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Abstract

The application of meta-heuristic algorithms for t-way testing has recently become preva-

lent. Consequently, many useful meta-heuristic algorithms have been developed on the

basis of the implementation of t-way strategies (where t indicates the interaction strength).

Mixed results have been reported in the literature to highlight the fact that no single strategy

appears to be superior compared with other configurations. The hybridization of two or more

algorithms can enhance the overall search capabilities, that is, by compensating the limita-

tion of one algorithm with the strength of others. Thus, hybrid variants of the flower pollina-

tion algorithm (FPA) are proposed in the current work. Four hybrid variants of FPA are

considered by combining FPA with other algorithmic components. The experimental results

demonstrate that FPA hybrids overcome the problems of slow convergence in the original

FPA and offers statistically superior performance compared with existing t-way strategies in

terms of test suite size.

1. Introduction

Many aspects of software engineering (e.g., requirements, management, testing, and refactor-

ing) deal with optimization problems. In summary, optimization problems involve exploiting

limited resources to find optimal solutions from a potentially large number of alternative solu-

tions. Meta-heuristic-based algorithms excel in this arena. Many meta-heuristic algorithms

have been developed in prior studies, including that of tabu search (TS) [1], simulated anneal-

ing (SA) [2], genetic algorithm (GA) [3], ant colony algorithm (ACA) [4], particle swarm

optimization (PSO) [5], differential evolution (DE) [6], harmony search (HS) [7], flower polli-

nation algorithm (FPA) [8], sine cosine algorithm (SCA) [9], bee algorithm (BA) [10], cuckoo

search (CS) [11], and firefly algorithm (FA) [12].

In the field of t-way testing, meta-heuristic algorithms have been used to sample an opti-

mized set of test suites from large combinatorial values on the basis of a specified interaction

strength (t). However, the main issue involves the identification of optimal test cases from an

exhaustive test suite. The searching operation for the optimal set of test cases is a non-deter-

ministic polynomial-time hard (NP-hard) problem in which additional software components
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can exponentially increase computational time and problem complexity. To address this issue,

many studies have adopted meta-heuristic algorithms on the basis of their implementation,

including TS [13], SA [13], GA [13,14], CA [14], PSO [15], HS [16], and CS [17]). However,

although useful, these strategies have limitations.

Strategies based on TS and SA often produce optimal results for a small set of test configu-

rations, but they are prone to being limited to the local minimum solution [16]. Although

useful, strategies based on GA, ACA, PSO, and HS often require frequent interactions with

the environment during computation. For instance, GA exploits crossover and mutation

operators with historical information to explore regions with relatively better solutions. ACA

requires the indirect communication of a colony via pheromone trails, while PSO similarly

interacts with individual particles through velocity updates in a given swarm until the solu-

tion is reached. HSS requires the use of probabilistic values from the pitch adjustment rate

(PAR) and the harmony memory considering rate (HMCR) to select the solution from the

harmony memory (HM) or regenerate a new random solution. Nonetheless, PSO and HSS

can address the limitations of GA and ACA in terms of supporting high-interaction strength

(i.e., t� 6).

Although useful, the capability of existing t-way strategies remains limited given that no

single strategy appears to be superior compared with other configurations [18]. To address the

shortcomings, the search for a new t-way strategy that considers a new breed of search tech-

niques is justified. Two algorithms can be hybridized by compensating the limitation of one

algorithm with the strength of others. Conferences, workshops, and review papers on hybrid-

ization have shown that hybridization topics have since become extremely popular [19]. In

fact, many studies have reported that hybrids of optimization-based algorithms often perform

better than their original algorithmic counterparts [20].

In accordance with the aforementioned prospects, this paper presents hybrid variants of

strategies for t-way test suite generation on the basis of a new meta-heuristic called the FPA

[8]. The adoption of FPA is justified by the advocacy of many recent studies of its superiority

over GA, PSO, and HS [21,22]. Additionally, FPA also offers the following advantages:

• FPA offers a simple flower analogy with lightweight computation based on only one control

parameter (i.e., switch condition, p) unlike GA, HS, and PSO.

• FPA offers a balanced intensification and diversification of solutions through the adoption

of lévy flight (i.e., random walks that are interspersed by long jumps) and switch condition

pa, which can be used to change between global search and intensive local search.

Although proven efficient, FPA is prone to being restrained to the local optima due to

the weakness of having to use a diverse population [23–26], especially for multimodal

optimization problems. To overcome this weakness, many FPA hybridizations have been

proposed. This paper investigates four FPA hybridizations for the t-way test suite genera-

tion. Our hybridization approach is unique given that we adopt peer efficient components

(i.e., elitism feature, mutation operator, and local search) as our main hybridization

constructs.

The rest of this paper is structured as follows. Section 2 presents an overview of the t-way

testing and its theoretical background. Section 3 provides a review of existing strategies. Sec-

tion 4 presents a detailed review of FPAs and their applications. Section 5 explores four FPA

hybridization variants for the t-way test generation. Section 6 discussed the experiment and

results. Section 7 discusses the threats to validity. Section 8 concludes the present research with

recommendations for future work.
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2. Background

2.1 T-way test suite generation problem

The sampling technique called t-way testing generates test cases that focuses on the behavior

of interacting system components. To illustrate the concept of t-way testing in test suite reduc-

tion, we consider a hypothetical online payment service as an example. Online payment allows

the electronic exchange of money, in which customers are instructed to fill out an online pay-

ment form and submit the required information to the merchant’s website. The form consists

of six parameters (i.e., payment method, name on card, card number, expiration date (with the

two inputs of MM and YY), and card CVV). Five payment methods exist (i.e., “Visa Card,”

“Master Card,” “American Express,” “Discover,” and “PayPal”).

As shown in Fig 1, “Name-On-Card” and “Card-Number” use one string value each; “Expi-

ration-Date” is considered as two inputs (i.e., MM takes a value from 1 to 12, and YY takes a

value from 16 to 31); and Card CVV uses one input value.

A total of 900 test cases are required to fully test this system. In this case, the two-way test

suite requires only 180 test cases, thereby saving 80% in time and effort. As the interaction

increases, the number of t-way test suite increases toward the exhaustive set. In general, every

t-combination of input values (where t indicates the interaction strength) is covered by the test

case at least once [16,27]. Studies on NASA application show that 67% of failures can be

detected if a single parameter value is at least tested (interaction strength t = 1), 93% of failures

can be detected if all pairs of parameter combinations are tested (interaction strength t = 2),

and 98% of failures can be detected if all 3-tuple interactions are tested (interaction strength

t = 3). In addition, the fault detection rate for the other applications can reach 100% if the

interaction strength (t) is between 4 and 6 [28–32].

2.2 Theoretical background

The test suite (T) is an n×m array of n rows of generated test cases wherein each test case is

a combination ofm input values. A t-way test suite (T1) covers every valid pair of input

Fig 1. Example of hypothetical online payment.

https://doi.org/10.1371/journal.pone.0195187.g001

Hybrid flower pollination algorithm

PLOSONE | https://doi.org/10.1371/journal.pone.0195187 May 2, 2018 3 / 24

https://doi.org/10.1371/journal.pone.0195187.g001
https://doi.org/10.1371/journal.pone.0195187


parameters, wherein one test case can cover many pairs of input values. The t-way problem

involves finding the effective test suite (T1) from T that has the smallest number of rows.

Definition 1: (t-way Test Suite): Given a set of N parameters, P1, P2,. . .Pn, each of which

has vi possible values [v1, v2,. . .vm], the t-way test suite of strength t is an N×n array, such that

each column contains only elements from vi and every N×t sub-array contains all combina-

tions of size t at least once.

Covering array (CA) is a mathematical object that is often adopted to describe the gener-

ated t-way test suite [33,34]. In general, any system under test (SUT) comprises several compo-

nents called parameters that interact with each other with their associated values. In this paper,

v, p, and t denote number of parameters, associated levels, and interaction strength, respec-

tively. When the number of values (v) is equal for all parameters (p), the CA is represented as

the uniform CA(N, t, vp). For example, CA(6; 2, 24) consists of six rows of test cases that are

generated from four columns of parameters with two values each. When the number of

parameters are not equal (i.e., each parameter has a different number of values), the CA repre-

sentation takes the mixed CA notation of MCA(N, t, v1
p1 v2

p2 v3
p3
. . .‥vj

pj). As an additional

example, MCA (12, 3, 23 31) represents a test suite that consists of arrays with 12 rows and 4

columns of parameters, in which three parameters have 2 values and one parameter have 3

values.

3. Related work

In general, t-way strategies can be classified into two main algebraic and computational

approaches [16,35]. In algebraic approaches, test sets are constructed without enumerating

any combinations because they are based on lightweight computations. Strategies of this

approach, including orthogonal Latin squares (OLS), CA, MCA, and test configuration

(TConfig), are often restricted to small configurations [15,36]. Computational approaches use

greedy algorithms to construct test cases to cover as many uncovered combinations as possible.

These approaches generate the incremental test suite either using the one-parameter-at-a-time

or one-test-at-a-time approach.

One-parameter-at-a-time strategies start by building a complete test suite for the first two

parameters or the smallest number of interaction components, then extends horizontally by

adding one parameter per iteration, and sometimes extends vertically until all parameters are

covered. The most well-known strategy of this approach is the in-parameter-order (IPO) strat-

egy [37]. On the basis of the IPO strategy, many improvements, such as IPOG [38], IPOG-D

[35], IPOF, and IPAD2 [39], have been proposed. One-test-at-a-time strategies build a single

complete test case per iteration until all interaction elements are covered. The automatic effi-

cient test generator (AETG) proposed by Cohen et al. [40] is considered the first attempt to

adopt this approach. Subsequently, many tools and strategies have been proposed by research-

ers, such as Jenny [41], TConfig [42], and WHITCH [43].

Many researchers have recently adopted meta-heuristic search algorithms, such as HC, TS,

SA, GA, ACA, HS, and CS, on the basis of t-way test suite generation. HC is perhaps the most

basic search algorithm for successfully generating a two-way test suite, but is sensitive to the

initial search position and hence susceptible to being restrained to the local optima. TS has

also been used successfully for two-way test suite generation. SA, an improvement of HC,

allows movement to poor solution, with some probability, even though the best solution has

been reached (i.e., to avoid being restrained to the local minimum). SA has been implemented

for three-way interaction test suite generation unlike HC and TS. Meanwhile, GA [13,14,44]

and ACA are early studies on adopting population-based algorithms to generate t-way test

suites. GA starts by finding solutions from many positions unlike HC, TS, and SA. Therefore,

Hybrid flower pollination algorithm
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the chances of reaching optimum solutions are high. The main advantage of GA over HC, TS,

and SA is that it is not usually restrained in the local optima. Moreover, GA provides some

control in the selection processes, such as genetic diversity and selective pressure, to ensure an

adequately diverse population.

PSO has been adopted in the particle swarm-based test generator (PSTG) strategy [15] and

the variable strength t-way test suites generation (VS-PSTG) strategy [45]. PSO is a popula-

tion-based strategy that mimics the behavior of birds and fishes in a swarm when searching for

food. Unlike GA and ACA, the PSO-based strategy can support high-interaction strengths that

can reach t = 6, but its computation time is relatively longer in practical usage [46]. HS has

been adopted in the harmony search-based strategy (HSS) for implementing and generating t-

way test suites. Using HSS, the test data generation process mimics the improvisation process

of a skilled musician [16]. Furthermore, HSS uses a sort of elitism and/or the selection used in

GA to efficiently explore the search spaces [47] and a probabilistic-gradient to select the cur-

rent solution neighbor, while mathematical equations are used to move toward finding the rel-

atively better solutions [48].

CS is a population-based algorithm inspired by the brood parasitic behavior of birds, such

as Ani and Guira cuckoos [42]. CS provides an optimal balance between local intensification

and global diversification by intensifying the solution search process in the neighborhood of

incumbent solutions and efficiently explores the entire search space using lévy flights [43].

Similar to HS and GA, CS adopts elitism mechanisms to ensure that only solutions with high

fitness can move toward the next generation.

With regard to the hybridization of meta-heuristics and its application for t-way strategies,

several existing studies can be highlighted. Zamli et al. [49] proposed the hybrid meta-heuristic

variant called high-level hyper-heuristic (HHH), which explores the concept of hyper-heuris-

tics wherein a master heuristic can choose from more than one (slave) heuristics. In their

work, Tabu search (TS) serves as the master algorithm (i.e., high level) that controls the follow-

ing four other low-level algorithms (LLH): teaching—learning-based optimization, PSO, CS,

and global neighborhood algorithm. During runtime, HHH adopts three operators (i.e., diver-

sification, intensification, and improvement) to decide on the best low-level algorithm for any

particular running instance. Although useful in enhancing the diversification and intensifica-

tion of the entire search process, the hybridization approach based on the HHH is bulky and

computationally heavy. Furthermore, each LLH requires extensive tuning, without which poor

performance may ensue.

4. Flower pollination algorithm

FPA is one of the latest meta-heuristic algorithms inspired by the pollination behavior of flow-

ering plants. Pollination involves transferring pollen grains from the male part of the flower

to ovules borne in the female part via pollinators, such as birds, butterflies, bees, and bats.

According to the mechanisms of pollen transfer, pollination can take two types: biotic and abi-

otic. Biotic pollination refers to the transfer pollen via pollinators (i.e., insects or other ani-

mals). By contrast, abiotic pollination does not require any pollinators to transfer pollen (i.e.,

uses non-animal vectors, such wind and water). Furthermore, pollination can be accomplished

by self-pollination or cross-pollination. Self-pollination occurs when the pollen is transferred

from the male to the female parts of the same flower or to another flower of the same plant.

Cross-pollination refers to the transfer of pollen from the flower of one plant to the flower of

another plant (Fig 2) [50].

Some flowers facilitate or even restrict specific pollinators, and such flowers often use many

methods, such as colors, scents, petals, and nectars, to attract pollinators. The tendency to
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specialize in this manner is referred as “flower constancy,” a term to define the preference of

many pollinators to visit only certain species of flowers and ignore alternative flowers. The

main advantage of flower constancy is maximized pollen transfer, which in turn increases the

reproduction of the corresponding flower [51].

4.1 Basic form of flower pollination algorithm

Based on the characteristics of flower pollination (i.e., pollination process, flower constancy,

and pollinator behavior), FPA can be represented mathematically by two key steps: global and

local pollination. The global pollination step in FPA is represented by the transfer of flower

pollens by pollinators (such as insects) over a long distance, and this approach guarantees that

the fittest pollens with high quality are carried over to the next generation.

xi
ðtþ1Þ ¼ xi

ðtÞ þ gL�evy ðlÞðXt � gbestÞ ð1Þ

where xi
(t) is the ith pollen or solution at iteration t, gbest is the current best solution, γ>0 is

the step size, and Lévy (λ) is lévy flight. Lévy flight, which is used to efficiently mimic the char-

acteristic of long-distance movement of insects, is essentially a random walk interspersed by

long jumps distributed to different regions according to a power law.

Local pollination and flower constancy (achieved by abiotic pollination) is formulated by

the following equation:

xi
ðtþ1Þ ¼ xi

ðtÞ þ �ðxj
ðtÞ � xk

ðtÞÞ ð2Þ

where xj
(t) and xk

(t) are pollens selected randomly from different flowers, while � is a random

number that follows the uniform distribution in [0,1]. Eq 1 mimics the characteristic of self-

pollination and abiotic pollination based on flower constancy.

In general, FPA begins by randomly initializing the flower pollen population or solutions.

For each algorithmic generation, a new solution is generated using either global pollination or

local pollination, which is controlled by a switch probability pa � [0, 1]. The summary of FPA

is illustrated in the shaded box in Fig 3.

Fig 2. Flower pollination methods. (1) Self-pollination with the same flower, (2) Self-pollination from same plant but
different flower, and (3) Cross-pollination from different plant.

https://doi.org/10.1371/journal.pone.0195187.g002
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4.2 Hybrid flower pollination algorithm

Many FPA hybridization variants have also been proposed in the literature, including the cha-

otic HS for solving Sudoku puzzles [52], FPA with GA for solving constrained optimization

problems [53], FPA with PSO (FPAPSO) for solving constrained global optimization problems

[54], FPA with TS for solving unconstrained optimization problems [55], FPA with DE

(DE-FPA) to overcome the drawbacks of slow convergence to global optima [56], FPA with

clonal selection algorithm [57], and FPA with artificial bees and biogeography optimization

algorithm for satellite image classification [58]. Recently, DE-FPA has also been integrated

with the time-varying fuzzy selection mechanism to find the optimal dispatch of wind—ther-

mal dynamic multi-objective problems [25]. In other words, FPA with randomized location

and crossover has been proposed to enhance population diversity [24]. Wang and Zhou [59]

improved the convergence speed of FPA to adopt the dimension-by-dimension evaluation and

local neighborhood operator, while Zhou et al. [26] adopted the elite opposition technique to

Fig 3. FPA strategy for t-way test suite generation.

https://doi.org/10.1371/journal.pone.0195187.g003
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select the optimal solution. Wang et al. [23] adopted three new operators for the FPA, namely,

the discard pollen, elite-based mutation, and crossover operators, while Zhou andWang [60]

adopted the dynamic switching probability strategy and proposed the FPAPSO for the optimal

path planning of unmanned undersea vehicles.

Although useful, most of the existing FPA hybridizations highlighted take the maximalist

approach, that is, embed the complete meta-heuristic algorithm with FPA, thereby altering its

original structure and/or adding new control parameters. In the present work, we adopt a min-

imalist approach to maintain the original FPA structure in our hybridization.

5. Flower pollination algorithm based strategy for t-way test suite
generation

This section describes the design and implementation of the proposed strategy based on the

original FPA, called the FPA strategy. The FPA strategy uses the original FPA to generate an

optimized test suite by searching test cases that cover maximum numbers of t-combinations.

In the FPA strategy, each test case can be treated as a pollen or feasible solution and the inter-

action element as the search space. At the start, FPA generates the list of all interaction ele-

ments stored in the population of pollens. Then, during the evaluation loop, the population of

pollens is repeatedly subjected to the FPA’s search cycle to construct an optimized test case for

the test suite.

To address the problem of t-way test suite generation, FPA adopts two major steps: (A) gen-

erating the interaction element and (B) generating the t-way test suite (Fig 3). These two steps

are explained in detail in the next sections.

A. Generating interaction element

To generate the interaction elements for a set of parameter (P) and their values (v), all possible

binary combinations of P-digit are generated, and then the binary combinations that contain

1’s equal to the interaction strengths, t, are selected. Here, each parameter in the system is rep-

resented by a digit (0 or 1), where 0 indicates the exclusion of parameter and 1 indicates the

inclusion of parameter. Therefore, binary combination 1100 refers to the P1P2 parameter com-

bination and binary combination 1011 refers to the P1 P3 P4 parameter combination. As illus-

trated, considering a system with four parameters (P1, P2, P3, and P4), variable strength

configuration VCA (N; 2, 23 31, [CA (3, 23)]) indicates four parameters with t = 2 for the main

configuration with three parameters, with each having two values (0 and 1) and one parameter

having three values (0, 1, and 2), and t = 3 for three parameters with two values as the sub con-

figuration. For the main configuration t = 2, the binary combinations that only contain two

ones (i.e., 1100, 1010, 1001, 0110, and 0101) are generated and added to the binary combina-

tions set. For the sub-configuration t = 3, the binary combinations that contain three ones are

also added to the binary combinations set.

Based on the generated binary combinations, FPA begins to generate the interaction ele-

ments list. For our running example, P1, P2, and P3 have two values (i.e., 0 and 1), and P4 has

three values (0, 1, and 2). For each binary combination, all possible combinations of the corre-

sponding parameter values are added to the IE. For instance, binary combination 1100 (refers

to P1, P2) has 2×2 possible interaction elements (i.e., 0:0, 0:1, 1:0, and 1:1), while 1001 (refers

to P1, P4) has 2×3 possible interaction elements (i.e., 0:0, 0:1,1:0, 1:1, 2:0, and 2:1).

B. Generating t-way test suite

The t-way test suite is a set of test cases that cover the interaction elements. The FPA attempts

to generate an optimal test suite that covers all interaction elements at least once. The FPA

Hybrid flower pollination algorithm

PLOSONE | https://doi.org/10.1371/journal.pone.0195187 May 2, 2018 8 / 24

https://doi.org/10.1371/journal.pone.0195187


begins by initializing population size pollen size, probability pa, and stopping criteria (i.e., max-

imum iteration for improvement). Then, the FPA generates and evaluates the pollen size of the

pollen population randomly. Here, the fitness value of each pollen is the number of interaction

elements that are covered by the pollen. Subsequently, in each generation of the algorithm, the

pollen population is subjected to repeated cycles of the FPA search process. In general, one of

the two core operations is performed on the population of pollens. The first core part of the

algorithm generates a new pollen, xnew = (x1
new, x2

new, . . ., xn−1
new, xn

new), using global pollina-

tion (i.e., lévy flight as expressed in Eq 1). Based on the new pollen’s weight, the new pollen is

determined whether it is the current pollen. The second core part of the algorithm is the local

pollination process. In the local pollination, two test cases are randomly selected from different

flowers to generate a new test case as demonstrated by Eq 2.

The search process is repeated until the maximum number of improvements is achieved

(i.e., in this case, the best test case covers the most interaction elements) or the candidate solu-

tion weight is equal to the maximum weight that can be covered. In both cases, the FPA adds

the best pollen into the final test suite, and then the covered interactions elements are removed

from the interaction list. Subsequently, the interaction elements list is checked. Once all inter-

action elements are covered (i.e., the interaction list is empty), the iteration stops. Otherwise,

the search process is repeated.

5.1 Parameter tuning of the FPA

The behavior of the FPA is largely determined by population size pollen size, switch probability

Pa, and iteration number n. Therefore, these parameters may require tuning. To this end, two

well-known CAs, CA (N; 2, 46) and CA (N; 2, 105), are used [15,16]. For systematic tuning, we

fix the values of two parameters and try different values for the third parameter. For example,

the value of pollen sizes and iterations are fixed (i.e., pollen size = 10 and iteration = 30) and

various values of Pa (i.e., 0.1, 0.2, 0.3, . . . 0.6) are tested as shown in Table 1 and Fig 4. Then,

the reverse process is performed for each parameter as shown in Tables 2 and 3, and Fig 5

respectively. Here, the FPA is executed 20 times for every parameter value, and the average

value is taken from the results.

Referring to the results shown in Tables 2 and 3, it can be observed that using large value of

pollen size may lead to better results, and conversely using too small value may lead to poor

results. By increasing the number of pollens up to 30, the performance of the FPA strategy is

improved. However, a high pollen value (i.e., equal to 500) does not necessarily yield better

results. The best results are obtained when the number of pollen is between 50 and 100. Other-

wise, the iteration value increases and the result improves. The best result is obtained when the

iteration value varies from 300 to 500. In terms of switch probability (pa), the results show that

using a higher pa can lead to better results. However, when pa is between 0.8 and 0.9, the pro-

posed strategy obtains good results.

Therefore, the FPA generally obtains the optimal test suite when pollen size is between 50

and 100, the repetition is between 300 and 500, and pa is between 0.8 and 0.9.

Table 1. Averages test suite for CA(N; 2, 46) and CA(N; 2, 105).

Covering Array Switch Probability (pa)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CA (N; 2, 46) 28.05 28.05 26.95 26.9 26.35 26.35 25.6 25.61 25.75

CA (N; 2, 105) 160.15 157.1 154.9 152.5 152.55 148.85 147.9 145.15 145.95

https://doi.org/10.1371/journal.pone.0195187.t001
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Fig 4. Graphical representation of averages test suite for CA(N; 2, 46) and CA(N; 2, 105) with pollen size = 10, and iteration = 30.

https://doi.org/10.1371/journal.pone.0195187.g004
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5.2 Hybrid FPA-based strategies for t-way test suite generation

The original FPA-based method for test suite generation has two core components: global pol-

lination via lévy flight and local pollination. The FPA performance may be enhanced by adding

one or more components from other efficient algorithms to the FPA. Here, we present three

components that will be injected into the FPA. These three components have been carefully

selected to improve the FPA’s intensification and diversification.

• Elitism Feature: Elitism is a simple way of improving the efficiency of randomization, that is,

a good candidate solution is retained (and the poor ones are randomly replaced from the

population) to be carried over to the next iteration.

• Mutation operator: Mutation maintains the diversity solution of the population from one

generation to the next one (i.e., as one or more solution values are changed). In our work,

we adopt the bit string mutation.

• Local Search: This is a simple and highly effective technique for finding a local optimum

solution. Local search only moves from current states to neighboring states if they improve

the current solution.

The hybridization of FPA with other components can occur in every component of the

standard FPA. In this paper, we propose four variants of FPA: original FPA, hybrid elitism

FPA (eFPA), hybrid mutation FPA (mFPA), and hybrid local search FPA (lFPA). The hybrid

eFPA variant uses the elitism technique to retain the elite population and replace the poor pop-

ulation by a new pollen randomly. The hybrid mFPA variant uses the mutation operator to

include diversity in the population of pollens. The hybrid lFPA uses intensive local search to

Table 2. Averages test suite for CA(N; 2, 46).

Pollen Size Iteration

5 10 20 30 40 50 100 200 300 500 700

10 35.65 32.15 32.95 30.30 29.95 29.15 28.55 27.65 26.40 25.65 25.25

20 32.20 29.65 28.80 28.45 27.55 27.40 26.95 25.10 24.95 24.80 24.50

30 30.95 28.65 28.00 26.80 26.75 25.50 25.35 24.65 24.50 24.20 24.00

50 29.05 26.65 27.20 25.95 25.95 25.15 25.55 24.10 24.00 24.00 24.00

100 27.15 26.10 25.65 25.25 24.65 24.70 24.55 23.85 24.10 23.90 23.50

200 26.25 25.15 24.80 24.65 24.50 24.35 24.00 23.40 23.50 23.90 23.75

300 25.90 24.90 24.55 24.05 24.45 24.15 23.95 23.80 23.70 23.45 24.00

500 24.80 24.50 24.15 24.05 23.70 23.80 24.10 23.35 23.55 23.80 23.65

https://doi.org/10.1371/journal.pone.0195187.t002

Table 3. Averages test suite for CA (N; 2, 105).

Pollen Size Iteration

5 10 20 30 40 50 100 200 300 500 700

10 146.4 138.7 134.9 133.6 131.3 128.2 127.4 127.2 126.2 126.3 125.3

20 138.3 132.6 131.2 128.9 128.4 126.0 125.5 124.1 124.3 124.6 124.6

30 135.8 130.7 128.4 127.9 125.9 125.0 124.3 124.2 124.2 123.4 123.9

50 133.0 129.1 126.7 125.5 125.5 123.5 123.7 122.8 122.8 123.0 123.6

100 129.3 126.5 125.0 123.9 123.7 123.3 123.4 123.2 123.4 123.3 123.5

200 126.8 125.0 123.8 123.7 123.8 122.1 122.8 123.3 122.6 122.6 122.6

300 125.4 124.5 123.8 123.7 123.6 123.2 122.8 122.7 123.3 123.6 122.5

500 124.4 124.1 123.3 123.1 123.0 123.2 123.0 123.1 122.6 122.8 122.8

https://doi.org/10.1371/journal.pone.0195187.t003

Hybrid flower pollination algorithm

PLOSONE | https://doi.org/10.1371/journal.pone.0195187 May 2, 2018 11 / 24

https://doi.org/10.1371/journal.pone.0195187.t002
https://doi.org/10.1371/journal.pone.0195187.t003
https://doi.org/10.1371/journal.pone.0195187


improve local intensification. The complete excerpt pseudo code variants for the original FPA,

hybrid eFPA, hybrid mFPA, and hybrid 1FPA are highlighted in Fig 6.

6. Experiments and evaluation

Our experiments are based on three related goals. First, we evaluate the efficiency of the pro-

posed strategies to select the best hybrid variant FPA in comparison with the existing work.

Second, we benchmark the best hybrid variant against other existing strategies. Finally, we ver-

ify our findings using statistical analysis. The results are displayed in tables and graphs. The

experiments are performed on Core i7-3770 CPU@ 3.40 GHz, Windows 7 professional

machine. We adopted 20 runs for each experiment for statistical significance.

For the parameters setup, we adopted the tuned FPA parameters as discussed in Section

5.1. For the other component parameters, such as mutation rate and elitism probability, we

took the recommended values (i.e., mutation rate = 0.03 and elitism probability = 0.25) as

Fig 5. Graphical representation of averages test suite for CA(N; 2, 46) and CA(N; 2, 105) with switch probability
pa = 0.7.

https://doi.org/10.1371/journal.pone.0195187.g005
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published in [61]. For a clear perspective, Table 4 depicts the parameters that are adopted for

the meta-heuristic strategies [16,17,49] in our experiments.

Tables 5 through 9 show the results obtained for the experiments. Each cell indicates the

minimum test suite size obtained by the existing strategies. Shaded cells denote the best test

size obtained by the corresponding strategy, while cells marked as NA denote the unavailability

of results in the literature.

6.1 Evaluation of hybrid variants of FPA

In this section, the hybrid variants of FPA (i.e., original FPA, eFPA, mFPA, and lFPA) are eval-

uated to select the best hybrid variant algorithm. To do so, we subjected each variant to three

well-known CA problems involving CA(N; 2, 105), CA(N; 2, 46), and CA(N; 3, 56).

The results in Table 5 show that the hybrid variants of FPA outperform the original FPA

in terms of average test suite size and best test suite size. The results also show that eFPA pro-

duces superior results compared with the other variants of FPA (i.e., not considering the

overhead time to perform elitism). Specifically, the performance of eFPA is close to the

Fig 6. Hybridization variants of FPA.

https://doi.org/10.1371/journal.pone.0195187.g006
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performance of lFPA, and the performance of FPA is close to that of the mFPA. However, the

results of FPA and mFPA indicate very poor performance compared with those of eFPA and

lFPA.

We also study the convergence rate of hybrid FPA-based strategies, which is an important

aspect of any hybridization endeavor. To evaluate the convergence rate of the hybrid variants

of FPA, they are executed 20 times with different iteration values (i.e., 5, 10, 20, 30, 40, 50, 100,

200, 300, 500, and 1000). The average values of the 20 runs for the two well-known CAs, CA

(N; 2, 105) and CA (N; 2, 46), are used to demonstrate the convergence speed of the proposed

algorithms. As shown in Fig 7, employing the hybridization components in the FPA improves

Table 4. Parameters for meta-heuristic strategies of interests.

Algorithm Parameter Values

GA Iteration 1000

Population size 25

Best cloned 1

Random crossover 0.75

Tournament selection 0.8

Max stale period 3

Mutation rate 0.03

Escape mutation 0.25

SA Iteration 1000

Cooling schedule 0.9998

Starting temperature 20

ACA Iteration 1000

Number of ants 20

Pheromone control 1.6

Pheromone persistence 0.5

Heuristic control 0.2

Pheromone amount 0.01

Initial pheromone 0.4

Max stale period 5

Elite ants 2

PSO Iteration 100

Population size 80

Inertia weight 0.3

Acceleration coefficients 1.375

CS Iteration 100

Population size 100

Probability ep 0.25

HS Improvisation 1000

Harmony memory size 100

Harmony memory consideration rate 0.7

Pitch adjustment rate 0.2

HHH Iteration 100

Population size 40

Tabumax 4

Inertia weight 0.3

Acceleration coefficients (c1,c2) 1.375

Probability p 0.25

https://doi.org/10.1371/journal.pone.0195187.t004
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the convergence properties. Furthermore, the convergence rates of eFPA and the combined

lFPA are faster than those of the other variants.

By employing elitism, the quality of solutions in eFPA is improved. The convergence rate

also improves as observed in Table 5 and Fig 7. We foresee the benefit of elitism to ensure that

only the elite population is passed to the next iteration and poor solutions are replaced with

random ones.

Table 5. Assessment of hybrid variants of FPA.

Hybridization CA(N; 2, 105) CA(N; 2, 46) CA(N; 3, 56)

Avg Best Time(s) Avg Best Time(s) Avg Best Time(s)

FPA 127.15 125 17.004 23.80 22 1.955 44.30 42 11.953

eFPA 124.40 122 26.194 22.85 22 3.327 43.53 42 19.264

mFPA 126.25 124 27.900 23.50 22 3.367 44.25 42 21.968

lFPA 127.10 126 18.237 23.70 22 1.912 44.30 42 11.790

https://doi.org/10.1371/journal.pone.0195187.t005

Table 6. Comparison with existing strategies for different CA andMCA configurations.

No. Configuration Computational-based Strategies Meta-heuristic-based Strategies

mAETG AETG IPOG Jenny TVG SA ACA GA PSO HSS HHH CS eFPA

S1 CA(N; 2, 34) 9 9 9 10 11 9 9 9 9 9 9 9 9

S2 CA(N; 2, 313) 17 15 20 20 19 16 17 17 17 18 17 20 17

S3 CA(N; 2, 1010) NA NA 176 157 208 NA 159 157 NA 155 NA NA 150

S4 CA(N; 2, 1510) NA NA 373 336 473 NA NA NA NA 342 NA NA 333

S5 CA(N; 2, 510) NA NA 50 45 51 NA NA NA 45 43 42 NA 42

S6 CA(N; 3, 36) 38 47 53 51 49 33 33 33 42 39 33 43 38

S7 CA(N; 3, 46) 77 105 64 112 123 64 64 64 102 70 64 105 93

S8 CA(N; 3, 56) 194 NA 216 215 234 152 125 125 NA 199 NA NA 194

S9 CA(N; 3, 66) 330 343 382 373 407 300 330 331 338 336 325 350 332

S10 CA(N; 3, 57) 218 229 274 236 271 201 218 218 229 236 217 233 217

S11 MCA(N; 2, 51 38 22) 20 19 19 23 22 15 16 15 NA 20 20 21 20

S12 MCA(N; 2, 71 61 51 46 38 23) 44 45 43 50 51 42 42 42 48 50 48 51 48

S13 MCA(N; 3, 52 42 32) 114 NA 111 131 136 100� 106 108 NA 120 100 NA 113

S14 MCA(N; 3, 101 62 43 31) 377 NA 383 399 414 360 361 360 385 378 382 393 355

https://doi.org/10.1371/journal.pone.0195187.t006

Table 7. Comparison with existing strategies using CA (N; t, 210), t varied from 2 to 10.

t Computational-based Strategies Meta-heuristic-based Strategies

IPOG ITCH Jenny PICT‘ TConfig TVG GTWay PSO HSS HHH CS eFPA

2 10 6 10 NA 9 10 NA 8 7 8 8 8

3 19 18 18 NA 20 17 NA 17 16 16 16 16

4 49 58 39 NA 45 41 NA 37 37 36 36 36

5 128 NA 87 NA 95 84 NA 82 81 79 79 75

6 352 NA 169 NA 183 168 NA 158 158 153 157 157

7 NA NA 311 NA NA 302 NA NA 298 NA NA 290

8 NA NA 521 NA NA 514 NA NA 498 NA NA 495

9 NA NA 788 NA NA 651 NA NA 512 NA NA 577

10 NA NA 1024 NA NA NA NA NA 1024 NA NA 1024

https://doi.org/10.1371/journal.pone.0195187.t007
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Apart from the convergence rate, time complexity can be a useful indicator of the effective-

ness of a FPA hybrid variant. Based the pseudo code excerpt in Fig 6, the loop structures for

the original FPA, eFPA, mFPA, and lFPA are shown in Fig 8(a) to 8(c).

Referring to Fig 8 and assuming all other operations can be performed in a constant time,

the time complexity for FPA and mFPA is O(J×K×L)� O(n3) when J, K, and L are approach-

ing a large n. In a similar manner, the time complexity for eFPA is O(J×K× (L+M))�O(n3)

when J, K, L+M are approaching a large n. Unlike FPA, mFPA, and eFPA, the time complexity

for lFPA is O(J×K×L×M))�O(n4). eFPA has better convergence while maintaining the same

time complexity as the original FPA and is thus the best variant for our selection.

6.2 Benchmarking with existing t-way strategies

To evaluate its performance in terms of minimizing the test suite size, eFPA is compared with

existing t-way strategies in terms of test suite size. Our experiment is divided into four sets of

comparisons as follows:

1. Comparison of eFPA with results of strategies published in [16,17,62] for different configu-

rations involving CA(N; 2, 34), CA(N; 2, 313), CA(N; 2, 1010), CA(N; 2, 1510), CA(N; 2, 510),

CA(N; 3, 36), CA(N; 3, 46), CA(N; 3, 56), CA(N; 3, 66), CA(N; 3, 57), MCA(N; 2, 51 38 22),

MCA(N; 2, 71 61 51 46 38 23), and MCA(N; 3, 52 42 32).

2. Comparison of eFPA with existing strategies for CA (N; t, 210), t varied from 2 to 10.

3. Comparison of eFPA with existing strategies for CA(N; 4, 5P), p varied from 5 to 10.

4. Comparison of eFPA with existing strategies for CA(N; 4, v10), v varied from 2 to 7.

Table 9. Comparison with existing strategies CA(N; 4, v10) with v varied from 2 to 7.

V Computational-based Strategies Meta-heuristic-based Strategies

IPOG ITCH Jenny PICT TConfig TVG GTWay MIPOG CTE-XL PSO HSS HHH CS eFPA

2 49 58 39 43 45 40 46 43 NA 34 37 36 28 28

3 241 336 221 231 235 228 224 217 NA 213 211 207 211 208

4 707 704 703 742 718 782 621 637 NA 685 691 668 698 657

5 1965 1750 1719 1812 1878 1917 1714 1643 NA 1716 1624 1635 1731 1592

6 3935 NA 3519 3735 NA 4159 3514 3657 NA 3880 3475 3405 3894 3310

7 7061 NA 6462 NA NA 7854 6459 5927 NA NA 6398 6412 NA 6095

https://doi.org/10.1371/journal.pone.0195187.t009

Table 8. Comparison with existing strategies CA(N; 4, 5P), P varied from 5 to 10.

P Computational-based Strategies Meta-heuristic-based Strategies

IPOG ITCH Jenny PICT TConfig TVG GTWay MIPOG CTE-XL PSO HSS HHH CS eFPA

5 908 837 810 773 849 731 625 779 NA 779 751 746 776 778

6 1239 1074 1072 1092 1128 1027 625 1001 NA 1001 990 967 991 985

7 1349 1248 1279 1320 1384 1216 1125 1209 NA 1209 1186 1151 1200 1166

8 1792 1424 1468 1532 1595 1443 1384 1417 NA 1417 1358 1320 1415 1319

9 1793 1578 1643 1724 1795 1579 1543 1570 NA 1570 1530 1483 1562 1465

10 1965 1791 1812 1878 1971 1714 1643 1716 NA 1716 1624 1635 1731 1592

11 2091 1839 1957 2038 2122 1852 1722 1902 NA 1902 1860 1784 2062 1719

12 2285 1964 2103 NA 2268 2022 1837 2015 NA 2015 2022 1915 2223 1854

https://doi.org/10.1371/journal.pone.0195187.t008
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Fig 7. Convergence rate of hybrid variants of FPA for CA (N; 2, 105) and CA(N; 2, 46).

https://doi.org/10.1371/journal.pone.0195187.g007

Fig 8. General loop structures of the original FPA, eFPA, mFPA, and lFPA.

https://doi.org/10.1371/journal.pone.0195187.g008
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Table 6 highlights the comparative results of CA(N; 2, 34), CA(N; 2, 313), CA(N; 2, 1010),

CA(N; 2, 1510), CA(N; 2, 510), CA(N; 3, 36), CA(N; 3, 46), CA(N; 3, 56), CA(N; 3, 66), CA(N; 3,

57), MCA(N; 2, 51 38 22), MCA(N; 2, 71 61 51 46 38 23), and MCA(N; 3, 52 42 32). Overall,

Table 6 shows that the meta-heuristic-based strategies perform better than the computation-

based strategies. Putting meta-heuristic-based strategies aside, the mAETG strategy outper-

forms other existing strategies in 6 out of 14 cell entries, followed by AETG, IPOG, and Jenny

in 3 out of 8 cell entries, while TVG generates the worst results.

For meta-heuristic-based strategies, SA and GA outperform other existing strategies in 7

and 6 out of 14 cell entries, respectively. HHH and eFPA provide competitive performances

with 5 cell entries for each, followed by ACA by 4 entries. PSO, HS, and CS perform the poor-

est with only 1 cell entry for PSO and HS, and no entry for CS. Thus, even though the eFPA

strategy is unable to produce the smallest test suite size for all cases, Figs 9 and 10 clearly show

that eFPA outperforms earlier strategies, including ACA, PSO, HS, and CS.

Table 7 highlights the case of CA (N; t, 210) where t is varied from 2 to 10. Referring to

Table 7, most of the existing strategies are unable to produce results beyond t> 6 due to their

heavy computation (i.e., as in case of GA, ACA, GA, and PSO). eFPA and HHH have the top

performance among the existing strategies (Fig 11(a)). Specifically, eFPA is ranked first by

Fig 9. Comparison of eFPA with computational-based strategies.

https://doi.org/10.1371/journal.pone.0195187.g009

Fig 10. Comparison of eFPA with meta-heuristic-based strategies.

https://doi.org/10.1371/journal.pone.0195187.g010
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obtaining 5 out of 9 cell entries, and HHH is ranked second by obtaining 3 out of 9 cell entries.

CS also provides a good performance with 2 best results out of the nine cell entries. ITCH and

HS have one best entry. Meanwhile, IPOG, Jenny, PICT, TConfig, TVG, GTWay, and PSO do

not have best cell entries.

Table 8 presents the results for CA(N; 4, 5P) where P is varied from 5 to 12. GTWay outper-

forms other strategies in 4 out of 8 cell entries, while eFPA outperforms other strategies in 3

entries, followed by HHH with 1 entry.

For the comparative experiment involving CA(N; 4, v10) with v varied from 2 to 7 in

Table 9, eFPA outperforms the existing strategies in 3 out of 6 cell entries. GTWay, MIPOG,

CS, and HHH come as the runner up with only one best entry. IPOG, ITCH, Jenny, PICT,

TConfig, TVG, CTE-XL, PSO, and HSS perform the poorest with no best cell entry.

The results of the comparative experiments show that eFPA performs better than most

existing strategies, followed by HHH, as shown in Fig 11, for the experiment results in

Tables 7 to 9. Unlike eFPA, HHH offers a different kind of hybridization (i.e., hyper-heuristic

approach) based on the use of four meta-heuristic algorithms. Despite having more algorithms

to choose from, eFPA can still outperform HHH owing to the introduction of elitism, which

lessens the effect of aggressive behavior from lévy flight motion.

6.3 Statistical analysis

For statistical analysis, Wilcoxon Signed Rank Test is used to analyze the significance of the

results obtained. The Wilcoxon test is a non-parametric analysis technique that is used to

Fig 11. Comparison of eFPA with meta-heuristic-based strategies with: (A) t varied from 2 to 10, (B) P varied from 5 to 12, and (C) v varied from 2 to 7.

https://doi.org/10.1371/journal.pone.0195187.g011
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compare two sets of ordinal data that are subjected to different conditions. In this statistic anal-

ysis, eFPA is separately compared with each existing strategy to test if a significant difference

exists between the produced results of the proposed strategy and those of the other strategies.

Here, we have two hypotheses:

1. Null hypothesis (H0), which is assumed to be true if there, is no difference between two

strategies’ results.

2. Alternative hypothesis (H1) which is assumed to be true when there is difference between

two strategies’ results, in another word when null hypothesis is false.

The experiments results show that the Wilcoxon test statistic is calculated and converted

into a conditional probability called a P-value. A small P-value denotes a strong evidence to

reject the null hypothesisH0 (i.e., no difference exists between the two strategies’ results) in

favor of the alternative hypothesis. Decision-making is based on a probability threshold called

Alpha (α) or significance level.
The statistics in Tables 10 and 11 provide the values of the Wilcoxon Signed Rank Test for

eFPA in comparison with each strategy of our experiments. As the tables show, the Wilcoxon

Table 10. Wilcoxon signed rank test for experimental results from Table 6.

Pairs Ranks Asymp. Sig. (2-tailed) Conclusion

Negative Ranks Positive Ranks Ties Total

Jenny- eFPA 0 15 0 15 0.001 Reject the null hypothesis H0

TVG- eFPA 0 15 0 15 0.001 Reject the null hypothesis H0

CS- eFPA 0 8 1 9 0.012 Reject the null hypothesis H0

SA- eFPA 11 1 1 13 0.023 Reject the null hypothesis H0

PSO- eFPA 0 6 4 10 0.028 Reject the null hypothesis H0

mAETG- eFPA 6 2 4 12 0.035 Reject the null hypothesis H0

GA- eFPA 8 3 2 13 0.041 Reject the null hypothesis H0

IPOG- eFPA 5 8 1 14 0.087 Retain the null hypothesis H0

AETG- eFPA 3 5 1 9 0.092 Retain the null hypothesis H0

HSS- eFPA 3 10 2 15 0.141 Retain the null hypothesis H0

ACA- eFPA 8 3 2 13 0.168 Retain the null hypothesis H0

HHH- eFPA 4 1 6 11 0.345 Retain the null hypothesis H0

https://doi.org/10.1371/journal.pone.0195187.t010

Table 11. Wilcoxon signed rank test for experiments results from Tables 7 till 9.

Pairs Ranks Asymp. Sig. (2-tailed) Conclusion

Negative Ranks Positive Ranks Ties Total

Jenny—eFPA 0 22 1 23 0.000 Reject the null hypothesis H0

GTWay—eFPA 12 2 0 14 0.002 Reject the null hypothesis H0

MIPOG—eFPA 12 2 0 14 0.002 Reject the null hypothesis H0

HSS—eFPA 4 17 2 23 0.007 Reject the null hypothesis H0

PICT‘—eFPA 9 4 0 13 0.013 Reject the null hypothesis H0

CS—eFPA 11 3 4 18 0.013 Reject the null hypothesis H0

ITCH—eFPA 10 5 0 15 0.021 Reject the null hypothesis H0

PSO—eFPA 10 7 1 18 0.029 Reject the null hypothesis H0

IPOG—eFPA 10 9 0 19 0.044 Reject the null hypothesis H0

HHH—eFPA 11 5 3 19 0.052 Retain the null hypothesis H0

TVG—eFPA 10 12 0 22 0.115 Retain the null hypothesis H0

TConfig—eFPA 8 8 0 16 0.179 Retain the null hypothesis H0

https://doi.org/10.1371/journal.pone.0195187.t011
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signed-rank test has negative ranks (i.e., number of cases that eFPA unable to outperform

another strategy), positive ranks (i.e., number of cases that eFPA is better than another strat-

egy), and ties. The column labelled Asymp. Sig. (2-tailed) shows the p-value probability; if

the p-value is less than 0.005, no significant difference exists between the compared results.

Table 10 depicts the Wilcoxon signed-rank test for the experimental results in Table 6. The

results are statistically significant in Jenny, TVG, CS, SA, PSO, mAETG, and GA but not in

AETG, IPOG, ACA, HSS, and HHH. Despite showing statistical significance in only half of

the cases, the positive ranks of eFPA are higher than its negative ranks.

The statistical analysis of the experiment results in Tables 7 to 9 is depicted in Table 10. The

null hypothesis, H0, is rejected in most of cases. The finding proves that eFPA has a statistically

better test suite size than the other strategies.

7. Threats to validity

Most experimental studies encounter threats to validity. In our case, the fairness of the

benchmark experiments can be an issue owing to the unavailability of source codes and their

corresponding implementation. As such, the time performance cannot be fairly compared

between strategies as the running environments, the data structure, the implementation lan-

guage, and the operating environments are different. Thus, the time performances have been

dropped.

Another threat to validity relates with the meta-heuristic-based strategies. Maximum

iteration and population size typically affect the test size performance, that is, the probability

of getting better results typically increases with the iteration and population size. In our experi-

ments, we assume that the existing meta-heuristic-based strategies have been sufficiently

tuned to obtain the best possible results (regardless of their maximum iteration and population

size).

Finally, meta-heuristic-algorithms often rely on randomization to generate the population

update. As such, the reported best results may be obtained by chance and may affect our

conclusion.

8. Conclusion and further work

In this paper, we propose a new t-way test suite strategy based on the FPA. Then, we propose

three hybridizations variants for the FPA. The hybridization variants are obtained by grafting

the elitism, mutation operator, and local search components into the FPA strategy. Experiment

results show that the elitism-FPA-based strategy (eFPA) performs better than the other vari-

ants. The eFPA is compared with existing strategies in the context of t-way test suite genera-

tion. In many cases, the eFPA outperforms the other strategies. In the case where eFPA fails to

produce optimum results, the results are still within reasonable values. Owing to the encourag-

ing results, we are looking to adopt the eFPA for variable strength t-way testing and explore

the possibilities of constraints-based software product lines.
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