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Abstract

The strong-strong interactions of two colliding beams
are simulated by tracking the motion of a set of macropar-
ticles. The field generated by each distribution is evalu-
ated using the Fast Multipole Method (FMM) together with
some elements of particle-mesh methods. This technique
allows us to check the exact frequencies of the coherent
modes and the frequencies of oscillations of individual par-
ticles in the beam. The agreement between the simulations
and analytical calculations is largely improved. Further-
more it is an efficient method to study the coherent modes
in the case of separated beams.

1 INTRODUCTION

Two colliding beams exert a force on each other which is
defocusing for beams of equal polarity as in the case of the
LHC. Solutions of the linearized Vlasov equation show that
for round beams and in the case of one bunch per beam with
equal parameters (intensity, beam size, betatron tune) two
coherent dipole modes of oscillations appear: the σ mode,
whose frequency is equal to the unperturbed betatron tune,
and the π-mode with a tune shift of Y = 1.21, where Y is
the Yokoya factor [1], times the beam-beam parameter ξ.

In this paper the transverse coherent motion of two col-
liding proton beams is studied by multiparticle tracking. In
a self-consistent model of the coherent interaction, the dis-
tributions of both beams evolve as a consequence of the
mutual interaction and are used at the interaction points
to calculate the force on the individual particles. A num-
ber of studies have been done for LHC using the so-called
“soft Gaussian model” [2]. This model assumes the force
experienced by a particle when traversing the counter ro-
tating beam as originating from a Gaussian beam distribu-
tion with variable barycenters and rms beam sizes. This al-
lows the use of an analytical expression for the forces. This
Gaussian model cannot take into account the non-Gaussian
deformations of the distribution and as a result underesti-
mates the force and yields a Yokoya factor that is slightly
smaller (Y = 1.1 in our case). This symptom has also
been recently discussed by Yokoya [3]. In the worst case
this simplification can inhibit the appearance of coherent
effects. Nonetheless the use of the analytical expression
of the force generated by a Gaussian beam allows simu-
lations in a reasonable computing time and it is therefore
more convenient for studies with multiple bunches.

It has been predicted [4, 5] that the coherent π-mode may
not be Landau damped for certain strong-strong conditions

and therefore an accurate knowledge of the Yokoya factor
is highly desirable.

2 SIMULATIONS BEYOND THE SOFT
GAUSSIAN MODEL

To avoid this problem and to increase the accuracy of
the simulations, we have to introduce a field solver for an
arbitrary distribution of charges in space. The choice of the
solver is constrained by the problems under investigation:

• Large number of particles in simulation ( 104).

• Separated beams (separation between zero and 10
times the beam size or more).

A direct integration of forces (particle-particle methods) is
ruled out since the necessary time grows with the square of
the number of particles (O(N2

p )). For the number of parti-
cles used in our simulation this is impossible. Other pos-
sible solvers employ so-called particle-mesh methods and
have been shown to give good results [6]. Their advantage
is speed since the number of computations is smaller and
depends on the number of grid points Ng: (O(NglnNg)).
A strong disadvantage is that particle-mesh methods have
problems handling non-uniform distributions. For the case
of separated beams (as in our case with the important ef-
fect of long-range collisions) most of the space is basically
empty. Moving or adaptive grids may be used for that pur-
pose, but may lead to a rather complicated structure.

Another possibility is to use Fast Multipole Methods
(FMM). In this algorithm the potential or force acting on
a particle is divided into two components. The compo-
nent of close particles is computed directly and between
distant particles the potential is approximated by multipole
expansion [7, 8]. This method is therefore well adapted
to handle problems like separated beams. Problems with
FMM are close encounters and ”charge-overloading”, i.e.
for the LHC bunches 1011 particles are represented by 104

macroparticles.

3 BASIC HFMM ALGORITHM

For our problem we studied a modified version of FMM,
a Hybrid FMM (HFMM) [9]. It resembles a particle
mesh method for the handling of charges and super par-
ticles, however the forces on the superparticles are evalu-
ated using the FMM. Smoothing can help to avoid charge-
overloading. The HFMM is a robust implementation of a



Fast-Multipole Method (FMM) field solver, which is de-
signed to solve the field for an arbitrary collection of dis-
crete charges. It divides the solution domain into a grid
and a halo area. The grid area is subdivided into a hierar-
chical tree of square regions. In the first step of the cal-
culation, the macroparticles inside the grid are assigned to
grid points. All macroparticles outside the grid are treated
as discrete, independent superparticles and form the halo.
The charge assignment can be done with a ’nearest-grid-
point’ method, i.e. the charge is assigned to the nearest
grid point. This is the simplest method, however the field
values are not continuous and the results are more noisy.
Alternatively one can use the cloud-in-cell (CIC) charge
assignment where the charge is shared between the neigh-
bouring grids points. This method gives continuous field
values but requires more book-keeping.

Finally, multipole expansions of the field are computed
for every point, i.e. for each grid point as well as for every
halo particle, and the program derives the resulting forces
on the particles of the counterrotating beam. In the case
of a CIC charge assignment, appropriate interpolation be-
tween the fields calculated for the grid points have to be
applied. The grid size and shape does not have to follow
any special geometry and can be chosen freely to achieve
the desired speed and precision, depending on the problems
under investigation. Unlike other Poisson solvers, the grid
points with no charges assigned are left out of the compu-
tation and the number of computations scales roughly with
the number of particles. More details of the method used in
this report are found in [9]. This method is already imple-
mented in the ACCSIM program [10] to study space charge
problems.

In this work we have implemented the HFMM in our
beam-beam simulation program to evaluate the force on a
test particle generated by an arbitrary charge distribution.
This will be applied to study the strong-strong collision of
two bunches colliding at one interaction point (IP). We will
study the coherent modes that are excited in the collision
of two equal round bunches similar to those of LHC, when
colliding head-on or separated by a constant offset at one
interaction point (long-range interactions). This will en-
able us to obtain the correct Yokoya factor by multiparticle
tracking and in a later stage to study in detail the modes
excited by long-range interactions. Finally, it should allow
us to study the possible emittance growth of collisions of
partially overlapping bunches [11].

4 TRACKING WITH HFMM.

We simulate the collision of two strong proton beams.
Our variables are: horizontal position x, vertical position y,
horizontal angle vx = x′, and vertical angle vy = y′. The
prime denotes the derivative with respect to longitudinal
position s, e.g. x′ is the slope of the horizontal trajectory.

Each of the beams has one bunch that is represented by
a set of Np macroparticles, whose trajectories are followed
over n turns, assuming linear betatron motion without cou-

pling and a beam-beam collision at one interaction point
(IP). At the IP every particle in the bunch experiences a
deflection by the field of the counter-rotating beam that de-
pends on its position.

The deflection applied to a single particle in one of the
beams is calculated using the HFMM.

The linear map from one IP to the next is
(

x(n + 1)
vx(n + 1)

)
=

(
cos (2πQx) sin (2πQx)
− sin (2πQx) cos (2πQx)

) (
x(n)

vx(n) + Δvx(n)

)
(1)

An equivalent map is applied in the vertical plane, (y, vy).
The horizontal deflection experienced at the interaction

point is:

Δvx(n) =
rpN

∗

γ
Ex(x, y) (2)

where Ex(x, y) is the horizontal force evaluated with the
HFMM technique at the particle position (x, y). The num-
ber of particles in the opposing beam is N∗.

For the simulation of parasitic (long-range) collisions,
the same model is employed. The two beams collide with a
horizontal separation Lx (in units of σx). For a low β inser-
tion we have about 90◦ phase advance between the IP and
the long-range collision region. Since in the LHC the be-
tatron phase advance between long-range collisions on one
side of the interaction region is very small, we can lump
all npar parasitic collisions into a single one, to reduce the
computing time. This overestimates the effect slightly be-
cause the bunches oscillate with different phases with re-
spect to each other.

Because a static dipole kick would change the closed or-
bit of the bunch, the static kick from the long-range colli-
sion must be subtracted [12]. The beam-beam long-range
kick used in our simulation code is then

Δvx(n) =

npar

2rpN
∗
p

γ
(Ex(x + Lxσx, y) − Dx(Lxσx, 0)). (3)

where Dx(Lxσx, 0)) = −1/Lxσx(1.0 − exp (−L2
x

2.0 )) is
the (constant) dipole kick generated by a Gaussian distribu-
tion at a distance x = Lxσx. This assumes that a closed or-
bit exists [11] and the bunches oscillate coherently around
this orbit. At the LHC, there are about npar = 16 par-
asitic encounters on each side of an IP, with a minimum
transverse separation of Lx = 7.5 (in units of σx). The
fractional part of the horizontal and vertical tunes are 0.31
and 0.32, and unlike LEP [13], the results are not strongly
affected by dynamic beta effects. In Figs.1 and 2 we show
comparisons between the beam-beam kicks calculated with
the HFMM and those obtained from an analytical expres-
sion, both for the case of round, exactly Gaussian beams.



In the Fig.1 we test the different methods for the charge as-
signment for a grid spacing of 0.25σ with a grid of 81x81,
where 81 is the number of grid points in each plane. Thus
the grid for the head-on collisions covers the amplitudes
between −10σ to +10σ. While the ’nearest-grid-point’ as-
signment gives visibly discontinuous values, the force eval-
uated with the CIC assignment is continuous and therefore
preferable.

In the Fig.2 we have used a different grid spacing of
0.10σ with a grid of 201x201 to test the obtained accuracy.
The effect of the discontinuous values in the ’nearest-grid-
point’ assignment is now smaller and barely visible as one
could expect. The grid size for the simulation is a com-
promise between precision and computing speed. A grid
spacing of 0.1 σ or below gives good results. For most
simulations we have therefore chosen such a spacing and
the Cloud-in-Cell (CIC) charge assignment.

5 SIMULATION RESULTS

In this section we shall give quantitative results on the
coherent modes for head-on as well as some first results
with long-range interactions. Since the symmetry of beam
parameters plays an important role for the coherent mo-
tion, we study the relevance of intensity differences as well
as tune and beam size asymmetries. They are expected to
make it more difficult to maintain a coherent motion and
will eventually help to avoid it.

5.1 Head-on collisions with equal betatron
tunes and intensity

First let us consider the strong-strong case and head-on
collisions of two round bunches, using the previous maps.
The statistical variation in the initial distribution of parti-
cles is sufficiently large to excite the coherent modes. We
start with equally strong beams, i.e. the intensity ratio RI

between the weaker and stronger beam is 1.0. If we per-
form a harmonic analysis of the motion of the barycentre
of one bunch, we find two coherent modes. One is located
at the unperturbed tune Q, the other has a lower frequency.
In Fig. 3 we plot the amplitude frequency spectrum. The
horizontal axis gives the tune shift from the unperturbed
tune Q in units of ξ (i.e.: w = ν−Q

ξ , for the round beam
case ξx = ξy = ξ = 0.0034, Qx = 0.31, Qy = 0.32). For
the other beam and the other plane a similar picture is ob-
tained. Analysing the spectra of the distance between the
centroids, i.e. the expressions < x(1) > − < x(2) > and
< y(1) > − < y(2) >, the coherent mode at the unper-
turbed frequency disappears. On the other hand, when we
analyse the sum of the centroids (< x(1) > + < x(2) >,
< y(1) > + < y(2) >) the lower mode frequency disap-
pears. We can thus identify the mode at the unperturbed
frequency as the so-called σ-mode, for which the centroids
of the bunches oscillate in phase with equal frequencies and
amplitudes. The lower frequency mode is called π-mode
and in this mode the centroids oscillate also with equal fre-

quencies and amplitudes but in opposite phase. The mo-
tion of the bunch centroids is a superposition of these two
modes.

Between the π- and the σ-mode in Fig. 3 we find the
incoherent continuum. A single particle crossing the op-
posing beam at a distance from its axis feels a defocusing
force (or focusing force in the case of oppositely charged
beams like LEP), which leads to a change in its tune. For
particles near the centre of the counter rotating beam this
tune shift is equal to −ξ. For particles further away the
defocusing force is smaller (due to the non-linearity of the
beam-beam force) and vanishes asymptotically. This cre-
ates an incoherent tune spread which extends from 0 to −ξ.

In our simulations we find the π-mode at a tune shift of
exactly 1.21 ± 0.005 in units of ξ (and ξ = 0.0034). The
π-mode is thus shifted outside of the continuum. The shift
calculated with HFMM is therefore in excellent agreement
with the theoretical prediction [1, 4].

5.2 Head-on collisions with equal betatron
tunes and different intensity

It has been predicted [4] that for intensity ratios of 0.6
or lower, the π-mode merges with the continuum. In the
soft Gaussian model this prediction cannot be tested ex-
actly since the π-mode tune shift is underestimated [2, 3].
In this section we can now make a more precise quantita-
tive comparison. Fig. 4 clearly confirms this prediction: the
π-mode merges into the incoherent spectrum at Alexahin’s
ratio of 0.6 and is Landau damped. In the LHC the ex-
pected bunch to bunch intensity difference may be as large
as ± 20%. Although this alone will not be sufficient to
recover Landau damping, together with other uncertainties
(see e.g. section 5.4) and suggested remedies (see next sec-
tion) it should simplify the damping of the modes.

5.3 Head-on collisions with different betatron
tunes

The first proposed remedy to avoid coherent beam-beam
modes was to decouple the two beams by using different
fractional tunes for their tunes [14]. This is possible in
the LHC since we have two separate rings. Possible un-
wanted side effects of such a scheme were discussed in
[15]. The sensitivity to the expected small tune differences
is demonstrated here quantitatively. While the fractional
part of beam 1 is kept at 0.310, the tune of the second beam
is slightly varied. For a tune difference between the two
beams of more than approximately ≈ 0.7 ξ the π-mode
disappears into the continuum as shown in Fig.5.

5.4 Head-on collisions with different beam
sizes

Similar to an intensity imbalance, different beam sizes
of the two beams can lead to loss of coherence and damped
coherent modes. In Fig.6 we show the spectra for beam



size ratios of 0.90 and 0.70. Since the beam size (of the sec-
ond beam) is now smaller, the tune shift is slightly larger
than in the original case. While for a ratio of 0.90 the π-
mode is still very visible, it has merged with the incoherent
spectrum for 0.70. The mechanism is the same as for a
beam intensity imbalance. At this point one can speculate
whether the size imbalance can be compensated by an in-
tensity imbalance, adjusted to give the same beam-beam
tune shift parameter ξ. The result of such a simulation is
shown in Fig.7 with the beam radius of the second beam re-
duced to 0.7, but with a smaller beam intensity (50%). The
beam-beam parameter is therefore the same. We observe
a clear coherent mode again. This observation however is
non trivial. When the beams have different sizes and geo-
metrical distributions, the fields seen by the two beams are
rather different, although the tune shift parameter for the
small amplitude particles is the same. The reason is that
the larger beam experiences a very non-linear force for par-
ticles at much smaller amplitudes than the smaller beam.
Particles at larger amplitudes must therefore behave rather
differently. For the single particle behaviour, i.e. popula-
tion of beam tails and lifetime, this is known to be of ex-
treme importance [16, 17]. For a coherent oscillation it is
mainly the oscillation frequency that must be the same and
it is known that for the head-on collisions studied in this
example, it is mainly the core of the beam contributing to
the coherent oscillation and the tune shift. The core parti-
cles experience always an almost linear force proportional
to the beam-beam parameter and this explains the observa-
tion.

Similar observations have been made in simulations of
asymmetric colliders such as PEP-II [18] where the energy
transparency condition was studied, i.e. where the energy
asymmetry was compensated by an asymmetry of the beam
currents.

5.5 Coherent modes from long-range collisions

Since the transverse distance between two bunches at the
parasitic collision is larger than the rms beam size, the ef-
fects will be similar to the coherent interaction of rigid,
point-like bunches. In that case the contribution of parasitic
crossings to the tune shift of coherent oscillation modes
would be

Δνπ = 2 × (incoherent long-range tune shift) ∝ 1/L2
x

Δνσ = 0.

Moreover, the incoherent long-range tune shifts for beam
separations larger than ≈ 1.5 σ have different signs for the
two planes. Both, the coherent and incoherent tune shifts
depend on the separation and for sufficiently large separa-
tion they scale with the inverse of the separation squared.

Most important however, the width of the incoherent
spectrum (tune spread) of long-range collisions alone de-
pends on the separation and in the LHC is smaller than the
tune spread from head-on collisions [19, 20]. The distance
of the π-mode from the edge of the incoherent spectrum

is therefore rather different from the head-on case and one
must expect a different behaviour. In particular the nec-
essary measures to merge the coherent modes with the in-
coherent spectrum must be at least quantitatively different.
In this report we have a first look at the dynamics of long-
range collisions separately to demonstrate the differences.
For an evaluation of the necessary operational parameters,
both head-on as well as long-range collisions must be con-
sidered together, like it was done with the Gaussian approx-
imation [2]. A more complete study should also include
multiple bunches and interaction points and will be treated
at a later stage [21].

5.6 Simulation of long-range collisions

The simulation of coherent modes from separated beams
is a good example where the HFMM can be used to great
advantage. In a conventional particle-mesh method, most
grid points between and around the beams are empty and
with a typical separation around 10 σ the necessary com-
puting time becomes unacceptable. With the HFMM we
have the option to either treat the opposing beam as a halo
or to choose the grid large enough to cover both beams.
Although at first sight the second option looks like a con-
ventional grid method, the advantage is clear: the fields
are calculated with the FMM field solver only at the grid
points with charges and the saving in computing time is
large. Treating the opposing beam as a real halo object
usually requires more time than covering the whole area.
In Fig.8 we show the horizontal spectrum for long-range
collisions with a horizontal separation Lx = 10.0 (in units
of σx). We plot it again as a function of the distance to the
unperturbed tune, normalized to the head-on beam-beam
tuneshift ξ, to allow a quantitative comparison to the head-
on modes. For one of the figures (left) the particles in the
opposing beam were treated as halo particles, i.e. were not
covered by the grid. In the right figure the grid was ex-
tended to 15σ, i.e. included both beams. Both methods
give the same results, however the computing speed is very
different. The treatment as real halo is very time consum-
ing. The real difference to a particle-mesh code then comes
from the fact that only grid points with particles are treated,
thus the number of computations scales like O(Np). The
computing speed difference is about a factor 2.5 between
the two options, therefore in all simulations we choose the
procedure to cover the whole area with a grid, including
both beams.

Like in the case of head-on coherent modes we identify
the σ- and π-mode easily by analysing the sum and the
difference of the barycentres separately. The peaked struc-
ture between the two modes represents again the incoherent
continuum, this time arising from the long-range interac-
tion. As expected, the coherent shift is two times larger
than the shift of the incoherent spectrum.



5.7 Long range collisions with equal tunes

Fig. 9 shows the horizontal and vertical spectra of cen-
troid oscillations of a bunch subject to long-range colli-
sions with a horizontal separation of Lx = 10.0σx. To
obtain realistic tune shifts, we have lumped all 32 long
range interactions of a LHC interaction region into a sin-
gle collision. The optics and geometry of the interaction
regions permits this simplification [2, 12]. The horizon-
tal axis gives the tune shift relative to the unperturbed
tune Q in units of the head-on beam-beam parameter ξ:
w = ν−Q

ξ . In the horizontal plane, the tune shifts are pos-
itive, and the coherent dipole π-mode has twice the inco-
herent tune shift. In the vertical plane, the tune shifts are
negative. The normalized tune shifts of the π-modes are
(wx, wy) = (0.645±0.005,−0.644±0.005). In Fig.10 we
show the results for a separation of 6.0 σx and find values
of (wx, wy) = (1.828 ± 0.005,−1.762 ± 0.005). Com-
paring Figs. 9 and 10, the larger tune shift for the smaller
separation is clearly visible as well as the increased tune
spread of the incoherent spectrum. Both scale with 1/L2

x

as expected.

6 CONCLUSIONS.

We have implemented the HFMM technique to describe
the beam-beam collision of two beams in the strong-strong
regime. This allows us to study, by means of multi-particle
tracking and with no approximation in the evaluation of the
electromagnetic force, the coherent modes of oscillations
of two colliding beams. Future improvements shall extend
this work to several bunches per beam and, in particular,
will allow us for the first time to study details of the modes
excited by long-range interactions.
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Figure 1: Beam-beam kick as calculated with HFMM (points) and from analytical expression (solid line) for round beams
with Gaussian distribution. Left figure with 0.25σ grid (81x81) and ’nearest-grid-point’ assignment. Right figure with
’cloud-in cell’ (CIC) assignment.
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Figure 2: Beam-beam kick as calculated with HFMM (points) and from analytical expression (solid line) for round beams
with Gaussian distribution. Left figure with 0.10σ grid (201x201) and ’nearest-grid-point’ assignment. Right figure with
’cloud-in cell’ (CIC) assignment.
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Figure 3: Frequency spectrum of the bunch centroid motion (for 217 turns, N = 104 macroparticles) for round beams.
The grid covers from −10σ to 10σ, the rest of the particles being treated as halo particles. The horizontal axis gives the
tune shift from the unperturbed tune Q in units of ξ, i.e. w = ν−Q

ξ . The vertical axis is the corresponding amplitude. The
π- and σ- oscillation modes are clearly visible.
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Figure 4: Frequency spectrum of the bunch centroid motion (over 217 turns, N = 104 macroparticles) for round beams
and intensity ratio RI = 0.65 (left) and 0.55 (right).
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Figure 5: Frequency spectrum of the bunch centroid motion (for 217 turns, N = 104 macroparticles) for round beams and
different fractional tunes of the second beam: 0.312 (left) and 0.313 (right). The tune of the first beam is kept at 0.310.
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Figure 6: Frequency spectrum of the bunch centroid motion (for 217 turns, N = 104 macroparticles) for round beams and
size ratios σ(2)/σ(1) of 0.90 (left) and 0.70 (right).
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Figure 7: Frequency spectrum of the bunch centroid motion (for 217 turns, N = 104 macroparticles) for round beams and
size ratios σ(2)/σ(1) = 0.70 and intensity ratio RI = 0.5.
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Figure 8: Spectrum of the horizontal centroid motion for long-range collisions with horizontal separation Lx = 10.0 (in
units of σx) and no head-on collision (215 turns, N = 104 macroparticles). For the left figure the grid did not cover both
separated beams, i.e. the particles in the second beam were treated as halo particles. In the right figure the grid covered
both beams.
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Figure 9: Spectrum of the vertical (left) and horizontal (right) centroid motion for long-range collisions with horizontal
separation Lx = 10.0 (in units of σx) and no head-on collision (215 turns, N = 104 macroparticles). The tune shifts due
to long-range collisions have opposite sign in the two transverse planes. The coherent π-mode is at twice the incoherent
tune shift.
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Figure 10: Spectrum of the vertical (left) and horizontal (right) centroid motion for long-range collision with horizontal
separation Lx = 6.0 (in units of σx) and no head-on collision (215 turns, N = 104 macroparticles). The tune shifts due
to long-range collisions have opposite sign in the two transverse planes.
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Fourier spectrum of coherent modes, from HFMM
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Figure 11: Spectrum of the horizontal centroid motion for head-on together with long-range collision with horizontal
separation Lx = 6.0 (in units of σx) 215 turns, N = 104 macroparticles. planes. In the right figure π-oscillations only.


