HYBRID GAUSS-TRAPEZOIDAL QUADRATURE RULES*

BRADLEY K. ALPERT ${ }^{\dagger}$

Abstract

A new class of quadrature rules for the integration of both regular and singular functions is constructed and analyzed. For each rule the quadrature weights are positive and the class includes rules of arbitrarily high-order convergence. The quadratures result from alterations to the trapezoidal rule, in which a small number of nodes and weights at the ends of the integration interval are replaced. The new nodes and weights are determined so that the asymptotic expansion of the resulting rule, provided by a generalization of the Euler-Maclaurin summation formula, has a prescribed number of vanishing terms. The superior performance of the rules is demonstrated with numerical examples and application to several problems is discussed.

Key words. Euler-Maclaurin formula, Gaussian quadrature, high-order convergence, numerical integration, positive weights, singularity

AMS subject classifications. 41A55, 41A60, 65B15, 65D32
PII. S1064827597325141

1. Introduction. Recent advances in algorithms for the numerical solution of integral equations have stimulated renewed interest in integral equation formulations of problems in potential theory, wave propagation, and other application areas. Fast algorithms, including those by Rokhlin [1], [2], Greengard and Rokhlin [3], Hackbusch and Nowak [4], Beylkin, Coifman, and Rokhlin [5], Alpert, Beylkin, Coifman, and Rokhlin [6], and Kelley [7], have generally reduced the computational complexity to $O(n)$ or $O(n \log n)$ operations, with n unknowns, for the application of an integral operator or its inverse.

The appearance of these fast algorithms has increased the urgency of developing accurate quadratures for the discretization of integral operators. Such quadratures must effectively treat the kernel singularities of the operators and the varying location of the singularities with a fixed set of density nodes, and must allow the application of the fast algorithms. In this paper, we develop quadrature rules, based on alterations to the trapezoidal rule, that obey these constraints.

The well-known Euler-Maclaurin summation formula provides an asymptotic expansion for the trapezoidal rule applied to regular functions. While the constant term of the expansion is an integral, the other terms depend on the integrand's derivatives at the endpoints of the interval of integration. This expansion is often used to "correct" the trapezoidal rule to a quadrature with high-order convergence, through the use of either known derivative values or their finite-difference approximations. A generalization of the Euler-Maclaurin formula by Navot [8], for integrable functions with singularities of the form x^{γ}, can also be used to correct the trapezoidal rule to achieve high-order convergence (provided the exponent γ is known).

[^0]We derive new quadratures, based on the Euler-Maclaurin formula and its generalization, of arbitrarily high-order convergence, for regular or singular functions with power or logarithm singularity. Each quadrature is constructed by changing the trapezoidal rule: a few of the nodes and weights at the interval endpoints are replaced with new nodes and weights determined so as to annihilate several terms in the asymptotic expansion. The nodes always lie within the interval of integration and the weights are always positive.

For a regular function $f:[0,1] \rightarrow \mathbb{R}$, we approximate $\int_{0}^{1} f(x) d x$ with the quadrature

$$
\begin{align*}
& \tilde{T}_{n}(f)=h\left[w_{1} f\left(x_{1} h\right)+w_{2} f\left(x_{2} h\right)+\cdots+w_{j} f\left(x_{j} h\right)\right. \tag{1}\\
& +f(a h)+f(a h+h)+\cdots+f(1-a h) \\
& \left.+w_{j} f\left(1-x_{j} h\right)+\cdots+w_{1} f\left(1-x_{1} h\right)\right] .
\end{align*}
$$

There are n "internal" nodes with spacing $h=1 /(n+2 a-1)$ and j "endpoint" nodes at each end, with the endpoint nodes x_{1}, \ldots, x_{j} and weights w_{1}, \ldots, w_{j} chosen so that the asymptotic expansion of \tilde{T}_{n} as $n \rightarrow \infty$ has $2 j$ vanishing terms and

$$
\begin{equation*}
\tilde{T}_{n}(f)=\int_{0}^{1} f(x) d x+O\left(h^{2 j+1}\right) \tag{2}
\end{equation*}
$$

(Theorem 3.1 and Corollary 3.2). The parameters a and j, and the nodes x_{1}, \ldots, x_{j} and weights w_{1}, \ldots, w_{j}, are independent of n. The nodes and weights are determined by $2 j$ nonlinear equations, which have a unique solution, with

$$
\begin{equation*}
0<x_{i}<a, \quad w_{i}>0, \quad i=1, \ldots, j, \tag{3}
\end{equation*}
$$

provided a is sufficiently large (Theorem 4.7). For integrands that are singular at one endpoint, \tilde{T}_{n} is altered so that the nodes and weights at that end differ from those at the other end and depend on the singularity (Theorem 3.4 and Corollary 3.6; Theorem 3.7 and Corollary 3.8). For improper integrals in which the integrand is oscillatory and slowly decaying, \tilde{T}_{n} is combined with Gauss-Laguerre quadrature to give rules with high-order convergence (Theorem 3.9 and Corollary 3.10).

Several authors have studied the problems treated here. It has been observed that endpoint corrections can be derived for singular integrands; Rokhlin [9] implemented such a scheme for integrands with a known singularity at an interval endpoint. He derived corrections to the trapezoidal rule by placing additional quadrature nodes near the endpoint, with the corresponding weights determined so that low-order polynomials and the singularity times low-order polynomials were integrated exactly. He showed that under fairly general conditions, these weights had limiting values (up to scale) as the number of nodes in the trapezoidal rule increased without bound and that these limiting weights could be used to form quadrature rules with good convergence. Unfortunately, the order of convergence of these rules is restricted in practice by the fact that the weights increase in magnitude rapidly as the order increases. Efforts by Starr [10] and subsequently by Alpert [11] reduced the growth in size of the weights with order, primarily by using more weights than the number of equations satisfied and minimizing their sum of squares. In another approach, Kress [12] uses all quadrature weights in the quadrature rule, rather than a few near the endpoints,
to handle the singularity. More recently, Kapur and Rokhlin [13] successfully constructed rules of arbitrary order by separating the integrand's regular and singular parts and allowing some quadrature nodes to lie outside the interval of integration.

The present approach does not suffer from limitations on order of convergence, separation of the integrand into parts, or quadrature nodes outside the interval of convergence. On the other hand, the quadrature nodes near the interval endpoints are not equispaced. Also, the equations for the nodes x_{1}, \ldots, x_{j} and weights w_{1}, \ldots, w_{j}, in addition to being nonlinear, are poorly conditioned; the conditioning deteriorates rapidly with increasing order. Nevertheless, we are able to use an algorithm developed recently by Ma, Rokhlin, and Wandzura [14] for computing generalized Gaussian quadratures to obtain accurate quadrature nodes and weights. The author would also like to credit that paper for inspiring the present work.

The paper is organized around section 3 , where the new asymptotic expansions are derived and the quadratures defined, and section 4 , where it is shown that the equations defining the quadratures actually have solutions, which are unique. These sections are preceded by mathematical preliminaries and followed by a discussion of the computation of the quadrature nodes and weights. Numerical examples are presented in section 6 and we conclude with some applications and a summary.
2. Mathematical preliminaries. The material in this section, which is found in standard references, is used in the subsequent development.
2.1. Bernoulli polynomials. The Bernoulli polynomials are defined by generating function (see, for example, [15, (23.1.1)])

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}
$$

from which

$$
B_{0}(x)=1, \quad B_{1}(x)=x-\frac{1}{2}, \quad B_{2}(x)=x^{2}-x+\frac{1}{6}, \quad B_{3}(x)=x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x .
$$

The Bernoulli polynomials satisfy the difference formula

$$
\begin{equation*}
\frac{B_{n}(x+k)-B_{n}(x)}{n}=\sum_{i=0}^{k-1}(x+i)^{n-1}, \quad n=1,2, \ldots, \tag{4}
\end{equation*}
$$

the differentiation formula

$$
\begin{equation*}
B_{n}^{\prime}(x)=n B_{n-1}(x), \quad n=1,2, \ldots, \tag{5}
\end{equation*}
$$

and the expansion formula

$$
\begin{equation*}
B_{n}(x+h)=\sum_{r=0}^{n}\binom{n}{r} B_{r}(x) h^{n-r}, \quad n=0,1, \ldots . \tag{6}
\end{equation*}
$$

2.2. Euler-Maclaurin summation formula. For a function $f \in C^{p}(\mathbb{R}), p \geq$ 1, the Euler-Maclaurin summation formula (see, for example, [15, (23.1.30)]) can be derived by repeated integration by parts. We first consider the interval $[c, c+h]$ and
apply (5) to obtain

$$
\begin{align*}
\int_{c}^{c+h} f(x) d x= & h \int_{0}^{1} B_{0}(1-x) f(c+x h) d x \tag{7}\\
= & -\left.h \frac{B_{1}(1-x)}{1!} f(c+x h)\right|_{0} ^{1}+h^{2} \int_{0}^{1} \frac{B_{1}(1-x)}{1!} f^{\prime}(c+x h) d x \\
& \vdots \\
= & -\left.\sum_{r=0}^{p-1} \frac{h^{r+1} B_{r+1}(1-x)}{(r+1)!} f^{(r)}(c+x h)\right|_{0} ^{1} \\
& +h^{p+1} \int_{0}^{1} \frac{B_{p}(1-x)}{p!} f^{(p)}(c+x h) d x \\
= & h \frac{f(c)+f(c+h)}{2}-\sum_{r=1}^{p-1} \frac{h^{r+1} B_{r+1}}{(r+1)!}\left[f^{(r)}(c+h)-f^{(r)}(c)\right] \\
& +h^{p+1} \int_{0}^{1} \frac{B_{p}(1-x)}{p!} f^{(p)}(c+x h) d x
\end{align*}
$$

where we have used

$$
\begin{aligned}
& -B_{1}(0)=B_{1}(1)=\frac{1}{2}, \\
& B_{n}(0)=B_{n}(1)=B_{n}, \quad n \neq 1 .
\end{aligned}
$$

To derive the Euler-Maclaurin formula for the interval $[a, b]$, we let $h=(b-a) / n$ and $c=a+i h$ in (7), sum over $i=0,1, \ldots, n-1$, and rearrange terms to obtain

$$
\begin{align*}
& h\left[\frac{f(a)}{2}+f(a+h)+\cdots+f(b-h)+\frac{f(b)}{2}\right] \tag{8}\\
&= \int_{a}^{b} f(x) d x+\sum_{r=1}^{p-1} \frac{h^{r+1} B_{r+1}}{(r+1)!}\left[f^{(r)}(b)-f^{(r)}(a)\right] \\
& \quad-h^{p+1} \int_{0}^{1} \frac{B_{p}(1-x)}{p!}\left\{\sum_{i=0}^{n-1} f^{(p)}(a+i h+x h)\right\} d x
\end{align*}
$$

The expression on the left-hand side of (8) is the well-known trapezoidal rule. Evaluation of the expression on the right-hand side of (8) is simplified by the fact that $B_{2 r+1}=0$ for $r \geq 1$.
2.3. Generalized Riemann zeta-function. The generalized Riemann zetafunction is defined by the formula

$$
\zeta(s, v)=\sum_{n=0}^{\infty} \frac{1}{(v+n)^{s}}, \quad \operatorname{Re}(s)>1, \quad v \neq 0,-1, \ldots
$$

This function has a continuation that is analytic in the entire complex s-plane, with the exception of $s=1$, where it has a simple pole. In what follows, we shall be concerned primarily with real s and v, with $s<1$ and $v>0$. We will use the
following representation derived from Plana's summation formula (see, for example, [16, section $1.10(7)])$:

$$
\begin{equation*}
\zeta(s, v)=\frac{v^{1-s}}{s-1}+\frac{v^{-s}}{2}+2 v^{1-s} \int_{0}^{\infty} \frac{\sin (s \arctan t)}{\left(1+t^{2}\right)^{s / 2}} \frac{d t}{e^{2 \pi v t}-1}, \quad \operatorname{Re}(v)>0 \tag{9}
\end{equation*}
$$

Equation (9) can be used to derive the asymptotic expansion of ζ as $v \rightarrow \infty$. We treat the integral as a sum of Laplace integrals, each with an asymptotic expansion given by Watson's lemma (see, for example, [17, p. 263]), and obtain

$$
\begin{equation*}
\zeta(s, v)=\frac{v^{1-s}}{s-1}+\frac{v^{-s}}{2}+\frac{1}{s-1} \sum_{r=1}^{p}\binom{s+2 r-2}{2 r} \frac{B_{2 r}}{v^{s+2 r-1}}+O\left(v^{-s-2 p-1}\right) \tag{10}
\end{equation*}
$$

as $v \rightarrow \infty$, with $s \in \mathbb{C}, s \neq 1$, and p an arbitrary positive integer. Equation (10) is a slight generalization of $[16$, section 1.18 (9)]. There is a direct connection between the Bernoulli polynomials and ζ,

$$
\frac{B_{n}(x)}{n}=-\zeta(1-n, x), \quad n=1,2, \ldots
$$

and generalizations of the difference and differentiation formulae hold:

$$
\begin{gather*}
\zeta(s, v)-\zeta(s, v+k)=\sum_{i=0}^{k-1} \frac{1}{(v+i)^{s}} \tag{11}\\
\frac{\partial \zeta(s, v)}{\partial v}=-s \zeta(s+1, v) \tag{12}
\end{gather*}
$$

2.4. Orthogonal polynomials and Gaussian quadrature. Suppose that ω is a positive continuous function on the interval (a, b) and ω is integrable on $[a, b]$. We define the inner product with respect to ω of real-valued functions f and g by the integral

$$
(f, g)=\int_{a}^{b} f(x) g(x) \omega(x) d x
$$

There exist polynomials p_{0}, p_{1}, \ldots, of degree $0,1, \ldots$, respectively, such that $\left(p_{n}, p_{m}\right)=$ 0 for $n \neq m$ (orthogonality); they are unique up to the choice of leading coefficients. With leading coefficients one, they can be obtained recursively by the formulae (see, for example, [18, p. 143])

$$
\begin{align*}
p_{0}(x) & =1 \tag{13}\\
p_{n+1}(x) & =\left(x-\delta_{n+1}\right) p_{n}(x)-\gamma_{n+1}^{2} p_{n-1}(x), \quad n \geq 0 \tag{14}
\end{align*}
$$

where $p_{-1}(x)=0$ and δ_{n}, γ_{n} are defined by the formulae

$$
\begin{aligned}
\delta_{n+1} & =\left(x p_{n}, p_{n}\right) /\left(p_{n}, p_{n}\right), \\
\gamma_{n+1}^{2} & = \begin{cases}0, & n \geq 0 \\
\left(p_{n}, p_{n}\right) /\left(p_{n-1}, p_{n-1}\right), & n \geq 1\end{cases}
\end{aligned}
$$

The zeros $x_{1}^{n}, \ldots, x_{n}^{n}$ of p_{n} are distinct and lie in the interval (a, b). There exist positive numbers $\omega_{1}^{n}, \ldots, \omega_{n}^{n}$ such that

$$
\begin{equation*}
\int_{a}^{b} f(x) \omega(x) d x=\sum_{i=1}^{n} \omega_{i}^{n} f\left(x_{i}^{n}\right) \tag{15}
\end{equation*}
$$

whenever f is a polynomial of degree less than $2 n$. These Christoffel numbers are given by the formula (see, for example, [19, p. 48])

$$
\begin{equation*}
\omega_{i}^{n}=\frac{\left(p_{n-1}, p_{n-1}\right)}{p_{n-1}\left(x_{i}^{n}\right) p_{n}^{\prime}\left(x_{i}^{n}\right)}, \quad i=1, \ldots, n \tag{16}
\end{equation*}
$$

Moreover, if $\omega(x)=(b-x) \tau(x)$ with τ integrable on $[a, b]$, then, with the definition $x_{n+1}^{n}=b$, there exist positive numbers $\tau_{1}^{n}, \ldots, \tau_{n+1}^{n}$ such that

$$
\begin{equation*}
\int_{a}^{b} f(x) \tau(x) d x=\sum_{i=1}^{n+1} \tau_{i}^{n} f\left(x_{i}^{n}\right) \tag{17}
\end{equation*}
$$

whenever f is a polynomial of degree less than or equal to $2 n$. These modified Christoffel numbers are given by the formula

$$
\tau_{i}^{n}= \begin{cases}\frac{\omega_{i}^{n}}{b-x_{i}^{n}}, & i=1, \ldots, n \tag{18}\\ \int_{a}^{b} \frac{p_{n}(x)}{p_{n}(b)} \tau(x) d x, & i=n+1\end{cases}
$$

where ω_{i}^{n} is given by (16).
The summation in (15) is the n-node Gaussian quadrature with respect to ω, while that in (17) is an $(n+1)$-node Gauss-Radau quadrature with respect to τ.
3. Hybrid Gauss-trapezoidal quadrature rules. In this section we introduce new quadrature rules for regular integrands, singular integrands with a power or logarithmic singularity, and improper integrals and determine their rate of convergence as the number of quadrature nodes increases.

For notational convenience we generally consider quadratures on canonical intervals, primarily $[0,1]$. It is understood that these are readily transformed to quadratures on any finite interval $[a, b]$ by the appropriate linear transformation of the nodes and weights.
3.1. Regular integrands. For j, n positive integers and $a \in \mathbb{R}^{+}=\{x \in \mathbb{R} \mid x>$ $0\}$, we define a linear operator $T_{n}^{j a}$ on $C([0,1])$, depending on nodes x_{1}, \ldots, x_{j} and weights w_{1}, \ldots, w_{j}, by the formula

$$
\begin{equation*}
T_{n}^{j a}(f)=h \sum_{i=1}^{j} w_{i} f\left(x_{i} h\right)+h \sum_{i=0}^{n-1} f(a h+i h)+h \sum_{i=1}^{j} w_{i} f\left(1-x_{i} h\right) \tag{19}
\end{equation*}
$$

where $h=(n+2 a-1)^{-1}$ is chosen so that $a h+(n-1) h=1-a h$.
THEOREM 3.1. Suppose $f \in C^{p}([0,1])$. The asymptotic expansion of $T_{n}^{j a}(f)$ as $n \rightarrow \infty$ is given by the formula

$$
\begin{align*}
T_{n}^{j a}(f) & =\int_{0}^{1} f(x) d x \tag{20}\\
& +\sum_{r=0}^{p-1} h^{r+1} \frac{f^{(r)}(0)+(-1)^{r} f^{(r)}(1)}{r!}\left\{\sum_{i=1}^{j} w_{i} x_{i}^{r}-\frac{B_{r+1}(a)}{r+1}\right\}+O\left(h^{p+1}\right)
\end{align*}
$$

Proof. We apply the Euler-Maclaurin formula (8) on the interval $[a h, 1-a h]$ to obtain

$$
\begin{align*}
h \sum_{i=0}^{n-1} f(a h+i h)=h & \frac{f(a h)+f(1-a h)}{2}+\int_{a h}^{1-a h} f(x) d x \tag{21}\\
& +\sum_{r=1}^{p-1} \frac{h^{r+1} B_{r+1}}{(r+1)!}\left[f^{(r)}(1-a h)-f^{(r)}(a h)\right]+O\left(h^{p+1}\right)
\end{align*}
$$

We now combine (19) and (21), the equality

$$
\int_{a h}^{1-a h} f(x) d x=\int_{0}^{1} f(x) d x-\int_{0}^{a h} f(x) d x-\int_{1-a h}^{1} f(x) d x
$$

Taylor expansion of all quantities about $h=0$, the Bernoulli polynomial expansion formula (6), and difference formula (4) to obtain (20).

Corollary 3.2. Suppose the nodes x_{1}, \ldots, x_{j} and weights w_{1}, \ldots, w_{j} satisfy the equations

$$
\begin{equation*}
\sum_{i=1}^{j} w_{i} x_{i}^{r}=\frac{B_{r+1}(a)}{r+1}, \quad r=0,1, \ldots, 2 j-1 \tag{22}
\end{equation*}
$$

Then $T_{n}^{j a}$ is a quadrature rule with convergence of order $2 j+1$ for $f \in C^{p}([0,1])$ with $p \geq 2 j$. Moreover,

$$
\begin{equation*}
T_{n}^{j a}(f)-\int_{0}^{1} f(x) d x \sim h^{2 j+1} \frac{f^{(2 j)}(0)+f^{(2 j)}(1)}{(2 j)!}\left\{\sum_{i=1}^{j} w_{i} x_{i}^{2 j}-\frac{B_{2 j+1}(a)}{2 j+1}\right\} \tag{23}
\end{equation*}
$$

as $n \rightarrow \infty$, provided $f^{(2 j)}(0)+f^{(2 j)}(1) \neq 0$.
Corollary 3.3. Suppose $x_{j}=a-1$ and the remaining nodes x_{1}, \ldots, x_{j-1} and weights w_{1}, \ldots, w_{j} satisfy the equations

$$
\begin{equation*}
\sum_{i=1}^{j} w_{i} x_{i}^{r}=\frac{B_{r+1}(a)}{r+1}, \quad r=0,1, \ldots, 2 j-2 \tag{24}
\end{equation*}
$$

Then $T_{n}^{j a}$ is a quadrature rule with convergence of order $2 j$ for $f \in C^{p}([0,1])$ with $p \geq 2 j-1$. Moreover,

$$
\begin{equation*}
T_{n}^{j a}(f)-\int_{0}^{1} f(x) d x \sim h^{2 j} \frac{f^{(2 j-1)}(0)-f^{(2 j-1)}(1)}{(2 j-1)!}\left\{\sum_{i=1}^{j} w_{i} x_{i}^{2 j-1}-\frac{B_{2 j}(a)}{2 j}\right\} \tag{25}
\end{equation*}
$$

as $n \rightarrow \infty$, provided $f^{(2 j-1)}(0)-f^{(2 j-1)}(1) \neq 0$.
We shall see below that (22) has a solution with the nodes and weights all positive if a is sufficiently large and that numerical solution of (22) is equivalent to computing the roots of a particular polynomial. This statement holds for (24) as well.
3.2. Singular integrands. For j, k, n positive integers and $a, b \in \mathbb{R}^{+}$, we define a linear operator $S_{n}^{j k a b}$ on $C((0,1])$, depending on nodes $v_{1}, \ldots, v_{j}, x_{1}, \ldots, x_{k}$ and weights $u_{1}, \ldots, u_{j}, w_{1}, \ldots, w_{k}$, by the formula

$$
\begin{equation*}
S_{n}^{j k a b}(g)=h \sum_{i=1}^{j} u_{i} g\left(v_{i} h\right)+h \sum_{i=0}^{n-1} g(a h+i h)+h \sum_{i=1}^{k} w_{i} g\left(1-x_{i} h\right) \tag{26}
\end{equation*}
$$

where $h=(n+a+b-1)^{-1}$ is chosen so that $a h+(n-1) h=1-b h$. The following theorem, which follows from a generalization of the Euler-Maclaurin formula due to Navot [8] or a further generalization due to Lyness [20], presents a somewhat different proof than the earlier ones.

THEOREM 3.4. Suppose $g(x)=x^{\gamma} f(x)$, where $\gamma>-1$ and $f \in C^{p}([0,1])$. The asymptotic expansion of $S_{n}^{j k a b}(g)$ as $n \rightarrow \infty$ is given by the formula

$$
\begin{align*}
S_{n}^{j k a b}(g) & =\int_{0}^{1} g(x) d x+\sum_{r=0}^{p-1} h^{\gamma+r+1} \frac{f^{(r)}(0)}{r!}\left\{\sum_{i=1}^{j} u_{i} v_{i}^{\gamma+r}+\zeta(-\gamma-r, a)\right\} \tag{27}\\
& +\sum_{r=0}^{p-1} h^{r+1} \frac{(-1)^{r} g^{(r)}(1)}{r!}\left\{\sum_{i=1}^{k} w_{i} x_{i}^{r}-\frac{B_{r+1}(b)}{r+1}\right\}+O\left(h^{p+1+\min \{0, \gamma\}}\right) .
\end{align*}
$$

Proof. For $c \in \mathbb{R}^{+}$, we define polynomials $p_{0}^{c}, p_{1}^{c}, \ldots$, in analogy with the Bernoulli polynomials, by the formula

$$
\begin{equation*}
p_{n}^{c}(x)=\sum_{r=0}^{n}\binom{n}{r} \zeta(-\gamma-r, c)(1-c-x)^{n-r} \tag{28}
\end{equation*}
$$

Differentiating, we verify that

$$
\frac{d}{d x} p_{n}^{c}(x)=-n p_{n-1}^{c}(x), \quad n=1,2, \ldots
$$

and, combining the ζ difference formula (11) with (28), we obtain

$$
p_{n}^{c}(1)-p_{n}^{c+1}(0)= \begin{cases}c^{\gamma}, & n=0 \\ 0, & n \geq 1\end{cases}
$$

Additionally, we define functions $q_{0}^{c}, q_{1}^{c}, \ldots$ by the formula

$$
q_{n}^{c}(x)= \begin{cases}(x+c)^{\gamma}, & n=0 \tag{29}\\ \frac{(-1)^{n}(x+c)^{\gamma+n}}{(\gamma+1) \cdots(\gamma+n)}-\frac{p_{n-1}^{c+1}(x)}{(n-1)!}, & n=1,2, \ldots,\end{cases}
$$

and observe that

$$
\frac{d}{d x} q_{n}^{c}(x)=-q_{n-1}^{c}(x), \quad n=1,2, \ldots
$$

With these definitions, the proof follows that of the Euler-Maclaurin formula:

$$
\begin{align*}
\int_{a h}^{1-b h} x^{\gamma} f(x) d x= & \sum_{i=0}^{n-2} h^{1+\gamma} \int_{0}^{1} q_{0}^{a+i}(x) f(a h+i h+x h) d x \tag{30}\\
= & \sum_{i=0}^{n-2}\left\{-\left.\sum_{r=0}^{p-1} h^{\gamma+r+1} q_{r+1}^{a+i}(x) f^{(r)}(a h+i h+x h)\right|_{0} ^{1}\right. \\
& \left.\quad+h^{\gamma+p+1} \int_{0}^{1} q_{p}^{a+i}(x) f^{(p)}(a h+i h+x h) d x\right\} \\
= & h \sum_{i=1}^{n-2}(a h+i h)^{\gamma} f(a h+i h) \\
& -\sum_{r=0}^{p-1} h^{\gamma+r+1}\left[q_{r+1}^{a+n-2}(1) f^{(r)}(1-b h)-q_{r+1}^{a}(0) f^{(r)}(a h)\right] \\
& +h^{\gamma+p+1} \int_{0}^{1}\left\{\sum_{i=0}^{n-2} q_{p}^{a+i}(x) f^{(p)}(a h+i h+x h)\right\} d x
\end{align*}
$$

Taylor expansion of $f^{(r)}(a h)$ about $h=0$, the definitions (28) and (29) for p_{n}^{c} and q_{n}^{c}, and the binomial theorem combine to yield

$$
\begin{align*}
& \sum_{r=0}^{p-1} h^{\gamma+r+1} q_{r+1}^{a}(0) f^{(r)}(a h) \tag{31}\\
& \quad=-\sum_{k=0}^{p-1} \frac{h^{\gamma+k+1} f^{(k)}(0)}{k!}\left[\frac{a^{\gamma+k+1}}{\gamma+k+1}+\zeta(-\gamma-k, a+1)\right]+O\left(h^{\gamma+p+1}\right)
\end{align*}
$$

Likewise, Taylor expansion of $f^{(r)}(1-b h)$ about $h=0$, the definitions for p_{n}^{c} and q_{n}^{c}, the asymptotic expansion (10) for ζ, the Bernoulli polynomial expansion formula (6), and the binomial theorem combine to yield

$$
\begin{align*}
\sum_{r=0}^{p-1} h^{\gamma+r+1} q_{r+1}^{a+n-2} & (1) f^{(r)}(1-b h) \tag{32}\\
& =\sum_{k=0}^{p-1} \frac{h^{k+1}(-1)^{k} g^{(k)}(1)}{k!}\left[\frac{b^{k+1}}{k+1}-\frac{B_{k+1}(b+1)}{k+1}\right]+O\left(h^{p+1}\right)
\end{align*}
$$

We now combine (26) and (30)-(32), the equality

$$
\int_{a h}^{1-b h} g(x) d x=\int_{0}^{1} g(x) d x-\int_{0}^{a h} g(x) d x-\int_{1-b h}^{1} g(x) d x
$$

expansion of the latter two integrals about $h=0$, and the difference formula (4) for the Bernoulli polynomials and (11) for ζ to obtain (27).

Corollary 3.5. Suppose the nodes u_{1}, \ldots, u_{j} and weights v_{1}, \ldots, v_{j} satisfy the equations

$$
\begin{equation*}
\sum_{i=1}^{j} u_{i} v_{i}^{\gamma+r}=-\zeta(-\gamma-r, a), \quad r=0,1, \ldots, 2 j-1 \tag{33}
\end{equation*}
$$

and the nodes x_{1}, \ldots, x_{j} and weights w_{1}, \ldots, w_{j} satisfy the equations

$$
\begin{equation*}
\sum_{i=1}^{j} w_{i} x_{i}^{r}=\frac{B_{r+1}(b)}{r+1}, \quad r=0,1, \ldots, 2 j-1 \tag{34}
\end{equation*}
$$

Then $S_{n}^{j j a b}$ is a quadrature rule with convergence of order $2 j+1+\min \{0, \gamma\}$ for g, where $g(x)=x^{\gamma} f(x)$, with $f \in C^{p}([0,1])$ and $p \geq 2 j$. Moreover,

$$
\begin{align*}
& S_{n}^{j j a b}(g)-\int_{0}^{1} g(x) d x \tag{35}\\
& \sim \begin{cases}h^{\gamma+2 j+1} \frac{f^{(2 j)}(0)}{(2 j)!}\left\{\sum_{i=1}^{j} u_{i} v_{i}^{\gamma+2 j}+\zeta(-\gamma-2 j, a)\right\}, & \gamma<0, f^{(2 j)}(0) \neq 0 \\
h^{2 j+1} \frac{g^{(2 j)}(1)}{(2 j)!}\left\{\sum_{i=1}^{j} w_{i} x_{i}^{2 j}-\frac{B_{2 j+1}(b)}{2 j+1}\right\}, & \gamma>0, g^{(2 j)}(1) \neq 0\end{cases}
\end{align*}
$$

as $n \rightarrow \infty$.
Corollary 3.6. Suppose the nodes u_{1}, \ldots, u_{j} and weights v_{1}, \ldots, v_{j} satisfy the equations

$$
\begin{align*}
\sum_{i=1}^{j} u_{i} v_{i}^{\gamma+r}=-\zeta(-\gamma-r, a), & r=0,1, \ldots, j-1 \tag{36}\\
\sum_{i=1}^{j} u_{i} v_{i}^{r}=\frac{B_{r+1}(a)}{r+1}, & r=0,1, \ldots, j-1
\end{align*}
$$

and the nodes x_{1}, \ldots, x_{k} and weights w_{1}, \ldots, w_{k} satisfy the equations

$$
\begin{equation*}
\sum_{i=1}^{k} w_{i} x_{i}^{r}=\frac{B_{r+1}(b)}{r+1}, \quad r=0,1, \ldots, 2 k-1 \tag{37}
\end{equation*}
$$

Then $S_{n}^{j k a b}$ is a quadrature rule with convergence of order $\min \{j+1, \gamma+j+1,2 k+1\}$ for g, where $g(x)=x^{\gamma} \phi(x)+\psi(x)$, with $\phi, \psi \in C^{p}([0,1])$ and $p \geq \min \{j, 2 k\}$.

In Corollaries 3.5 and 3.6, an even number of constraints on the nodes and weights at both ends of the interval are considered. Clearly, there are analogous quadrature rules arising from an odd number of constraints at one or both ends; these are similar, and explicit presentation of them is omitted. We now consider a different type of singularity.

THEOREM 3.7. Suppose $g(x)=f(x) \log x$, where $f \in C^{p}([0,1])$. The asymptotic expansion of $S_{n}^{j k a b}(g)$ as $n \rightarrow \infty$ is given by the formula

$$
\begin{align*}
& S_{n}^{j k a b}(g)=\int_{0}^{1} g(x) d x \tag{38}\\
& \quad+\sum_{r=0}^{p-1} h^{r+1} \frac{f^{(r)}(0)}{r!}\left\{\sum_{i=1}^{j} u_{i} v_{i}^{r} \log \left(v_{j} h\right)-\zeta^{\prime}(-r, a)-\frac{B_{r+1}(a)}{r+1} \log h\right\} \\
& \quad+\sum_{r=0}^{p-1} h^{r+1} \frac{(-1)^{r} g^{(r)}(1)}{r!}\left\{\sum_{i=1}^{k} w_{i} x_{i}^{r}-\frac{B_{r+1}(b)}{r+1}\right\}+O\left(h^{p+1} \log h\right)
\end{align*}
$$

where ζ^{\prime} denotes the derivative of ζ with respect to its first argument.
Proof. This asymptotic expansion is derived from that of Theorem 3.4 by differentiating (27) with respect to γ and evaluating the result at $\gamma=0$.

Corollary 3.8. Suppose the nodes u_{1}, \ldots, u_{j} and weights v_{1}, \ldots, v_{j} satisfy the equations

$$
\begin{align*}
\sum_{i=1}^{j} u_{i} v_{i}^{r} \log v_{i} & =\zeta^{\prime}(-r, a), \\
\sum_{i=1}^{j} u_{i} v_{i}^{r} & =\frac{B_{r+1}(a)}{r+1}, \tag{39}
\end{align*}
$$

and the nodes x_{1}, \ldots, x_{k} and weights w_{1}, \ldots, w_{k} satisfy the equations

$$
\begin{equation*}
\sum_{i=1}^{k} w_{i} x_{i}^{r}=\frac{B_{r+1}(b)}{r+1}, \quad r=0,1, \ldots, 2 k-1 \tag{40}
\end{equation*}
$$

Then $S_{n}^{j k a b}$ is a quadrature rule with error of order $O\left(\min \left\{h^{j+1} \log h, h^{2 k+1}\right\}\right)$ for g, where $g(x)=\phi(x) \log x+\psi(x)$, with $\phi, \psi \in C^{p}([0,1])$ and $p \geq \min \{j, 2 k\}$.
3.3. Improper integrals. For j, n positive integers, we define a linear operator R_{n}^{j} on $C\left([n, \infty)\right.$), depending on nodes x_{1}, \ldots, x_{j} and weights w_{1}, \ldots, w_{j}, by the formula

$$
\begin{equation*}
R_{n}^{j}(g)=\sum_{k=1}^{j} w_{k} g\left(n+x_{k}\right) \tag{41}
\end{equation*}
$$

Theorem 3.9. Suppose $g(x)=e^{i \gamma x} f(x)$, where $\gamma \in \mathbb{R}, \gamma \neq 0$, and $f \in C^{p}([1, \infty))$, and that there exist positive constants $\beta, \alpha_{0}, \ldots, \alpha_{p}$, such that

$$
\begin{equation*}
\left|f^{(r)}(x)\right|<\frac{\alpha_{r}}{x^{\beta+r}} \quad \text { for } x>1, \quad r=0, \ldots, p \tag{42}
\end{equation*}
$$

The asymptotic expansion of $R_{n}^{j}(g)$ as $n \rightarrow \infty$ is given by the formula

$$
\begin{align*}
R_{n}^{j}(g)=\int_{n}^{\infty} g & (x) d x \tag{43}\\
& +e^{i \gamma n} \sum_{r=0}^{p-1} \frac{f^{(r)}(n)}{r!}\left\{\sum_{k=1}^{j} w_{k} x_{k}^{r} e^{i \gamma x_{k}}-r!\left(\frac{i}{\gamma}\right)^{r+1}\right\}+O\left(n^{-p}\right)
\end{align*}
$$

Proof. We integrate by parts repeatedly to obtain

$$
\begin{equation*}
\int_{n}^{\infty} e^{i \gamma x} f(x) d x=e^{i \gamma n} \sum_{r=0}^{p-1}\left(\frac{i}{\gamma}\right)^{r+1} f^{(r)}(n)+\int_{n}^{\infty} e^{i \gamma x}\left(\frac{i}{\gamma}\right)^{p} f^{(p)}(x) d x \tag{44}
\end{equation*}
$$

and in (41) we compute the Taylor expansion of f about $x_{k}=0$ to get

$$
\begin{equation*}
R_{n}^{j}(g)=e^{i \gamma n} \sum_{k=1}^{j} e^{i \gamma x_{k}} w_{k}\left\{\sum_{r=0}^{p-1} \frac{f^{(r)}(n)}{r!} x_{k}^{r}+\frac{f^{(p)}\left(n+\xi_{i} k\right)}{p!} x_{k}{ }^{p}\right\} \tag{45}
\end{equation*}
$$

where ξ_{k} lies between 0 and x_{k} for $k=1, \ldots, j$. Now combining (42), (44), and (45), we obtain (43).

Example. The function f defined by the formula

$$
\begin{equation*}
f(x)=\sum_{r=0}^{\infty} \frac{a_{r}}{x^{\beta+r}} \tag{46}
\end{equation*}
$$

with $\sum\left|a_{r}\right|<\infty$, satisfies the assumptions of Theorem 3.9 for every positive integer p. We remark that Theorem 3.9 can, in some instances, be generalized to $\gamma=0$, but the corresponding asymptotic expansion depends on a more detailed knowledge of f. For f given by (46), for example, the quadrature nodes and weights for $\gamma=0$ depend on β.

Corollary 3.10. Suppose $f \in C^{p}([1, \infty))$, f satisfies (42) for $x \in \mathbb{R}$, and f is analytic in the half-plane $\operatorname{Re}(x)>a$ for some $a \in \mathbb{R}$. Suppose further that v_{1}, \ldots, v_{j} are the roots of the Laguerre polynomial L_{j} of degree j, that coefficients u_{1}, \ldots, u_{j} satisfy the equations

$$
\begin{equation*}
\sum_{k=1}^{j} u_{k} v_{k}^{r} e^{-v_{k}}=r!, \quad r=0,1, \ldots, j-1 \tag{47}
\end{equation*}
$$

and that the operator R_{n}^{j} is defined with nodes $x_{k}=(i / \gamma) v_{k}$ and weights $w_{k}=(i / \gamma) u_{k}$ for $k=1, \ldots, j$. Suppose finally that $\hat{T}_{m}^{j a}$ is defined to be the quadrature rule $T_{m}^{j a}$ with nodes and weights satisfying (22) but translated and scaled to the interval $[1, n]$. Then for $p \geq 2 j$, the expression $\hat{T}_{(n-1) n}^{j a}(g)+R_{n}^{j}(g)$ is an approximation for the integral $\int_{1}^{\infty} g(x) d x$, where $g(x)=e^{i \gamma x} f(x)$, with error of order $O\left(n^{-2 j}\right)$ as $n \rightarrow \infty$.

Proof. This result is just a combination of the quadrature rule of Corollary 3.2, for the interval $[1, n]$, with the asymptotic expansion of Theorem 3.9, for the interval $[n, \infty)$, provided

$$
\begin{equation*}
\sum_{k=1}^{j} u_{k} v_{k}^{r} e^{-v_{k}}=r!, \quad r=0,1, \ldots, 2 j-1 \tag{48}
\end{equation*}
$$

But (48) follows from (47), the equations

$$
\begin{gathered}
r!=\int_{0}^{\infty} x^{r} e^{-x} d x, \quad r=0,1, \ldots \\
\int_{0}^{\infty} L_{j}(x) L_{k}(x) e^{-x} d x=0 \quad \text { for } j \neq k
\end{gathered}
$$

(see, for example, $[15,(6.1 .1)$ and $(22.2 .13)]$), and the fact that Gaussian quadratures, which are exact for polynomials of degree less than twice the number of nodes, have nodes that coincide with the roots of the corresponding orthogonal polynomials (see section 2.4).

We have completed the definition of the new quadratures, along with the demonstration of their asymptotic performance. We shall see that the existence of these rules, which depends on the solvability of the nonlinear systems of equations that define the nodes and weights, is assured by the theory of Chebyshev systems. The uniqueness of the rules is similarly assured. These issues of existence and uniqueness are treated next.

4. Existence and uniqueness.

4.1. Chebyshev systems. Material of this subsection is taken, with minor alterations, from Karlin and Studden [21]. Suppose I is an interval of \mathbb{R}, possibly infinite. A collection of n real-valued continuous functions f_{1}, \ldots, f_{n} defined on I is a Chebyshev system if any linear combination

$$
f(x)=\sum_{i=1}^{n} a_{i} f_{i}(x)
$$

with a_{i} not all zero, has at most $n-1$ zeros on I. This condition is equivalent to the statement that for distinct x_{1}, \ldots, x_{n} in I,

$$
\operatorname{det}\left(\begin{array}{ccc}
f_{1}\left(x_{1}\right) & \cdots & f_{n}\left(x_{1}\right) \tag{49}\\
\vdots & \ddots & \vdots \\
f_{1}\left(x_{n}\right) & \cdots & f_{n}\left(x_{n}\right)
\end{array}\right) \neq 0
$$

The Chebyshev property is a characteristic of the space, rather than the basis: if f_{1}, \ldots, f_{n} is a Chebyshev system, then so is any other basis of $\operatorname{span}\left\{f_{1}, \ldots, f_{n}\right\}$. If u is a continuous, positive function on I, then scaling by u preserves a Chebyshev system. Finally, if u is strictly increasing and continuous on interval J with range I, then $f_{1} \circ u, \ldots, f_{n} \circ u$ is a Chebyshev system on J if and only if f_{1}, \ldots, f_{n} is on I. (Here $f_{i} \circ u$ denotes the composition u followed by f_{i}.)

The best-known example of a Chebyshev system is the set of polynomials

$$
1, x, \ldots, x^{n-1}
$$

on any interval $I \subset \mathbb{R}$. We shall be concerned also with the Chebyshev systems

$$
\begin{gathered}
1, x^{\gamma}, x, x^{\gamma+1}, \ldots, x^{(n-1) / 2}, x^{\gamma+(n-1) / 2} \\
1, \log x, x, x \log x, \ldots, x^{(n-1) / 2}, x^{(n-1) / 2} \log x
\end{gathered}
$$

on $I=(0, a]$, where $\gamma \in \mathbb{R} \backslash \mathbb{Z}$ and $a>0$. These systems are special cases of the system of Müntz functions (see, for example, [22, p. 133])

$$
\begin{equation*}
M=\left\{x^{\gamma_{i}} \log ^{k} x \mid k=0, \ldots, n_{i}-1, i=1, \ldots, j\right\} \tag{50}
\end{equation*}
$$

on $I=(0, \infty)$, where $\gamma_{1}, \ldots, \gamma_{j}$ are distinct real numbers and n_{1}, \ldots, n_{j} are positive integers with $\sum n_{i}=n$. To see this is a Chebyshev system, suppose $f \in \operatorname{span} M$ and use induction in n on $(d / d \log x)\left[f(x) x^{-\gamma_{j}}\right]$, in combination with Rolle's theorem. Another Chebyshev system that will arise is the system

$$
\begin{equation*}
L=\left\{\left(x+\gamma_{i}\right)^{-k} \mid k=1, \ldots, n_{i}, i=1, \ldots, j\right\} \tag{51}
\end{equation*}
$$

on $I=[0, \infty)$, where $\gamma_{1}, \ldots, \gamma_{j}$ are distinct positive real numbers and n_{1}, \ldots, n_{j} are positive integers with $\sum n_{i}=n$. This is indeed a Chebyshev system, for if $f \in \operatorname{span} L$, then the function $f(x) \prod_{i=1}^{j}\left(x+\gamma_{i}\right)^{n_{i}}$ is a polynomial in x of degree $n-1$.

Suppose f_{1}, \ldots, f_{n} is a Chebyshev system on the interval I. The moment space \mathcal{M}_{n} with respect to f_{1}, \ldots, f_{n} is the set

$$
\begin{equation*}
\mathcal{M}_{n}=\left\{\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{R}^{n} \mid c_{i}=\int_{I} f_{i}(x) d \sigma(x), i=1, \ldots, n\right\} \tag{52}
\end{equation*}
$$

where the measure σ ranges over the set of nondecreasing right-continuous functions of bounded variation on I. It can be shown that \mathcal{M}_{n} is the convex cone associated with points in the curve C, where

$$
C=\left\{\left(f_{1}(x), \ldots, f_{n}(x)\right) \mid x \in I\right\}
$$

In other words, \mathcal{M}_{n} can be represented as

$$
\mathcal{M}_{n}=\left\{\mathbf{c}=\sum_{j=1}^{p} \alpha_{j} y_{j} \mid \alpha_{j}>0, y_{j} \in C, j=1, \ldots, p, p \geq 1\right\}
$$

The index $\mathcal{I}(\mathbf{c})$ of a point \mathbf{c} of \mathcal{M}_{n} is the minimum number of points of C that can be used in the representation of \mathbf{c}, under the convention that a point $\left(f_{1}(x), \ldots, f_{n}(x)\right)$ is counted as a half point if x is from the boundary of I and receives a full count otherwise. The index of a quadrature involving x_{1}, \ldots, x_{p} is determined by counting likewise.

Proofs of the next three theorems are somewhat elaborate and are omitted here; they can be found in Karlin and Studden [21].

Theorem 4.1. (See [21, p. 42].) Suppose $I=[a, b]$ is a closed interval. A point $\mathbf{c} \in \mathcal{M}_{n}, \mathbf{c} \neq \mathbf{0}$, is a boundary point of \mathcal{M}_{n} if and only if $\mathcal{I}(\mathbf{c})<n / 2$. Moreover, if σ is a measure corresponding to a boundary point $\mathbf{c} \in \mathcal{M}_{n}$, then there is a unique quadrature

$$
\begin{equation*}
\sum_{i=1}^{p} w_{i} f_{r}\left(x_{i}\right)=\int_{I} f_{r}(x) d \sigma(x), \quad r=1, \ldots, n \tag{53}
\end{equation*}
$$

where $p \leq(n+1) / 2, a \leq x_{1}<x_{2}<\cdots<x_{p} \leq b$, and $w_{i}>0, i=1, \ldots, p$.
Theorem 4.2. (See [21, p. 47].) Suppose $I=[a, b]$ is a closed interval. Any point \mathbf{c} in the interior of \mathcal{M}_{n} satisfies $\mathcal{I}(\mathbf{c})=n / 2$. Moreover, if σ is a measure corresponding to \mathbf{c}, then there are exactly two quadratures

$$
\begin{equation*}
\sum_{i=1}^{p} w_{i} f_{r}\left(x_{i}\right)=\int_{I} f_{r}(x) d \sigma(x), \quad r=1, \ldots, n \tag{54}
\end{equation*}
$$

of index $n / 2$, where $w_{i}>0, i=1, \ldots, p$. In particular, if $n=2 m$, then $p=m$ or $p=m+1$ and

$$
\begin{align*}
& a<x_{1}<x_{2}<\cdots<x_{m}<b \quad \text { or } \tag{55}\\
& a=x_{1}<x_{2}<\cdots<x_{m+1}=b \tag{56}
\end{align*}
$$

if $n=2 m+1$, then $p=m+1$ and

$$
\begin{align*}
& a=x_{1}<x_{2}<\cdots<x_{m+1}<b \quad \text { or } \tag{57}\\
& a<x_{1}<x_{2}<\cdots<x_{m+1}=b . \tag{58}
\end{align*}
$$

Theorem 4.3. (See [21, p. 65].) Let \mathcal{P}_{n} denote the nonnegative linear combinations of functions f_{1}, \ldots, f_{n},

$$
\begin{equation*}
\mathcal{P}_{n}=\left\{f \mid f(x)=\sum_{i=1}^{n} a_{i} f_{i}(x) \text { and } f(x) \geq 0 \text { for all } x \in I\right\} \tag{59}
\end{equation*}
$$

The point $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ is an element of \mathcal{M}_{n} if and only if

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} f_{i} \in \mathcal{P}_{n} \quad \text { implies } \quad \sum_{i=1}^{n} a_{i} c_{i} \geq 0 \tag{60}
\end{equation*}
$$

Moreover, \mathbf{c} is in the interior of \mathcal{M}_{n} if and only if

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} f_{i} \in \mathcal{P}_{n} \quad \text { and } \quad \sum_{i=1}^{n} a_{i}^{2}>0 \quad \text { imply } \quad \sum_{i=1}^{n} a_{i} c_{i}>0 \tag{61}
\end{equation*}
$$

Theorem 4.4. (See [21, p. 106].) Suppose $f_{i}(x)=x^{i-1}$ for $i=1, \ldots$, n, and $I=[a, b]$. If $n=2 m$, then $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ is an element of \mathcal{M}_{n} if and only if the two quadratic forms

$$
\begin{equation*}
\sum_{i, j=1}^{m}\left[c_{i+j}-a c_{i+j-1}\right] \alpha_{i} \alpha_{j} \quad \text { and } \quad \sum_{i, j=1}^{m}\left[b c_{i+j-1}-c_{i+j}\right] \beta_{i} \beta_{j} \tag{62}
\end{equation*}
$$

are nonnegative definite. If $n=2 m+1$, then $\mathbf{c} \in \mathcal{M}_{n}$ if and only if the two quadratic forms

$$
\begin{equation*}
\sum_{i, j=1}^{m+1} c_{i+j-1} \alpha_{i} \alpha_{j} \quad \text { and } \quad \sum_{i, j=1}^{m}\left[(a+b) c_{i+j}-a b c_{i+j-1}-c_{i+j+1}\right] \beta_{i} \beta_{j} \tag{63}
\end{equation*}
$$

are nonnegative definite. Moreover, for either parity of n, \mathbf{c} is in the interior of \mathcal{M}_{n} if and only if the corresponding quadratic forms are both positive definite.

Proof. A theorem of Lukács (see, for example, [19, p. 4]) states that a polynomial f of degree $n-1$ that is nonnegative on $[a, b]$ can be represented in the form

$$
f(x)= \begin{cases}(x-a) p(x)^{2}+(b-x) q(x)^{2}, & n=2 m \tag{64}\\ p(x)^{2}+(b-x)(x-a) q(x)^{2}, & n=2 m+1\end{cases}
$$

where p and q are polynomials such that the degree of each term in (64) does not exceed $n-1$. The combination of (64) and Theorem 4.3 proves the theorem.
4.2. Müntz system quadratures. The systems of (22), (24), (36), and (39) that define the quadrature rules of section 3 are special cases of the system of equations

$$
\begin{align*}
\sum_{m=1}^{\lceil n / 2\rceil} w_{m} x_{m}{ }^{\gamma_{i}} \log ^{k} x_{m}=(-1)^{k+1} \zeta^{(k)}\left(-\gamma_{i}, a\right), & \tag{65}\\
& k=0, \ldots, n_{i}-1, i=1, \ldots, j
\end{align*}
$$

for distinct real numbers $\gamma_{1}, \ldots, \gamma_{j}$ and positive integers n_{1}, \ldots, n_{j} with $\sum n_{i}=n$. Here $\zeta^{(k)}$ denotes the k th derivative of ζ with respect to its first argument. The existence and uniqueness of the solution of (65) follow from the existence and uniqueness of quadratures for Chebyshev systems, once it is established that there is a measure σ_{a} with

$$
\begin{align*}
& \int_{0}^{a} x^{\gamma_{i}} \log ^{k} x d \sigma_{a}(x)=(-1)^{k+1} \zeta^{(k)}\left(-\gamma_{i}, a\right) \tag{66}\\
& k=0, \ldots, n_{i}-1, i=1, \ldots, j
\end{align*}
$$

in other words, that the moment space \mathcal{M}_{n} of the Chebyshev system of Müntz functions

$$
\begin{equation*}
M=\left\{x^{\gamma_{i}} \log ^{k} x \mid k=0, \ldots, n_{i}-1, i=1, \ldots, j\right\} \tag{67}
\end{equation*}
$$

on $(0, a]$ contains the point

$$
\begin{equation*}
\mathbf{c}=\left(-\zeta\left(-\gamma_{1}, a\right), \ldots,(-1)^{n_{j}} \zeta^{\left(n_{j}-1\right)}\left(-\gamma_{j}, a\right)\right) \tag{68}
\end{equation*}
$$

We will show that this condition is satisfied provided that a is sufficiently large. It would be convenient to have tight bounds for a, in particular for systems (22), (24), (36), and (39), but it appears that such bounds are difficult to obtain. Even for the regular cases (22) and (24), where by Theorem 4.4 the existence of σ_{a} is equivalent to the positive definiteness of two matrices, precise bounds for arbitrary j appear difficult. (Numerical examples below provide evidence that a / j may be chosen as small as 5/6.)

ThEOREM 4.5. Suppose $\gamma_{1}, \ldots, \gamma_{j}$ are distinct real numbers, each greater than -1 , and n_{1}, \ldots, n_{j} are positive integers with $\sum n_{i}=n$. Then for sufficiently large a, there exists a measure σ_{a} such that the system of (66) is satisfied and \mathbf{c} defined by (68) is in the interior of the moment space \mathcal{M}_{n}.

Proof. We construct a continuous weight function σ_{a}^{\prime} satisfying (66) and show that for sufficiently large $a, \sigma_{a}^{\prime}(x)$ is positive for $x \in[0, a]$.

We linearly combine the equations of (66) to obtain the equivalent system

$$
\begin{align*}
& \int_{0}^{a}(x / a)^{\gamma_{i}} \log ^{k}(x / a) d \sigma_{a}(x)=(-1)^{k+1} \sum_{r=0}^{k}\binom{k}{r} \frac{\zeta^{(r)}\left(-\gamma_{i}, a\right)}{a^{\gamma_{i}}} \log ^{k-r} a \tag{69}\\
& k=0, \ldots, n_{i}-1, i=1, \ldots, j
\end{align*}
$$

where we have used the binomial theorem to expand $\log ^{k}(x / a)=(\log x-\log a)^{k}$. We define the weight σ_{a}^{\prime} by the formula

$$
\begin{equation*}
\sigma_{a}^{\prime}(x)=\sum_{m=0}^{n-1} \alpha_{m, a}(x / a)^{m} \tag{70}
\end{equation*}
$$

and combine (69), (70), and the equalities

$$
\int_{0}^{1} x^{\gamma} \log ^{k} x d x=\frac{(-1)^{k} k!}{(1+\gamma)^{k+1}}, \quad \gamma>-1, k=0,1, \ldots
$$

to obtain the equations in $\alpha_{0, a}, \ldots, \alpha_{n-1, a}$,

$$
\begin{align*}
& \sum_{m=0}^{n-1} \frac{\alpha_{m, a}(-1)^{k} k!}{\left(1+\gamma_{i}+m\right)^{k+1}}=(-1)^{k+1} \sum_{r=0}^{k}\binom{k}{r} \frac{\zeta^{(r)}\left(-\gamma_{i}, a\right)}{a^{1+\gamma_{i}}} \log ^{k-r} a \tag{71}\\
& k=0, \ldots, n_{i}-1, i=1, \ldots, j
\end{align*}
$$

This n-dimensional linear system is nonsingular, since the set of functions

$$
\left\{\left(x+\gamma_{i}+1\right)^{-k} \mid k=1, \ldots, n_{i}, i=1, \ldots, j\right\}
$$

forms a Chebyshev system on $[0, \infty)$, as established at (51). Thus (71) possesses a unique solution $\alpha_{0, a}, \ldots, \alpha_{n-1, a}$.

We now determine

$$
\begin{equation*}
\alpha_{m}=\lim _{a \rightarrow \infty} \alpha_{m, a}, \quad m=0, \ldots, n-1 \tag{72}
\end{equation*}
$$

The asymptotic expansion of $\zeta^{(r)}\left(-\gamma_{i}, a\right)$ as $a \rightarrow \infty$ can be derived by differentiating (10); the first several terms are given by

$$
\begin{equation*}
\zeta^{(r)}\left(-\gamma_{i}, a\right)=a^{1+\gamma_{i}} \sum_{l=0}^{r}\binom{r}{l} \frac{(-1)^{l+1}(r-l)!\log ^{l} a}{\left(1+\gamma_{i}\right)^{r-l+1}}+O\left(a^{\gamma_{i}} \log ^{r} a\right) \tag{73}
\end{equation*}
$$

Combining (71) and (73), changing the order of summation, and twice applying the product differentiation rule

$$
\frac{d^{r}}{d \gamma^{r}}(f(\gamma) g(\gamma))=\sum_{s=0}^{r}\binom{r}{s} f^{(s)}(\gamma) g^{(r-s)}(\gamma)
$$

we obtain

$$
\sum_{m=0}^{n} \frac{\alpha_{m}(-1)^{k} k!}{\left(1+\gamma_{i}+m\right)^{k+1}}=\frac{(-1)^{k} k!}{\left(1+\gamma_{i}\right)^{k+1}}, \quad k=0, \ldots, n_{i}-1, i=1, \ldots, j
$$

which immediately reduces to

$$
\alpha_{m}= \begin{cases}1, & m=0 \tag{74}\\ 0, & m=1, \ldots, n-1\end{cases}
$$

The combination of (70), (72), and (74) gives

$$
\lim _{a \rightarrow \infty} \sigma_{a}^{\prime}(a x)=1, \quad x \in[0,1]
$$

which implies that for a sufficiently large, $\sigma_{a}^{\prime}(x)>0$ for $x \in[0, a]$. The point \mathbf{c} defined by (68) is in the interior of \mathcal{M}_{n}, since small perturbations of \mathbf{c} will preserve the positivity of σ_{a}^{\prime}.

Theorem 4.2 ensures the existence of Gaussian quadratures for a Chebyshev system f_{1}, \ldots, f_{n} defined on an interval I, under the assumption that I is closed, whereas the system M of (67) is Chebyshev on $I=(0, a]$. As a consequence, we require the following result.

THEOREM 4.6. Suppose the collection of functions f_{1}, \ldots, f_{n} forms a Chebyshev system on $I=(a, b]$ and each is integrable on $[a, b]$ with respect to a measure σ corresponding to a point \mathbf{c} in the interior of \mathcal{M}_{n}. Then there exists a unique quadrature

$$
\begin{equation*}
\sum_{i=1}^{p} w_{i} f_{r}\left(x_{i}\right)=\int_{a}^{b} f_{r}(x) d \sigma(x), \quad r=1, \ldots, n \tag{75}
\end{equation*}
$$

of index $n / 2$, where $w_{i}>0$ and $x_{i} \in I, i=1, \ldots, p$. In particular, if $n=2 m$, then $p=m$ and

$$
\begin{equation*}
a<x_{1}<x_{2}<\cdots<x_{m}<b \tag{76}
\end{equation*}
$$

if $n=2 m+1$, then $p=m+1$ and

$$
\begin{equation*}
a<x_{1}<x_{2}<\cdots<x_{m+1}=b \tag{77}
\end{equation*}
$$

Proof. The Chebyshev property implies that there exists δ with $a<\delta<b$ such that f_{i} is nonzero on $(a, \delta], i=1, \ldots, n$. We define the function u on I by the formula

$$
u(x)= \begin{cases}\max _{i=1, \ldots, n}\left|f_{i}(x)\right|, & x \in(a, \delta], \\ u(\delta), & x \in(\delta, b],\end{cases}
$$

and observe that u is continuous and positive on I and integrable on $[a, b]$ with respect to σ. Now we define functions g_{1}, \ldots, g_{n} on $[a, b]$ by the formula

$$
g_{i}(x)=\left\{\begin{array}{ll}
\frac{f_{i}(x)}{u(x)}, & x \in(a, b], \\
\lim _{x \rightarrow a} g_{i}(x), & x=a,
\end{array} \quad i=1, \ldots, n\right.
$$

The system g_{1}, \ldots, g_{n} is a Chebyshev system on $[a, b]$ and is integrable with respect to the measure $\int_{a}^{x} u(t) d \sigma(t)$. Theorem 4.2 therefore is applicable and ensures the existence of exactly two quadratures of index $n / 2$ for the interval $[a, b]$, one of which includes the point $x_{1}=a$. Our assumption $x_{i} \in(a, b]$ excludes this case and we are left with the single quadrature presented in (76) and (77).

The next theorem, which is the principal analytical result of this section, follows directly from Theorems 4.5 and 4.6. The existence and uniqueness of the quadratures defined in section 3 follow from it. It also hints at the existence of somewhat more general quadratures, for singularities of the form $x^{\gamma} \log ^{k} x$, but we do not evaluate these here.

Theorem 4.7. Suppose $\gamma_{1}, \ldots, \gamma_{j}$ are distinct real numbers, each greater than -1 , and n_{1}, \ldots, n_{j} are positive integers with $\sum n_{i}=n$. For sufficiently large a, the system of equations

$$
\begin{align*}
\sum_{m=1}^{\lceil n / 2\rceil} w_{m} x_{m}{ }^{\gamma_{i}} \log ^{k} x_{m}=(-1)^{k+1} \zeta^{(k)}\left(-\gamma_{i}, a\right), & \tag{78}\\
& k=0, \ldots, n_{i}-1, i=1, \ldots, j,
\end{align*}
$$

has a unique solution $w_{1}, \ldots, w_{\lceil n / 2\rceil}, x_{1}, \ldots, x_{\lceil n / 2\rceil}$ satisfying $w_{i}>0$ for $i=1, \ldots$, $\lceil n / 2\rceil$ and $0<x_{1}<\cdots<x_{\lceil n / 2\rceil} \leq a$, with $x_{\lceil n / 2\rceil}=a$ if n is odd.
5. Computation of the nodes and weights. The nodes and weights of the quadratures defined in section 3 are computed by numerically solving the nonlinear systems (22), (24), (36), and (39). Conventional techniques for this problem either are overly cumbersome or converge too slowly to be practical. Recently, Ma, Rokhlin, and Wandzura [14] addressed this need by developing a practical numerical algorithm that is effective in a fairly general setting. They construct a simplified Newton's method and combine it with a continuation (homotopy) method. We present their method in an abbreviated form in section 5.2; the reader is referred to [14] for more detail.

The systems for regular integrands, however, can be solved even more simply, as we see next.
5.1. Regular integrands. The classical theory of Gaussian quadratures for polynomials, summarized in section 2.4 , can be exploited to solve (22) and (24). In particular, suppose that p_{0}, \ldots, p_{j} are the orthogonal polynomials on $[0, a]$, given by
the recurrence (13)-(14), under the assumption that

$$
\int_{0}^{a} x^{r} \omega(x) d x=\frac{B_{r+1}(a)}{r+1}, \quad r=0, \ldots, 2 j-1
$$

Then the roots x_{1}, \ldots, x_{j} of p_{j} and the corresponding Christoffel numbers w_{1}, \ldots, w_{j} satisfy (22). The polynomials p_{1}, \ldots, p_{j} can be calculated in symbolic form; their coefficients are rational if a is rational. The roots of p_{j} can be computed by Newton iteration and the Christoffel numbers can be obtained using (16). Similar treatment can be applied to the system (24) containing an odd number of equations, using the interval $[0, a-1]$, under the assumption

$$
\int_{0}^{a-1} x^{r} \tau(x) d x=\frac{B_{r+1}(a)}{r+1}, \quad r=0, \ldots, 2 j-2
$$

The Gauss-Radau quadrature is computed using the formula (18) for the modified Christoffel numbers. For these tasks it is convenient to use a software system that can manipulate polynomials with full-precision rational coefficients. The author implemented code for these computations in Pari/GP [23].

It should be noted that the proposed procedure is suitable for relatively small values of j (less than, say, 20). It is neither very efficient nor very stable, but it was quite adequate for our purposes. (Unlike the situation for standard Gaussian quadratures, where the number of nodes depends on the size of the problem, here j depends only on the desired order of convergence.) If it is required to compute the nodes and weights of (22) or (24) for large j, the reader may consider numerical schemes for Gaussian quadrature proposed by other authors, for example, that of Gautschi [24] or Golub and Welsch [25].
5.2. Singular integrands. The systems (36) and (39) for singular integrands cannot be solved using methods for standard Gaussian quadrature, since the nodes to be computed do not coincide with the roots of any closely related orthogonal polynomials. We employ instead the algorithm for such systems developed by Ma, Rokhlin, and Wandzura [14], which we now describe.

A collection of $2 n$ real-valued continuously differentiable functions $f_{1}, \ldots, f_{2 n}$ defined on an interval $I=[a, b]$ is a Hermite system if

$$
\operatorname{det}\left(\begin{array}{cccc}
f_{1}\left(x_{1}\right) & f_{2}\left(x_{1}\right) & \cdots & f_{2 n}\left(x_{1}\right) \tag{79}\\
f_{1}^{\prime}\left(x_{1}\right) & f_{2}^{\prime}\left(x_{1}\right) & \cdots & f_{2 n}^{\prime}\left(x_{1}\right) \\
f_{1}\left(x_{2}\right) & f_{2}\left(x_{2}\right) & \cdots & f_{2 n}\left(x_{2}\right) \\
f_{1}^{\prime}\left(x_{2}\right) & f_{2}^{\prime}\left(x_{2}\right) & \cdots & f_{2 n}^{\prime}\left(x_{2}\right) \\
\vdots & \vdots & & \vdots \\
f_{1}\left(x_{n}\right) & f_{2}\left(x_{n}\right) & \cdots & f_{2 n}\left(x_{n}\right) \\
f_{1}^{\prime}\left(x_{n}\right) & f_{2}^{\prime}\left(x_{n}\right) & \cdots & f_{2 n}^{\prime}\left(x_{n}\right)
\end{array}\right) \neq 0
$$

for any choice of distinct x_{1}, \ldots, x_{n} on I. A Hermite system that is also a Chebyshev system is an extended Hermite system. The following theorem is a direct consequence of the definition; the proofs of the subsequent two theorems are contained in [14].

Theorem 5.1. Suppose that the functions $f_{1}, \ldots, f_{2 n}$ constitute a Hermite system on the interval $[a, b]$ and x_{1}, \ldots, x_{n} are n distinct points on $[a, b]$. Then there exist unique coefficients $\alpha_{i j}, \beta_{i j}, i=1, \ldots, n, j=1, \ldots, 2 n$, such that

$$
\begin{array}{ll}
\sigma_{i}\left(x_{k}\right)=0, & \eta_{i}\left(x_{k}\right)=\delta_{i k} \\
\sigma_{i}^{\prime}\left(x_{k}\right)=\delta_{i k}, & \eta_{i}^{\prime}\left(x_{k}\right)=0 \tag{81}
\end{array}
$$

for $i=1, k=1, \ldots, n$, where the functions σ_{i}, η_{i} are defined by the formulae

$$
\begin{align*}
\sigma_{i}(x) & =\sum_{j=1}^{2 n} \alpha_{i j} f_{j}(x) \tag{82}\\
\eta_{i}(x) & =\sum_{j=1}^{2 n} \beta_{i j} f_{j}(x) \tag{83}
\end{align*}
$$

for $i=1, \ldots, n$.
Theorem 5.2. (See [14, p. 979].) Suppose that the functions $f_{1}, \ldots, f_{2 n}$ constitute a Hermite system on $[a, b]$. Suppose further that $S \subset[a, b]^{n}$ is the set of points with distinct coordinates x_{1}, \ldots, x_{n}. Suppose finally that the mapping $F: S \rightarrow \mathbb{R}^{n}$ is defined by the formula

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{n}\right)=\left(\int_{a}^{b} \sigma_{1}(x) \omega(x) d x, \ldots, \int_{a}^{b} \sigma_{n}(x) \omega(x) d x\right) \tag{84}
\end{equation*}
$$

with the functions $\sigma_{1}, \ldots, \sigma_{n}$ defined by (80)-(82). Then x_{1}, \ldots, x_{n} are the Gaussian nodes for the system of functions $f_{1}, \ldots, f_{2 n}$ with respect to the weight ω if and only if $F\left(x_{1}, \ldots, x_{n}\right)=\mathbf{0}$.

THEOREM 5.3. (See [14, p. 983].) Suppose that the functions $f_{1}, \ldots, f_{2 n}$ are an extended Hermite system on $[a, b], S \subset[a, b]^{n}$ is the set of points with distinct coordinates, and the mapping $G: S \rightarrow \mathbb{R}^{n}$ is defined by the formula

$$
\begin{equation*}
G\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}+\frac{\int_{a}^{b} \sigma_{1}(x) \omega(x) d x}{\int_{a}^{b} \eta_{1}(x) \omega(x) d x}, \ldots, x_{n}+\frac{\int_{a}^{b} \sigma_{n}(x) \omega(x) d x}{\int_{a}^{b} \eta_{n}(x) \omega(x) d x}\right) \tag{85}
\end{equation*}
$$

with the functions $\sigma_{1}, \ldots, \sigma_{n}$ and $\eta_{1}, \ldots, \eta_{n}$ defined by (80)-(83). Suppose further that $f_{i} \in C^{3}((a, b))$ for $i=1, \ldots, 2 n$ and the function F is defined by (84). Suppose finally that \mathbf{x}^{*} is the unique zero of F, that \mathbf{x}_{0} is an arbitrary point of S, and that the sequence $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ is defined by the formula

$$
\begin{equation*}
\mathbf{x}_{i+1}=G\left(x_{i}\right), \quad i=0,1, \ldots \tag{86}
\end{equation*}
$$

Then there exists $\epsilon>0$ and $\alpha>0$ such that the sequence $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ generated by (86) converges to \mathbf{x}^{*} and

$$
\begin{equation*}
\left\|\mathbf{x}_{i+1}-\mathbf{x}^{*}\right\| \leq \alpha\left\|\mathbf{x}_{i}-\mathbf{x}^{*}\right\|^{2} \tag{87}
\end{equation*}
$$

for any initial point \mathbf{x}_{0} such that $\left\|\mathbf{x}_{0}-\mathbf{x}^{*}\right\|<\epsilon$.
The key feature of this theorem is the quadratic convergence indicated by (87). The solution \mathbf{x}^{*} is obtained by an iterative procedure; each step consists of computing the coefficients that determine $\sigma_{1}, \ldots, \sigma_{n}$ and $\eta_{1}, \ldots, \eta_{n}$ by inverting the matrix of (79) then computing the integrals that define G by taking linear combinations, using these coefficients, of integrals of $f_{1}, \ldots, f_{2 n}$. Theorem 5.3 ensures that with appropriate choice of starting value \mathbf{x}_{0}, convergence is rapid and certain.

For quadrature nodes $\mathbf{x}^{*}=\left(x_{1}, \ldots, x_{n}\right)$, the quadrature weights are given by the integrals of η_{i}, namely,

$$
\begin{equation*}
\left(w_{1}, \ldots, w_{n}\right)=\left(\int_{a}^{b} \eta_{1}(x) \omega(x) d x, \ldots, \int_{a}^{b} \eta_{n}(x) \omega(x) d x\right) \tag{88}
\end{equation*}
$$

We note that Theorems 5.1-5.3 concern Gaussian quadratures with n nodes and weights to integrate $2 n$ functions on the interval $[a, b]$ exactly. For Gauss-Radau quadratures, in which node $x_{n}=b$ is fixed and $2 n-1$ functions are integrated exactly, only a slight change is required. In particular, functions $\sigma_{1}, \ldots, \sigma_{n-1}$ (without σ_{n}) and $\eta_{1}, \ldots, \eta_{n}$ are defined as before by (80)-(83), except that the summations in (82) and (83) exclude $f_{2 n}$. Their coefficients $\alpha_{i j}, i=1, \ldots, n-1, j=1, \ldots, 2 n-1$, and $\beta_{i j}, i=1, \ldots, n, j=1, \ldots, 2 n-1$, are obtained by inverting the matrix which results from removing the last row and column from the matrix of (79). The revised mapping $G: S \rightarrow \mathbb{R}^{n-1}$ has $n-1$ components defined as the first $n-1$ components in (85). Finally, as before, the quadrature weights are given by (88).

In order to obtain a sufficiently good starting estimate for the solution of $F(\mathbf{x})=0$, a continuation procedure can be used, as outlined in the following theorem.

Theorem 5.4. (See, for example, [14, p. 975].) Suppose that $\mathbf{F}:[0,1] \times$ $[a, b]^{n} \rightarrow \mathbb{R}^{n}$ is a function with a unique solution \mathbf{x}_{t} to the equation $\mathbf{F}(t, \mathbf{x})=\mathbf{0}$ for all $t \in[0,1]$, suppose that \mathbf{x}_{t} is a continuous function of t, and suppose that $\mathbf{F}(1, \mathbf{x})=F(\mathbf{x})$. Finally, suppose \mathbf{x}_{0} is given and for some $\delta>0$ there is a procedure \mathbf{P} to compute \mathbf{x}_{t} for $t \in[0,1]$, given an estimate $\tilde{\mathbf{x}}_{t}$ with $\left|\tilde{\mathbf{x}}_{t}-\mathbf{x}_{t}\right|<\delta$. Then there exists a positive integer m such that the following procedure can be used to compute the solution of $F(\mathbf{x})=\mathbf{0}$:

For $i=1, \ldots, m$, use \mathbf{P} to compute $\mathbf{x}_{i / m}$, given the estimate $\mathbf{x}_{(i-1) / m}$.
The required solution of $F(\mathbf{x})=\mathbf{0}$ is \mathbf{x}_{1}.
More typically, of course, δ and any bound on $\left|\mathbf{x}_{t+\epsilon}-\mathbf{x}_{t}\right| / \epsilon$ depend on t and in a practical implementation the step size is chosen adaptively.

To compute the solutions of (36) and (39), it is effective to use a continuation procedure with respect to both j and a. Solutions for the first few values of j are readily obtained without requiring good initial estimates. Given a solution of (36) for the interval $[0, a]$ with nodes u_{1}, \ldots, u_{j} and weights v_{1}, \ldots, v_{j}, we choose an initial estimate $\tilde{u}_{1}, \ldots, \tilde{u}_{j+1}, \tilde{v}_{1}, \ldots, \tilde{v}_{j+1}$ for $j+1$ and the interval $[0, a+1]$ defined by the formulae

$$
\tilde{u}_{i}=\left\{\begin{array}{ll}
u_{i}, & i=1, \ldots, j, \tag{89}\\
a, & i=j+1,
\end{array} \quad \tilde{v}_{i}= \begin{cases}v_{i}, & i=1, \ldots, j \\
1, & i=j+1\end{cases}\right.
$$

This choice exactly satisfies the equations

$$
\begin{array}{r}
\sum_{i=1}^{j+1} \tilde{u}_{i} \tilde{v}_{i}^{\gamma+r}=-\zeta(-\gamma-r, a+1), \quad r=0,1, \ldots, j-1 \tag{90}\\
\sum_{i=1}^{j+1} \tilde{u}_{i} \tilde{v}_{i}^{r}=\frac{B_{r+1}(a+1)}{r+1}, \quad r=0,1, \ldots, j-1
\end{array}
$$

as follows immediately from the difference formula (4) for B_{n} and (11) for ζ, but the corresponding equations for $r=j$ are not satisfied. Those equations are approximately satisfied, however, and we can start with the actual values of the sums for $r=j$ as the required values. These are then varied continuously, obtaining the corresponding solutions, until they coincide with the intended values $-\zeta(-\gamma-j, a+1)$ and $B_{j+1}(a+1) /(j+1)$. This procedure can be used without alteration for (39).

Once the solution for $j+1$ and the interval $[0, a+1]$ is obtained, a can be continuously varied, in a continuation procedure, to obtain solutions for different intervals.

Table 1
The minimum value of a, as a function of j, such that the point $\left(B_{1}(a) / 1, \ldots, B_{j}(a) / j\right)$ is in the moment space $\mathcal{M}_{2 j}$ of the polynomials $1, x, \ldots, x^{2 j-1}$ on the interval $[0, a]$. The moment space is defined at (52).

j	$\min a$						
1	0.78868	5	3.96696	9	7.21081	13	10.47885
2	1.57085	6	4.77448	10	8.02618	14	11.29815
3	2.36347	7	5.58463	11	8.84274	15	12.11815
4	3.16288	8	6.39687	12	9.66035	16	12.93878

6. Numerical examples. The procedures described in section 5 were implemented in Pari/GP [23] for both the regular cases and the singular cases. The matrix in (79), which must be inverted, is very poorly conditioned for many choices of n, x_{1}, \ldots, x_{n}, and $f_{1}, \ldots, f_{2 n}$. This difficulty was met by using the extended precision capability of Pari/GP.
6.1. Nodes and weights. The nodes and weights of (22), (24), (36), and (39) that determine the quadratures of section 3 were computed for a range of values of the parameter j. For each choice of j, a was chosen, by experiment, to be the smallest integer leading to positive nodes and weights (see Theorem 4.7). For the regular case (22), the characterization expressed in Theorem 4.4 was used to determine the minimum value of $a \in \mathbb{R}$, for $j=1, \ldots, 16$, that satisfies $\mathbf{c}=\left(B_{1}(a) / 1, \ldots, B_{j}(a) / j\right) \in \mathcal{M}_{2 j}$. In particular, we obtained the minimum value of a such that the quadratic forms in (62) are nonnegative definite. This determination was made by calculating the determinant of each corresponding matrix symbolically and solving for the largest root of the resulting polynomial in a. These values are given in Table 1. This evidence suggests that $\lim _{j \rightarrow \infty} j^{-1} \min a$ exists and is roughly $5 / 6$, meaning that the number of trapezoidal nodes displaced is less than the number of Gaussian nodes replacing them, for quadrature rules of all orders. This relationship also appears to hold, to an even greater extent, for the singular cases.

The values of selected nodes and weights, for the regular cases and for singularities $x^{-1 / 2}$ and $\log x$, are presented in an appendix. Of particular simplicity are the first two rules for regular integrands,

$$
\begin{equation*}
T_{n}^{1,1}(f)=h\left[\frac{1}{2} f(h / 6)+f(h)+\cdots+f(1-h)+\frac{1}{2} f(1-h / 6)\right] \tag{91}
\end{equation*}
$$

where $h=1 /(n+1)$, for $n=0,1, \ldots$, and

$$
\begin{align*}
T_{n}^{2,2}(f)=h\left[\frac{25}{48} f(h / 5)+\frac{47}{48} f(h)\right. & +f(2 h)+\cdots \tag{92}\\
& \left.+f(1-2 h)+\frac{47}{48} f(1-h)+\frac{25}{48} f(1-h / 5)\right],
\end{align*}
$$

where $h=1 /(n+3)$, for $n=0,1, \ldots$ These rules are of third- and fourth-order convergence, respectively. The first is noteworthy for having the same weights as, but higher order than, the trapezoidal rule; the second has asymptotic error $1 / 4$ that of Simpson's rule with the same number of nodes.

The lowest-order rule presented for logarithmic singularities,

$$
\begin{equation*}
S_{n}^{1,1,1,1}(g)=h\left[\frac{1}{2} g(h /(2 \pi))+g(h)+\cdots+g(1-h)+\frac{1}{2} g(1)\right] \tag{93}
\end{equation*}
$$

Table 2
Relative errors in the computation of the integral in (94), for the regular case $s(x)=0$. Quadrature rules with convergence of order $2,4,8,16$, and 32 were used with various numbers $m=n+2 j$ of nodes. Here $f=m /(200 / \pi)$ is the oversampling factor.

m	f	2	4	8	16	32
70	1.10	$0.622 \mathrm{D}+00$	$0.114 \mathrm{D}-01$	$0.382 \mathrm{D}-02$	$0.170 \mathrm{D}-05$	$0.234 \mathrm{D}-10$
80	1.26	$0.488 \mathrm{D}+00$	$0.938 \mathrm{D}-02$	$0.184 \mathrm{D}-02$	$0.354 \mathrm{D}-06$	$0.115 \mathrm{D}-11$
90	1.41	$0.391 \mathrm{D}+00$	$0.744 \mathrm{D}-02$	$0.934 \mathrm{D}-03$	$0.841 \mathrm{D}-07$	$0.720 \mathrm{D}-13$
100	1.57	$0.321 \mathrm{D}+00$	$0.584 \mathrm{D}-02$	$0.498 \mathrm{D}-03$	$0.223 \mathrm{D}-07$	$0.192 \mathrm{D}-14$
115	1.81	$0.246 \mathrm{D}+00$	$0.408 \mathrm{D}-02$	$0.211 \mathrm{D}-03$	$0.365 \mathrm{D}-08$	$0.331 \mathrm{D}-14$
130	2.04	$0.194 \mathrm{D}+00$	$0.289 \mathrm{D}-02$	$0.964 \mathrm{D}-04$	$0.715 \mathrm{D}-09$	$0.331 \mathrm{D}-14$
145	2.28	$0.157 \mathrm{D}+00$	$0.209 \mathrm{D}-02$	$0.472 \mathrm{D}-04$	$0.162 \mathrm{D}-09$	$0.471 \mathrm{D}-14$
160	2.51	$0.129 \mathrm{D}+00$	$0.154 \mathrm{D}-02$	$0.245 \mathrm{D}-04$	$0.415 \mathrm{D}-10$	$0.262 \mathrm{D}-14$
180	2.83	$0.102 \mathrm{D}+00$	$0.106 \mathrm{D}-02$	$0.110 \mathrm{D}-04$	$0.794 \mathrm{D}-11$	$0.471 \mathrm{D}-14$
200	3.14	$0.832 \mathrm{D}-01$	$0.747 \mathrm{D}-03$	$0.531 \mathrm{D}-05$	$0.177 \mathrm{D}-11$	$0.331 \mathrm{D}-14$
230	3.61	$0.631 \mathrm{D}-01$	$0.465 \mathrm{D}-03$	$0.199 \mathrm{D}-05$	$0.235 \mathrm{D}-12$	$0.523 \mathrm{D}-15$
260	4.08	$0.495 \mathrm{D}-01$	$0.303 \mathrm{D}-03$	$0.828 \mathrm{D}-06$	$0.375 \mathrm{D}-13$	$0.384 \mathrm{D}-14$

TABLE 3
Relative errors for the singular case $s(x)=x^{-1 / 2}$, for various numbers $m=n+j+k$ of nodes and orders of convergence.

m	f	2	4	8	16
70	1.10	$0.692 \mathrm{D}-01$	$0.519 \mathrm{D}-01$	$0.850 \mathrm{D}-02$	$0.163 \mathrm{D}-03$
80	1.26	$0.925 \mathrm{D}-01$	$0.258 \mathrm{D}-01$	$0.260 \mathrm{D}-02$	$0.578 \mathrm{D}-05$
90	1.41	$0.921 \mathrm{D}-01$	$0.133 \mathrm{D}-01$	$0.698 \mathrm{D}-03$	$0.667 \mathrm{D}-06$
100	1.57	$0.838 \mathrm{D}-01$	$0.717 \mathrm{D}-02$	$0.146 \mathrm{D}-03$	$0.277 \mathrm{D}-06$
115	1.81	$0.686 \mathrm{D}-01$	$0.307 \mathrm{D}-02$	$0.201 \mathrm{D}-04$	$0.360 \mathrm{D}-07$
130	2.04	$0.550 \mathrm{D}-01$	$0.144 \mathrm{D}-02$	$0.269 \mathrm{D}-04$	$0.437 \mathrm{D}-08$
145	2.28	$0.441 \mathrm{D}-01$	$0.724 \mathrm{D}-03$	$0.171 \mathrm{D}-04$	$0.557 \mathrm{D}-09$
160	2.51	$0.357 \mathrm{D}-01$	$0.389 \mathrm{D}-03$	$0.964 \mathrm{D}-05$	$0.733 \mathrm{D}-10$
180	2.83	$0.273 \mathrm{D}-01$	$0.186 \mathrm{D}-03$	$0.440 \mathrm{D}-05$	$0.408 \mathrm{D}-11$
200	3.14	$0.212 \mathrm{D}-01$	$0.976 \mathrm{D}-04$	$0.207 \mathrm{D}-05$	$0.218 \mathrm{D}-12$
230	3.61	$0.151 \mathrm{D}-01$	$0.427 \mathrm{D}-04$	$0.724 \mathrm{D}-06$	$0.130 \mathrm{D}-12$
260	4.08	$0.110 \mathrm{D}-01$	$0.215 \mathrm{D}-04$	$0.280 \mathrm{D}-06$	$0.201 \mathrm{D}-13$

approximates $\int_{0}^{1} g(x) d x$ with error of order $O\left(h^{2} \log h\right)$ for $g(x)=\phi(x) \log x+\psi(x)$, provided ϕ and ψ are regular functions on $[0,1]$. The corresponding rule for the singularity $x^{-1 / 2}$ is not quite as simple, for there the quantity 2π in (93) is replaced with $4 \zeta(1 / 2)^{2}$.
6.2. Quadrature performance. To demonstrate the performance of the quadrature rules, they were used in a Fortran routine (with real*8 arithmetic) to numerically compute the integrals

$$
\begin{equation*}
\int_{0}^{1}[\cos (200 x) s(x)+\cos (200 x+.3)] d x \tag{94}
\end{equation*}
$$

for the functions $s(x)=0, s(x)=x^{-1 / 2}$, and $s(x)=\log x$. These integrals were also obtained analytically and the relative error of the quadratures was computed. The numerical integrations were computed for various orders of quadrature and various numbers of nodes. Minimum sampling was taken to be two points per period of the cosine (i.e., $200 / \pi \approx 63.7$ quadrature nodes). The accuracies were then compared for various degrees of oversampling. The quadrature errors are listed in Tables 2-4 and plotted, as a function of oversampling factor, in Figure 1. We note that the graphs are

Table 4
Relative errors for the singular case $s(x)=\log x$. Here the error is of order $O\left(h^{l} \log h\right)$, where l is shown.

m	f	2	4	8	16
70	1.10	$0.369 \mathrm{D}+00$	$0.217 \mathrm{D}-01$	$0.354 \mathrm{D}-01$	$0.243 \mathrm{D}-03$
80	1.26	$0.271 \mathrm{D}+00$	$0.238 \mathrm{D}-02$	$0.328 \mathrm{D}-02$	$0.487 \mathrm{D}-04$
90	1.41	$0.206 \mathrm{D}+00$	$0.765 \mathrm{D}-02$	$0.707 \mathrm{D}-03$	$0.394 \mathrm{D}-05$
100	1.57	$0.162 \mathrm{D}+00$	$0.768 \mathrm{D}-02$	$0.687 \mathrm{D}-03$	$0.121 \mathrm{D}-05$
115	1.81	$0.117 \mathrm{D}+00$	$0.576 \mathrm{D}-02$	$0.291 \mathrm{D}-03$	$0.886 \mathrm{D}-07$
130	2.04	$0.882 \mathrm{D}-01$	$0.398 \mathrm{D}-02$	$0.120 \mathrm{D}-03$	$0.903 \mathrm{D}-08$
145	2.28	$0.687 \mathrm{D}-01$	$0.272 \mathrm{D}-02$	$0.548 \mathrm{D}-04$	$0.123 \mathrm{D}-08$
160	2.51	$0.549 \mathrm{D}-01$	$0.188 \mathrm{D}-02$	$0.272 \mathrm{D}-04$	$0.177 \mathrm{D}-09$
180	2.83	$0.421 \mathrm{D}-01$	$0.119 \mathrm{D}-02$	$0.118 \mathrm{D}-04$	$0.965 \mathrm{D}-11$
200	3.14	$0.332 \mathrm{D}-01$	$0.774 \mathrm{D}-03$	$0.550 \mathrm{D}-05$	$0.956 \mathrm{D}-12$
230	3.61	$0.243 \mathrm{D}-01$	$0.433 \mathrm{D}-03$	$0.196 \mathrm{D}-05$	$0.398 \mathrm{D}-12$
260	4.08	$0.185 \mathrm{D}-01$	$0.258 \mathrm{D}-03$	$0.778 \mathrm{D}-06$	$0.106 \mathrm{D}-12$

Fig. 1. The relative errors of the quadratures, shown in Tables 2-4, are plotted using logarithmic scaling on both axes.
nearly straight lines (until the limit of machine precision is reached), as predicted from the theoretical convergence rates. We remark also that excellent accuracy is attained for even quite modest oversampling when quadratures with high-order convergence are employed. For problems where the number of quadrature nodes is the major cost factor, therefore, one may benefit by using the high-order quadratures even for modest accuracy requirements.

Table 5
Relative errors in the computation of the integral in (95), for $\xi=1$. Quadrature rules defined in Corollary 3.10 with $j=1,2,4,8$, and 16 were used with various numbers m of nodes.

m	1	2	4	8	16
70	$0.999 \mathrm{D}+00$	$0.400 \mathrm{D}+00$	$0.305 \mathrm{D}+00$	$0.180 \mathrm{D}+00$	$0.104 \mathrm{D}-01$
80	$0.304 \mathrm{D}+00$	$0.200 \mathrm{D}-01$	$0.247 \mathrm{D}-01$	$0.238 \mathrm{D}-02$	$0.474 \mathrm{D}-03$
90	$0.113 \mathrm{D}+00$	$0.217 \mathrm{D}-01$	$0.136 \mathrm{D}-02$	$0.383 \mathrm{D}-03$	$0.866 \mathrm{D}-05$
100	$0.273 \mathrm{D}-01$	$0.137 \mathrm{D}-01$	$0.137 \mathrm{D}-02$	$0.440 \mathrm{D}-04$	$0.900 \mathrm{D}-06$
115	$0.210 \mathrm{D}-01$	$0.247 \mathrm{D}-02$	$0.137 \mathrm{D}-03$	$0.573 \mathrm{D}-05$	$0.331 \mathrm{D}-07$
130	$0.228 \mathrm{D}-01$	$0.107 \mathrm{D}-02$	$0.632 \mathrm{D}-04$	$0.423 \mathrm{D}-06$	$0.107 \mathrm{D}-09$
145	$0.118 \mathrm{D}-01$	$0.115 \mathrm{D}-02$	$0.305 \mathrm{D}-04$	$0.196 \mathrm{D}-06$	$0.490 \mathrm{D}-10$
160	$0.212 \mathrm{D}-02$	$0.521 \mathrm{D}-03$	$0.307 \mathrm{D}-05$	$0.430 \mathrm{D}-07$	$0.216 \mathrm{D}-09$
180	$0.625 \mathrm{D}-02$	$0.824 \mathrm{D}-04$	$0.451 \mathrm{D}-05$	$0.101 \mathrm{D}-07$	$0.166 \mathrm{D}-11$
200	$0.558 \mathrm{D}-02$	$0.206 \mathrm{D}-03$	$0.184 \mathrm{D}-05$	$0.291 \mathrm{D}-08$	$0.867 \mathrm{D}-12$
230	$0.863 \mathrm{D}-03$	$0.676 \mathrm{D}-04$	$0.463 \mathrm{D}-06$	$0.626 \mathrm{D}-09$	$0.586 \mathrm{D}-13$
260	$0.266 \mathrm{D}-02$	$0.433 \mathrm{D}-04$	$0.291 \mathrm{D}-06$	$0.596 \mathrm{D}-10$	$0.346 \mathrm{D}-14$

We test the quadratures for improper integrals by numerically computing for $\xi=1$ the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-i x \xi} \sum_{r=-10}^{10} \frac{r+1}{x+r+i} d x=-2 \pi i H(\xi) \sum_{r=-10}^{10}(r+1) e^{i r \xi-\xi} \tag{95}
\end{equation*}
$$

where H is the Heaviside step function. The integrand is oscillatory and decays like x^{-1} as $x \rightarrow \pm \infty$. The quadratures defined in Corollary 3.10 are employed, for which the integral is split into a regular integral on a finite interval, chosen here to be $[-5 \sqrt{m} / 4,5 \sqrt{m} / 4]$, where m is the total number of quadrature nodes, and two improper integrals in the imaginary direction, using Laguerre quadratures. The quadrature errors are shown in Table 5.
7. Applications and summary. The chief motivation for the hybrid Gausstrapezoidal quadrature rules is the accurate computation of integral operators. We define an integral operator A by the formula

$$
(A f)(x)=\int_{\Gamma} K(x, y) f(y) d y
$$

where Γ is a regular, simple closed curve in the complex plane, the function f is regular on Γ, and the kernel $K: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ is a regular function of its arguments, except where they coincide; we assume

$$
\begin{equation*}
K(x, y)=\phi(x, y) s(|x-y|)+\psi(x, y) \tag{96}
\end{equation*}
$$

with ϕ and ψ regular on $\Gamma \times \Gamma$ and s regular on $(0, \infty)$, with an integrable singularity at 0 . A large variety of problems of classical physics can be formulated as integral equations that involve such operators. When the operator occurs in an integral equation

$$
\begin{equation*}
f(x)+(A f)(x)=g(x), \quad x \in \Gamma \tag{97}
\end{equation*}
$$

some choice of discretization must be used to reduce the problem to a finite-dimensional one for numerical solution. In the Nyström method the integrals are replaced by quadratures to yield the finite system of equations

$$
\begin{equation*}
f\left(x_{i}\right)+\sum_{j=1}^{m} w_{i j} f\left(x_{j}\right)=g\left(x_{i}\right), \quad i=1, \ldots, m \tag{98}
\end{equation*}
$$

This linear system can be solved for $f\left(x_{1}\right), \ldots, f\left(x_{m}\right)$ by a variety of techniques. The particular choice of x_{i} and $w_{i j}$ for $i, j=1, \ldots, m$ determines the order of convergence (and therefore efficiency) of the method.

For a curve parametrization $\nu:[0,1] \rightarrow \Gamma$, such as scaled arc length, the operator A becomes

$$
(A f)(\nu(t))=\int_{0}^{1} K(\nu(t), \nu(\tau)) f(\nu(\tau)) \nu^{\prime}(\tau) d \tau
$$

It is convenient to use a uniform discretization $1 / m, 2 / m, \ldots, 1$ in t and τ, so $x_{i}=$ $\nu(i / m), i=1, \ldots, m$. How then is $w_{i j}$ determined? We assume for the moment that f is available at locations other than x_{1}, \ldots, x_{m}. Continuing ν periodically with period 1, and using the Gauss-trapezoidal quadratures, we obtain

$$
\begin{align*}
& \quad(A f)(\nu(i / m))=\int_{i / m}^{1+i / m} K(\nu(i / m), \nu(\tau)) f\left(\nu(\tau) \nu^{\prime}(\tau)\right) d \tau \tag{99}\\
& \approx \frac{1}{m} \sum_{k=1}^{j} u_{k} \sigma_{i / m}\left(v_{k} / m\right)+\frac{1}{m} \sum_{k=0}^{n-1} \sigma_{i / m}(a / m+k / m)+\frac{1}{m} \sum_{k=1}^{j} u_{k} \sigma_{i / m}\left(1-v_{k} / m\right),
\end{align*}
$$

for $i=1, \ldots, m$, where $\sigma_{\alpha}:[0,1] \rightarrow \mathbb{C}$ is defined by the formula

$$
\begin{equation*}
\sigma_{\alpha}(\tau)=K(\nu(\alpha), \nu(\alpha+\tau)) f(\alpha+\tau) \nu^{\prime}(\alpha+\tau) \tag{100}
\end{equation*}
$$

and $m=n+2 a-1$ and $u_{1}, \ldots, u_{j}, v_{1}, \ldots, v_{j}$ are determined for the singularity s of K. Provided that the periodic continuation of ν is sufficiently regular, the quadrature will converge to the integral with order greater than j as $m \rightarrow \infty$, for $i=1, \ldots, m$. We relax the restriction that f be available outside x_{1}, \ldots, x_{m} by using local Lagrange interpolation of order $j+1$ for equispaced nodes,

$$
\begin{equation*}
f(\nu(\tau)) \approx \sum_{r=0}^{j} f(\nu(i / m+r / m)) l_{r}(m \tau-i) \tag{101}
\end{equation*}
$$

where $i=\lfloor m \tau-(j-1) / 2\rfloor$ and

$$
l_{r}(x)=\prod_{s=0, s \neq r}^{j} \frac{x-s}{r-s}, \quad r=0, \ldots, j
$$

Now $w_{i j}$ for $i, j=1, \ldots, m$ is determined by combining (97)-(101). The computation of all m^{2} coefficients requires $m(m+2 j-2 a+1)$ evaluations of the kernel K and therefore order $O\left(m^{2}\right)$ operations. This cost can often be substantially reduced using techniques that exploit kernel smoothness (see, for example, [6], [5]).

A slightly different application of the quadratures is the computation of Fourier transforms of functions that fail to satisfy the assumptions usually made when using the discrete Fourier transform. In particular, if a function decays slowly for large argument or is compactly supported and singular at the ends of the support interval, these quadratures can be used to compute its Fourier transform. One example of such a function is that in (95). Since most of the nodes in these quadratures are equispaced, with function values given equal weight, the fast Fourier transform can be used to do the bulk of the computations; the overall complexity is $O(n \log n)$, where n is the number of Fourier coefficients to be computed. Other applications may include the
representation of functions for solving ordinary or partial differential equations, when high-order methods are required. In addition, an extension of these quadratures to integrals on surfaces is under study.

In summary, the characteristics of the hybrid Gauss-trapezoidal quadrature rules include

- arbitrary order convergence for regular functions or functions with known singularities of power or logarithmic type,
- positive weights,
- most nodes equispaced and most weights constant, and
- invariant nodes and weights (aside from scaling) as the problem size increases. The primary disadvantage of the quadrature rules, shared with other Gaussian quadratures but exacerbated here by poor conditioning, is that the computation of the nodes and weights is not trivial. Nevertheless, tabulation of nodes and weights for a given order of convergence allows this issue to be avoided in the construction of high-order, general-purpose quadrature routines.

Appendix. Tables of quadrature nodes and weights.

Quadrature nodes and weights may also be obtained electronically from the author.

TABLE 6
The nodes and weights for the quadrature rule $T_{n}^{j a}(f)=h \sum_{i=1}^{j} w_{i} f\left(x_{i} h\right)+h \sum_{i=0}^{n-1} f(a h+$ $i h)+h \sum_{i=1}^{j} w_{i} f\left(1-x_{i} h\right)$, with $h=(n+2 a-1)^{-1}$, for several choices of j and corresponding minimum integer a. For f a regular function, $T_{n}^{j a}(f)$ converges to $\int_{0}^{1} f(x) d x$ as $n \rightarrow \infty$ with convergence of order O.

O	a	x_{i}	w_{i}
3	1	$1.666666666666667 \mathrm{D}-01$	$5.000000000000000 \mathrm{D}-01$
4	2	$2.000000000000000 \mathrm{D}-01$	$5.208333333333333 \mathrm{D}-01$
		$1.000000000000000 \mathrm{D}+00$	$9.791666666666667 \mathrm{D}-01$
5	2	$2.245784979812614 \mathrm{D}-01$	$5.540781643606372 \mathrm{D}-01$
		$1.013719374359164 \mathrm{D}+00$	$9.459218356393628 \mathrm{D}-01$
6	3	$2.250991042610971 \mathrm{D}-01$	$5.549724327164180 \mathrm{D}-01$
		$1.014269060987992 \mathrm{D}+00$	$9.451317411845473 \mathrm{D}-01$
		$2.000000000000000 \mathrm{D}+00$	9.9989582609 90347D-01
7	3	$2.180540672543505 \mathrm{D}-01$	5.4080889672 08193D-01
		$1.001181873031216 \mathrm{D}+00$	$9.516615045823566 \mathrm{D}-01$
		$1.997580526418033 \mathrm{D}+00$	$1.007529598696824 \mathrm{D}+00$
8	4	$2.087647422032129 \mathrm{D}-01$	$5.207988277246498 \mathrm{D}-01$
		$9.786087373714483 \mathrm{D}-01$	$9.535038018555888 \mathrm{D}-01$
		$1.989541386579751 \mathrm{D}+00$	$1.024871626402471 \mathrm{D}+00$
		$3.000000000000000 \mathrm{D}+00$	$1.000825744017291 \mathrm{D}+00$
12	5	$7.023955461621939 \mathrm{D}-02$	$1.922315977843698 \mathrm{D}-01$
		4.3122978572 27970D-01	$5.348399530514687 \mathrm{D}-01$
		$1.117752734518115 \mathrm{D}+00$	$8.170209442488760 \mathrm{D}-01$
		$2.017343724572518 \mathrm{D}+00$	$9.592111521445966 \mathrm{D}-01$
		$3.000837842847590 \mathrm{D}+00$	$9.967143408044999 \mathrm{D}-01$
		$4.000000000000000 \mathrm{D}+00$	$9.999820119661890 \mathrm{D}-01$
16	7	$9.919337841451028 \mathrm{D}-02$	$2.528198928766921 \mathrm{D}-01$
		$5.076592669645529 \mathrm{D}-01$	$5.550158230159486 \mathrm{D}-01$
		$1.184972925827278 \mathrm{D}+00$	$7.852321453615224 \mathrm{D}-01$
		$2.047493467134072 \mathrm{D}+00$	$9.245915673876714 \mathrm{D}-01$
		$3.007168911869310 \mathrm{D}+00$	$9.839350200445296 \mathrm{D}-01$
		$4.000474996776184 \mathrm{D}+00$	$9.984463448413151 \mathrm{D}-01$
		$5.000007879022339 \mathrm{D}+00$	$9.999592378464547 \mathrm{D}-01$
		$6.000000000000000 \mathrm{D}+00$	9.9999996862 58662D-01
20	9	$9.209200446233291 \mathrm{D}-02$	$2.351836144643984 \mathrm{D}-01$
		$4.752021947758861 \mathrm{D}-01$	$5.248820509085946 \mathrm{D}-01$
		$1.124687945844539 \mathrm{D}+00$	$7.634026409869887 \mathrm{D}-01$
		$1.977387385642367 \mathrm{D}+00$	$9.284711336658351 \mathrm{D}-01$
		$2.953848957822108 \mathrm{D}+00$	$1.010969886587741 \mathrm{D}+00$
		$3.976136786048776 \mathrm{D}+00$	$1.024959725311073 \mathrm{D}+00$
		$4.994354281979877 \mathrm{D}+00$	$1.010517534639652 \mathrm{D}+00$
		5.9994695393 35291D+00	$1.001551595797932 \mathrm{D}+00$
		$6.999986704874333 \mathrm{D}+00$	$1.000061681794188 \mathrm{D}+00$
		$8.000000000000000 \mathrm{D}+00$	$1.000000135843597 \mathrm{D}+00$

TABLE 6
(Continued)

O	a	x_{i}	w_{i}
24	10	$6.001064731474805 \mathrm{D}-02$	$1.538932104518340 \mathrm{D}-01$
		3.1496850162 29433D-01	$3.551058128559424 \mathrm{D}-01$
		$7.664508240518316 \mathrm{D}-01$	$5.449200036280007 \mathrm{D}-01$
		$1.396685781342510 \mathrm{D}+00$	7.1040784977 15549D-01
		$2.175195903206602 \mathrm{D}+00$	$8.398780940253654 \mathrm{D}-01$
		$3.062320575880355 \mathrm{D}+00$	$9.272767950890611 \mathrm{D}-01$
		$4.016440988792476 \mathrm{D}+00$	$9.750605697371132 \mathrm{D}-01$
		$5.002872064275734 \mathrm{D}+00$	$9.942629650823470 \mathrm{D}-01$
		$6.000285453310164 \mathrm{D}+00$	$9.992421778421898 \mathrm{D}-01$
		$7.000012964962529 \mathrm{D}+00$	$9.999534370786161 \mathrm{D}-01$
		$8.000000175554469 \mathrm{D}+00$	$9.999990854912925 \mathrm{D}-01$
		$9.000000000000000 \mathrm{D}+00$	$9.999999989466828 \mathrm{D}-01$
28	12	$6.234360533194102 \mathrm{D}-02$	$1.595975279734157 \mathrm{D}-01$
		$3.250286721702614 \mathrm{D}-01$	$3.637046028193864 \mathrm{D}-01$
		7.8373507942 82182D-01	$5.498753177297441 \mathrm{D}-01$
		$1.415673112616924 \mathrm{D}+00$	$7.087986792086956 \mathrm{D}-01$
		$2.189894250061313 \mathrm{D}+00$	$8.335172275501195 \mathrm{D}-01$
		$3.070053877483040 \mathrm{D}+00$	$9.204446510608518 \mathrm{D}-01$
		$4.018613756218047 \mathrm{D}+00$	$9.710881776552090 \mathrm{D}-01$
		$5.002705902035397 \mathrm{D}+00$	$9.933296578555239 \mathrm{D}-01$
		$5.999929741810400 \mathrm{D}+00$	$9.994759087910050 \mathrm{D}-01$
		$6.999904720846024 \mathrm{D}+00$	$1.000133030254421 \mathrm{D}+00$
		$7.999986894843540 \mathrm{D}+00$	$1.000032915011460 \mathrm{D}+00$
		$8.999999373380393 \mathrm{D}+00$	$1.000002261653775 \mathrm{D}+00$
		$9.999999992002911 \mathrm{D}+00$	$1.000000042393520 \mathrm{D}+00$
		$1.100000000000000 \mathrm{D}+01$	$1.000000000042872 \mathrm{D}+00$
32	14	$5.899550614325259 \mathrm{D}-02$	$1.511076023874179 \mathrm{D}-01$
		$3.082757062227814 \mathrm{D}-01$	$3.459395921169090 \mathrm{D}-01$
		$7.463707253079130 \mathrm{D}-01$	$5.273502805146873 \mathrm{D}-01$
		$1.355993726494664 \mathrm{D}+00$	$6.878444094543021 \mathrm{D}-01$
		$2.112943217346336 \mathrm{D}+00$	$8.210319140034114 \mathrm{D}-01$
		$2.987241496545946 \mathrm{D}+00$	$9.218382875515803 \mathrm{D}-01$
		$3.944798920961176 \mathrm{D}+00$	$9.873027487553060 \mathrm{D}-01$
		$4.950269202842798 \mathrm{D}+00$	$1.018251913441155 \mathrm{D}+00$
		$5.972123043117706 \mathrm{D}+00$	$1.021933430349293 \mathrm{D}+00$
		$6.989783558137742 \mathrm{D}+00$	$1.012567983413513 \mathrm{D}+00$
		$7.997673019512965 \mathrm{D}+00$	$1.004052289554521 \mathrm{D}+00$
		$8.999694932747039 \mathrm{D}+00$	$1.000713413344501 \mathrm{D}+00$
		$9.999979225211805 \mathrm{D}+00$	$1.000063618302950 \mathrm{D}+00$
		$1.099999938266130 \mathrm{D}+01$	$1.000002486385216 \mathrm{D}+00$
		$1.199999999462073 \mathrm{D}+01$	$1.000000030404477 \mathrm{D}+00$
		$1.300000000000000 \mathrm{D}+01$	$1.000000000020760 \mathrm{D}+00$

Table 7

The nodes v_{1}, \ldots, v_{j} and weights u_{1}, \ldots, u_{j} for the quadrature rule $S_{n}^{j k a b}(g)=$ $h \sum_{i=1}^{j} u_{i} g\left(v_{i} h\right)+h \sum_{i=0}^{n-1} g(a h+i h)+h \sum_{i=1}^{k} w_{i} g\left(1-x_{i} h\right)$, with $h=(n+a+b-1)^{-1}$, for $g(x)=x^{-1 / 2} \phi(x)+\psi(x)$, with ϕ and ψ regular functions. The nodes x_{1}, \ldots, x_{k} and weights w_{1}, \ldots, w_{k} are found in Table 6.

O	a	v_{i}	u_{i}
1.5	1	$1.172258571393266 \mathrm{D}-01$	$5.000000000000000 \mathrm{D}-01$
2.0	2	$9.252112715421378 \mathrm{D}-02$	$4.198079625266162 \mathrm{D}-01$
		$1.000000000000000 \mathrm{D}-00$	$1.080192037473384 \mathrm{D}+00$
2.5	2	$6.023873796408450 \mathrm{D}-02$	$2.858439990420468 \mathrm{D}-01$
		$8.780704050676215 \mathrm{D}-01$	$1.214156000957953 \mathrm{D}+00$
3.0	2	$7.262978413470474 \mathrm{D}-03$	3.9076387675 31813D-02
		2.2463255125 21893D-01	$4.873484056646474 \mathrm{D}-01$
		$1.000000000000000 \mathrm{D}+00$	$9.735752066600344 \mathrm{D}-01$
3.5	2	1.282368909458828 D-02	$6.363996663105925 \mathrm{D}-02$
		2.6942863467 92474D-01	$5.077434578043636 \mathrm{D}-01$
		$1.018414523786358 \mathrm{D}+00$	$9.286165755645772 \mathrm{D}-01$
4.0	3	$1.189242434021285 \mathrm{D}-02$	$5.927215035616424 \mathrm{D}-02$
		2.5782204347 38662D-01	$4.955981740306228 \mathrm{D}-01$
		$1.007750064585281 \mathrm{D}+00$	$9.427131290628058 \mathrm{D}-01$
		$2.000000000000000 \mathrm{D}+00$	$1.002416546550407 \mathrm{D}+00$
6.0	4	3.3179259426 99451D-03	1.6817809298 83469D-02
		$8.283019705296352 \mathrm{D}-02$	$1.755244404544475 \mathrm{D}-01$
		4.1360949257 26231D-01	$5.039350503858001 \mathrm{D}-01$
		$1.088744373688402 \mathrm{D}+00$	$8.266241339680867 \mathrm{D}-01$
		$2.006482101852379 \mathrm{D}+00$	9.7730658489 81277D-01
		$3.000000000000000 \mathrm{D}+00$	$9.997919809947032 \mathrm{D}-01$
8.0	5	1.2141306065 23435D-03	6.1998448842 97793D-03
		$3.223952700027058 \mathrm{D}-02$	7.1062867917 20044D-02
		$1.790935383649920 \mathrm{D}-01$	$2.408930104410471 \mathrm{D}-01$
		$5.437663805244631 \mathrm{D}-01$	$4.975929263668960 \mathrm{D}-01$
		$1.176116628396759 \mathrm{D}+00$	$7.592446540441226 \mathrm{D}-01$
		$2.031848210716014 \mathrm{D}+00$	$9.322446399614420 \mathrm{D}-01$
		3.0019612256 90812D+00	$9.928171438160095 \mathrm{D}-01$
		$4.000000000000000 \mathrm{D}+00$	$9.999449125689846 \mathrm{D}-01$
10.0	6	$1.745862989163252 \mathrm{D}-04$	1.0169509859 48944D-03
		$8.613670540457314 \mathrm{D}-03$	$2.294670686517670 \mathrm{D}-02$
		6.7333850887 03690D-02	$1.076657968022888 \mathrm{D}-01$
		2.5144887747 33840D-01	$2.734577662465576 \mathrm{D}-01$
		$6.341845573737690 \mathrm{D}-01$	4.9788155919 24992D-01
		$1.248404055083152 \mathrm{D}+00$	$7.256208919565360 \mathrm{D}-01$
		$2.065688031953401 \mathrm{D}+00$	8.9526386903 20078D-01
		$3.009199358662542 \mathrm{D}+00$	$9.778157465381624 \mathrm{D}-01$
		$4.000416269690208 \mathrm{D}+00$	9.9833907813 99277D-01
		$5.000000000000000 \mathrm{D}+00$	$9.999916342408948 \mathrm{D}-01$

TABLE 7
(Continued)

O	a	v_{i}	u_{i}
12.0	8	5.7102184272 06990D-04	$2.921018926912141 \mathrm{D}-03$
		$1.540424351115548 \mathrm{D}-02$	$3.431130611256885 \mathrm{D}-02$
		$8.834248407196555 \mathrm{D}-02$	$1.224669495638615 \mathrm{D}-01$
		$2.824462054509770 \mathrm{D}-01$	$2.761108242022520 \mathrm{D}-01$
		$6.574869892305580 \mathrm{D}-01$	$4.797809643010337 \mathrm{D}-01$
		$1.246541060977993 \mathrm{D}+00$	$6.966555677271379 \mathrm{D}-01$
		$2.039218495130811 \mathrm{D}+00$	$8.790077941972658 \mathrm{D}-01$
		$2.979333487049800 \mathrm{D}+00$	$9.868622449294327 \mathrm{D}-01$
		3.9857725953 93049D+00	$1.015142389688201 \mathrm{D}+00$
		$4.997240804311428 \mathrm{D}+00$	$1.006209712632210 \mathrm{D}+00$
		$5.999868793951190 \mathrm{D}+00$	$1.000528829922287 \mathrm{D}+00$
		$7.000000000000000 \mathrm{D}+00$	$1.000002397796838 \mathrm{D}+00$
14.0	9	$3.419821460249725 \mathrm{D}-04$	$1.750957243202047 \mathrm{D}-03$
		$9.296593430187960 \mathrm{D}-03$	2.0807265842 87380D-02
		$5.406214771755252 \mathrm{D}-02$	$7.586830616433430 \mathrm{D}-02$
		$1.763945096508648 \mathrm{D}-01$	$1.766020526671851 \mathrm{D}-01$
		$4.218486605653738 \mathrm{D}-01$	$3.206624362072232 \mathrm{D}-01$
		8.2740228958 84040D-01	$4.934405290553812 \mathrm{D}-01$
		$1.410287585637014 \mathrm{D}+00$	$6.707497030698472 \mathrm{D}-01$
		$2.160997505238153 \mathrm{D}+00$	$8.244959025366557 \mathrm{D}-01$
		$3.043504749358223 \mathrm{D}+00$	$9.314646742162802 \mathrm{D}-01$
		$4.005692579069439 \mathrm{D}+00$	$9.845768443163154 \mathrm{D}-01$
		$4.999732707905968 \mathrm{D}+00$	$9.992852769154770 \mathrm{D}-01$
		$5.999875191971098 \mathrm{D}+00$	$1.000273112957723 \mathrm{D}+00$
		$6.999994560568667 \mathrm{D}+00$	$1.000022857402321 \mathrm{D}+00$
		$8.000000000000000 \mathrm{D}+00$	$1.000000081405180 \mathrm{D}+00$
16.0	10	2.1584389882 80793D-04	$1.105804873501181 \mathrm{D}-03$
		$5.898432743709196 \mathrm{D}-03$	$1.324499944707956 \mathrm{D}-02$
		$3.462795956896131 \mathrm{D}-02$	$4.899842307592144 \mathrm{D}-02$
		$1.145586495070213 \mathrm{D}-01$	$1.165326192868815 \mathrm{D}-01$
		$2.790344218856415 \mathrm{D}-01$	$2.178586693194957 \mathrm{D}-01$
		$5.600113798653321 \mathrm{D}-01$	$3.481766016945031 \mathrm{D}-01$
		9.8140912428 83119D-01	$4.964027915911545 \mathrm{D}-01$
		$1.553594853974655 \mathrm{D}+00$	6.4690261896 23831D-01
		$2.270179114036658 \mathrm{D}+00$	7.8236889717 83889D-01
		$3.108234601715371 \mathrm{D}+00$	8.8777724458 93361D-01
		$4.032930893996553 \mathrm{D}+00$	$9.551665077035583 \mathrm{D}-01$
		$5.006803270228157 \mathrm{D}+00$	$9.876285579741800 \mathrm{D}-01$
		$6.000815466735179 \mathrm{D}+00$	$9.979929183863017 \mathrm{D}-01$
		$7.000045035079542 \mathrm{D}+00$	$9.998470620634641 \mathrm{D}-01$
		$8.000000738923901 \mathrm{D}+00$	$9.999962891645340 \mathrm{D}-01$
		$9.000000000000000 \mathrm{D}+00$	9.9999999468 93169D-01

Table 8
The nodes v_{1}, \ldots, v_{j} and weights u_{1}, \ldots, u_{j} for the quadrature rule $S_{n}^{j k a b}(g)=$ $h \sum_{i=1}^{j} u_{i} g\left(v_{i} h\right)+h \sum_{i=0}^{n-1} g(a h+i h)+h \sum_{i=1}^{k} w_{i} g\left(1-x_{i} h\right)$, with $h=(n+a+b-1)^{-1}$, for $g(x)=\phi(x) \log x+\psi(x)$, with ϕ and ψ regular functions. The error is of order $O\left(h^{l} \log h\right)$. The nodes x_{1}, \ldots, x_{k} and weights w_{1}, \ldots, w_{k} are found in Table 6.

l	a	v_{i}	u_{i}
2	1	$1.591549430918953 \mathrm{D}-01$	$5.000000000000000 \mathrm{D}-01$
3	2	$1.150395811972836 \mathrm{D}-01$	$3.913373788753340 \mathrm{D}-01$
		$9.365464527949632 \mathrm{D}-01$	$1.108662621124666 \mathrm{D}+00$
4	2	2.3796472841 18974D-02	8.7959426755 93887D-02
		$2.935370741501914 \mathrm{D}-01$	4.9890171529 13699D-01
		$1.023715124251890 \mathrm{D}+00$	9.1313885795 26912D-01
5	3	$2.339013027203800 \mathrm{D}-02$	$8.609736556158105 \mathrm{D}-02$
		$2.854764931311984 \mathrm{D}-01$	$4.847019685417959 \mathrm{D}-01$
		$1.005403327220700 \mathrm{D}+00$	$9.152988869123725 \mathrm{D}-01$
		$1.994970303994294 \mathrm{D}+00$	$1.013901778984250 \mathrm{D}+00$
6	3	4.0048841949 26570D-03	1.6718796911 47102D-02
		$7.745655373336686 \mathrm{D}-02$	$1.636958371447360 \mathrm{D}-01$
		$3.972849993523248 \mathrm{D}-01$	$4.981856569770637 \mathrm{D}-01$
		$1.075673352915104 \mathrm{D}+00$	$8.372266245578912 \mathrm{D}-01$
		$2.003796927111872 \mathrm{D}+00$	$9.841730844088381 \mathrm{D}-01$
8	5	$6.531815708567918 \mathrm{D}-03$	2.4621941989 95203D-02
		$9.086744584657729 \mathrm{D}-02$	$1.701315866854178 \mathrm{D}-01$
		$3.967966533375878 \mathrm{D}-01$	$4.609256358650077 \mathrm{D}-01$
		$1.027856640525646 \mathrm{D}+00$	$7.947291148621894 \mathrm{D}-01$
		$1.945288592909266 \mathrm{D}+00$	$1.008710414337933 \mathrm{D}+00$
		$2.980147933889640 \mathrm{D}+00$	$1.036093649726216 \mathrm{D}+00$
		$3.998861349951123 \mathrm{D}+00$	$1.004787656533285 \mathrm{D}+00$
10	6	1.1750893812 27308D-03	$4.560746882084207 \mathrm{D}-03$
		$1.877034129831289 \mathrm{D}-02$	$3.810606322384757 \mathrm{D}-02$
		$9.686468391426860 \mathrm{D}-02$	1.2938649972 89512D-01
		$3.004818668002884 \mathrm{D}-01$	$2.884360381408835 \mathrm{D}-01$
		$6.901331557173356 \mathrm{D}-01$	4.9581119143 44961D-01
		$1.293695738083659 \mathrm{D}+00$	$7.077154600594529 \mathrm{D}-01$
		$2.090187729798780 \mathrm{D}+00$	8.7419243652 85083D-01
		$3.016719313149212 \mathrm{D}+00$	$9.661361986515218 \mathrm{D}-01$
		$4.001369747872486 \mathrm{D}+00$	$9.957887866078700 \mathrm{D}-01$
		$5.000025661793423 \mathrm{D}+00$	$9.998665787423845 \mathrm{D}-01$

TABLE 8
(Continued)

l	a	v_{i}	u_{i}
12	7	$1.674223682668368 \mathrm{D}-03$	6.3641907807 20557D-03
		$2.441110095009738 \mathrm{D}-02$	4.7239641432 87529D-02
		$1.153851297429517 \mathrm{D}-01$	$1.450891158385963 \mathrm{D}-01$
		$3.345898490480388 \mathrm{D}-01$	$3.021659470785897 \mathrm{D}-01$
		$7.329740531807683 \mathrm{D}-01$	$4.984270739715340 \mathrm{D}-01$
		$1.332305048525433 \mathrm{D}+00$	$6.971213795176096 \mathrm{D}-01$
		$2.114358752325948 \mathrm{D}+00$	$8.577295622757315 \mathrm{D}-01$
		$3.026084549655318 \mathrm{D}+00$	$9.544136554351155 \mathrm{D}-01$
		$4.003166301292590 \mathrm{D}+00$	$9.919938052776484 \mathrm{D}-01$
		$5.000141170055870 \mathrm{D}+00$	$9.994621875822987 \mathrm{D}-01$
		$6.000001002441859 \mathrm{D}+00$	$9.999934408092805 \mathrm{D}-01$
14	9	$9.305182368545380 \mathrm{D}-04$	3.5450606447 80164D-03
		$1.373832458434617 \mathrm{D}-02$	$2.681514031576498 \mathrm{D}-02$
		$6.630752760779359 \mathrm{D}-02$	8.5040920350 93420D-02
		$1.979971397622003 \mathrm{D}-01$	$1.854526216643691 \mathrm{D}-01$
		$4.504313503816532 \mathrm{D}-01$	3.2517243748 83192D-01
		$8.571888631101634 \mathrm{D}-01$	$4.911553747260108 \mathrm{D}-01$
		$1.434505229617112 \mathrm{D}+00$	$6.622933417369036 \mathrm{D}-01$
		$2.175177834137754 \mathrm{D}+00$	$8.137254578840510 \mathrm{D}-01$
		$3.047955068386372 \mathrm{D}+00$	$9.235595514944174 \mathrm{D}-01$
		$4.004974906813428 \mathrm{D}+00$	$9.821609923744658 \mathrm{D}-01$
		$4.998525901820967 \mathrm{D}+00$	$1.000047394596121 \mathrm{D}+00$
		$5.999523015116678 \mathrm{D}+00$	$1.000909336693954 \mathrm{D}+00$
		$6.999963617883990 \mathrm{D}+00$	$1.000119534283784 \mathrm{D}+00$
		$7.999999488130134 \mathrm{D}+00$	$1.000002835746089 \mathrm{D}+00$
16	10	$8.371529832014113 \mathrm{D}-04$	3.1909190866 26234D-03
		$1.239382725542637 \mathrm{D}-02$	$2.423621380426338 \mathrm{D}-02$
		6.0092907857 39468D-02	$7.740135521653088 \mathrm{D}-02$
		$1.805991249601928 \mathrm{D}-01$	$1.704889420286369 \mathrm{D}-01$
		$4.142832599028031 \mathrm{D}-01$	$3.029123478511309 \mathrm{D}-01$
		7.9647477311 12430D-01	$4.652220834914617 \mathrm{D}-01$
		$1.348993882467059 \mathrm{D}+00$	$6.401489637096768 \mathrm{D}-01$
		$2.073471660264395 \mathrm{D}+00$	8.0512129461 81061D-01
		$2.947904939031494 \mathrm{D}+00$	9.3624119456 98647D-01
		3.9281292522 48612D+00	$1.014359775369075 \mathrm{D}+00$
		$4.957203086563112 \mathrm{D}+00$	$1.035167721053657 \mathrm{D}+00$
		$5.986360113977494 \mathrm{D}+00$	$1.020308624984610 \mathrm{D}+00$
		6.9979577047 91519D+00	$1.004798397441514 \mathrm{D}+00$
		$7.999888757524622 \mathrm{D}+00$	$1.000395017352309 \mathrm{D}+00$
		8.9999987543 06120D+00	$1.000007149422537 \mathrm{D}+00$

Acknowledgments. The author thanks Gregory Beylkin, Vladimir Rokhlin, and Ronald Wittmann for helpful discussions and encouragement.

REFERENCES

[1] V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comput. Phys., 60 (1983), pp. 187-207.
[2] V. Rokhlin, Diagonal forms of translation operators for the Helmholtz equation in three dimensions, Appl. Comput. Harmon. Anal., 1 (1993), pp. 82-93.
[3] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys., 73 (1987), pp. 325-348.
[4] W. Hackbusch and Z. Nowak, On the fast matrix multiplication in the boundary element method by panel clustering, Numer. Math., 54 (1989), pp. 463-491.
[5] G. Beylkin, R. Coifman, and V. Rokhlin, Fast wavelet transforms and numerical algorithmsI, Comm. Pure Appl. Math., XLIV (1991), pp. 141-183.
[6] B. Alpert, G. Beylkin, R. Coifman, and V. Rokhlin, Wavelet-like bases for the fast solution of second-kind integral equations, SIAM J. Sci. Comput., 14 (1993), pp. 159-184.
[7] C. T. Kelley, A fast multilevel algorithm for integral equations, SIAM J. Numer. Anal., 32 (1995), pp. 501-513.
[8] I. Navot, An extension of the Euler-Maclaurin summation formula to functions with a branch singularity, J. Math. Phys., 40 (1961), pp. 271-276.
[9] V. Rokhlin, End-point corrected trapezoidal quadrature rules for singular functions, Comput. Math. Appl., 20 (1990), pp. 51-62.
[10] H. P. Starr, On the Numerical Solution of One-Dimensional Integral and Differential Equations, Ph.D. thesis, Yale University, New Haven, CT, 1991.
[11] B. Alpert, High-order quadratures for integral operators with singular kernels, J. Comput. Appl. Math., 60 (1995), pp. 367-378.
[12] R. Kress, A Nyström method for boundary integral equations in domains with corners, Numer. Math., 58 (1990), pp. 145-161.
[13] S. Kapur and V. Rokhlin, High-order corrected trapezoidal rules for singular functions, SIAM J. Numer. Anal., 34 (1997), pp. 1331-1356.
[14] J. Ma, V. Rokhlin, and S. Wandzura, Generalized Gaussian quadrature rules for systems of arbitrary functions, SIAM J. Numer. Anal., 33 (1996), pp. 971-996.
[15] M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions (10th printing), Applied Mathematics Series 55, National Bureau of Standards, 1972.
[16] A. Erdélyi, Ed., Higher Transcendental Functions, Vol. 1, Krieger, Malabar, FL, 1985.
[17] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978.
[18] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, Berlin, 1980.
[19] G. Szegö, Orthogonal Polynomials, American Mathematical Society, Providence, RI, 1939.
[20] J. N. Lyness, Finite-part integrals and the Euler-Maclaurin expansion, in Approximation and Computation, Internat. Ser. Numer. Math. 119, R. V. M. Zahar, ed., Birkhäuser Verlag, Basel, Boston, Berlin, 1994, pp. 397-407.
[21] S. Karlin and W. Studden, Tchebycheff Systems with Applications in Analysis and Statistics, John Wiley, New York, 1966.
[22] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag, New York, 1995.
[23] C. Batut, D. Bernardi, H. Cohen, and M. Olivier, User's Guide to PARI-GP, Technical report, Laboratoire A2X, Université Bordeaux, I, 1995. Available via ftp from megrez.math.ubordeaux.fr.
[24] W. Gautschi, On the construction of Gaussian quadrature rules from modified moments, Math. Comput., 24 (1970), pp. 245-260.
[25] G. H. Golub and J. H. Welsch, Calculation of Gaussian quadrature rules, Math. Comput., 23 (1969), pp. 221-230.

[^0]: *Received by the editors July 29, 1997; accepted for publication (in revised form) February 20, 1998; published electronically April 27, 1999. This research was supported in part by Defense Advanced Research Projects Agency contract 9760400 and in part by the University of Colorado Program in Applied Mathematics, Boulder, where the author was welcomed during the government furloughs of 1995-1996. Contribution of U.S. Government; not subject to copyright in the United States.
 http://www.siam.org/journals/sisc/20-5/32514.html
 ${ }^{\dagger}$ National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80303 (alpert@ boulder.nist.gov).

