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Abstract. We show how different functional interpretations can be combined via
a multi-modal linear logic. A concrete hybrid of Kreisel’s modified realizability
and Gödel’s Dialectica is presented, and several small applications are given. We
also discuss how the hybrid interpretation relates to variants of Dialectica and
modified realizability with non-computational quantifiers.
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1 Introduction

The second author recently devised a unified presentation [1] of different functional
interpretations of intuitionistic logic, including Kreisel’s modified realizability [2] and
Gödel’s Dialectica interpretation [3]. As it turns out, these distinct interpretations di-
verge only in the treatment of the structural rule of contraction. Therefore, due to its
finer handling of contractions, linear logic [4] gives us the optimal setting for further
analysing and comparing these interpretations [5, 6].

In this article we show that functional interpretations not only can be better under-
stood modulo linear logic, but can also be successfully combined into what we term
hybrid interpretations, where features of different interpretations can coexist. Consider
for instance the handling of extensionality when working in the language of all finite
types. In the case of modified realizability we can safely adopt a fully extensional set-
ting with primitive equality for basic types (say n = m for numbers n, m ∈ N) and
higher-type equality defined as f

ρ→τ
= g :≡ ∀xρ(fx

τ= gx) together with the axiom
schema of extensionality

x
ρ
= y → fx

τ= fy (1)

for all finite types ρ, τ . However, when it comes to Dialectica interpretation, the trans-
lation of (1) requires witnesses for the universal quantifiers within x

ρ
= y, which cannot

be majorised in general [7] and hence cannot be expressed inside Gödel’s system T.
But recall that intuitionistic proofs can be embedded into linear logic ones, with intu-
itionistic implications A → B translated as linear implications !A � B. The difficulty
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of Dialectica in dealing with full extensionality is that the “negative information” in
the assumption !A ≡!(x

ρ
= y) of (1) should not (and cannot) be witnessed. In other

words, the modality “!” should in this case rather be treated as by Kreisel’s modified
realizability, also when carrying out a Dialectica interpretation.

This distinguished treatment of the modalities is possible because, as pointed out by
Girard (cf. [8] and [9], p84), the modalities are not canonical, thus different modalities
can coexist into a single system. Therefore, we intend to make use of what we name a
multi-modal linear logic, which includes distinct modalities corresponding to each of
the various functional interpretations. E.g., in the extensionality example (1) we rather
use Kreisel’s modified realizability modality (!kA) in order to express that the informa-
tion in the premise of the axiom schema should not be witnessed:

!k(x
ρ
= y) � fx

τ= fy . (2)

This generalises Spector’s quantifier-free rule of extensionality (see [10]) since it allows
us to derive rs

τ= rt from s
ρ
= t in any context of the form !kΔ, and has the advantage

that visibly (2) requires no realizer.
In contrast to modified realizability, the Dialectica interpretation is well-suited to

deal with classical proofs via negative translation, as it interprets the Markov principle

¬∀xAqf (x) → ∃x¬Aqf (x) . (3)

Since the premise of (3) corresponds in linear logic to ?∃xA⊥
qf(x), the modality “?”

should rather be treated as by the Dialectica interpretation, even when attempting to do
a modified realizability, hence (3) should be replaced by

!g ?g ∃xAqf(x) � ∃x ?g Aqf(x) . (4)

For proofs which use both extensionality (2) and Markov principle (4), constructive
information will be extracted whenever such a labelling of the modalities is possible.

The setting of multi-modal linear logic also allows for a unified study of the non-
computational (“nc” for short) quantifiers introduced by Berger in the context of modi-
fied realizability [11] and adapted by the first author to Dialectica interpretation [12].

The paper is organised as follows. In the next section we present the formal system of
multi-modal linear logic. In Section 3 we introduce the hybrid functional interpretation
of the multi-modal system. In Section 4 we present a few illustrative applications of
the hybrid interpretation. A comparison between the use of nc quantifiers and of our
hybrid logic is given in Section 5. Section 6 discusses possible extensions of the hybrid
interpretation to include other modalities. In Section 6.1 we present some ideas for
an algorithm which decorates a (linear translation of a) given intuitionistic proof with
different modalities so as to achieve a desired outcome of the extraction program.

2 Multi-modal Linear Logic LLω
h

We build upon an extension of classical linear logic to the language of all finite types,
introduced by the second author in [13]. The set of finite types T is inductively defined
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by: i, b ∈ T and if ρ, σ ∈ T then ρ → σ ∈ T . For simplicity, we deal with only two
basic finite types i (integers) and b (booleans). We use no linear types nor linear terms.

We assume that the terms of LLω
h contain all typed λ-terms, i.e. variables xρ for

each finite type ρ, λ-abstractions (λxρ.tσ)ρ→σ , term applications (tρ→σsρ)σ , and con-
ditionals (sb)(tρ, rρ). The atomic formulas of LLω

h are Aat, Bat, . . . and A⊥
at, B

⊥
at , . . . .

For simplicity, the standard propositional constants 0, 1,⊥,� of linear logic have been
omitted, since the hybrid interpretation of atomic formulas is trivial (see Definition 1).

Formulas are built from atomic formulas via connectives A � B (par), A ⊗ B (ten-
sor), A �z B (if-then-else) and quantifiers ∀xA and ∃xA. Exponentials will be treated
in Section 2.1 and nc-quantifiers in Section 5. The linear implication A � B abbre-
viates A⊥

� B where the linear negation (·)⊥ is an abbreviation so that (A⊥)⊥ is
syntactically equal to A (see [4, 13]). Recall that the structural rules of linear logic do
not include the usual rules of weakening and contraction. These are added separately,
in a controlled manner via the use of modalities (cf. Section 2.1). The rules for the mul-
tiplicative connectives and quantifiers are the usual ones for (one-sided) classical linear
logic (see [4, 13]). Following [5], we deviate from the standard formulation of linear
logic and use the if-then-else logical constructor A �z B instead of standard additive
conjunction and disjunction1. The rules for A �z B are given in [13] (Table 3). In terms
of quantification over booleans, the standard additives can be defined as

A ∧ B :≡ ∀zb(A �z B) A ∨ B :≡ ∃zb(A �z B) .

Notation for tuples. We use bold face variables f , g, . . . , x, y, . . . for tuples of vari-
ables, and bold face terms a, b, . . . , γ, δ, . . . for tuples of terms. Given the sequences
of terms a and b, by a(b) we mean the sequence of terms a0(b), . . . , an(b). Similarly
for the multiple simultaneous substitution a[b/x].

2.1 Kreisel and Gödel Modalities

The second author [5, 13] has recently studied possible different interpretations for the
exponentials ! and ?, and how these correspond to well-known functional interpreta-
tions of intuitionistic logic. We here introduce syntactically distinct exponentials (see
Table 1) and show how these different interpretations can coexist (whence the “hy-
brid” denomination). For simplicity we have considered only the so-called “Kreisel”
and “Gödel” modalities, denoted !k and respectively !g , together with their duals ?k

Table 1. Rules for the exponentials ∗ ∈ {k, g}

?∗Γ, A
(!∗)

?∗Γ, !∗A

Γ, A
(?∗)

Γ, ?∗A

Γ, ?∗A, ?∗A
(con∗)

Γ, ?∗A

Γ
(wkn∗)

Γ, ?∗A

1 See Girard’s comments in [4] (p13) and [9] (p73) on the relation between the additive connec-
tives and the if-then-else construct.
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and ?g . This will correspond to a combination of modified realizability and Dialectica
interpretation into a single functional interpretation which supersedes both of them.

Moreover, a partial order of information is put on the distinct modalities in the form
of the following “relaxing” rules

Γ, ?gA
(?-relax)

Γ, ?kA
and

Γ, !kA
(!-relax)

Γ, !gA

meaning that at anytime we can choose to “forget” some information we had. This is be-
cause, as will be reflected in the hybrid interpretation given below, the Gödel “whynot”
is meant to carry a finer information than ?k , whereas the Kreisel “bang” is more gen-
eral than !g . The usual rules for both kinds of exponentials are presented in Table 1.

In mixing both Kreisel’s and Gödel’s interpretations, we must add also the following
restriction on the “Gödel” contraction rule cong (for terminology see Section 3 below):

(∗) if the contraction formula A in cong is computationally relevant, then it must not
contain any Kreisel whynot ?k in front of a computationally relevant subformula,
and also no Kreisel bang !k in front of a refutation relevant subformula.

As we will see, (∗) ensures that the interpretation of such formulas A is quantifier-free
(hence decidable); (∗) is necessary and sufficient for attaining Theorem 1.

3 A Hybrid Functional Interpretation

To each formula A of LLω
h we associate a not necessarily quantifier-free formula |A|xy

of linear logic LLω (defined in [13]) where x, y are fresh variables not appearing in A.
The length and types of x, y are inductively determined by the formula A. The variables
x in the superscript are called the witnessing variables, while the subscript variables y
are called the challenge variables. Intuitively, the interpretation of A is a two-player
(Eloise and Abelard) one-move game, where |A|xy is the adjudication relation. We want
that Eloise has a winning move whenever A is provable in LLω

h . Moreover, the hybrid
linear logic proof of A will provide Eloise’s winning move a, i.e., ∀y|A|ay will hold in
LLω , where a is a tuple of terms of corresponding types.

Formulas for which the tuple of witnessing variables is not empty are considered
computationally relevant, and formulas for which the sequence of challenge variables
is not empty are considered refutation relevant. An ?k (respectively !k) in front of a
computationally (respectively refutation) irrelevant formula will be called redundant.

Definition 1 (Hybrid Interpretation). The interpretation of atomic formulas are the
atomic formulas themselves, with empty sets of witnessing and challenge variables, i.e.
|Aat| :≡ Aat and |A⊥

at| :≡ A⊥
at . Assuming |A|xy and |B|vw already defined, we define

|A � B|f ,g
y,w :≡ |A|fw

y � |B|gy
w |∃zA(z)|x,z

f :≡ |A(z)|xfz

|A ⊗ B|x,v
f ,g :≡ |A|xfv ⊗ |B|vgx |∀zA(z)|fy,z :≡ |A(z)|fz

y

|A �z B|x,v
y,w :≡ |A|xy �z |B|vw .
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Finally, we can give different interpretations to the modalities as:

|!kA|x :≡ !∀y|A|xy |!gA|xf :≡ !|A|xfx

|?kA|y :≡ ?∃x|A|xy |?gA|fy :≡ ?|A|fy
y .

It is easy to see that |A⊥|yx ≡ (|A|xy)⊥ and thus |A � B|f ,g
x,w ≡ |A|xfw � |B|gx

w .

We prove the soundness of our interpretation, i.e., we show how Eloise’s winning move
in the game |A|xy can be algorithmically extracted from a proof of A in LLω

h .

Theorem 1 (Soundness of Hybrid Interpretation). Let A0, . . . , An be a sequence of
formulas of LLω

h , with z as the only free-variables. If the sequent A0, . . . , An is prov-
able in LLω

h , then terms a0, . . . , an can be automatically synthesised from its formal
proof, such that the translated sequent |A0|a0

x0
, . . . , |An|an

xn
is provable in LLω , where

FV(ai) ∈ {z, x0, . . . , xn}\{xi}.

Proof: Ignoring the rules for Gödel exponentials, the proof is given in [5], with !:≡!k
and ?:≡?k . The addition of Gödel exponentials to the language (together with their
interpretation) does not alter the facts. Also the rules for Gödel exponentials are treated
in [13], but independent of the Kreisel exponentials. Hence all we need to prove is that
the proofs in [13] still hold after adding Kreisel exponentials to the language (together
with their interpretation). It is easy to notice that, due to the restriction (∗) we added on
cong , the interpretation of ?gA is quantifier-free, hence decidable. This is because (so
far) only non-redundant !k or ?k could introduce quantifiers in the translated formula. �

4 Simple Applications to Program Extraction

In this section we present some examples where it pays off to analyse proofs using
both Kreisel and Gödel modalities. Some information might not be relevant while some
other might be. One can thus use !kA and ?kA to ignore the computationally irrelevant
parts of the proof, in a way very similar in effect with light Dialectica [12].

4.1 Example 1

Consider theorems of the form

∀xA → ∀yB → ∀zC (5)

possibly with parameters, where the negative information on x is irrelevant, while the
one on y is of our interest. In this case, we would rather view this theorem as

!k∀xA � !g∀yB � ∀zC . (6)

For instance, consider the simple intuitionistic theorem

∀f
(
∀n(f(n) ≤ 1) → ∀m(f(m) �= f(m + 1)) → ∀l(f(l) = f(l + 2))

)
. (7)

From a proof of this, using labelling (6), our hybrid interpretation extracts a realizer
Φ(f, l) s.t.

∀f, l
(
∀n(f(n) ≤ 1) → (f(Φ(f, l)) �= f(Φ(f, l) + 1)) → (f(l) = f(l + 2))

)
.

Indeed, one such witness is Φ(f, l) := if (f(l + 1) = f(l + 2)) then l + 1 else l.
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4.2 Example 2

More concretely, we consider the well-known example of extracting the Fibonacci num-
bers from a minimal logic proof of their weak existence. The example was first used
in [14] to illustrate the so-called “refined A-translation” and then in [15] to illustrate the
light Dialectica (see also Section 4.3 of [12]). The semi-classical Fibonacci proof is a
minimal-logic proof of ∀n∃clm G(n, m) , where

∃clm G(n, m) :≡ ∀m(G(n, m) → ⊥) → ⊥ (8)

from assumptions expressing that G is the graph of the Fibonacci function (G is viewed
as a predicate constant without computational content), i.e., G(0, 0), G(1, 1) and

∀l1, l2, l3
(
G(l1, l2) → G(l1 + 1, l3) → G(l1 + 2, l2 + l3)

)
. (9)

Note that such a specification fits into the form (5) (with C :≡⊥). As was noticed by
the first author in [15], the negative universally quantified l1 , l2 and l3 do not need to
be witnessed in order to extract an algorithm for computing the Fibonacci numbers as
a witness for m as function of n. The proof in [14] can thus be translated to a hybrid
linear logic proof such that, in the pattern of (6), statement (8) becomes

?g ∃m G(n, m)

and (9) becomes (we tacitly removed a number of redundant !g from the front of G’s)

!k ∀l1, l2, l3
(
G(l1, l2) � G(l1 + 1, l3) � G(l1 + 2, l2 + l3)

)

and therefore only m is witnessed, by the usual Fibonacci algorithm defined as Fn :=
Fn−1 + Fn−2 and F1 := 1 and F0 := 0.

4.3 Example 3

The Dialectica interpretation and modified realizability also treat the induction rule2

A(0) A(n) → A(n + 1)
(IND)

A(l)

in slightly different ways. In both cases, the proofs of A(0) and A(n) → A(n + 1)
provide a realiser t[l] for the witnessing variables of A(l), i.e., |A|ty . However, only
during the extraction of t via Dialectica interpretation a functional which refutes A(n)
when given a refutation for A(n+1) will also be extracted. Such realizer is nonetheless
not used in the construction of the desired term t. Therefore we rather always treat
induction in the way modified realizability does, even when constructing a Dialectica
witness. In our multi-modal setting, this can be achieved by formulating induction as

A(0) !kA(n) � A(n + 1)
(IND)

A(l)

since the Kreisel modality blocks the witnessing of counter-example flows.

2 The induction stated here corresponds to the induction rule with no open assumption in natural
deduction systems.
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4.4 Example 4

Consider the representation of real numbers as Cauchy sequences of rationals with a
fixed rate of convergence. A real number being positive carries the extra information
of a lower bound on how far from zero the limit of the sequence can be (cf. [10]).
In order to avoid going into the representation level, when analysing the proof that a
certain real function f is positive at x, i.e. f(x) >R 0, it is often useful to view this
as ∃ l(f(x) >R 2−l). Although witnessing l gives us some lower bound on the value
of f(x), the formula f(x) >R 2−l still carries information on how far above 2−l the
value of f(x) is. This extra information is usually irrelevant in practice and the purely
existential matrix can be treated as quantifier-free, given that we can always forget these
witnesses later. When automatising program extraction, it thus proves to be useful to
make sure that the interpretation will not witness the innermost existential quantifier at
all. This can be achieved by viewing the statement f(x) >R 0 as ∃ l?k(f(x) >R 2−l).

5 Comparison to Light Dialectica

As we noticed above, the effect of applying the hybrid functional interpretation on
the semi-classical Fibonacci proof is equivalent to that of light Dialectica. This is not
unexpected, since the two are related by a shared feature: the occultation of certain non-
relevant quantifiers. Whereas light Dialectica needs a stronger restriction on the intro-
duction rule for the nc-universal quantifier, a direct correspondence exists between the
so-called ncm−FC condition of [12] and the present hybrid-interpretation restriction (∗)
on contraction formulas of cong . Both have the purpose of ensuring that the translated
contraction formula is decidable. We can thus see the hybrid interpretation as a simpli-
fication of the light Dialectica. On the other hand, there are situations which the latter
can handle, whereas the former cannot. The reason is that a !kA discards all challenge
terms of |A| and symmetrically a ?kA discards all witness terms of |A| . In contrast,
by means of nc-quantifiers one can exactly “pick” which variables of A do not need to
be witnessed or challenged. In this sense, light Dialectica appears to be finer than the
hybrid functional interpretation. Nonetheless, optimal is to have both techniques avail-
able in a single interpretation, combining their different syntactic natures. One can then
easily choose to use either of them, or even both when necessary. For this reason we
designed the following “light” hybrid interpretation, which supersedes both the hybrid
and the light interpretations (light Dialectica [12] and light modified realizability [11]).
Moreover, the nc-quantifiers could be useful in a purely linear context already.

5.1 The Light Hybrid Interpretation

To the language of our system we add the symbols ∀ and ∃ for non-computational uni-
versal and existential quantifiers respectively, usually abbreviated nc-forall, nc-exists.
The hybrid interpretation of the nc quantifiers is

|∃zA(z)|xy :≡ ∃z|A(z)|xy |∀zA(z)|xy :≡ ∀z|A(z)|xy ,

hence the translated formula includes the “regular” quantifiers corresponding to the nc
quantifiers - a further reason, besides the interpretation of non-redundant !k , ?k , that
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|B|vw is not quantifier-free for general B. Therefore, the restriction on the contraction
rule cong is enhanced so that computationally relevant contraction formulas must not
contain any nc-quantifier, besides satisfying condition (∗). Moreover, corresponding
rules must be devised for the introduction of the new ∀ and ∃. These are just copies of
the rules (∀) and (∃):

Γ, A
(∀)

Γ, ∀zA

Γ, A[t/z]
(∃)

Γ, ∃zA

but in the case of (∀) with an extension of the restriction that z is not free in Γ : further z
must not be free in the terms t of the (∃) instances in the proof of the premise Γ, A, nor
in the computationally relevant contraction formulas of this proof. Notice the context-
dependency of the above restriction, which is better expressed as “z must not be free in
the witnessing terms of the translations of Γ, A, after mining the proof of this premise
sequent”. In fact, the latter form is both necessary and sufficient, whereas the former is
largely sufficient but can be optimised to become necessary as well (just as in [12]).

Theorem 2 (Soundness of light hybrid interpretation). Theorem 1 still holds after
the addition of nc-quantifiers with their introduction rules and hybrid interpretation.

Proof: Notice that the presence of nc-quantifiers does not modify the set of free vari-
ables of the translated formula (since nc-quantified variables are regular-quantified in
the translation). The interpretation of (∃) is just an instance of (∃). Similarly, the inter-
pretation of (∀) is an instance of (∀), but we must check the restriction that z is not free
in the witnessed translation |Γ |γv of Γ . The extra restrictions we set on (∀) ensure that z
is not free in γ and by the usual restriction z is not among the free variables of Γ , which
appear free in |Γ |γv as well. Since z does not appear in the list of challenge variables for
|∀zA|, essential is also that z cannot be free in the witnesses a from |A|ax . �

6 Future Work: Extension and Automation

We can also consider other modalities, e.g., Howard (!h) and Diller-Nahm (!d), together
with their duals ?h and ?d . We assume a general ordering on all four modalities as
k > h > d > g and add the following weakening rules w.r.t. this partial order:

Γ, ?iA

Γ, ?jA

Γ, !jA

Γ, !iA
(j > i and i, j ∈ {k, h, d, g})

meaning that anytime we can choose to “forget” some information we had. The inter-
pretation of the new exponentials should be, following [13], as follows:

|!dA|xf :≡ !∀y∈fx |A|xy |?dA|fy :≡ ?∃x∈fy |A|xy
|!hA|xf :≡ !∀y≤∗fx |A|xy |?hA|fy :≡ ?∃x≤∗fy |A|xy

In some cases, when decidability of formulas is an issue, we might need to use the
Diller-Nahm interpretation instead of Dialectica. Consider the following example (also
(7) could serve as an example, if we assume that f(m) = f(m + 1) is undecidable)

∀fN→R
(
∀m(f(m) <R f(m + 1)) → ∀n(f(n) <R f(n + 2))

)
. (10)
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Note that <R is an undecidable relation. The best we can do is to collect a finite set
of witnesses for m (as functions of n). Like in Example 4 above, also here are we not
interested in the redundant information hidden within f(m) <R f(m + 1). For the sake
of program-extraction, formula (10) is thus better labelled as

∀fN→R
(
!d∀m?k (f(m) <R f(m + 1)) � ∀n?k (f(n) <R f(n + 2))

)
.

We can produce a finite collection of witnesses for m as Φ(f, n) := {n, n + 1} so that

∀fN→R, n
(
∀m∈Φ(f, n) (f(m) <R f(m + 1)) → (f(n) <R f(n + 2))

)
.

Note that the same effect can be achieved via a light Diller-Nahm interpretation, using
an ∃ for the existential quantifier hidden within <R , rather than the Kreisel whynot ?k .

6.1 Automated Decoration of Modalities

Given a proof of a mathematical theorem, once the desired information (i.e., quantified
variables to be realized) is selected, we can automatically view the intuitionistic proof
as a hybrid linear logic proof, with the modalities decorated in such way that the proof
analysis will give us the information requested. For instance, in a theorem of the form

∀xA → ∀y ∃zB (11)

it could be that we are interested only in the negative universal information x, and not
in the positive existential information z. Hence we rather present (11) as a specification
in multi-modal linear logic decorated like

!g∀xA � ∀y?k∃zB or !g∀xA � ∀y∃zB.

An automated tool can try to figure out if such a labelling of the given proof is possible.
If it is, the hybrid interpretation will then return the realizer t and a linear logic proof of

∀y (!A[ty/x] � ?∃zB ) or ∀y (!A[ty/x] � ∃zB )

which can finally be translated back to an intuitionistic proof of ∀y (A[ty/x] → ∃zB ).
The input to such a “decorating algorithm” is the intuitionistic proof of an intuition-

istic formula A and A� , a (light) hybrid decoration of the linear logic translation of
A. We would like to transform the proof of A into a (light) hybrid linear proof of A� .
For this we should establish how the rules of intuitionistic logic could be translated
to proofs in hybrid linear logic. In general, an intuitionistic proof of B from uncan-
celled assumptions A0, . . . , An gets canonically translated to a linear proof of B from
!0A0, . . . , !nAn , where !i is one of the possible modalities, hence a proof of the se-
quent ?0A

⊥
0 , . . . , ?nA⊥

n , B. Whenever a linear cut rule is to be applied, one has to
make sure that the exponential flavours in the cut formula from the left sub-tree are
isomorphically corresponding to the exponential flavours in its linear negation from the
right sub-tree. Moreover, this correspondence has to be coordinated recursively down
into the sub-trees. It is nevertheless not enough to simply ensure that the exponential
flavours propagate soundly from conclusion to axioms and assumptions. One has to also
verify the various restrictions: those involved by contraction rules like cong and, if the
nc-quantifiers are used as well, those involved by the (∀) introduction rule.

Sometimes, hybrid decorated specifications A� simply fail to have a hybrid proof.
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7 Conclusion

Hybrid interpretations successfully combine peculiar features of different functional
interpretations. A few restrictions need to be satisfied when mixing the corresponding
distinct modalities. The possibility of “colouring” the exponentials in a linear proof
translation of the given specification with the desired flavours can be investigated by an
algorithm. The non-computational quantifiers smoothly add to the picture in a way that
uniformly explicates the structure of both light Dialectica and light modified realizabil-
ity. Illustrative applications of the hybrid interpretations were here presented.

Example 3 brings an important optimisation of the usual treatment of induction by
Dialectica. Full extensionality and the Markov principle are simultaneously treated
under certain restrictions. Although not previously noticed, similar effects could be
achieved via the nc quantifiers, but using the hybrid modalities appears to be smoother.

The user of hybrid interpretations thus has a large choice of techniques. The hunt for
new applications has now just opened and the reader is warmly invited!
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