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SUMMARY

A hybrid feedback control law is proposed for the RTAC system. This hybrid feedback control law is
expressed in terms of a continuous feedback part and a part that includes switched parameters determined
according to a logic-based switching rule. By appropriate selection of the switching rule, previous theoretical
results guarantee that the origin is globally asymptotically stable. Some comments are made about the
closed-loop properties, and experiments confirm that good responses are obtained for the case studied.
( 1998 John Wiley & Sons, Ltd.

1. INTRODUCTION

In this paper we present a novel hybrid feedback control law for global stabilization of the
rotational—translational actuator (RTAC) system.1~4 This hybrid control approach was origin-
ally developed for a class of non-holonomic control systems, but it is applicable to the RTAC
system and provides an alternative to other (smooth) feedback laws developed in the litera-
ture.1,2,4~7

The RTAC system consists of a platform that can oscillate without damping in the horizontal
plane and a rotating eccentric mass which is actuated by a dc motor located on the platform.
Feedback laws developed for stabilization of the RTAC system1,2,4~7 exploit the nonlinear
coupling between the rotational motion of the mass and the translational motion of the mass and
the platform to damp out the oscillations of the platform.

After state and control transformations, the RTAC system can be described by a cascade
connection of a linear system and a nonlinear, periodic subsystem. This cascade structure is
characteristic of underactuated systems in general.8 This suggests a possibility of stabilizing the
RTAC system with hybrid feedback laws that we originally developed in References 9 and 10 for
a class of nonlinear cascade control systems.

Consider a model for the RTAC system1,2,4 in normalized dimensionless units:
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where x
1

is the normalized displacement of the platform from the equilibrium position, x
2
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1
,

x
3
"h is the angle of the rotor and x

4
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3
. The control input u is the torque supplied to the

eccentric mass. The parameter e is a constant which quantifies the degree of coupling between
translational and rotational motions. A typical value for e is 0)1. Following Reference 4 we utilize
the following state and control transformation:
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Then:
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Equations (3) have provided the basis for several control design studies4,5 that exploit the cascade
structure of the equations to construct stabilizing continuously differentiable feedback laws using
the integrator backstepping and other approaches. It is also of interest that system (3) can be
viewed as an underactuated system in the sense of Reference 8. Our subsequent development also
exploits the cascade structure of equations (3), but in a different way. In particular, equations (3)
are first expressed in a different form as in References 9 and 10 that is suitable for construction of
a non-smooth feedback law, which we refer to as a hybrid feedback law, since it involves both
smooth feedback terms and feedback terms with switched parameters.

To demonstrate that the RTAC system falls into the class of cascade nonlinear systems treated
in References 9 and 10, consider the following time-periodic state transformation:
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Then we obtain a time-periodic nonlinear system:
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System (5) is in the cascade form treated in References 9 and 10. The variable y
1

(the rotor
angle) is referred to as the base variable and its motion is directly affected by the control v. The
variables z'

1
, z'

2
are referred to as the fibre variables and the control does not affect them directly,

but only through the nonlinear coupling between the base and the fibre variables.
We now describe the intuitive idea behind our hybrid stabilization approach as applied to

system (5). If the base variable y
1

is forced to undergo a periodic motion with a period ¹, the net
changes in the fibre variables z'

1
, z'

2
over k cycles are provided by the following expressions:
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If y
1
(t), 0)t)¹, is selected so that the integrals in (6a) and (6b) are non-zero, a net drift in the

fibre variables results. In particular, by an appropriate selection of y
1
(t) , 0)t)¹, we can force

(z'
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(k¹ ), z'

2
(k¹)) to drift, at least for small values of k, towards the origin. For k sufficiently large,

(z'
1
(k¹ ), z'

2
(k¹ ) ) may start to drift away from the origin. When this happens, the controller should

be switched to induce a smaller amplitude periodic base variable motion so that the fibre
variables continue to drift towards the origin. The basic mechanism of switching between
time-periodic feedback laws that asymptotically induce appropriate periodic base variable
motions that cause a desired drift in the fibre variables is the foundation of our stabilization
approach.

The paper is organized as follows. The development of a hybrid feedback controller for
stabilization of the RTAC system is the subject of Section 2. Experimental results are described in
Section 3. They show that the hybrid controller provides good responses. In Section 4 we discuss
additional issues pertinent to hybrid controller development and performance.

2. DEVELOPMENT OF HYBRID FEEDBACK CONTROLLER

The hybrid feedback controller relies on periodic switching between the members of a family of
time-periodic feedback laws of the form
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we select a specific member of the family (7). The feedback controller is defined as
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where k"0, 1, 2,2 ,¹"2n, and ak is determined at the time instant k¹ based on the sampled
values of the fibre variables at this time instant, z'
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Thus controller (9) involves continuous nonlinear feedback terms and periodically switched
feedback terms.

Each member of the control family (7) forces y
1

to track asymptotically a periodic steady-state
trajectory which is denoted by
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The net drift in the fibre variables generated by one cycle of the base variable trajectory (10) is
given by
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To proceed with the stabilization approach of References 9 and 10, we verify that the map G is
open at the origin. This condition can be interpreted as a requirement that the fibre variables can
be forced to drift in all possible directions by an appropriate selection of a, no matter how small in
magnitude a is restricted to be. The map G satisfies this condition since its Jacobian,
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is non-singular. The map G is shown in Figure 1.
We now describe a feedback algorithm for selecting ak at the time instant tk"k¹. Let c be

a fixed real number satisfying 0(c(1, z'"(z'
1
, z'

2
), and E ) E denote the Euclidean vector norm.

Algorithm 2.1

1. For k"0 (Initialization):
If zL (0)"0 and y(0)"0, set a0"0;
Else

select any a0O0 such that Ea0E((Ey (0)E2#EzL (0)E2)1@2

2. For k'0: If z' (tk)"0, set ak"ak~1.
Else

If G
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EakE)cEak~1E and G(ak)"!okz' (tk) for some ok'0.

The feedback algorithm functions as follows. If initially the system is at the origin, then a0"0.
Otherwise, a non-zero value is assigned to a0. For each k*1, the selection of ak is based on z' (tk),
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Figure 1. Fibre controllability map

the observed value of the fibre variables, z' , at the time instant tk. If z' (tk)"0, then ak"ak~1.
Suppose z' kO0. If, based on the steady-state prediction provided by G, the value of ak~1 is
expected to yield a non-zero net decay in DDz' DD over the kth period, k¹)t)(k#1) ¹, then
ak"ak~1. Otherwise, ak is selected so that the vector G (ak) is parallel to !z' k and so that the
magnitude of ak is a fraction of the magnitude of ak~1. This selection of ak guarantees that if the
base subsystem (5c), (5d), (8) is in steady state over the kth period, then z' tk`1

"z' tk#G (ak)
"(1!ok) z' (tk) and for ok(1, Ez' (tk`1)E(Ez' (tk)E. Note that because of the transients, the actual
net change in z' over the kth period may be different from G(ak) . Since G is open at the origin the
required selection of ak can be always made.

Theorem 2.1 in Reference 9 shows that the feedback law defined according to (7), (8) and
Algorithm 2.1 guarantees convergence of all states to the origin for any initial condition.

Actually, a simpler algorithm can be constructed using the results in Reference 9. As shown in
Reference 9, global stabilization is guaranteed if the algorithm is based on the approximation of
G, G] , defined by the linear term in the Taylor series expansion of G:
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We arrive at the following algorithm:
Let l'0 be such that for all EaE(l, EGI (a)E(kEG] (a)E for some k(1.

Algorithm 2.2

1. For k"0 (Initialization):
If zL (0)"0 and y(0)"0, set a0"0;
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Theorem 2.2 in Reference 9 ensures global convergence of all the states to the origin for the
feedback controller defined according to (7), (8) and Algorithm 2.2.

3. EXPERIMENTAL RESULTS

The hybrid feedback controller defined according to (7), (8) and Algorithm 2.2 with c"0.7 has
been tested on the experimental RTAC testbed developed by Bupp and coworkers.3 Typical
experimental responses are shown in Figures 2—4. Observe the transients of the rotor angle from
one periodic cycle to another that result in platform stabilization. Both in terms of speed of
response and magnitude of control input the responses are comparable to the best ones reported
in Reference 3. Our experience is that the proposed hybrid controller is easy to implement in
hardware, easy to tune and provides good closed-loop properties.

Figure 2. Time histories of the platform displacement (inches) and rotor angle (degrees). The controller is initialized at
approximately t"2 s
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Figure 3. Time history of the torque (oz-inches)

Figure 4. Time history of the control parameters a
1

and a
2
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4. REMARKS

Remark 4.1

We have formally indicated, based on our previous theoretical results, that the equilibrium of
the closed loop is globally asymptotically stable. This result is important, but other properties,
relating to implementation and closed-loop performance, determine the engineering significance
of the proposed hybrid control law. Due to the hybrid features of the closed loop, classical
methods of analysis are difficult; and formal, strong results for robustness, disturbance attenu-
ation and other closed-loop properties are not currently available. The experimental results
indicate that stability and good response properties are maintained for the disturbances and
parameter variations that occur in the experimental testbed.

Remark 4.2

Many other choices of the feedback family (7) that result in stabilization are possible. For
example, a choice
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Hence, y44
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(a; k¹)"yR 44

1
(a; k¹)"0 for all a. This property allows to invoke Theorem 2.3 in

Reference 9 that assures that the states converge to the origin at exponential rates. The conditions
of Theorem 2.3 in Reference 9 are only sufficient and exponential convergence rates are often
exhibited even if the conditions of Theorem 2.3 are not satisfied. For example, this can be
observed from the experimental responses in the previous section.

Remark 4.3

Suppose that the initial rotor angle y (0) and the initial rotor velocity yR (0) are sufficiently small.
Then by restricting the magnitude of a0 , it is possible to satisfy certain state constraints on y (t)
and yR (t). For example, it may be possible to keep the rotor angle within a certain open interval
that contains zero.

Remark 4.4

Algorithms 2.1 and 2.2 require calculation of ak at a time-instant tk"k¹, based on the
observed value of z' at the same time instant. Since this calculation must be instantaneous, it may
not be feasible from an implementation viewpoint. There are various ways around this difficulty.
For example, z' (k¹) can be replaced in Algorithm 2.1 or in Algorithm 2.2 by z' ((k!q)¹), 0)q(1.
In this case, q¹ seconds are available to compute ak. From the results in Reference 9 it follows that
stability is maintained for Algorithm 2.2 if a0 is restricted to be sufficiently small.

*An alternative approach to ensure continuity of v is to augment an integrator to the base dynamics and perform the
control design for the augmented system.
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Remark 4.5

Stability is not destroyed even when the switchings in Algorithm 2.1 are not implemented
exactly at the time instants tk"k¹ but take place at time instants (k#q

k
)¹, where 0)q

k
(1; see

Reference 9.

5. CONCLUSIONS

The proposed hybrid feedback control, illustrated through application of the RTAC example,
represents a fundamentally new approach to nonlinear control design. Although the hybrid
control design approach and the arguments that support its development are likely to be new to
most researchers, the authors believe that the design approach is conceptually simple and
effective. The hybrid control structure is consistent with standard digital control implementa-
tions, employing nonlinear analog feedback loops and nonlinear digital feedback loops with
periodic hold functions.
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