
Abstract
In this paper, we propose a hybrid floorplanning

methodology. Two hierarchical strategies for avoiding
local optima during iterative improvement are proposed:
(1) Partial Clustering, and (2) Module Restructuring.
These strategies work for localizing nets connecting small
modules in small regions, and conceal such small modules
and their nets during the iterative improvement phase. This
method is successful in reducing both area and wire length
in addition to reducing the computational time required for
optimization. Although our method only searches slicing
floorplans, the results are superior to the results obtained
even with non-slicing floorplans.
We applied our method to the largest MCNC floorplan
benchmark example, ami49, and industrial data. For the
ami49 benchmark, we obtained results superior to any
published results for both estimated area and routing
results.

1 Introduction
Recently, floorplanning has become more complex.

This is due to the recent use of hardware description
languages and synthesis tools which increase the number
and variation in size of modules, and nets.

Many approaches to floorplanning have been
proposed, and they can generally be classified into two
categories, constructive and iterative improvement
methods.

Constructive methods divide the problem into two
steps. In the first step, they determine the relative
placement among modules subject to minimizing wire
length. Partitioning based methods determine relative
placement by top-down partitioning [1,2,3,4]. Graph based
methods are another approach for relative placement
[3,5,6]. In the second step, module sizing is applied to
minimize the area [2,3,4,7,8]. These methods are
successful in handling a large number of modules, but the
relative placement in the first step restricts optimization of
floorplan.

Iterative improvement methods optimize wire length
and area simultaneously. Wong et al. [9] proposed a

normalized Polish expression representation for slicing
structures [10]. Iterative improvement methods, such as
simulated annealing or genetic algorithms, are formulated
using this representation [9,11]. Murata et al. [12] proposed
the Sequence-Pair representation which has higher
flexibility than the slicing structure. Their approach has
been shown to be successful in area optimization for large
problems. However, because iterative improvement
methods search large solution spaces, they can be very
time-consuming. Moreover, we have found that the
solution potentially falls into local optimum. We will
discuss this problem in detail later.

Onodera et al. [13] proposed a branch-and-bound
placement method. Theoretically, this can obtain an
optimal solution. However, for practical problems,
hierarchical partitioning must be applied before the
branch-and-bound placement because the applicable
number of modules is limited to six. Consequently, this
method still depends on the initial partition.

In this paper, we propose a hybrid floorplanning
approach based on hierarchical strategies. These strategies
work for localizing nets in small regions, and also work for
avoiding undesirable solutions for iterative improvement.
Experimental results demonstrate that our method
improves the quality of resulting floorplans substantially.

The paper is organized as follows. Section 2 gives an
overview of the method. Sections 3, 4 and 5 then describe
our partial clustering, cluster placement, and module
placement methods. Section 6 presents some experimental
results. We conclude in Section 7.

2 Overview of the Method

2.1 Motivation
For an iterative improvement method, a cost function

must be defined for evaluating the current floorplan. The
cost function depends on both area and total wire length in
order to optimize both of them. However, we found a
serious problem in which the solution potentially falls into
a local optimum even with hill-climbing methods, such as
simulated annealing. Fig. 1 illustrates this problem in the

Hybrid Floorplanning Based on Partial Clustering and
Module Restructuring

Takayuki Yamanouchi, Kazuo Tamakashi, and Takashi Kambe
Precision Technology Development Center, Sharp Corporation

ICCAD ’96
1063-6757/96 $5.00  1996 IEEE



case of simulated annealing. Suppose that module A is
tightly connected with B and C. Let us consider that the
annealing temperature goes down and the area has been
optimized. Once the current floorplan becomes Fig. 1 (a), it
is necessary to increase the area temporarily for the later
improvements if we expect the reduction of the wire length.
However, at low temperatures, the increase of area cost is
too high to accept, and thus the solution falls into a local
optimum while there exist better solutions with the same
area but shorter wire length (Fig. 1(b)).

The same kind of problem arises from the difference
in module size, which is one of the distinctive
characteristics of large floorplans. At high temperatures,
placement improvements for small modules can be
canceled later because of the wasted area caused by large
modules. On the other hand, at low temperatures, it is
necessary to move large modules temporarily for
optimizing small module placement, but this improvement
is difficult to accept.

A

C

B

(a) (b)

A

C

B

 Fig. 1 Example of a local optimum solution

2.2 Basic Concepts
Based on the above discussions, it can be seen that

iterative improvement will produce a much better solution
if we prevent it from falling into undesirable solutions. By
putting tightly connected small modules into a limited
region, we can prevent them from being spread too widely,
and the wires connecting them will be accordingly
shortened (Fig. 2). Furthermore, differences in module size
will be reduced. This operation will effectively avoid
undesirable solutions for iterative improvement, and also
reduce computational time.

For this purpose, we introduce two hierarchical
strategies. One is partial clustering, and the other is module
restructuring.

Partial clustering is applied to only small modules,
and it takes difference in module size into account. The
number of modules in a cluster is restricted.

Module restructuring consists of two operations,
merge and split. The merge operation combines two
modules. The split is the inverse operation which splits a
merged module in two. We can apply module restructuring

to modules used in cell based layout styles. During iterative
improvement, modules are restructured for optimization.

A

C

Ba cluster

 Fig. 2 Example of partial clustering

2.3 Outline of Our Method
Our floorplanning method consists of the following

three stages.
1 Partial clustering
2 Cluster placement
3 Module placement

In stage 1, tightly connected small modules are
clustered. In stage 2, we enumerate possible shapes for
each cluster, then determine the placement of clusters. This
variation in cluster shape increases the flexibility of cluster
placement. During cluster placement, we use module
restructuring operations. After cluster placement, we
determine placement of all modules at stage 3 in which we
focus on wire length.

The floorplan model in our method is a slicing
structure [10]. Wong et al. proposed a normalized Polish
expression to represent such structures [9]. In this
representation, operands correspond to modules, and
operators (+ or *) correspond to (horizontal or vertical)
rectangular bisections of the region (Fig. 3). We can
represent a cluster or merged module by changing a part of
an expression.

B

A

D E

C

AB+CDE*+*

A B C

D E

+ +

*

*

slicing treeslicing structure

normalized Polish expression

Fig. 3     Slicing structure and normalized Polish expression

3 Partial Clustering
Conventional methods of clustering focus mainly on

the number of connections, either among clusters or within
a cluster. It is difficult to optimize area in a cluster because
of the differences in module size (Fig. 4). To solve this
problem, we introduce a new connectivity that takes
module sizes into account.



A B C D E

A
B

C

D E

clusters

 Fig. 4 Problem of the conventional clustering

3.1 Selection of Clustering Candidates
Our clustering strategy is to create a cluster of small

modules whose sizes are smaller than a given threshold.
The larger modules are handled individually, because they
will widely influence the whole placement region.

3.2 Connectivity
Connectivity Cij between two modules Mi and Mj is

defined in eq. 1,

( )
{ }
{ }C

T

A

A A

A A

A A
ij

nn N

all

i j

i j

i jij

=
−

• •
∈
∑ 1

1 +

,

,

min

max
 (eq. 1)

where Ai and Aj are the areas of modules Mi and Mj

respectively, Aall is the total area of all modules, Tn is the
number of pins in net n, and Nij is the set of nets connecting
module Mi and Mj. In this definition, conventional
connectivity is biased according to the module sizes and
difference in module size.

3.3 Clustering Algorithm
For simplicity of explanation, we call each of the

excluded modules a cluster (a single module cluster). We
specify the maximum number of modules in a cluster. Two
clusters with the highest connectivity are combined, and
this operation is repeated. Fig. 5 shows the clustering
algorithm.

4 Cluster Placement
In this section, we describe the cluster placement

method. Possible shapes for each cluster are enumerated
before cluster placement.

4.1 Enumeration of Cluster Shapes
We enumerate cluster shapes using a constructive

method. Lengauer et al. [2] proposed a dynamic
programming method to compute a shape function for a set
of modules. Based on this method, we obtain a shape
function that includes all possible slicing floorplans of a
cluster (Fig. 6). As a result, the cluster has various potential

shapes, and this flexibility improves the area optimization
of cluster placement. The calculation takes only a few
seconds if the number of modules is less than 10.

width

height

Fig. 6 Possible placements and shape function of a cluster

4.2 Iterative Improvement for Cluster Placement
For iterative improvement, we use a simulated

annealing algorithm. Wong et al. applied three operations
to a normalized Polish expression for modifying the
relative placement [9].

[M1]  Swap two adjacent operands
[M2]  Complement some chain of non-zero length
[M3]  Swap two adjacent operand and operator

We use a modified [M1]  operation.
[M1']  Swap any two operands

We extend their approach for module restructuring. If
we replace a part of an expression with a new operand, we

M is a set of modules {M1, M2, ... , Mn}
Ai is area of module Mi

Amax is the area threshold for clustering
Pi is a cluster i, which consists of a set of modules
Nmax is the maximum number of modules in a cluster
Cij is a connectivity between cluster Pi and Pj

/* selection of clustering candidates */
foreach module Mi in M do

Pi = {Mi}
if  (Ai < Amax) then

flag(Pi) = T
else

flag(Pi) = F
end if

end do
/* clustering */
while ( exists cluster pair (Pi, Pj) such that

flag(Pi) == T && flag(Pj) == T && |Pi| + |Pj| <= Nmax

) do
Update connectivity between clusters.
Choose (Pm, Pn) with highest connectivity.
Create Pl = Pm �¾  Pn, and remove Pm and Pn.

end do
Fig. 5  Clustering algorithm



can handle a set of modules as a new module. We denote
the operands as A, B, C and the operators as *, +. The
operands A and B represent the modules that can be
merged. We define three merge operations.

[m1]  Replace the sequence (A B [*,+]) with (C)
[m2]  Replace the sequence (A [*,+] B) with (C)
[m3]  Replace the sequence ([*,+] A B) with (C)

We also define three split operations which are the
inverse of the merge operations.

[s1]  Replace (C) with the sequence (A B [*,+])
[s2]  Replace (C) with the sequence (A [*,+] B)
[s3]  Replace (C) with the sequence ([*,+] A B)

The operand C must be a merged module which was
created from A and B by an earlier merge operation. If the
balloting property [9] of the normalized Polish expression
is invalid after [s1] or [s3], then the operation is canceled.
Fig. 7 illustrates floorplan modifications based on these
module restructuring operations.

AB+CDE*+ AB+CF+*

AB+CDE*+ AFDE*+*

AB+CDE*+ ABFE*+*

m1

m3

m2

s1

s2

s3

B

A

D E

C

B

A

F

C

A
D E

F

B

E
A

F

B

A

D E

C

B

A

D E

C

Fig. 7 Examples of module restructuring operations

During each iteration, one of the above operations is
randomly applied to the expression, then a shape function
of the floorplan is calculated. All locations and shapes of
operands are determined for the shape with the minimum
area floorplan, and the wire length is obtained. We use the
same cost function as used in [9].

5 Module Placement
In the previous stage, the location and orientation of

modules are not fixed yet. The purpose of this stage is to
determine these subject to reducing the wire length.

5.1 Relative Placement in a Cluster
Because the cluster placement stage has optimized the

area and wire length among clusters, in this stage we focus
on the wire length within clusters. After cluster placement,
we build a slicing tree based on the cluster shape. All
information for building this has been already obtained
during the enumeration of cluster shapes as described in
section 4.1. If a cluster has n modules, then there are 2n-1

placements whose shapes are same, and we can choose the
placement with the minimum wire length. We enumerate
the placements by exchanging left and right children of
each operand node of the slicing tree (Fig. 8).

A
B

C

D

A

B C

D

+

*

+

A

C B

D

+

*

+

A
B

C

D

A
B

C

D

A

C B

D

+

*

+

�E�E�E

exchange

exchange

�E�E�E

Fig. 8 Enumeration of placement in a cluster

5.2 Module Orientation
Finally we determine the module orientations. A

cluster has four possible orientations which represent same
relative placement. They are (1) no reflection, (2)
reflection about the X axis, (3) reflection about the Y axis,
and (4) reflection about both the X and Y axis (Fig. 9).
Similarly, each module has 4 possible orientations.

A
B

D

C
A

B

D

C

A
B

D

C
A

B

D

C

(1) (2) (3) (4)
Fig. 9 Possible orientations of a cluster

We determine module orientations in a step by step
manner. For each cluster, we determine the cluster
orientation, and then determine the orientation of the
modules in the cluster.

At the evaluation of cluster orientation, we assume
that pins are at the center of their module since the module
orientation is still flexible. We evaluate four cluster
orientations based on the wire length, then we fix module
placement in a cluster. At the evaluation of module
orientation, we calculate the wire length with exact pin
locations. We show this algorithm in Fig. 10.



6 Experimental Results
We implemented our method, and applied it to the

largest MCNC floorplan benchmark example, ami49, and
an industrial example.

6.1 Results for Benchmark Data ami49
In the case of ami49, all the modules are rigid, so we

only applied partial clustering. The threshold of module
size for clustering was twice the average size of the
modules, and the number of modules in a cluster was
limited to 7. The target aspect ratio of chip was 1.

At cluster placement, the total number of clusters was
14, which contained 7 single module clusters.

Initially, we evaluated the effect of partial clustering.
Table 1 shows the results with and without partial
clustering. We estimate the wire length with half perimeter
of net bounding boxes. In the table, area does not include
wiring area. Run time is on a Sun Sparc Station 20. The
result shows that partial clustering is effective for both area
and wire length optimization, besides being effective in
reducing computational time. We show the plot of this
result in Fig. 11.

Width
(�̊ )

Height
(�̊ )

Area
(mm2)

Wire length
(mm)

Time
(sec)

W.O. clustering 6090 6258 38.11 1030 370.9
With clustering 5824 6440 37.58 723.9 56.3

Table 1
We compared the above results with a Sequence-Pair

approach [12] which generates a non-slicing floorplan.
Table 2 shows the results. The result for SP was obtained
from the authors of [12]. In this case, area includes the

estimated wiring area. The estimation method and wire
spacing rules are the same as SP's. The spacing rules
between wires are 7 micron in both horizontal and vertical
directions, which are different from the exact benchmark
rules. Our result is smaller than the result for SP, even
though we only search slicing floorplans and the solution
space is much smaller than SP's.

Width
(�̊ )

Height
(�̊ )

Area
(mm2)

Wiring area
(mm2)

Ours 6288.4 6796.6 42.72 7.28  (1.00)
SP 6482.0 6925.0 44.89 9.45  (1.30)

Table 2
We also compared our results with the routing result

for branch-and-bound (BB) method [13]. This is shown in
Table 3. In [13], modules are partitioned before the
branch-and-bound operation due to the limitation of the
applicable number of modules.

Our routing result is obtained by our channel routing
program under the exact design rules of the benchmark. In
this case, we assign routing area around modules in
proportion to the number of pins, because our placement on
the estimated cost is too dense for routing. Our method also
generates better results in terms of area. Our wire length is
longer than BB, but aspect ratios of the chip are too
different for comparison. We show the plot of the routing
result in Fig. 12.

Width
(�̊ )

Height
(�̊ )

Area
(mm2)

Wiring Area
(mm2)

Wire length
(mm)

Ours 7108.0 7001.8 49.77 14.33(1.00) 1141
BB 4692.0 10976.0 51.49 16.05(1.12) 1021

Table 3

6.2 Results for an industrial example
Next, we show the effect of module restructuring. We

compare the routing result from our algorithm with those
from manual design using the industrial data. The initial
number of modules is 19, and 10 modules can be merged
among 13 flexible modules. This time we did not use
partial clustering because the number of modules was
small. The results are shown in Table 4. We obtained a
better result for area than the manual design. Wire length
between modules is also better than the manual design, but
this is difficult to compare because the numbers of modules
are different. We show the plots of this result in Fig. 13.

Width
(�̊ )

Height
(�̊ )

Area
(mm2)

Number of modules
(at the final floorplan)

Ours 9825.7 9403.1 92.39 11
Manual 9846.6 10391.7102.32 13

Table 4

Initialize pin locations to center of their cluster
foreach cluster Pi do

/* determination of cluster orientation */
foreach cluster orientation do

foreach module Mj in Pi do
Update pin locations to the center of module Mj.

end do
Calculate wire length associated with Pi.

end do
Select the best orientation.
Update module locations in Pi.
foreach module Mj in Pi do

/* determination of module orientation */
foreach module orientation do

Update pin locations of Mj exactly.
Calculate wire length associated with Mj.

end do
Select the best orientation.

end do
end do
Fig. 10 Algorithm for determining module orientations



7 Conclusion
In this paper, we propose a hybrid floorplanning

method based on partial clustering and module
restructuring. Experimental results demonstrate the
effectiveness of our method. They prove that the hybrid
approach improves not only the computational time but
also the quality of the resulting floorplan. We also show
that the slicing structure still has high flexibility for
optimizing floorplans.

References
[1] W. M. Dai and E. S. Kuh, "Simultaneous Floor Planning and
Global Routing for Hierarchical Building-Block Layout", IEEE
Trans. Computer-Aided Design, vol. CAD-6, no. 5, pp. 828-837,
1987.
[2] T. Lengauer and R. Müler, "Robust and Accurate Hierarchical
Floorplanning with Integrated Global Wiring", IEEE Trans.
Computer-Aided Design, , no. 6, pp. 802-809, 1993.
[3] P. S. Dasgupta, S. S. Kolay,and B. B. Bhattacharya, "A
Unified Approach to Topology Generation and Area
Optimization of General Floorplans", in IEEE International Conf.
on Computer Aided Design, pp. 712-715, 1995.
[4] P. Pan, W. Shi, and C. L. Liu, "Area Minimization for
Hierarchical Floorplans", in IEEE International Conf. on
Computer Aided Design, pp. 436-440, 1994.
[5] K. Tani, S. Tsukiyama, I. Shirakawa, and H. Ariyoshi,
"Area-efficient drawings of rectangular duals for VLSI
floorplan", in Proc. Int. Symp. on Circuits and Systems, pp.
1545-1548, 1988.
[6] S. S. Kolay and B. B. Bhattacharya, "Canonical Embedding of
Rectangular Duals with Applications to VLSI Floorplanning", in
Proc. 29th ACM/IEEE Design Automation Conf., pp. 69-74,
1992.
[7] T.-C. Wang and D. F. Wong, "Optimal Floorplan Area
Optimization", IEEE Trans. Computer-Aided Design, vol. 11, no.
8, pp. 992-1002, 1992.
[8] P. Pan and C. L. Liu, "Area Minimization for Floorplans",
IEEE Trans. Computer-Aided Design, vol. 14, no. 1, pp. 123-132,
1995.
[9] D. F. Wong and C. L. Liu, "A New Algorithm for Floorplan
Design", in Proc. 23rd ACM/IEEE Design Automation Conf., pp.
101-107, 1986.
[10] R. H. J. M. Otten, "Automatic Floorplan Design", in Proc.
19th ACM/IEEE Design Automation Conf., pp. 261-267, 1982.
[11] J. P. Cohoon, S. U. Hegde, W. N. Martin, and D. S. Richards,
"Distributed Genetic Algorithms for the Floorplan Design
Problem", IEEE Trans. Computer-Aided Design, vol. 10, no 4,
pp. 483-492, 1991.
[12] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani,
"Rectangle-Packing-Based Module Placement", in IEEE
International Conf. on Computer Aided Design, pp. 472-479,
1995.
[13] H. Onodera, Y. Taniguchi, and K. Tamaru, "Branch-and-
Bound Placement for Building Block Layout", in Proc. 28th
ACM/IEEE Design Automation Conf., pp. 433-439, 1991.

Fig. 11 Result of ami49

Fig. 12 Routing result of ami49

Fig. 13 Routing result of an industrial example
merged modules




