CHAPTER 35

Hybrid Frequency-Domain KdV Equation
for Random Wave Transformation

Hajime Mase!, M. ASCE, and James T. Kirby?, M. ASCE

ABSTRACT: This paper develops a hybrid model for random wave transformation by
employing a modified spectral model of the KdV equation and a probabilistic bore-type wave
breaking model, and compares the numerical predictions with experimental observations. Main
results are as follows: 1) Original Irequency-domain KdV equation overestimates energy
densities, due to over-shoaling term by Green's law in the equation, even in a region where
wave breaking is not seen; 2) Modification of the original KdV equation in order to represent
shoaling for linear-dispersive component waves leads to better predictions in the non-breaking
region; 3) Damping coefficients in the model equation, either estimated from measured spectral
densitics or the numerically predicted, are in inverse proportion to the water depth and in
proportion to the square of frequency, similar to the viscous damping term of the Burgers
equation, 4) The hybrid model developed here can predict transformations of random waves
satisfactorily, as indicated by comparison of energy spectra, representative wave heights,
periods, and crest heights.

INTRODUCTION

The Boussinesq equations inctude the effects of weak dispersion and nonlinearity
under the condition of u2 = (koho)2 <<1, ¢ = ag/hg<<1, and O(u?) = O(¢) where ko, ho,
aqy are the characteristic wave number, the water depth, and the wave ampfitude
(Peregrine, 1967, Madsen and Mei, 1969), and are a useful tool for predicting the
transformation of shallow water waves. The Boussinesq type equations with a damping
term introduced to simulate a turbulence dissipation can predict the change of mono-
chromatic wave height both in the shoaling and the breaking regions (Karambas and
Koutitas, 1992).

An efficient method to solve the Boussinesq equations is to deal with the equations
in the frequency domain instead of the time domain. The resulting one-dimensional
coupled mode equations considering only shoreward-propagating waves can predict the
evolution ol nearshore fietd wind waves (Freilich and Guza, 1984; Elgar and Guza,
1985), and the parabofic coupled mode equations can predict the transformation of
periodic fong waves over two-dimensional topography (Liu et al., 1985). An angufar
spectrum model of the Boussinesq equations can predict Mach reflection of cnoidal
waves well (Kirby, 1990). The KdV equation is consistent with the Boussinesq
cquations when considering only shoreward-propagating waves. Although the
Boussinesq equations and the KdV equation have only the lowest order of nonlinearity,
the frequency-domain equations can estimate shoaled wave heights as well as wave
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proliles fairly close to the breaking point (Vengayil and Kirby, 1986). Extension ol the
Boussinesq equations and the KAV cquation to improve their dispersion characteristics
was studied by Madsen, Murray and Sgrensen (1991) and Khangaonkar and
LeMehaute (1991).

This paper develops a hybrid model for random wave translormation by employing
a modified f{requency-domain KdV equation and a probabilistic bore-type wave
breaking model. The original frequency-domain (spectral) KdV equation is modified to
reproduce the shoaling and the dispersion relation for linear component waves cxacily.
In order to include energy dissipation duc to wave breaking, a damping term is
introduced into the modified spectral KdV equation. A form for the coellicient of the
damping term is lirst deduced by inspection of measured spectral energy densities
together with calculated densitics by the modified spectral KdV equation, and the
coclficient is then formulated by using a probabilistic model of expected energy
dissipation rate based on the bore model of Thornton and Guza (1983), taking into
account the experimental characteristics.

The model cquation developed here can be called a hybrid model, since it employs a
spectral method and a probabilistic method (individual wave analysis method).
Comparisons between cxperimental observations and numerical predictions by the
hybrid model are carried out against encrgy spectra, representative wave heights, periods,
and crest heights.

MODEL EQUATION

Assuming a vertically two-dimensional case, small water depth variation such as
0( |V;, /1|)s O(uz), and considering only shoreward-propagating waves (neglecting
reflected waves), we reduce the Boussinesq equations to the KdV equation for variable
depth as expressed by
Vghhe . 3Vgh . Vgh W’
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where { is the surface displacement, / is the water depth, 7 is the time, and x is the
horizontal coordinate.  Substituting the Fourier series represeniation of surface
displacement with complex amplitudes, 4,,

= z 7’1; A, cin(J ky dx- wg l)+ ce )
n=1 =

into Eq.(1) yiclds the lowest-order Irequency-domain KdV cquation, equivalent to the
consistent shoaling model of Freilich and Guza (1984):

dA hx 1 3
A, --Lindk
dx " in3kPh2A
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where dA,ldx~ O(e) is assumed. The procedure followed in deriving the above
cquation follows that of Freilich and Guza (1984), and Liu et al. (1985). The second
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term on the left hand side of Eq.(3) represents shoaling by Green's law; that is, the
cquation for lincar waves

dA A
- d; =- 4’]: Ag (4
is integrated to
-1/4
174(,(:\’)‘ —’ !I(X) \ %)

AL0) T Oy |

This can be compared to the component form of fully dispersive linear theory, which
gives

dAy _ (?fizi...):", A, . (6)
dx — 2C,, "
The integrated form is then
C, 12 .
Apx) | ‘},Jx(){) ’ N

Ap(0) T )Cg (0) /

which corresponds 10 the linear shoaling theory. The third term on the lelt hand side of
Eq.(3) represents the effect of dispersion. For linear component waves in uniform
depth, Eq.(3) reduces to
dAy 1
dx 6

The resultant surface displacement is described by

indkth?A,=0 . ‘ (®)

Z_,-:,%,[lnef{(”kl*(lj’ﬁkl3h2 x-na z}+c‘ c ©)
From Eq.(9) the phase speed is given by
Cp=0 1 ) (10)

ky 1+ (nklll)rzm/“é

where w;/k; =V, ;;)71. Eq.(10) is an approximation in shallow water of the dispersion
relation, )

p;z - . //ﬁﬂﬁﬂf , (] 1)

VoV kb

where &y, is obtained from (nwy)? = gk, tanh k. When we adopt the equation given by
[ hah

a0 (12)

fIA’L i .
dx { V tanh kyh i

- in/q

instead of Eq.(8), we can provide the exact dispersion relation.

In summary a modified version of spectral KdV equation in order to provide exact
shoaling and dispersion relation of each frequency mode is obtained by changing the
shoaling and the dispersion terms:
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When energy dissipation is taken into account, a damping term oA, should be
added to the left hand side of Eq.(13), where « is a damping coefficient to be
determined theoretically or experimentally:

da,  (Cgx ok ( Tk 1) 3ink,
Uildn N LG I Al A SHIKY
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n-1 N-n
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Depending on whether «, is real, image, or complex, change of energy only, phase only,
or both energy and phase, respectively, can be introduced. Here we take aj, to be real.
In shallow water the model equation with damping term is transformed to

N

N N
2 Al [ f*" M+ 23 anlaf?=0 (15)
n=1 2h n=1 n=1

by adding the two equations of Eq.(14) multiplied by A,* and the complex eonjugate of
Eq.(14) multiplied by A,. By using the relation of

N
E:%pg > . (16)

n=1

Eq.(15) is rewritten as in a form of an energy flux equation:

N
(Eveh), = - pgieh| S anla ] (a7)

n=1

It is confirmed from Eq.(17) that the «, is a kind of energy damping eoefficient.

EXPERIMENT ON RANDOM WAVE TRANSFORMATION

Random waves used here were simulated to have the Pierson-Moskowitz speetrum
with f, = 0.6 Hz and f, = 1.0 Hz (f, the peak frequeney), referred as Case 1 and Case 2,
respeetively. Dominated wave breaking type seen in Case 1 was plunging, while in
Case 2 spilling breakers were dominated. Figure 1 shows a sketeh of experimental
setup. Water surface variation were measured by capaeitanee-type wave gauges
(WG.1~WG.12) at water depths of 47 ¢m, 35 c¢m, 30 ¢m, 25 cm, 20 em, 17.5 em, 15
cm, 12.5cm, 10 em, 7.5 em, 5.0 em and 2.5 ¢m over a 1/20 plane beaeh. The data were
recorded by a digital data reeorder at the sampling interval of 0.025 see for about 30
min duration for Case 1 and 20 min for Case 2.
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Fig. | Experimental Sctup.

Figure 2 shows the change ol measured energy spectra of Casc 1 and Case 2. The
data of water surface variations at each wave gauge werce split into ten segments of 1024
points with the time interval of 0.1 sec. The energy spectrum of each scgment was
summed up and averaged. The cnsemble averaged spectrum was smoothed by
averaging three points. The degree of frecdom is 60, and the resolution frequency is
0.03 Hz. The figurcs show the decay of cnergics around the initially peak Irequency,
the shift of peak frequency to the lower Itequency, and the increase of energies in lower
and higher frequeney regions with decrease in the water depth. At the shallowest water
of 2.5 em (WG.12), the energy level of low frequency modes becomes almost the same
as that around the initially pcak frequency.

Case 2

10 Case1 —wG1
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T 1 T T 1
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Fig. 2 Change of Mecasured Energy Spectra,

The calculated spectral energy densities by the original spectral KdV equation
(Eq.(4)), the modified spectral KAV model without damping term (Eq.(14)), and the
lincar shoaling theory were comparcd with the measured encrgy densitics, as shown in
Fig.3. The 300 complex Fourier amplitudes at WG.1 (=47 cm) were used as input
data. The cnergy spectra were calculated for ten segments and were averaged as in the
case of experimental data. The original KdV model overestimates the energy densitics
at WG.7 where wave breaking is very infrequent. The prediction by the modilied KdV
model agrees well with the observation at WG.7, but does not at WG, 10 where energy
dissipation duc to wave breaking is important. The result means that since the Green’s
law is applied to all speetral components by the original KdV model, the overestimation
occurs, and that the modificd KdV model provides a better prediction outside the surf
zone, but results in overestimation in the surf zone, duce to the lack of a wave damping
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term. The predictions by the linear shoaling theory differ from the observations in
spectral shape.
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Fig. 3 Comparison between Calculated Results by the Frequency-Domain
KdV Model, Modified KdV Model and Lincar Shoaling Theory.

DAMPING COEFFICIENT

For constant water depth, the following equation lor spectral densities is obtained
from Eq.(15) multiplied by NA#/2:

N
z i (SII)X+ 2 a8, j: 0. (18)

i
=
When «y, is ncarly constant [or short distance, the solution ol Eq.(18) is
Sp(Ax) = §,(0) e 2an Ay (19)
and «y is expressed by
= - In {S,(Ax) 18,(0)} 7 (2Ax) 20
The Taylor expansion ol the above equation is
g =11 - {Su(Ax) 7 SO0/ (24x) 210

However, ay estimated by Eq.(20) or Eq.(21), using the measured spectral energy
densities, contains the elfects of shoaling and nonlinear wave interaction. Some revision
to remove such eflects is required. Here the numerical results are utilized. Since the
dilTerence between the caleulated spectral density at Ax downstream, $,{Ax) ¢, and the
measured density at a reference point, 8,(0) nieas, may be considered as the effects of
shoaling and nonlinear interaction, the measured spectral density at Av downstream,
SulBxhyteas. is moditied as

S,;(A.t) = SN(A"') Meas ~ {‘S'n(Ax)('al. - Sn(())Mcas.} . 22)

Since §,(Ax) takes negative value sometimes and the form ol Eq.(20) is inconvenient,
Eq.(21) 1s used as
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e . i
Oy = J_] - {AS,,(AX) / 3;1(0)Meas.f} / (2A-r) .

Another way is to obtain the «, so as to coincide S,(Ax) o with Sl AX) Meas.
described by the following equation:

oy =-ln <Sn(AX)Meas./Sn(Ax) Cal.} / (ZAX) .
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Fig. 4  Estimated Damping Coefficient.
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Figure 4 shows the estimated «y using the data ol consecutive wave gauges ol
WG.9 and WG.10, WG.10 and WG.11, WG.1T and WG.12, separated by 50 ¢m each
other, in which the solid line is the result using Eq.(23) and the dotted line is by
Eq.(24). The solid line and the dotted Iine are almost the same in a region of f<2.0 Hz.
The oy at a given frcqucncy becomes large with decrease in the water depth and appears
to be proportional to /2 with a small constant value. The tendcncy is similar to that of
the viseous damping term of the Burgers equation (glvcn by vgm where v is the
posmvc LOCH]CICH[) The Fourier representation for vg“ , using Eq.(2), results in
V(nk1)?A,, which is rewritten as v(n(ul)z/(gll)-A,, using the relation ol (k)%=
(nw)%/(gh), that is, au=w,%(gh). Because ol the denominator gh, the oy becomes
large with decrease in the water depth, and is proportional to the Trequency squared.
These results are used below to guide the choice ol the distribution of damping on a
frequency-by-Irequency basis.

Thornton and Guza (1983) formulated the expected value of energy dissipation rate,
(¢5), based on the probabilistic method (or individual wave analysis method), by using
the Rayleigh distribution Tor wave height distribution, the specific weight function Lo
represent the wave height distribution of broken waves, and an energy dissipation model
of bore Tor each broken wave. The energy Ilux equation in shallow water is described
by

(1«:@[))r = (e . ©5)
r 4

(o) = 31 pg ppHmil | 26)
e T |

where B is a breaking coefTicient, f is the characteristic [requency, Hyms is the r.m.s.
wave height, y is the parameter to relate the Hyyg with the water depth. Here we choose
the parameter values to be

B=1,y=06, f=fp, Hms=2 N > A] . (27)

The right hand sides of Eqs.(17) and (25) should be equal to each other:

5
. (/3 aF)
AP = S p3 ’
,,Zl A 16Vgh y2h?

e

X

Following Kirby et al. (1992), @, was determined o represent the experimental
tendency as lollows:

ag =g+ ( fy /])2 o (29)

]2 z |A,,|2
ao =FB, ay= (B - ag) —"L—— . 30)

;ﬁmz
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Fig. 5 Comparison between Measured Spectra and
Calculated Ones by Hybrid Model Equation.



RANDOM WAVE TRANSFORMATION 483

The first constant term of Eq.(29) represents uniform energy decay over all frequency
components, and the second term is to express the f2 dependence. Here we chosc as
F=0.5. Eq.(14) using «, determined by Eqs.(29) and (30) is the hybrid model
cquation used hercafter. The resulting model is integrated shoreward from the initial
gauge position without any subsequent reference to use of measured data.

COMPARISON BETWEEN EXPERIMENTAL OBSERVATIONS
AND HYBRID MODEL PREDICTIONS

Figure 5 shows the comparisons of the measured spectra with the calculated ones by
the hybrid model equation. Input data was given at WG.1 (h =47 cm). For Case 1,
although there are slight differences in the region of f> 1.0 Hz at WG.11 and f< 1.0 Hz
at WG.12, both results agree fairly well. The measured and caleulated spectra of Case 2
also show good agreement. Predictions estimate the increase of energies in high and
low frequency regions.
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Fig. 6 Comparison between Measured and Calculate Representative Wave Heights.
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Using the inverse FFT on the calculated A, we can obtain waler surface variations
from which wave characteristics such as wave heights, periods, crest heights, and so on,
can be calculated. In the following comparisons, measured wave characteristics were
calculated from the conseeutive low-pass filtered (4.0 Hz) water surface variations with
Ar=0.025scc. Figure 6 shows the comparisons of the measured representative wave
heights with the calculated ones for Case 1 and Case 2. It can be seen from the figures
that the agreement between measured and calculated wave heights is good.
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Fig. 7 Comparison between Measured and Calculated
Representative Wave Periods.

Figure 7 shows the change of representative wave periods. Existing models based
on the individual wave analysis model assume that the wave period is constant, or cannot
deal with the change of wave period. Increase ol energies of low frequency modes and
decrease of energies around the initially peak frequency, according to Fig 2, make the
zero-upcrossing periods long compared to the incident wave periods. The present
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hybrid model can estimate such change of wave periods, although a littie differences can
be seen at the shallowest water.

The wave crest height is an important factor for the design of the height of seawalls,
platlorms, and so on. Figure 8. shows the comparisons betwcen the mecasurcd
representative crest heights and the calculated ones.  Although the predictions are a little
smaller than the observations, satisfactorily good agrcement is obtained. The
representative normalized erest heights (cach crest height was normalized by the wave
height) are shown in Fig.9, which shows a little different tendency of change between
the observations and the predictions. The values themselves agree fairly well.
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Fig. 8 Comparison between Measured and Calculated
Representative Wave Crest Heights.
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Fig. 9 Representative Normalized Wave Crest Heights.

CONCLUSIONS

This paper proposed a hybrid model for random wave transformation, and compared
the numerical predictions with the experimental observations. In the hybrid model a
spectral model and a probabilistic model were employed: the former is the modified
frequency-domain (spectral) KdV model to provide the shoaling and the dispersion
relation for fincar component waves with a damping term; the latter is a probabilistic
model of energy dissipation due (o wave breaking to formutate the coefficient of the
damping term in the modified spectral KdV model.

The numerical predictions of cnergy spectra agreed well the experimental
observations concerning the decay of energies around the initially peak frequency, the
shift of peak frequency to the lower frequency, and the increase of encrgies in lower and
higher frequency regions with decrease in the water depth. In addition to the energy
spectra, the agreement between the predictions and the observation was satisfactorily
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good against the representative wave heights, wave periods, wave crest heights. Thus, it
was confirmed that the hybrid model developed here was useful as a vertically two-
dimensional random waves over a uniform slope. The hybrid model should be further
examined on the applicability to other situations such as multiple peak waves over a bar

type topography.
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