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Hybrid Evolutionary Algorithms:
Methodologies, Architectures, and Reviews

C. Grosan and A. Abraham

Summary. Evolutionary computation has become an important problem solving method-
ology among many researchers. The population-based collective learning process, self-
adaptation, and robustness are some of the key features of evolutionary algorithms when
compared to other global optimization techniques. Even though evolutionary computation
has been widely accepted for solving several important practical applications in engineering,
business, commerce, etc., yet in practice sometimes they deliver only marginal performance.
Inappropriate selection of various parameters, representation, etc. are frequently blamed.
There is little reason to expect that one can find a uniformly best algorithm for solving all
optimization problems. This is in accordance with the No Free Lunch theorem, which explains
that for any algorithm, any elevated performance over one class of problems is exactly paid
for in performance over another class. Evolutionary algorithm behavior is determined by
the exploitation and exploration relationship kept throughout the run. All these clearly
illustrates the need for hybrid evolutionary approaches where the main task is to optimize
the performance of the direct evolutionary approach. Recently, hybridization of evolutionary
algorithms is getting popular due to their capabilities in handling several real world problems
involving complexity, noisy environment, imprecision, uncertainty, and vagueness. In this
chapter, first we emphasize the need for hybrid evolutionary algorithms and then we illustrate
the various possibilities for hybridization of an evolutionary algorithm and also present some
of the generic hybrid evolutionary architectures that has evolved during the last couple of
decades. We also provide a review of some of the interesting hybrid frameworks reported in
the literature.

1.1 Introduction

Evolutionary computation, offers practical advantages to the researcher facing
difficult optimization problems. These advantages are multifold, including the sim-
plicity of the approach, its robust response to changing circumstance, its flexibility,
and many other facets. The evolutionary algorithm can be applied to problems
where heuristic solutions are not available or generally lead to unsatisfactory results.
As a result, evolutionary algorithms have recently received increased interest,
particularly with regard to the manner in which they may be applied for practical
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problem solving. Usually grouped under the term evolutionary computation or
evolutionary algorithms, we find the domains of genetic algorithms [23], evolution
strategies [56], [58], evolutionary programming [15], and genetic programming [31].
They all share a common conceptual base of simulating the evolution of individual
structures via processes of selection, mutation, and reproduction. The processes
depend on the perceived performance of the individual structures as defined by the
problem. Compared to other global optimization techniques, evolutionary algorithms
(EA) are easy to implement and very often they provide adequate solutions. The
flow chart of an EA is illustrated in Fig. 1.1. A population of candidate solutions
(for the optimization task to be solved) is initialized. New solutions are created
by applying reproduction operators (mutation and/or crossover). The fitness (how
good the solutions are) of the resulting solutions are evaluated and suitable selection
strategy is then applied to determine which solutions are to be maintained into the
next generation. The procedure is then iterated.

For several problems a simple Evolutionary algorithm might be good enough to
find the desired solution. As reported in the literature, there are several types of prob-
lems where a direct evolutionary algorithm could fail to obtain a convenient (optimal)
solution [37,40,61,65]. This clearly paves way to the need for hybridization of evolu-
tionary algorithms with other optimization algorithms, machine learning techniques,
heuristics etc. Some of the possible reasons for hybridization are as follows [60]:

1. To improve the performance of the evolutionary algorithm (example: speed of
convergence)

2. To improve the quality of the solutions obtained by the evolutionary algorithm
3. To incorporate the evolutionary algorithm as part of a larger system

In 1995, Wolpert and Macready [73] illustrated that all algorithms that search
for an extremum of a cost function perform exactly the same, when averaged over
all possible cost functions. According to the authors, if algorithm A outperforms
algorithm B on some cost functions, then loosely speaking there must exist exactly

Fig. 1.1. Flowchart of an evolutionary algorithm
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as many other functions where B outperforms A. Hence, from a problem solving
perspective it is difficult to formulate a universal optimization algorithm that could
solve all the problems. Hybridization may be the key to solve practical problems.
To illustrate the popularity of hybrid approaches, we searched the number of
publications appearing in some of the popular scientific databases namely Sci-
enceDirect [74], IEEE-Xplore [76], and SpringerLink [75] using the keywords
“hybrid evolutionary” and “hybrid genetic” and the query results are tabulated
below. Since no filtering was used in the query, the number of relevant papers might
be lower than the figures mentioned.

Keyword Science Direct IEEE Explore SpringerLink

hybrid evolutionary 4,674 120 535

hybrid genetic 5,614 296 6,158

Figure 1.2 illustrates some possibilities for hybridization. From initialization
of population to the generation of offsprings, there are lots of opportunities to
incorporate other techniques/algorithms etc. Population may be initialized by inc-
orporating known solutions or by using heuristics, local search etc. Local search
methods may be incorporated within the initial population members or among the
offsprings. Evolutionary algorithms may be hybridized by using operators from

Fig. 1.2. Hybridization prospectives in an evolutionary algorithm
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other algorithms (or algorithms themselves) or by incorporating domain-specific
knowledge. Evolutionary algorithm behavior is determined by the exploitation and
exploration relationship kept throughout the run. Adaptive evolutionary algorithms
have been built for inducing exploitation/exploration relationships that avoid the
premature convergence problem and optimize the final results. The performances
of the evolutionary algorithm can be improved by combining problem-specific
knowledge for particular problems.

The rest of the chapter is organized as follows. In Sect. 1.2, the various architec-
tures for hybrid evolutionary algorithms are presented. In Sect. 1.3, we review the
different hybrid evolutionary algorithms and some conclusions are provided toward
the end.

1.2 Architectures of Hybrid Evolutionary Algorithms

As reported in the literature, several techniques and heuristics/metaheuristics have
been used to improve the general efficiency of the evolutionary algorithm. Some of
most used hybrid architectures are summarized as follows:

1. Hybridization between an evolutionary algorithm and another evolutionary
algorithm (example: a genetic programming technique is used to improve the
performance of a genetic algorithm)

2. Neural network assisted evolutionary algorithms
3. Fuzzy logic assisted evolutionary algorithm
4. Particle swarm optimization (PSO) assisted evolutionary algorithm
5. Ant colony optimization (ACO) assisted evolutionary algorithm
6. Bacterial foraging optimization assisted evolutionary algorithm
7. Hybridization between evolutionary algorithm and other heuristics (such as local

search, tabu search, simulated annealing, hill climbing, dynamic programming,
greedy random adaptive search procedure, etc)

In the following sections, we will briefly review some of the architectures
depicted above. Figure 1.3 illustrates some of the generic architectures for the vari-
ous types of hybridization. By problem, we refer to any optimization or even function
approximation type problem and intelligent paradigm refers to any computational
intelligence technique, local search, optimization algorithms etc.

Figure 1.3a, b represents a concurrent architecture where all the components are
required for the proper functioning of the model. As depicted in Fig. 1.3a, evolu-
tionary algorithm acts as a preprocessor and the intelligent paradigm is used to fine
tune the solutions formulated by the evolutionary algorithm. In Fig. 1.3b, intelli-
gent paradigm acts as a preprocessor and the evolutionary algorithm is used to fine
tune the solutions formulated by the intelligent paradigm. Figure 1.3c, represents a
transformational hybrid system in which the evolutionary algorithm is used to fine
tune the performance of the intelligent paradigm and at the same time, the intelli-
gent paradigm is used to optimize the performance of the evolutionary algorithm.
Required information is exchanged between the two techniques during the search
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Fig. 1.3. Hybrid evolutionary algorithm generic architectures

(problem solving) process. In a cooperative model the intelligent paradigm is used
only for initialization or for determining some parameters of the evolutionary algo-
rithm. As depicted in Fig. 1.3d, thereafter, the intelligent paradigm is not required for
the proper functioning of the system. Also, there are several ways to hybridize two
or more techniques.

In Sect. 1.3, some of the well established hybrid frameworks for optimizing the
performance of evolutionary algorithm using intelligent paradigms are presented.

1.3 Hybrid Evolutionary Architectures

The integration of different learning and adaptation techniques, to overcome indi-
vidual limitations and achieve synergetic effects through hybridization or fusion of
these techniques, has in recent years contributed to a large number of new hybrid
evolutionary systems. Most of these approaches, however, follow an ad hoc design
methodology, further justified by success in certain application domains. Due to
the lack of a common framework it remains often difficult to compare the various
hybrid systems conceptually and evaluate their performance comparatively. There
are several ways to hybridize a conventional evolutionary algorithm for solving
optimization problems. Some of them are summarized below [63]:

– The solutions of the initial population of EA may be created by problem-specific
heuristics.

– Some or all the solutions obtained by the EA may be improved by local search.
This kind of algorithms are known as memetic algorithms [21, 50].

– Solutions may be represented in an indirect way and a decoding algorithm
maps any genotype to a corresponding phenotypic solution. In this mapping, the
decoder can exploit problem-specific characteristics and apply heuristics etc.
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– Variation operators may exploit problem knowledge. For example, in recombi-
nation more promising properties of one parent solution may be inherited with
higher probabilities than the corresponding properties of the other parent(s). Also
mutation may be biased to include in solutions promising properties with higher
probabilities than others.

1.3.1 Evolutionary Algorithms Assisted by Evolutionary Algorithms

Tan et al. [64] proposed a two-phase hybrid evolutionary classification technique
to extract classification rules that can be used in clinical practice for better under-
standing and prevention of unwanted medical events. In the first phase, a hybrid evo-
lutionary algorithm is used to confine the search space by evolving a pool of good
candidate rules. Genetic programming [32] is applied to evolve nominal attributes for
free structured rules and genetic algorithm is used to optimize the numeric attributes
for concise classification rules without the need of discretization. These candidate
rules are then used in the second phase to optimize the order and number of rules in
the evolution for forming accurate and comprehensible rule sets.

Zmuda et al. [69] proposed an hybrid evolutionary learning scheme for synthe-
sizing multiclass pattern recognition systems. A considerable effort is spent for dev-
eloping complex features that serve as inputs to a simple classifier back end. The
nonlinear features are created using a combination of genetic programming [32–35]
to synthesize arithmetic expressions, genetic algorithms [23] to select a viable set of
expressions, and evolutionary programming [13, 14] to optimize parameters within
the expressions. The goal is create a compact set of nonlinear features that cooperate
to solve a multiclass pattern recognition problem.

Swain and Morris /citeswain proposed an hybridization between evolutionary
programming (EP) and a fitness-blind mutation (FBM) algorithm. The method dev-
eloped by the authors is functionally, and structurally equivalent to standard EP, but
still can be used effectively to optimize functions having strong fitness dependency
between parents and their offspring. The FBM algorithm is used in conjunction with
the EP mutation operator. The FBM operation has been implemented by taking the
standard deviation of the Gaussian variable to vary in proportion to the genotypic
distance between the individual parent and the fittest individual, which is defined as
a pseudoglobal optimum individual in a population pool. Also, the directionality of
the random variation has been exploited to improve the probability of getting better
solutions. In addition to this, the importance of initial search width for generating the
offspring has been established empirically.

1.3.2 Evolutionary Algorithms Assisted by Neural Networks

Wang [71] proposed a hybrid approach to improve the performance of evolutionary
algorithms for a simulation optimization problem. Simulation optimization aims
at determining the best values of input parameters, while the analytical objective
function and constraints are not explicitly known in terms of design variables and
their values only can be estimated by complicated analysis or time-consuming
simulation [71].
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In the first phase, neural networks (NN) are constructed based on a collection
of training samples. Then, the evolutionary algorithm is used to explore good sol-
utions among the solution space. Once the evolutionary algorithm generates a new
solution, the NN will be used to determine its fitness value for the evolutionary algo-
rithm to continue its search process. Until the stopping criterion of the evolutionary
algorithm is satisfied, the strategy will output the best solution resulted by the evo-
lutionary algorithm and its performance determine by detailed evaluation based on
actual problem.

To improve the consistency and robustness of the results, it is suggested to use
multiple NN’s to provide statistical predicted performance for the evolutionary algo-
rithm. For those problems with known form of objective function but hard to evaluate
the performance, NN still can be established to rapidly provide performance evalua-
tion to enhance the efficiency of genetic search.

1.3.3 Fuzzy Logic Assisted Evolutionary Algorithms

Fuzzy logic controller (FLC) is composed by a knowledge base, that includes the
information given by the expert in the form of linguistic control rules, a fuzzification
interface, which has the effect of transforming crisp data into fuzzy sets, an inference
system, that uses them together with the knowledge base to make inference by means
of a reasoning method, and a defuzzification interface, that translates the fuzzy con-
trol action thus obtained to a real control action using a defuzzification method. FLCs
have been used to design adaptive evolutionary algorithms. The main idea is to use
an FLC whose inputs are any combination of EA performance measures and current
control parameter values and whose outputs are EA control parameter values. Lee
and Takagi [36] proposed the dynamic parametric GA (DPGA) that uses an FLC
for controlling GA parameters. The inputs to the FLC are any combination of GA
performance measures or current control settings, and outputs may be any of the GA
control parameters. Hererra and Lozano [22] reported tightly coupled, uncoupled,
and loosely coupled methods for adaptation. Three levels of tightly coupled adap-
tation may be implemented at the level of individuals, the level of subpopulations
and the level of population. In an uncoupled adaptation, a totally separate adaptive
mechanism adjusts the performance of EA. It is to be noted that an uncoupled app-
roach does not rely upon the EA for the adaptive mechanism. In the loosely coupled
method, EA is partially used for the adaptive mechanism, i.e., either the population
or the genetic operators are used in some fashion.

The EA control parameter settings such as mutation probability (Pm), crossover
probability (Pc), and population size (N) are key factors in the determination of the
exploitation versus exploration tradeoff.

Example: Mutation rates (Pm) may be adapted to prevent premature convergence
and to speed up the optimization. The rules that take care of adjusting mutation rates
could be formulated as follows:

– If convergent then set Pm = 0.6
– If not convergent then set Pm = 0.05
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1.3.4 Evolutionary Algorithms Assisted by Particle Swarm Optimization

PSO incorporates swarming behaviors observed in flocks of birds, schools of fish, or
swarms of bees, and even human social behavior, from which the idea is emerged
[7, 9, 27, 28].

A hybrid evolutionary algorithm – PSO method is proposed by Shi et al. [59]. The
hybrid approach executes the two systems simultaneously and selects P individuals
from each system for exchanging after the designated N iterations. The individual
with larger fitness has more opportunities of being selected. The main steps of the
hybrid approach are depicted below [59]:

1. Initialize EA and PSO subsystems.
2. Execute EA and PSO simultaneously.
3. Memorize the best solution as the final solution and stop if the best individual in

one of the two subsystems satisfies the termination criterion.
4. Perform the hybrid process if generations could be divided exactly by the des-

ignated number of iterations N. Select P individuals from both sub-systems ran-
domly according to their fitness and exchange. Go to step 3.

A hybrid technique combining GA and PSO called genetic swarm optimization
(GSO) is proposed by Grimaldi et al. [18] for solving an electromagnetic optimiza-
tion problem. The method consists of a strong co-operation of GA and PSO, since
it maintains the integration of the two techniques for the entire run. In each iter-
ation, the population is divided into two parts and they are evolved with the two
techniques, respectively. They are then recombined in the updated population, that is
again divided randomly into two parts in the next iteration for another run of genetic
or particle swarm operators. The population update concept can be easily understood
thinking that a part of the individuals is substituted by new generated ones by means
of GA, while the remaining are the same of the previous generation but moved on
the solution space by PSO.

The driving parameter of the PSO algorithm is the hybridization coefficient
(HC), which expresses the percentage of population that in each iteration is evolved
with GA. So HC = 0 means the procedure is a pure PSO (the whole population is
updated according to PSO operators), HC = 1 means pure GA, while 0 <HC< 1
means that the corresponding percentage of the population is developed by GA and
the rest by PSO.

Grosan et al. [19] proposed a variant of the PSO technique named independent
neighborhoods particle swarm optimization (INPSO) dealing with subswarms for
solving the well known geometrical place problems. The performance of the INPSO
approach is compared with Geometrical Place Evolutionary Algorithms (GPEA).
The main advantage of the INPSO technique is its speed of convergence (finding
quick solutions). To enhance the performance of the INPSO approach, a hybrid alg-
orithm combining INPSO and GPEA is also proposed in this paper. The developed
hybrid combination is able to detect the geometrical place much faster even for
difficult problems for which the direct GPEA approach required more time and the
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INPSO (even with few subswarms) approach failed in finding all the geometrical
place points (solutions).

Liu et al. [42] introduced turbulence in the particle swarm optimization (TPSO)
algorithm to overcome the problem of stagnation. The algorithm used a minimum
velocity threshold to control the velocity of particles. TPSO mechanism is similar to
a turbulence pump, which supplies some power to the swarm system to explore new
neighborhoods for better solutions. The algorithm also avoids clustering of particles
and at the same time attempts to maintain diversity of population. The parameter,
the minimum velocity threshold of the particles is tuned adaptively by the FLCs in
the TPSO algorithm, which is further called as Fuzzy Adaptive TPSO (FATPSO).
The comparison was performed on a suite of 20 widely used benchmark problems.

1.3.5 Evolutionary Algorithms Assisted by Ant Colony Optimization

ACO deals with artificial systems that are inspired from the foraging behavior of real
ants, which are used to solve discrete optimization problems [8].

Tseng and Liang [65] proposed a hybrid approach that combines (ACO), the gen-
etic algorithm (GA) and a Local Search (LS) method. The algorithm is applied for
solving the Quadratic Assignment Problem (QAP). Instead of starting from a popula-
tion that consists of randomly generated chromosomes, GA has an initial population
constructed by ACO in order to provide a good start. Pheromone acts as a feedback
mechanism from GA phase to ACO phase. When GA phase reaches the termination
criterion, control is transferred back to ACO phase. Then ACO utilizes pheromone
updated by GA phase to explore solution space and produces a promising population
for the next run of GA phase. The local search method is applied to improve the solu-
tions obtained by ACO and GA. Another hybrid approach for the same problem were
proposed by Vasquez and Whitley [67] where GA is combined with Tabu Search.

Ahuja et al. [2] used a greedy genetic algorithm. This approach incorporates
new ideas such as: generating the initial population using a randomized construc-
tion heuristic; new crossover schemes; a special purpose immigration scheme that
promotes diversity; periodic local optimization of a subset of the population; formu-
lating tournaments among different populations; and an overall design that attempts
to strike a balance between diversity and a bias toward better individuals. Fleurent
and Ferland proposed some general hybrid approaches for combining genetic algo-
rithms and heuristics for QAP [12]. Genetic algorithms hybridized with repair and
recreate procedure are applied for QAP by Misevicius [48].

1.3.6 Evolutionary Algorithms Assisted by Bacterial Foraging

Recently search and optimal foraging decision-making of bacteria has been used
for solving optimization problems [55]. The foraging behavior of Escherichia coli
bacteria is mimicked. They undergo different stages such as chemotaxis, swarming,
reproduction, and elimination and dispersal. In the chemotaxis stage, it can have
tumble followed by a tumble or a tumble followed by a run. On the other hand, in
swarming, each E. coli bacterium will signal other via attractants to swarm together.
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In elimination and dispersal, any one bacterium is eliminated from the total set just
by dispersing it to a random location on the optimization domain.

Kim et al. [29] used a hybrid genetic algorithm (HGA) and bacterial foraging
approach for function optimization and PID controller tuning. In the hybrid frame-
work, the population members may be viewed as a group of bacteria foraging in
the problem search space. Experiment results clearly reveal that the hybrid approach
performed better than a direct GA approach.

1.3.7 Evolutionary Algorithms Incorporating Prior Knowledge

There are several existing approaches which are not using a randomly generated
initial population for evolutionary algorithms. If prior knowledge exists or can be
generated at a low computational cost, with good initial estimates may generate
better solutions with faster convergence [20, 24, 38, 52, 70].

Keedwell and Khu [26] mentioned that a heuristic-based approach to seeding
a GA should yield performance enhancements on difficult problems. Authors [26]
proposed a heuristic-based local representative cellular automata (CA) [53] approach
to provide a good initial population for evolutionary algorithm runs. Grefenstette [17]
discussed methods and demonstrated the value of incorporating problem-specific
knowledge into the EA mechanism, including seeding the population. Louis [41]
seeded the EA population with known good solutions from case-based reasoning.
The approach was tested for the open shop rescheduling problem and found that the
performance of EA was consistently better than a randomly seeded EA. Oman and
Cunningham [54] experimented with seeding for the Traveling Salesman Problem
(TSP) and the job-shop scheduling problem (JSSP), as two benchmark tasks for
evolutionary algorithms. They seeded the EA with known good solutions in the initial
population and found that the results were significantly improved on the TSP but not
on JSSP. Interestingly, they used a varying percentage of seeding, from 25 to 75%
and the result for each was remarkably similar although the authors pointed out that
a 100% seed was not very successful on either problems [26].

1.3.8 Hybrid Approaches Incorporating Local Search and Others

Hybridization between evolutionary algorithms and local search is known as
memetic algorithms. Memetic Algorithms have been proved to be orders of mag-
nitude faster and more accurate than evolutionary algorithms for different classes
of problems. As reported in the literature, hybrid methods combining probabilis-
tic methods and deterministic methods have found success in solving complex
optimization problems [4–6].

Evolutionary programming (EP) hybridized with a deterministic optimization
procedure was applied by Myung and Kim [51] for nonlinear and quadratic opti-
mization problems. The hybrid approach is outperforming EP alone, two-phase (TP)
optimization, and EP with a (NS-EP) in terms of computational efficiency and solu-
tion accuracy.
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Somasundaram et al. [61] proposed a hybrid method for solving the security
constrained economic dispatch problem [66]. A simple evolutionary programming
is applied as a base level search, which can give a good direction to the optimal
global region and a local search linear programming (LP) is used to fine tune to
determine the optimal solution. For the problem considered, authors found [61] that
initially, the rate of convergence in EP is very fast and subsequently the convergence
is very slow. A direct LP approach will be effective only when the magnitudes of
constraint violations are less and corrections in the control variables are small. In
order to overcome these difficulties, a two-phase hybrid method has been proposed
by the authors [61].

A HGA for permutation flow shop with limited buffers was proposed by Wang
et al. [72]. Multiple genetic operators are applied simultaneously in a hybrid sense to
perform evolutionary search (globally) and a local search based on a neighborhood
structure-based graph model. The utilization of genetic mutation and local search is
controlled by a decision probability so that population diversity can be maintained
and computing effort can be concentrated on promising neighbor solutions. Elitism
is also used so that the best solution found so far cannot be lost [72].

Burke and Smith [6] proposed a hybrid EA-local search for the thermal genera-
tor maintenance scheduling problem. A heuristic is used for solutions initialization.
Fatourechi et al. [11] used a HGA for user customization of the energy normaliza-
tion parameters in brain–computer interface systems. The GA is hybridized with
a local search algorithm in their approach. Schlottmann and Seese [57] proposed
a hybrid heuristic approach combining multiobjective evolutionary and problem-
specific local search methods to support the risk-return analysis of credit portfolios.
Menon et al. [46] used two hybrid techniques combining differential evolution [62]
and local search for the clearance of nonlinear flight control laws.

Estudillo et al. [10] proposed a combination of an EA, a clustering process, and
a local-search procedure for the evolutionary design of neural networks [1]. The
local-search method is incorporated into the EA in order to improve its performance.
In order to efficiently use the hybrid algorithm, it is not worth to carry out a local
optimization algorithm for every individual in the population due to the size of the
population and/or the dimension of the search space. The proposed approach selects a
subset of the best individuals, perform a cluster analysis to group them, and optimize
only the best individual of every group. The use of a clustering algorithm allows the
selection of individuals representing different regions in the search space. In this way,
the optimized individuals are more likely to converge toward different local optima.

Aruldoss and Ebenezer [3, 4] proposed a – (SQP) method for the dynamic
economic dispatch problem (DEDP) of generating units considering the valve-point
effects. The developed method is a two-phase optimizer. In the first phase, the
candidates of EP explores the solution space freely. In the second phase, the SQP is
invoked when there is an improvement of solution (a feasible solution) during the
EP run. Thus, the SQP guides EP for better performance in the complex solution
space. A similar hybrid approach involving EP and SQP techniques was proposed by
Attaviriyanupap et al. [5], where the EP is applied to obtain a near global solution;
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once the EP terminates its procedure, the SQP is applied to obtain final optimal
solution.

Lin et al. [39] proposed a hybrid approach to deal with the mixed-integer opti-
mization problems. The hybrid algorithm contains the migration operation to avoid
candidate individuals clustering together. The population diversity measure is intro-
duced in order to inspect when the migration operation should be performed so that
a smaller population size can be used to obtain a global solution. A mixed coding
representation and a rounding operation are introduced. A migration operation is
embedded in the algorithm so that it is able to obtain a global solution using a small
population size.

Jeong et al. [25] suggested an hybrid approach with a genetic algorithm (GA)
and a simulation technique. The GA is used for optimization of schedules, and
the simulation is used to minimize the maximum completion time for the last job
with fixed schedules obtained from the GA model. The main steps of the approach
are [25]:

1. Using GA and generate production schedules
2. Run a simulation model based on the GA generated production schedules
3. Obtain feasible simulation completion time
4. Decide on the appropriate result, which yields the required values
5. Change constraints in the GA using current simulation completion time and go

to step 1
6. Determine the production scheduling which is considered to be the realistic

optimal solution

Ganesh and Punniyamoorthy [16] proposed a hybrid GA – simulated annealing
(SA) algorithm for continuous-time aggregate production-planning problems. The
motivation behind the GA–SA combination is the power of GA to work on the
solution in a global sense while allowing SA to locally optimize each individual
solution [16]. The hybrid algorithm executes in two phases. In the first phase, the
GA generates the initial solutions randomly. The GA then operates on the solutions
using selection, crossover, and mutation operators to produce new and hopefully
better solutions. After each generation, the GA sends each solution to the SA (second
phase) to be improved. The neighborhood generation scheme used in SA is a single
insertion neighborhood scheme. Once the SA is finished for a solution of GA, another
GA solution is passed to SA. This process continues until all solutions of GA in one
generation are exhausted. Once the SA is finished for all solutions in one generation
of GA, the best solutions of population size obtained from SA are the solutions of
GA for the next generation. The GA and SA exchange continues until the required
number of generations are completed [16].

Kim et al. [30] hybridized a modified EP with subsequent deterministic optimiza-
tion following a Lagrange multiplier method [43]. The obtained approach is applied
for constraint optimization problems.

Arc revision [44] is a method of constraint processing which removes from the
domain of the variable at the tail of an arc any value which is not supported through
the arc by at least one value in the domain of the variable at the head of the arc.
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Dozier et al. [8] used the conventional evolutionary search with the systematic search
concepts of arc revision and two variants of hill climbing [47, 49] to form a hybrid
system that quickly finds solutions to static and dynamic constraint satisfaction prob-
lems.

Lo and Chang [40] proposed a for the capacitated multipoint network design
problem. The concept of subpopulations is used. Four subpopulations are generated
according to the elitism reservation strategy, the shifting Prüfer vector, the stochas-
tic universal sampling, and the complete random method, respectively. Mixing these
four subpopulations produces the next generation population. Magyar et al. [45] pro-
posed a HGA with an adaptive application of genetic operators for solving the (3MP).
Several general/heuristic crossover and local for the 3MP, and adaptation is applied
at the level of choosing among the operators. The GA combines these operators to
form an effective problem solver. The algorithm is hybridized as it incorporates lo-
cal search heuristics, and it is adaptive as the individual recombination/improvement
operators are fired according to their on-line performance.

Zhong and Yang proposed a HGA to solve the tasks scheduling problem [68].
It uses genetic algorithm to evolve tasks dispatching priority queue, and uses list
scheduling to decode the queue info a schedule. In order to remedy the GA’s weak-
ness in fine-tuning, a neighborhood search method is used to improve the fitness of
the individuals of each generation, based on Lamarckian theory of evolution.

1.4 Conclusions

As evident from the scientific literature/databases, the use of hybrid evolutionary
algorithms are getting very popular. In this chapter, we illustrated the various pos-
sibilities for hybridization of an evolutionary algorithm and also presented some of
the generic hybrid evolutionary architectures that has evolved during the last couple
of decades. We also provided a review of some of the interesting hybrid frameworks
reported in the literature.
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