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Abstract: In this paper we present details of a new class of hybrid methods which are based on backward
differentiation formula (BDF) for the numerical solution of ordinary differential equations. In these methods,
the first derivative of the solution in one super future point as well as in one off-step point is used to improve
the absolute stability regions. The constructed methods are A(α)–stable up to order 9 so that, as it is shown
in the numerical experiments, they are superior for stiff systems.

Keywords: stiff ODEs; multistep methods; hybrid methods; stability aspects

1 Introduction
The numerical integration of ordinary differential equations has been one of the principal concerns of numerical analysis.
Many applications modeled by system of ordinary differential equations exhibit a behavior known as stiffness. Although
there has been much controversy about the mathematical definition, simply we can say that the problem

y′(x) = f(x, y(x)), y(x0) = y0, (1)

on the finite interval I = [x0, xN ] where y : [x0, xN ] → Rm and f : [x0, xN ] × Rm → Rm, is stiff if its Jacobian (in
the neighborhood of the solution) has eigenvalues that verify max|Reλi|

min|Reλi| >> 1 (usually it is considered that Reλi < 0). A
potentially good numerical method for the solution of stiff systems of ODEs must has good accuracy and some reasonably
wide region of absolute stability [3]. The search for higher order A-stable multistep methods is carried out in the two main
directions:
• use higher derivatives of the solutions,
• throw in additional stages, off-step points, super-future points and like.
This leads into the large field general linear methods [6].
Backward differentiation formulas (BDFs)

yn+k +
k−1∑
j=0

αjyn+j = hβkfn+k,

of order k are A-stable up to order 2.
Adaptive BDFs [5], blended methods of implicit and explicit BDF,

k∑
j=0

(αj − tᾱj)yn+j = hβkfn+k − htβ̄kfn+k−1,

of order k, are A-stable up to order 3.
Extended backward differentiation formulas (EBDFs) [1]

yn+k +

k−1∑
j=0

α̂jyn+j = hβ̂kfn+k + hβ̂k+1f̄n+k+1,
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of order k + 1, which are A-stable up to order 4.
Hybrid BDF [4], where additional stage point (or off-step point) has been used in the first derivative of the solution to
improve the absolute stability regions

yn+1 +

k∑
j=1

αn+1−jyn+1−j = hβsf̄n+s.

These methods are of order k and A-stable up to order 4.
Also numerous works have focused on more advanced methods like multistep methods which use second derivative

of solution. For more details see [2, 6, 8, 9].
In this paper we introduce a modification of BDF which applies both off-step and one super-future point techniques.

These methods, which we say Hybrid EBDF (HEBDF), have good stability properties so that they are effective and
efficient for stiff ODEs.

This paper is organized as follows: Section 2 is devoted to the construction and the order of truncation error of
presented methods. In section 3 stability analysis of the methods are discussed. In section 4 we give some numerical
experiments to confirm the theoretical results.

2 Hybrid EBDF
Extended backward differentiation formulas (EBDFs) take the following general form

yn+k +
k−1∑
j=0

α̂jyn+j = hβ̂kfn+k + hβ̂k+1fn+k+1, (2)

where
fn+k = f(xn+k, yn+k), fn+k+1 = f(xn+k+1, yn+k+1),

and the coefficients are chosen so that (2) is of order k + 1. For the coefficients of (2), see [1].
We are going to introduce HEBDFs. These methods are of the form of EBDF, where we reform its stages by adding a

stage in which the first derivative of the solution in one off-step point tn+k+s, 0 < s < 1 is used. Also in the prediction
of the solution in the super future point, we use the obtained first derivative of the solution in off-step point to improve
stability region. Then EBDF is used to correct the value of yn+k.

In practice for using (2), we need predictors for solution in the step point and off-step point. For prediction in the step
point, we apply BDF [10] and for prediction of yn+k+s, we introduce the k-step hybrid BDF (HBDF) as follows

yn+k+s = hµfn+k −
k−1∑
j=0

ηjyn+j − ηkyn+k, (3)

where the coefficients are chosen so that (3) has order k + 1. The coefficients of k-step methods of class (3) for some
values of k are given in Table 1. We get the parameter s ∈ (0, 1) as a free parameter to find methods with largest absolute
stability region.

Assuming that the solution values yn, yn+1, . . . , yn+k−1 are available, the way in which (2) is used in practice is by
carry out the following computations:

Stage 1. Compute ȳn+k as the solution of the k-step BDF

yn+k = hβkfn+k −
k−1∑
j=0

αjyn+j , (4)

Evaluate f̄n+k = f(xn+k, ȳn+k).

Stage 2. Compute ȳn+k+s as the solution of k-step HBDF

yn+k+s = hµf̄n+k −
k−1∑
j=0

ηjyn+j − ηkȳn+k, (5)

Evaluate f̄n+k+s = f(xn+k+s, ȳn+k+s).
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Stage 3. Compute ȳn+k+1 (future point) as the solution of

yn+k+1 = hβ̄kfn+k+1 + hβ̄sfn+k+s −
k∑

j=1

ᾱjyn+j , (6)

Evaluate f̄n+k+1 = f(xn+k+1, ȳn+k+1).

The coefficients are chosen so that (6) has order k + 1. These coefficients for some values of k are given in Table 2.
Stage 4. Correct yn+k as the solution of

yn+k +

k−1∑
j=0

α̂jyn+j = hβ̂kfn+k + hβ̂k+1f̄n+k+1. (7)

We note that in implementing stages 1, 3 and 4 to integrate a nonlinear initial value problem, it is necessary to solve
a system of nonlinear algebraic equations for each of the required solutions ȳn+k, ȳn+k+1 and yn+k. In each case, these
algebraic equations are solved using a modified form of Newton iterated to convergence.

Table 1: Coefficients in HBDF (3)
k 4 6 8
µ 2655739781

2500000000
78180547347
102400000000

83379706047
640000000000

η0
273910381

10000000000
1436388009

204800000000
1029379087

5120000000000

η1 − 353075231
1875000000 − 15343845741

256000000000 − 1174362057
560000000000

η2
1489805243
2500000000

18871166601
81920000000

3189387663
320000000000

η3 −836739931
625000000 −2722705629

5120000000 − 11444273379
400000000000

η4 − 115466947
1200000000

34931733921
40960000000

14235559569
256000000000

η5 −60807092381
51200000000 − 6275891853

80000000000

η6 − 636613028397
2048000000000

27793235349
320000000000

η7 − 7579973277
80000000000

η8 −170011220629833
179200000000000

Lemma 1 Given that
(i) formula (2) is of order k + 1,
(ii) formula (4) is of order k,
(iii) formula (5) is of order k + 1,
(iv) formula (6) is of order k + 1,
the implicit algebraic equations defining ȳn+k, ȳn+k+1 and ȳn+k+s are solved exactly, then scheme (7) has order k + 1.

Proof. Suppose that the values yn, yn+1, · · · , yn+k−1 be exact. From (4) we have

y(xn+k)− ȳn+k = C1h
k+1y(k+1)(xn+k) +O(hk+2).

Also from (5) and if we suppose that y(xn+k) = yn+k, we have

y(xn+k+s)− yn+k+s = C2h
k+2y(k+2)(xn+k) +O(hk+3).

IJNS email for contribution: editor@nonlinearscience.org.uk



A. Ezzeddine, G. Hojjati: Hybrid Extended Backward Differentiation Formulas for Stiff Systems 199

Table 2: Coefficients in HEBDF (6)
k 4 6 8

β̄s
8000000
10422303

307200000000
363267763651

125440000000000
81096283271999

β̄k
8759012
52111515

76832537980
363267763651

20594196436520
81096283271999

ᾱ1
29331

17370505 − 165464170
83831022381 − 290295371835

81096283271999

ᾱ2 − 278992
17370505

474175448
27943674127

3082162720320
81096283271999

ᾱ3
1587492
17370505 − 1831915275

27943674127 −15005174771440
81096283271999

ᾱ4 −18708336
17370505

12630038800
83831022381

44582437037376
81096283271999

ᾱ5 − 6142498550
27943674127 −91405193688900

81096283271999

ᾱ6 − 24598293960
27943674127

141695479943360
81096283271999

ᾱ7 − 193878074995920
81096283271999

ᾱ8
30122375855040
81096283271999

But since in (5) we apply ȳn+k, we must add the errors of y(xn+k)− ȳn+k and f(xn+k, y(xn+k)− f(xn+k, ȳn+k) to the
above expression. Hence

y(xn+k+s)− ȳn+k+s = C2h
k+2y(k+2)(xn+k) +O(hk+3) + hµ(f(xn+k, y(xn+k)− f(xn+k, ȳn+k))

−ηk(y(xn+k)− ȳn+k)

= (hµ
∂f

∂y
(θ)− ηk)(C1h

k+1y(k+1)(xn+k) +O(hk+2))

+C2h
k+2y(k+2)(xn+k) +O(hk+3)

= −ηkC1h
k+1y(k+1)(xn+k) +O(hk+2).

Similarly, from (6) and if we suppose that y(xn+k) = yn+k and y(xn+k+s) = yn+k+s, we have

y(xn+k+1)− yn+k+1 = C3h
k+2y(k+2)(xn+k) +O(hk+3).

But considering the errors of y(xn+k)− ȳn+k and f(xn+k+s, y(xn+k+s)− f(xn+k+s, ȳn+k+s) to the above expression,
it leads to

y(xn+k+1)− ȳn+k+1 = −ᾱkC1h
k+1y(k+1)(xn+k) +O(hk+2). (8)

If now C4h
k+2y(k+2)(xn+k)+O(hk+3) is the defect of formula (2), replacing f(xn+k+1, y(xn+k+1)) by f(xn+k+1, ȳn+k+1)

adds the expression obtained in (8) to this error and we obtain

y(xn+k)− ȳn+k = C4h
k+2y(k+2)(xn+k) +O(hk+3) + hβ̂k+1(f(xn+k+1, y(xn+k+1)− f(xn+k+1, ȳn+k+1))

= C4h
k+2y(k+2)(xn+k) +O(hk+3) + hβ̂k+1

∂f

∂y
(τ)(y(xn+k+1)− ȳn+k+1)

= hk+2
(
C4y

(k+2)(xn+k)− ᾱkβ̂k+1C1
∂f

∂y
(τ)y(k+1)(xn+k)

)
+O(hk+3),

where τ is in (y(xn+k+1), ȳn+k+1)). So the order of scheme (7) is k + 1.
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Table 3: The optimal values of s in HEBDF
k 1 2 3 4 5 6 7 8

sopt 0.4 0.47 0.47 0.46 0.41 0.35 0.2 0.1

3 Stability Analysis

We now examine the stability behavior of our approach and determine the restrictions which we need to impose on the
free parameter s to obtain highly stable methods. Applying (4) to Dalqusit’s test equation y′ = λy, we get

yn+k = −
k−1∑
j=0

αj

z
yn+j , (9)

where z = (1− h̄βk), r = (1− h̄β̄k) and h̄ = λh. From (5) and by substituting from (9), we obtain

yn+k+s =
k−1∑
j=0

(ηk − h̄µ)αj − zηj
z

yn+j . (10)

Also if we apply (6) to the same scalar test equation and insert from (9) and (10), we get

yn+k+1 =
h̄β̄s((ηk − h̄µ)α0 − zη0) + ᾱkα0

zr
yn −

k−1∑
j=1

h̄β̄s((ηk − h̄µ)αj − zηj) + ᾱkαj − ᾱjz

zr
yn+j . (11)

Finally from (7) and by substituting (9), (10) and (11) we have

k∑
j=0

Cj(h̄)yn+j = 0, (12)

where

C0 = α̂0zr − h̄β̂k+1(h̄β̄s((ηk − h̄µ)α0 − zη0) + ᾱkα0),

Cj = α̂jzr − h̄β̂k+1(h̄β̄s((ηk − h̄µ)αj − zηj) + ᾱkαj − ᾱjz), j = 1, · · · , k − 1,

Ck = (1− h̄β̂k)zr.

Therefore, corresponding characteristic equation of the k’th order difference equation of the HEBDF is

π(ξ, h̄) =

k∑
j=0

Cjξ
j = 0. (13)

If in (13) we put h̄ = λh = 0, then by a theorem of Schur [10], we conclude that HEBDF for some values of s, in the
interval 0 < s < 1, satisfies the root condition and so the method is zero-stable.

To obtain the region of absolute stability we use the boundary locus method [11]. By collecting coefficients of powers
of h̄ in (13), we have

Ah̄3 +Bh̄2 + Ch̄+D = 0, (14)

where A,B,C,D are functions of ξ. Inserting ξ = eiθ, equation (14) gives us three roots h̄i(θ), i = 1, 2, 3, which describe
the stability domain.

The optimal values of s that conserve zero stability and give the largest absolute stability region are listed in Table 3.
For these values of s, HEBDF is A-stable up to order 4 and A(α)–stable up to order 9. In Table 4 we tabulate a comparison
in regions between HEBDF and the mentioned methods. It is seen that regions of A(α)-stability for our new methods are
larger than those of the other mentioned methods.

IJNS email for contribution: editor@nonlinearscience.org.uk



A. Ezzeddine, G. Hojjati: Hybrid Extended Backward Differentiation Formulas for Stiff Systems 201

Table 4: The comparison of A(α)-stability of HEBDF with other mentioned methods
k BDF EBDF A-EBDF[7] HBDF[4] HEBDF

p α p α p αmax p αmax p αmax

1 1 90 2 90 2 90 - - 2 90

2 2 90 3 90 3 90 2 90 3 90

3 3 88 4 90 4 90 3 90 4 90

4 4 73 5 87.61 5 88.85 4 90 5 89.013

5 5 51 6 80.2 6 84.2 5 89.77 6 85.2

6 6 18 7 67.7 7 75 6 88.46 7 77.195

7 - - 8 48.82 8 60.4 7 85.97 8 60.686

8 - - 9 19.96 9 30.50 8 82.42 9 36.51

4 Numerical computations
In this section, we present some numerical results to compare the performance of our new methods HEBDF with that of
EBDF [1] and HBDF [4].

Example 1 Consider the stiff system:

y′1 = −y1 − 30y2 + 30e−x,

y′2 = 30y1 − y2 − 30e−x,

with initial value y(0) = (1, 1)T . Its exact solution is y1(x) = y2(x) = e−x. This system has eigenvalues of large
modulus lying close to the imaginary axis −1± 30i. We solve this problem by 6-step EBDF and HEBDF of order 7, and
7-step HBDF of order 7, with h = 0.002. We tabulate the results in Table 5. Also in Table 6, we compare the results of
EBDF and HEBDF for k = 4, p = 5 with h = 0.01.

Table 5: Absolute error of EBDF, HBDF and HEBDF for h = 0.002, p = 7 in
Example 1.

x yi Error in Error in Error in
HEBDF (k = 6, p = 7) HBDF (k = 7, p = 7) EBDF k = 6, p = 7

0.04 y1 4E-20 1.16E-14 4E-20
y2 1.81E-18 5.52E-15 1.81E-18

0.2 y1 2.5E-19 2.77E-17 4.8E-19
y2 6.2E-19 5.55E-17 1.3E-19

2.0 y1 2E-20 2.77E-17 4.3E-19
y2 3.8E-19 2.77E-17 4.7E-19
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Table 6: Absolute error of EBDF and HEBDF for h = 0.01 with k = 4, p = 5
in Example 1.

x yi Error in Error in
HEBDF EBDF

1.0 y1 8.15E-15 1.71E-13
y2 8.48E-13 2.60E-12

10.0 y1 9.83E-18 5.03E-17
y2 7.71E-17 3.36E-16

20.0 y1 1.29E-21 1.17E-20
y2 2.79E-21 7.83E-21

Example 2 Consider the nonlinear system

y′
1 = −1002y1 − 1000y2

2 ,

y′
2 = y1 − y2(1 + y2),

with initial value y(0) = (1, 1)T . The theoretical solution is y1(x) = e−2x, y2(x) = e−x. We integrate this system in x ∈ [0, 5] by
6-step HEBDF and 7-step HBDF with h = 0.005, and report the results in Table 7. Also we integrate this system in x ∈ [0, 30] by
8-step HEBDF with h = 0.01 and report the results in Table 8.

Table 7: Absolute error for 6-step HEBDF and 7-step HBDF with h = 0.005 in
Example 2.

x yi Error Error
in HBDF in HEBDF

0.4 y1 1.30E-14 5.46E-17
y2 1.72E-12 4.05E-17

5.0 y1 4.06E-20 7.08E-20
y2 8.67E-18 5.25E-18

Table 8: Absolute error for 8-step HEBDF with h = 0.01 in Example 2.

x yi Exact Error
Solution in HEBDF

10.0 y1 2.0611536224385578280E-9 3.88E-25
y2 4.5399929762484851536E-5 4.28E-21

20.0 y1 4.2483542552915889953E-18 1.50E-33
y2 2.0611536224385578280E-9 3.65E-25

30.0 y1 8.7565107626965203385E-27 6.78E-32
y2 9.3576229688401746049E-14 2.46E-29

Example 3 Consider the system of differential equations:

y′
1 = −20y1 − 0.25y2 − 19.75y3,

y′
2 = 20y1 − 20.25y2 + 0.25y3,

y′
3 = 20y1 − 19.75y2 − 0.25y3,
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with initial value y(0) = (1, 0,−1)T . The theoretical solution is:

y1 =
1

2
(e−0.5x + e−20x(cos(20x) + sin(20x)),

y2 =
1

2
(e−0.5x − e−20x(cos(20x)− sin(20x)),

y3 = −1

2
(e−0.5x + e−20x(cos(20x)− sin(20x)).

We integrate this system by 6-step HEBDF with h = 0.01 and report the results in Table 9.

Table 9: Absolute error for 6-step HEBDF in Example 3.

x yi Exact Error in
solution HEBDF

y1 3.3689734995E-3 1.10E-19
10.0 y2 3.3689734995E-3 1.11E-19

y3 -3.368973499E-3 1.12E-19

y1 2.2699964881E-5 1.51E-21
20.0 y2 2.2699964881E-5 1.52E-21

y3 -2.2699964881E-5 1.53E-21

y1 1.52951160251E-7 1.55E-23
30.0 y2 1.52951160251E-7 1.56E-23

y3 -1.52951160251E-7 1.56E-23

Example 4 The following stiff initial value problem arose from a chemistry problem:

y′
1 = −0.013y2 − 1000y1y2 − 2500y1y3,

y′
2 = −0.013y2 − 1000y1y2,

y′
3 = −2500y1y3,

with initial value y(0) = (0, 1, 1)T . We solve this problem at x = 2. The results are tabulated in Table 10.

Table 10: Absolute error for 4-step HEBDF with h = 0.001 in Example 4.

x yi Exact Error
Solution in HEBDF

y1 -0.3616933169289E-5 1.53E-19
2.0 y2 0.9815029948230 2.23E-14

y3 1.018493388244 1.91E-13

5 Conclusion
The introduced HEBDF is an extension of BDF and EBDF. These new methods, which are based on using of super future point and
off-step point techniques, have good stability properties so that for special values of off-step parameter s, they are A(α)–stable up to
order 9 and A-stable up to order 4. Although in comparison with the similar methods, the computational cost increases in HEBDFs, but
they are often superior when high accuracy is requested for stiff systems.

References
[1] J R Cash. On the integration of stiff systems of ODEs using extended backward differentiation formula. Numer. Math.,

34(1980)(2): 235-246.
[2] J R Cash. Second derivative extended backward differentiation formulas for the numerical integration of stiff systems. SIAM J.

Numer. Anal., 18(1981)(2): 21-36.
[3] G Dahlquist. A special stability problem for linear multistep methods. BIT, 3(1963):27-43.

IJNS homepage: http://www.nonlinearscience.org.uk/



204 International Journal of Nonlinear Science, Vol.12(2011), No.2, pp. 196-204

[4] M Ebadi, M.Y.Gokhale. Hybrid BDF methods for the numerical solutions of ordinary differential equations. Numer. Algor.,
55(2010): 1-17.

[5] C Fredebeul. A-BDF: A generalization of the backward differentiation formulae. SIAM J.Numer.Anal., 35(1998)(5):1917-1938.
[6] E Hairer and G Wanner. Solving ordinary differential equation II: Stiff and Differential-Algebric Problems. Springer, Berlin,

(1996).
[7] G Hojjati, M Rahimi, S M Hosseini. A-EBDF: An adaptivemethod for numerical solution of stiff systems of ODEs. Math. Comput.

Simul., 66(2004): 33-41.
[8] G Hojjati, M Rahimi, S M Hosseini. New second derivative multistep methods for stiff systems. Appl. Math. Model.,

30(2006):466-476.
[9] G Ismail, I Ibrahim. New efficient second derivative multistep methods for stiff systems. Appl. Math. Model., 23(1999): 279-288.

[10] J D Lambert. Computational methods in ordinary differential equations. John wiley & Sons (1972).
[11] W Liniger, R A Willoughby. Efficient numerical integration of stiff systems of ordinary differential equations. Technical Report

RC-1970, Thomas J. Watson Research Center, Yorktown Heihts, New York, 1976.

IJNS email for contribution: editor@nonlinearscience.org.uk


