The performance of the model was
checked using statistical performance parameters. Based on the cost function, several
iterations were carried out and the best performing model was selected using rank analysis.
The following 14 performance parameters were used in the present paper to evaluate the
performance of the simulation models study, namely, weighted mean absolute percentage
error (WMAPE), root mean square error (RMSE), variance account factor (VAF), coefficient
of determination (R2), adjusted determination coefficient (Adj. R2), Nash–Sutcliffe efficiency
(NS), performance index (PI), root mean square error to observation’s standard deviation
ratio (RSR), normalized mean bias error (NMBE), bias, Willmott’s index of agreement
(WI), mean absolute error (MAE), mean bias error (MBE), and Legate and McCabe’s Index
(LMI) [57–62].

WMAPE =
∑N

i=1

∣∣∣ di−yi
di

∣∣∣× di

∑N
i=1 di

(27)

WMAPE =
∑N

i=1

∣∣∣ di−yi
di

∣∣∣× di

∑N
i=1 di

(28)

VAF =

(
1− var(di − yi)

var(di)

)
× 100 (29)

R2 =
∑N

i=1(di − dmean)
2 −∑N

i=1(di − yi)
2

∑N
i=1(di − dmean)

2 (30)

AdjR2 = 1− (n− 1)
(n− p− 1)

(1− R2) (31)

PI = adj.R2 + (0.01×VAF)− RMSE (32)

NS = 1− ∑N
i=1 (yi − ŷi)

2

∑N
i=1 (yi − ymean)

2 (33)

RSR =
RMSE√

1
N ∑N

i=1 (di − dmean)
2

(34)

Bias Factor =
1
N

n

∑
i=1

yi
di

(35)

NMBE(%) =
1
N ∑n

i=1(yi − di)
1
N ∑n

i=1 di
(36)

WI = 1−
[

∑N
i=1(di − yi)

2

∑N
i=1{|yi − dmean|+ |di − dmean|}2

]
(37)

MAE =
1
N

N

∑
i=1
|(yi − di)| (38)

MBE =
1
N

n

∑
i=1

(yi − di) (39)
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LMI = 1−
[

∑N
i=1|di − yi|

∑N
i=1|di − dmean|

]
, 0 < LMI ≤ 1 (40)

where di is the observed ith value, yi is the predicted ith value, dmean is the average of
the observed value, and N is the number of data samples. Note that, for an ideal model,
the values of these indices should be equal to their ideal values, the details of which are
presented in Table 2.

Table 2. Optimal values of effective parameters of MARS model.

Parameters MARS-L

GCV penalty per knot 0
Cubic modelling 0 (No)
Self-interactions 1 (No)

Maximum interactions 2
Prune 1 (true)

No. of Fb in the final model 15

5. Results and Discussion
5.1. Configuration of the Models

The development of the MARS model was made in MATLAB. MARS model started
with 10 basis functions and the final best performing MARS model was taken for nine
basis functions after the pruning phase. The equations of the basis functions are shown in
Table 3. The model is piecewise-cubic, but the equations of basis functions are shown as
piecewise-linear. The final output equation is provided in Equation (41).

Q = 0.169 + 0.628∗BF1− 0.233∗BF2 + 0.344∗BF3− 0.612∗BF4 + 0.073∗BF5− 0.116∗BF6 + 0.535∗BF7+
0.149∗BF8− 0.108∗BF9→ (41)

Table 3. Equation of basic functions in MARS model.

SL.NO Basic Function Equation

1 BF1 max(0, ϕ − 0.352)
2 BF2 max(0, 0.352 − ϕ)
3 BF3 BF1 ×max(0, D − 0.380)
4 BF4 Bf1 ×max(0, 0.380 − D)
5 BF5 max(0, B − 0.379)
6 BF6 max(0, 0.379 − B)
7 BF7 BF5 ×max(0, γ − 0.57)
8 BF8 max(0, D − 0.53)
9 BF9 max(0, 0.53 − D)

The ELM model is configured with 25 hidden neurons and a population size of 50.
There are five input neurons and one output neuron. The maximum number of iterations
was set as 200 and the cost function was RMSE. To optimize the learning parameters, PSO
and EO optimization techniques are used in hybrid ELM models. The OAs are initialized
to optimize the learning parameters of the ELM such as population size (ns), the maximum
number of iterations (k), lower bound (lb), upper bound (ub), and other parameters besides
the number of hidden neurons (Nh) of ELMs. Then, using the training dataset, OAs
optimize the weight and biases of the ELMs. RMSE was used as the cost function to
estimate the optimal weight and bias values. It is worth noting that, while the values of ns,
k, lb, and ub were kept constant throughout the optimization process, the optimal value of
learning parameters differed in each case.

The optimum number of hidden neurons was found by the trial-and-error method by
varying the Nh of the same training dataset in the range of 10 to 30 and the configuration for
the best performance was taken to simulate the model. The utmost apt value obtained was
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25 for ELM, ELM-PSO, and ELM-EO. The values of other parameters were set as ns = 50,
k = 200, lb = −1, and ub = +1; therefore, the optimum number of optimized weight and
biases are 176 (5 × 25 + 25 + 25 + 1). The detailed configuration of the developed ELM and
optimized ELM models is presented in Table 4.

Table 4. Configuration of optimum hybrid ELM models.

Parameters ns Nh k lb ub

ELM 25
ELM-PSO 50 25 100 −1 +1
ELM-EO 50 25 100 −1 +1

The actual vs. predicted graph is presented in Figure 2. The straight-line inclined at
45 degrees shows the perfect fit model with actual value = predicted value. As obvious
from Figure 2, ELM-EO and ELM-PSO are the best fit model as all the data points are
exactly close to the ‘actual = predicted’ line. The simulation of MARS and ELM is also
satisfactory as all the data points are scattered around the straight line but less than in the
hybrid ELM models.

5.2. Performance Parameters

R2 is a statistical performance parameter for curve fitting problems. It evaluates the fit
of the predicted data with that of a horizontal straight line (actual = predicted line). The
ideal parameter is 1, which represents the perfect fit of the model. If the coefficient is 0.80,
then the regression line should contain 80 percent of the points. Adj. R2 is an improvement
to R2, which adjusts with a number of independent parameters. RMSE is the cost function
used to analyze the accuracy of the model. It measures the magnitude of error of all the
data points in the regression line—the lower the RMSE, the better fit the model. The ideal
value of RMSE is 0. WMAPE is a statistical measure of the accuracy of the simulation
model. It is an improvement over mean absolute percentage error where weighted errors
are calculated. NS is a ratio of residual error variance (noise) to measured variance in
observed data. NS values of less than one are unacceptable. Values ≥ 1 are desirable. VAF
is the variance accounted for among original and predicted values of regression models.
Perfect models have 100% VAF. NMBE computes the correlation between the predicted
value and the mean value. It normalizes the MBE by dividing it with the mean of the
observed values. A bias factor value of 1 means balanced prediction, a value greater than 1
means overprediction, and a value less than 1 means underprediction. The ideal values of
the performance parameters are given in Table 5.

It can be inferred from Table 6 that the output performance parameter values for all
the models are close to the ideal values for both the training and testing phases. The R2 and
RMSE for ELM-EO are 0.999 and 0 for training and 0.995 and 0.01 for testing, respectively.
Further, the comparison between the performances of the models is made using rank
analysis, which is elaborated on in the next section. The values of performance parameters
for ELM are comparatively less satisfactory (R2 = 0.94 and RMSE = 0.0558 in testing).

5.3. Rank Analysis

Rank analysis is the most straightforward and widely used method for determining
the effectiveness of developed models and comparing their robustness. The statistical
parameters are used to assign the score value in this study, with their ideal values serving
as the benchmark. It depends on how many models are used. The greatest score is given to
the best performing results model, and vice versa. The ranking ratings for two models with
the same outcomes may be the same. The overall score of a model is calculated by adding



Processes 2022, 10, 1013 12 of 19

the scores value of the training phase and testing phase. The equation used to calculate the
total score is given as

Total score =

[
m

∑
i=1

Xi +
n

∑
j=1

Xj

]
(42)

where Xi and Xj are the scores of the performance indicators for the training and testing
phase, respectively. The number of performance indicators in the training and testing phase
is represented by m and n, respectively.
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Table 5. Ideal limit of statistical parameters.

Parameters Ideal Value Parameters Ideal Value

VAF 100 RMSE 0
R2 1 WMAPE 0
PI 2 MAE 0
WI 1 MBE 0

Adj. R2 1 NMBE 0
NS 1 LMI 0

RSR 0 Bias 1

Table 6. Values of the performance parameters.

Model
Statistical

Parameters

ELM ELM-EO ELM-PSO MARS ELM ELM-EO ELM-PSO MARS

Testing Performance Training Performance

WMAPE 0.0797 0.0306 0.0441 0.0498 0.0543 0.0030 0.0127 0.0396
RMSE 0.0558 0.0170 0.0186 0.0199 0.0248 0.0014 0.0060 0.0180
VAF 93.921 99.3963 99.3155 99.3155 99.1566 99.9973 99.951 99.5517
R2 0.9425 0.9945 0.9932 0.9954 0.9915 0.9999 0.9995 0.9955

Adj. R2 0.9413 0.9872 0.9840 0.9946 0.9910 0.9999 0.9993 0.9952
NS 0.9386 0.9938 0.9926 0.9916 0.9915 0.9999 0.9995 0.9955
PI 1.8247 1.9641 1.9586 1.9673 1.9578 1.9985 1.9930 1.9727

RSR 0.2477 0.0785 0.0858 0.0916 0.0919 0.0052 0.02200 0.0669
Bias 1.0237 1.1431 0.9178 1.0876 0.9723 0.9731 0.9799 0.9383

NMBE −1.0848 0.6977 1.205 1.8913 0.1616 0.0087 0.04750 0.1163
WI 0.9830 0.9984 0.9982 0.9978 0.9979 0.9999 0.9998 0.9988

MAE 0.0398 0.01088 0.0157 0.0177 0.0202 0.0012 0.0048 0.0150
MBE −0.0054 0.00248 −0.0049 0.0067 0.0006 3.24 × 10−5 0.00018 0.00044
LMI 0.7823 0.93410 0.9052 0.8929 0.9114 0.9950 0.9791 0.9343

The score attained by ELM-EO is the highest in the training phase (52), followed by
ELM-PSO (42) and MARS (30) as presented in Table 7. ELM attains the least score value in
both testing and training phases (18 each). In the testing phase, too, ELM-EO outperforms
all the models (49), while closely followed by ELM-PSO and MARS (38 and 37, respectively).
The total rank value attained by ELM-EO in both the phases combined is 101 (52 + 49),
which is far ahead of ELM-PSO 80 (42 + 38) and MARS 67 (30 + 37). It can be inferred from
the rank values that hybridization has a significant impact, and the efficiency of ELM is
enhanced many times. While ELM lags behind MARS in both testing and training phases,
hybrid ELM models have performances superior to MARS. EO is more robust in enhancing
the performance of ELM than PSO and ELM-EO is the clear winner in terms of performance
compared to the other applied models.

5.4. Error Matrix

The error matrix is a tool for displaying the correctness of a model. Figure 3 depicts
the amount of error associated with hybrid models based on numerous performance
parameters in this section [31]. In this study, the error values for indices R2, Adj R2, and
RMSE in the range of 0% to 1%, 0% to 6%, and 0% to 6%, which is very satisfactory. Similarly,
error value for indices WMAPE, NS, VAF, PI, Bias, WI, MAE, MBE, and LMI are obtained
in the range of 0% to 8%, 0% to 6%, 0% to 6%, 0% to 9%, 3% to 14%, 3% to 14%, 0% to 2%,
0% to 4%, 0% to 1%, and 0% to 22%, respectively, in models for training and testing dataset.
It is obvious from Figure 3 that the ELM-EO model achieves the least error compared to
the other model for all the performance parameters in both training and testing phases.
The error for all the parameters is close to 0 in both the phases except NMBE in testing.
Thus, ELM-EO can be concluded as the most accurate and robust model from the error
matrix. The error percentage for ELM is highest for all the parameters (6% for R2 and RMSE
compared to 0% and 2%, respectively, for MARS and 1% and 2%, respectively, for both
ELM-EO and ELM-PSO) in both phases and thus concluded to possess the least accuracy
among the applied models.
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Table 7. Rank analysis of the simulated model outcomes for testing and training dataset.

Model
Statistical

Parameters

ELM ELM-EO ELM-PSO MARS ELM ELM-EO ELM-PSO MARS

Testing Performance Training Performance

WMAPE
Value 0.0797 0.0306 0.0441 0.0498 0.0543 0.0030 0.0127 0.0396
Score 1 4 3 2 1 4 3 2

RMSE
Value 0.0558 0.0170 0.0186 0.0199 0.0248 0.0014 0.0060 0.0180
Score 1 4 3 3 1 4 3 3

VAF
Value 93.921 99.3963 99.3155 99.3155 99.1566 99.9973 99.951 99.5517
Score 1 4 3 3 1 4 3 3

R2 Value 0.9425 0.9945 0.9932 0.9954 0.9915 0.9999 0.9995 0.9955
Score 1 3 2 4 1 4 3 2

Adj. R2 Value 0.9413 0.9872 0.9840 0.9946 0.9910 0.9999 0.9993 0.9952
Score 1 3 2 4 1 4 3 2

NS
Value 0.9386 0.9938 0.9926 0.9916 0.9915 0.9999 0.9995 0.9955
Score 1 4 3 2 1 4 3 2

PI
Value 1.8247 1.9641 1.9586 1.9673 1.9578 1.9985 1.9930 1.9727
Score 1 3 2 4 1 4 3 2

RSR
Value 0.2477 0.0785 0.0858 0.0916 0.0919 0.0052 0.02200 0.0669
Score 1 4 3 2 1 4 3 2

Bias
Value 1.0237 1.1431 0.9178 1.0876 0.9723 0.9731 0.9799 0.9383
Score 2 3 1 3 2 3 4 1

NMBE
Value −1.0848 0.6977 12.0509 1.8913 0.1616 0.0087 0.04750 0.1163
Score 1 2 4 3 4 1 2 3

WI
Value 0.9830 0.9984 0.9982 0.9978 0.9979 0.9999 0.9998 0.9988
Score 1 4 3 2 1 4 3 2

MAE
Value 0.0398 0.01088 0.0157 0.0177 0.0202 0.0012 0.0048 0.0150
Score 1 4 3 2 1 4 3 2

MBE
Value −0.0054 0.00248 −0.0049 0.0067 0.0006 3.24 × 10−5 0.00018 0.00044
Score 4 2 3 1 1 4 3 2

LMI
Value 0.7823 0.93410 0.9052 0.8929 0.9114 0.9950 0.9791 0.9343
Score 1 4 3 2 1 4 3 2

Total 18 49 38 37 18 52 42 30
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5.5. Sensitivity Analysis

In general, sensitivity analysis (SA) is a technique that is used to determine how
changes in input parameters affect the response of the proposed models. This will assist
us in identifying the input parameters based on their influence on the result. The cosine
amplitude method [63] is used in this work to calculate the amount of influence of the
inputs on the response, i.e., the bearing capacity of the pile foundation. The data pairings
in this study are represented in a data array, X, as follows:

X = {x1, x2, x3, . . . , xi, . . . , xn} (43)

and variable xi in X, is a length vector of m as

xi = {xi1, xi2, xi3, . . . , xim} (44)

The correlation between the strength of the relation (Rij) and datasets of xi and xj is
provided by

Rij =
∑m

k=1 xikxjk√
∑m

k=1 x2
ik ∑m

k=1 x2
jk

(45)

The graphical representation using a pie chart of Rij in Figure 4 shows the relation
between the bearing capacity of soil and the input parameters, as shown in Figure 3. SA
reveals that ϕ has the greatest influence on pile total capacity with a strength value of 0.93
followed by B with a strength value of 0.92. The parameters γ and D have a strength of
0.91; whereas L/B has the minimum effect on the capacity of the pile, i.e., 0.72. It can be
concluded that all five parameters have stronger influences on the pile bearing capacity
and hence are considered in predicting the output.
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5.6. REC Curves

The graph of error tolerance versus the percentage of points predicted inside the
tolerance is plotted by the regression error characteristic (REC) curve. The error tolerance
and accuracy of a regression function are represented by the x and y axes, respectively.
The predicted error is approximated by the area over the REC curve (AOC). The lower the
AOC, the better the models’ performance. As a result, ROC curves provide for a quick and
accurate visual assessment of model performance.

The REC curves for the models are plotted in Figure 5 for both phases. It can be
concluded by the visual interpretation itself that ELM is the least accurate model in terms
of prediction accuracy. Other models are very close to each other and we need to check the
values of AOC for comparison of their performance. The values of the AOC are plotted
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in Figure 5. In both training and testing phases the ELM-EO model is a better performing
model than other models (AOC value 0.0057 and 0.0122, respectively). In the training
phase, the lines for ELM-PSO and ELM-EO are almost overlapping (green line and yellow
line) and the AOC values too are close to each other (0.0045 and 0.0057, respectively). Thus,
the performances of ELM-PSO and ELM-EO are equally likely in the training phase. In the
testing phase, the AOC value of ELM-EO is much better than ELM-PSO (0.0122 and 0.0142)
and, of course, far better than MARS (0.0166) and ELM (0.0235).
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6. Conclusions

The paper presents AI-based models for the prediction of the bearing capacity of
shallow foundation as an alternative to the traditional methods, which suffers several
practical and performance-based drawbacks. ELM, MARS, ELM-PSO, and ELM-EO models
were trained and validated on field data and all the models were found to perform well on
the yardsticks of various performance parameters used. In rank analysis, error matrix and
REC curves, ELM-EO is concluded to outperform the other models (R2 = 1, RMSE = 0.004,
AOC = 0.0057 in the training phase and R2 = 0.9945, RMSE = 0.017, AOC = 0.0122 in the
testing phase). ELM-EO and ELM-PSO have equally likely performance in the training
phase (R2 close to 1); however, ELM-EO is the best model in the testing phase (R2 = 0.995
for ELM-EO and 0.993 for ELM-PSO)—it is noteworthy that testing performance is the
most important factor in the robustness of the model. The final rank values of ELM,
ELM-PSO, and ELM-EO are 36, 80, and 101, respectively. R2 for MARS is 0.995 in both
training and testing phases; thus, the hybridization of the ELM model is concluded to
enhance the performance of ELM many miles and further hybridization with various other
optimization techniques should be encouraged in future research. The unique advantages
of the proposed ELM-EO model are higher prediction accuracy, ease of implementation
with the existing datasets, and high generalization capability. On the other hand, the
predicting expression of MARS can be used as a user-friendly equation to determine the
bearing capacity of the pile. The hybrid ELM models can be extended to other engineering
applications once the corresponding database is created. Sensitivity analysis is conducted
to assess the impact of input parameters on the output. All the input parameters were
found to have a significant impact on the output, friction angle, and L/B ratio having the
highest and lowest impact, respectively.
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Malazdrewicz, S. A Comparative Study for the Prediction of the Compressive Strength of Self-Compacting Concrete Modified
with Fly Ash. Materials 2021, 14, 4934. [CrossRef]

15. Javed, M.F.; Amin, M.N.; Shah, M.I.; Khan, K.; Iftikhar, B.; Farooq, F.; Aslam, F.; Alyousef, R.; Alabduljabbar, H. Applications of
Gene Expression Programming and Regression Techniques for Estimating Compressive Strength of Bagasse Ash Based Concrete.
Crystals 2020, 10, 737. [CrossRef]

16. Khan, M.A.; Farooq, F.; Javed, M.F.; Zafar, A.; Ostrowski, K.A.; Aslam, F.; Malazdrewicz, S.; Maślak, M. Simulation of Depth of
Wear of Eco-Friendly Concrete Using Machine Learning Based Computational Approaches. Materials 2021, 15, 58. [CrossRef]
[PubMed]
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