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Abstract—Hybrid genetic algorithms have received significant 

interest in recent years and are being increasingly used to solve 
real-world problems. A genetic algorithm is able to incorporate 
other techniques within its framework to produce a hybrid that 
reaps the best from the combination.  

In this paper, different forms of integration between genetic 
algorithms and other search and optimization techniques are 
reviewed. This paper also aims to examine several issues that 
need to be taken into consideration when designing a hybrid 
genetic algorithm that uses another search method as a local 
search tool. These issues include the different approaches for 
employing local search information and various mechanisms for 
achieving a balance between a global genetic algorithm and a 
local search method. 

Index Terms—Genetic algorithms, evolutionary computation, 
hybrid genetic algorithms, genetic-local hybrid algorithms, 
memetic algorithms, Lamarckian search, Baldwinian search.  
 

I. INTRODUCTION 
A genetic algorithm is a population-based search and 

optimization method that mimics the process of natural 
evolution. The two main concepts of natural evolution, which 
are natural selection and genetic dynamics, inspired the 
development of this method. The basic principles of this 
technique were first laid down by Holland [1] and are well 
described, for example, in [2],[3].  

The performance of a genetic algorithm, like any global 
optimization algorithm, depends on the mechanism for 
balancing the two conflicting objectives, which are exploiting 
the best solutions found so far and at the same time exploring 
the search space for promising solutions. The power of genetic 
algorithms comes from their ability to combine both 
exploration and exploitation in an optimal way [1]. However, 
although this optimal utilization may be theoretically true for a 
genetic algorithm, there are problems in practice. These arise 
because Holland assumed that the population size is infinite, 
that the fitness function accurately reflects the suitability of a 
solution, and that the interactions between genes are very 
small [4].  

In practice, the population size is finite, which influences 
the sampling ability of a genetic algorithm and as a result 
affects its performance. Incorporating a local search method 
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within a genetic algorithm can help to overcome most of the 
obstacles that arise as a result of finite population sizes. 

Incorporating a local search method can introduce new 
genes which can help to combat the genetic drift problem [5], 
[6] caused by the accumulation of stochastic errors due to 
finite populations. It can also accelerate the search towards the 
global optimum [7] which in turn can guarantee that the 
convergence rate is large enough to obstruct any genetic drift.  

The Parallel Recombinative Simulated Annealing (PRSA) 
algorithm [8] fights the genetic drift problem in another way 
by combining the concept of the cooling schedule of simulated 
annealing [9], Boltzmann tournament selection [10], and 
standard genetic operators. 

Due to its limited population size, a genetic algorithm may 
also sample bad representatives of good search regions and 
good representatives of bad regions. A local search method 
can ensure fair representation of the different search areas by 
sampling their local optima [11] which in turn can reduce the 
possibility of premature convergence. 

In addition, a finite population can cause a genetic 
algorithm to produce solutions of low quality compared with 
the quality of solution that can be produced using local search 
methods. The difficulty of finding the best solution in the best 
found region accounts for the genetic algorithm operator’s 
inability to make small moves in the neighborhood of current 
solutions [12]. Utilizing a local search method within a genetic 
algorithm can improve the exploiting ability of the search 
algorithm without limiting its exploring ability [7]. If the right 
balance between global exploration and local exploitation 
capabilities can be achieved, the algorithm can easily produce 
solutions with high accuracy [13].  

Although genetic algorithms can rapidly locate the region in 
which the global optimum exists, they take a relatively long 
time to locate the exact local optimum in the region of 
convergence [14], [15]. A combination of a genetic algorithm 
and a local search method can speed up the search to locate 
the exact global optimum. In such a hybrid, applying a local 
search to the solutions that are guided by a genetic algorithm 
to the most promising region can accelerate convergence to 
the global optimum. The time needed to reach the global 
optimum can be further reduced if local search methods and 
local knowledge are used to accelerate locating the most 
promising search region in addition to locating the global 
optimum starting within its basin of attraction. 

The improper choice of control parameters is another source 
of the limitation of genetic algorithms in solving real-world 
problems [16] due to its detrimental influence on the trade-off 
between exploitation and exploration. Depending on these 
parameters the algorithm can either succeed in finding a near-
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optimum solution in an efficient way or fail. Choosing the 
correct parameter values is a time-consuming task. In addition, 
the use of rigid, constant control parameters is in contradiction 
to the evolutionary spirit of genetic algorithms [17].  For this 
reason, other search techniques can be utilized to set the 
values of these parameters whilst the search is progressing. 

In this paper, hybrid genetic algorithms are reviewed 
through presenting the different ways in which the roles of a 
search method and a genetic algorithm can be integrated. The 
aim of this presentation is not to classify hybrid genetic 
algorithms, but to shed light on the possible ways of 
combining a search method within the framework of a genetic 
algorithm. However, the reader can refer to [18] for an 
architectural taxonomy of combinatorial memetic algorithms 
(MA) [19] and to [20], where meta-heuristics are classified 
based on the design space and implantation space aspects.  

This paper also aims to gain an insight into some of the 
design issues of hybrid genetic algorithms through reviewing 
the different mechanisms of utilizing local search information 
within genetic search and the various techniques to achieve a 
balance between exploration and exploitation.  

 

II. A COMPLEMENTARY VIEW   
Hybrid genetic algorithms, as any hybrid system, are based 

on the complementary view of search methods [21 p.223]. 
Genetic and other search methods can be seen as 
complementary tools that can be brought together to achieve 
an optimization goal. In these hybrids, a genetic algorithm 
incorporates one or more methods to improve the performance 
of the genetic search. There are several ways in which a search 
or optimization technique can complement the genetic search. 

A. Capability Enhancement 
A technique can be utilized within a genetic algorithm to 

enhance search capabilities. A genetic algorithm is normally 
viewed as a global search method that can capture the global 
view of a problem domain. Different techniques can be 
incorporated within a genetic algorithm to improve its 
performance in different ways. When a genetic algorithm as a 
global search method is combined with a problem-specific 
method as a local method, the overall search capability can be 
enhanced. The enhancement can be in terms of solution 
quality and/or efficiency. This performance can also be 
improved by ensuring production of feasible solutions in the 
case of highly constrained problems. This paper focuses on the 
global local complementary view of genetic hybrids which 
have been variously referred to as memetic algorithms (MA) 
[19], genetic-local search methods [22], Lamarckian genetic 
algorithms [23], Lamarckian search, and Baldwinian search 
[24].  

Function approximation techniques can also be incorporated 
in a genetic search to speed up the search. It is also possible to 
utilize other techniques to replace one or more of the genetic 
operators in order to overcome some of the problems that face 
genetic search.  

1) Improving Solution Quality 
Local search methods and genetic algorithms are usually 

viewed as two complementary tools. A local search 
algorithm’s ability to locate local optima with high accuracy 
complements the ability of genetic algorithms to capture a 
global view of the search space. Holland [1], cited in [25],  
suggested that the genetic algorithm should be used as a pre-
processor for performing the initial search, before invoking a 
local search method to optimize the final population. Bilchev 
and Parmee [26], for example, used their ant colony 
optimization [27] model for continuous search spaces as local 
search method to improve the quality of the solutions 
produced by a genetic algorithm in order to solve a real-world, 
heavily constrained, engineering design problem.  

Performing local search on a genetic algorithm’s population 
can introduce diversity and help to resist the genetic drift. It 
enables fair representation of different search areas in order to 
fight premature convergence. Incorporating a local search 
algorithm also introduces an explicit refinement operator 
which can produce high quality solutions. 

2) Improving Efficiency 
The efficiency of a local search in reaching a local optimum 

integrates the efficiency of a genetic algorithm in isolating the 
most promising basins of the search space. Therefore, 
incorporating a local search into a genetic algorithm can result 
in an efficient algorithm. The efficiency of the search can be 
enhanced in terms of the time needed to reach the global 
solution, and/or the memory needed to process the population. 

a) Convergence Speed 
  A major concern in genetic algorithm design is efficiency 

in terms of the time needed to reach a solution of desired 
quality. In real-world problems, function evaluations are the 
most time-consuming part of the algorithm. For example, the 
designers of today’s complex engineering systems usually rely 
on expensive computer analysis and simulation programs, 
where the execution time for a single function evaluation can 
be of the order of hours or days [28]. Finite element analysis 
(FEA), computational fluid dynamics (CFD), heat transfer and 
vehicle dynamic simulations are examples of such programs. 
Hybridization in addition to parallelization [29], time 
utilization [30], and evaluation relaxation (function 
approximation) can be used to speed up a genetic search [31]. 

Genetic algorithms often show significant improvements in 
search speed when combined with local search methods 
utilizing domain-specific knowledge [20], [32]. There is an 
opportunity in hybrid optimization to capture the best of both 
schemes [13]. This is the reason why genetic hybrids are being 
increasingly used to solve real-world problems. Different 
search methods have been mixed with genetic algorithms in 
real-world applications [15], [22], [33-37]. 

b) Population Size 
Population size is crucial in a genetic algorithm. It 

determines the memory size and the convergence speed in 
serial genetic algorithms and affects the speed of search in the 
case of parallel genetic algorithms. Efficient population sizing 



 
 

 

is critical for getting the most out of a fixed budget of function 
evaluations. The gambler’s ruin model [38] was used to 
estimate the population size of genetic algorithms. This model 
was used to show that population size depends on two 
parameters, which can be affected by incorporating local 
search. The two parameters represent the standard deviation of 
the population and the signal difference between the best and 
second best building blocks. If a local search method is 
incorporated in such a way as to reduce the standard deviation 
of the population and to increase the signal difference between 
the best and the second best chromosome, the resulting hybrid 
can be efficient even with small population sizes. Espinoza et 
al. [39] showed the effect of a local search method on 
reducing the population size, compared to a pure genetic 
algorithm. El-Mihoub et al. [40] demonstrated the combined 
effect of probability of local search and learning strategy on 
the population size requirements of a hybrid. 

3) Guarantee Feasible Solutions 
In highly constrained optimization problems, the crossover 

and mutation operators generally produce illegal or infeasible 
solutions and hence waste search time. This problem can be 
solved by incorporating problem-specific knowledge. 
Problem-specific knowledge can be used either to prevent the 
genetic operators from producing infeasible solutions or to 
repair them. 

The partial matched crossover (PMX) [41] was proposed 
for use in order-based problems to avoid the generation of 
infeasible solutions. Grefenstette et al. [42] suggested a 
heuristic crossover operator that could perform a degree of 
local search for the traveling salesman problem (TSP). 
Davidor [43] designed “analogous crossover” where local 
information is used to decide which crossover sites can 
produce unfit solutions. Heuristic crossover operators were 
used to solve a timetabling problem in order to ensure that the 
most fundamental constraints are never violated [44]. 
Freisleben and Merz [45] proposed the distance preserving 
crossover (DPX) to produce feasible solutions to solve TSP 
without losing diversity. They used the non- sequential 4-
change [46] as a mutation operator for the same reason. Cycle 
crossover (CX) [47], order crossover (OX) [47], matrix 
crossover (MX) [48], modified order crossover (MOX) [49], 
edge recombination crossover (ERX) [50], 2-opt operator [51], 
3-opt operator [51] and or-opt operators [51] are examples of 
crossover and mutation operators which have been developed 
for TSP. A special edge recombination crossover [52] has 
been constructed for the three-matching problem (3MP). The 
crossover operator has been replaced with the gene-pooling 
operator to produce feasible solutions when optimizing the 
number and positions of fuzzy prototypes for efficient data 
clustering [53].  

A problem-specific knowledge search method can be used 
to recover the feasibility of solutions generated by the standard 
genetic operators. Repairing such solutions can help the 
genetic search to avoid the danger of premature convergence, 
which occurs when all or most solutions are infeasible [54], 
[55]. The force feasible heuristic operator [56] was used to 
solve the problem of scheduling aircraft landing times. Konak 

and Smith [57] combined a genetic algorithm with a cut-
saturation algorithm for the backbone design of 
communication networks. They use a uniform crossover 
operator with a K-node-connectivity repair algorithm to repair 
infeasible offspring.  Areibi and Yang [58] used repair 
heuristics in their proposed approach to solve VLSI circuit 
layout. The approach combines a hierarchical design 
technique, genetic algorithms, constructive techniques, and 
advanced local search. They also used the OX operator to 
avoid infeasible solutions in solving VLSI design problems. 

4) Fitness Function Estimation 
If the fitness function is excessively slow or complex to 

evaluate, approximation function evaluation techniques can be 
utilized to accelerate the search without disrupting search 
effectiveness. This is because genetic algorithms are robust 
enough to achieve convergence in the face of noise produced 
by the approximation process. Fitness approximation schemes 
replace high-cost accurate fitness evaluation with a low-cost 
approximate fitness assignment procedure. This can be 
achieved either by evolutionary approximation, where the 
fitness of a chromosome is estimated from its parents’ fitness, 
or function approximation, where the fitness function is 
replaced by an alternate simpler model. Jin [59] provides a 
comprehensive survey on fitness approximation techniques. 

The selection of an appropriate approximation model to 
replace the real function is an important step in ensuring that 
the optimization problem is solved efficiently. Neural network 
[21 ch. 8] models have widely been used for function 
approximation [60]. Willmes et al. [61] compared neural 
networks and the Kriging method for constructing fitness 
approximation models in evolutionary algorithms. Jin and 
Sendhoff [62] combined the k-nearest-neighbor clustering 
method and a neural network ensemble to estimate a solutions’ 
fitness. Burdsall and Giraud-Carrier [53] used an 
approximation of the network’s execution to evaluate 
solutions fitness instead of constructing a radial basis function 
network (RBF) to optimize the topology of a neural network. 
The approximation is based on an extension of the nearest-
neighbor classification algorithm to fuzzy prototypes. 
Ankenbrandt et al. [63] implemented a system of fuzzy fitness 
functions, to grade the quality of chromosomes, representing a 
semantic net. The system is used to assist in recognizing 
oceanic features from partially processed satellite images. 
Pearce and Cowley [64] presented a study of the use of fuzzy 
systems to characterize engineering judgment and its use with 
genetic algorithms. They demonstrated an industrial design 
application where a system of problem-specific engineering 
heuristics and hard requirements are combined to form a 
fitness function. 

5) Operation Substitution 
Genetic algorithms present a methodological framework 

that is easy to understand and handle. This framework is open 
to the incorporation of other techniques [65]. It is possible to 
utilize other techniques to perform one or more of the genetic 
algorithm operations. These incorporated techniques can be 
used to replace either the crossover operator, mutation 
operator or both. 



 
 

 

In probabilistic model-building genetic algorithms 
(PMBGA) or estimation of distribution algorithms (EDA) 
[66], a probabilistic model is utilized to learn the structure of a 
problem on the fly.  This model is used instead of the standard 
genetic operators to ensure a proper mixing and growth of 
building blocks. These algorithms replace the standard 
crossover and mutation operators of genetic algorithms, by 
building a probabilistic model that estimates the true 
distribution of promising solutions. New potential solutions 
are then generated by sampling this model. Population based 
incremental learning (PBIL) [67], univariate marginal 
distribution algorithm (UMDA), compact genetic algorithm 
(CGA), bivariate marginal distribution algorithms (BMDA), 
factorized distribution algorithms (FDA) and the Bayesian 
optimisation algorithm (BOA) [68] are all examples of 
PMBGA that are reported to have a better search ability, than 
that of the simple genetic algorithm, in solving a broad class 
of problems [66]. Tsutsui et al. [69] proposed the aggregation 
pheromone system (APS), which introduced the concept of 
pheromone trail of the ant colony optimization [27] into the 
PMBGAs, to solve real-valued optimization problems.  

Leng [70] proposed the guided genetic algorithm (GGA) 
which is a hybrid genetic system that borrows the concept of 
feature and penalties from the guided local search (GLS) [71]. 
The GGA modifies the fitness function by means of penalties 
to escape local optima. Two specialized crossover and 
mutation operators, which are biased by the penalties to 
change genes that are involved in more penalties, are used in 
order to explore the search space.  

When a problem-specific representation is used in a genetic 
algorithm, the standard genetic variation operators are usually 
replaced with problem-specific operators. Hedar and 
Fukushima [72] replaced the ordinary crossover with a 
simplex crossover that produces a simplex offspring from 
mating   simplex parents (is the dimension of the problem to 
be solved). In this hybrid, a mutation operator, which is more 
suitable for simplex representation, was used. Quantum-
inspired genetic algorithms [73]-[75] borrow the concepts of 
quantum-bits and -states superposition from quantum 
computing. In these algorithms, the individuals are represented 
as a string of quantum-bits. Quantum-gates are then used to 
modify these individuals instead of crossover and mutation 
operators. The power of these algorithms comes from the great 
diversity they provide by using quantum coding. Each single 
quantum individual in reality represents multiple classical 
individuals. The results reported from using this hybridization 
to solve combinatorial and continuous optimization problems 
are promising. 

Tan et al. [76] replaced the standard mutation operator by 
simulated annealing [9] to solve system identification and 
linearization problems. The results showed a more accurate 
search and faster convergence when compared with a pure 
genetic algorithm. The multi-step crossover (MSX) [77] was 
proposed to solve combinatorial optimization problems. 
Riopka and Bock proposed a collective learning genetic 
algorithm [78], in which an intelligent recombination based on 
the exchange of knowledge between chromosomes, is used to 

effectively find high quality solutions to combinatorial 
optimization problems. Magyar et al. [52] introduce several 
heuristic crossover and local hill-climbing operators to solve 
the three-matching problem. Fundamental to the technique 
here is the adaptation of the selected operator. Two fuzzy 
connective-base (FCB) crossover operators types (dynamic 
and heuristic) have been proposed in [79] for real-coded 
genetic algorithms to fight premature convergence problems. 

B. Optimizing the Control Parameters 
The setting of genetic algorithm control parameters is a key 

factor in the determination of the exploitation versus 
exploitation trade-off. Other techniques can be used to monitor 
the behavior of a genetic algorithm in order to adapt its control 
parameters to improve the search performance. The ability of 
fuzzy logic to represent knowledge in imprecise and non-
specific ways enables it to be used to reason on knowledge 
that is not clearly defined or completely understood. This 
ability makes fuzzy logic a suitable choice for adapting the 
control parameters of a genetic algorithm. Fuzzy logic has 
allowed a small group of researchers to devise ways of 
optimizing performance and solution quality of genetic 
algorithms [80]. It is used to incorporate the many heuristics 
and techniques of experienced genetic algorithm researchers 
into fuzzy logic systems in order to adapt the control 
parameters. The goal of such a system is generally to avoid 
undesirable behaviors such as premature convergence and to 
speed up the convergence of the genetic algorithm [81].  

It is also possible to incorporate a genetic algorithm within 
another technique to optimize control parameters, since 
genetic algorithms are in practice very effective optimization 
techniques. A genetic algorithm can be applied to the 
optimization of a neural network in a variety of ways. It can be 
utilized to adjust the neural network weights [82]-[84] their 
topology [85]-[88] and learning rules [89], [90]. For a 
comprehensive review of evolving neural networks the reader 
can refer to [91]. Karr [92] described an application to the 
cart-pole balancing system and used a genetic algorithm to 
evolve the membership functions of a fuzzy controller. The 
resulting, optimized fuzzy logic controller performed better 
than the controller based on membership functions designed 
by a human expert. These promising results have been 
confirmed by an application of the method for online control 
of a laboratory pH system with drastically changing system 
characteristics [93]. Genetic algorithms can also be used to 
automate the learning of fuzzy control rules [94].  They have 
also been used to optimize the control parameters of ant 
colony optimization algorithms [95]-[97]. 

 

III. HYBRID DESIGN ISSUES 
Incorporating a search method within a genetic algorithm 

can improve the search performance on the condition that their 
roles cooperate to achieve the optimization goal. There is an 
opportunity in hybrid optimization to capture the best of both 
schemes [13]. This opportunity depends on the design details 
of the hybrid genetic algorithm. There are several issues that 



 
 

 

need to be taken into consideration when designing a hybrid 
genetic algorithm. Some of the design choices faced by hybrid 
practitioners while solving real-world problems are discussed 
here. 

Due to their major impact on hybrid genetic performance, 
the discussion is concentrated on the strategies of utilizing 
local search information within a hybrid, and mechanisms that 
can be used to achieve a balance between exploration and 
exploitation. First, the relation between local search and 
learning, and its different models, are presented. Then, 
different techniques that can be used to achieve the optimal 
division of labor between the global genetic algorithm and the 
local search method are reviewed. 

A. Local Search and Learning 
Local search methods use local knowledge to improve a 

solution’s chances to propagate its characteristics into the next 
generations. Due to the similarities in the role of the local 
search within the genetic search and the role of learning within 
the evolution process, the local search is usually viewed as a 
learning process.  

The way by which gained information through local search 
is utilized within a hybrid genetic algorithm has a great impact 
on the performance of the search process. Two basic 
approaches based on biological learning models have been 
adopted to utilize local information; the Lamarckian approach 
and the Baldwinian approach [98]. There is also a third model, 
which is a mixture of the basic models and its effectiveness 
has been proven in solving real-world problems [55], [99]-
[101]. 

1)  Lamarckian Learning 
The Lamarckian approach is based on the inheritance of 

acquired characteristics obtained through learning. This 
approach forces the genetic structure to reflect the result of the 
local search. The genetic structure of an individual and its 
fitness are changed to match the solution found by a local 
search method. In the Lamarckian approach, the local search 
method is used as a refinement genetic operator that modifies 
the genetic structure of an individual and places it back in the 
genetic population. 

Lamarckian evolution, in spite of being recognized as never 
occurring in biological systems due to the lack of a 
mechanism to accomplish it, can be simulated in a computer in 
order to shed light on issues of general evolvability. 
Lamarckian evolution can accelerate the search process of 
genetic algorithms [102]. On the other hand, by changing the 
genetic structure of individuals, it can disrupt schema 
processing which can badly affect the exploring abilities of 
genetic algorithms. This may lead to premature convergence 
[102]. When a Lamarckian approach is adopted, inverse 
mapping from phenotype to genotype is required. The inverse 
mapping may be computable in many simple applications. 
However, for real-world problem solving, the computation 
will typically be intractable [103]. Most of hybrid genetic 
algorithms that repair chromosomes to satisfy constrains are 
Lamarckian and the technique has been particularly effective 
in solving TSP [24]. 

2) Baldwinian Learning 
The Baldwin learning allows an individual’s fitness to be 

improved by applying a local search, whereas the genotype 
remains unchanged. In this way, it improves the solution’s 
chances to propagate its structure to the next generations. Like 
natural evolution, learning does not change an individual’s 
genetic structure, however it increases its chances of survival. 
The Baldwinian approach, in contrast to the Lamarckian one, 
does not allow parents to pass their learned or acquired 
characteristics to their offspring. Instead, only the fitness after 
learning is retained. A local search method in the Baldwinian 
approach is usually used as a part of the individual’s 
evaluation process. The local search method uses local 
knowledge to produce a new fitness score that can be used by 
the global genetic algorithm to evaluate the individual’s ability 
to be improved.  

The Baldwin effect is somewhat Lamarckian in its results 
although it uses different mechanisms [103]. It explains 
interactions between learning and evolution by paying 
attention to balances between benefit and cost of learning. The 
Baldwin effect consists of the following two steps [104]. In 
the first step, learning gives individuals the chance to change 
their phenotypes to improve their fitness. Individuals, who 
found learning useful and help their fitness to improve, will 
spread in the next population. In the second step, if the 
environment is sufficiently stable, the cost associated with 
learning results in selection favoring individuals that have the 
traits, which are acquired by others through learning, already 
coded into their genotype. Through this mechanism, called 
genetic assimilation, learning can accelerate the genetic 
acquisition of learned traits indirectly. A critical precondition 
for genetic assimilation appears to be a strong correlation 
between genotype and phenotype space so that nearness in the 
phenotype space implies nearness in the genotype space [105]. 
Otherwise, the acquired traits have little chance of eventually 
becoming encoded in the genome via chance through genetic 
operations. 

Hinton and Nolan [98] illustrated how the Baldwin effect 
can transform the fitness landscape of a difficult optimization 
problem into a less difficult one, and how the genetic search is 
attracted toward the solution found by learning. Gruau and 
Whitley [11] showed how local search can change the 
landscape of fitness function into flat landscapes around the 
basin of attraction. This change in fitness landscape is known 
as the smoothing effect. They demonstrated the impact of the 
smoothing effect on the search process. This learning strategy 
could be more effective but slower than the Lamarckian 
approach, since it does not disrupt schema processing of 
genetic algorithms [102]. Baldwinian search can also have the 
effect of obscuring genetic differences and, thus, hindering the 
evolution process [105]. This is known as the hindering effect. 
Essentially, this occurs as a result of different genotypes 
mapping to the same or similar phenotypes (as a result of the 
smoothing effect) with equivalent fitness scores being 
produced. The genotypes cannot be effectively discriminated 
according to their fitness values without considering the 
learning cost and the evolution of effective solutions is 



 
 

 

hindered. The hindering effect can also obstruct the ability of 
the Baldwinian search to self-adapt the local-search-duration 
control parameter [106]. The Baldwinian effect can aggravate 
the problem of multiple genotype to phenotype mappings [24], 
[99]. This problem can also waste the resources of hybrids that 
use clustering techniques in the genotype domain to reduce 
unnecessary local search, in contrast to the Lamarckian 
approach which has been shown to help alleviate this problem 
[107].  

Hart et al. [108] pointed to the importance of considering 
the cost of learning, which has been ignored by most 
researchers when studying the impact of the Baldwinian 
strategy on the hybrid search by analyzing its performance 
based on the number of generations of the genetic algorithm 
only. Learning can introduce a computational cost which 
overweighs its benefits in search. 

3) Hybrid Lamarckian-Baldwinian Models 
Hybrid Lamarckian-Baldwinian models are created with a 

view towards combing the advantages of both forms of 
learning models [55]. The combination of the Baldwinian and 
the Lamarckian approaches can be done at two different 
levels. Hybridization can be used at the individual-level, 
where some individuals evolve using the Lamarckian 
approach while the other individuals evolve using the 
Baldwinian approach [99], [100]. Houck et al. [99] found that 
this form of partial Lamarckian approach outperformed both 
the pure Lamarckian and the pure Baldwinian approaches on a 
selected set of test problems. The other level is the gene-level, 
where a number of genes evolve using the Lamarckian 
strategy and the remaining genes evolve using the Baldwinian 
approach [101]. This approach was used to solve the sorting 
network problem. It can reduce the problem search space and 
help to produce an efficient search [101].  

The adoption of any form of learning in a hybrid genetic 
algorithm has a great impact on its performance. Several 
researchers have investigated how these different leaning 
strategies affect the performance of hybrid genetic algorithms 
by comparing them with pure genetic algorithms. Gruau and 
Whitley [11] compared Lamarckian, Baldwinian and pure 
genetic algorithms in evolving the architecture and the weights 
of neural networks that learn Boolean functions. They 
conclude that using either form of leaning is better than using 
a pure genetic algorithm. Orvosh and Davis [55] found that 
5% partial Lamarckian is the optimal learning strategy to solve 
the survival network design problem and the graph coloring 
problem. Michalewicz and Nazhiyath [109] replaced 20% of 
the repaired solutions in their hybrid algorithm to solve 
numerical optimization problems with nonlinear constraints. 
Bala et al. [110] showed how the Baldwin effect can improve 
the performance of a genetic algorithm when integrated with a 
decision tree in order to evolve useful subsets of 
discriminatory features for recognizing complex visual 
concepts. However, Ku and Mak [111] found that only using 
Lamarckian evolution improved the performance of genetic 
algorithm in evolving recurrent neural networks. They also 
concluded that effective hybridization depends on the local 
search method used and the learning frequency. Houck et al. 

[99] used seven problems to compare the performance of 
different learning strategies. Their investigation concluded that 
neither the pure Lamarckian nor pure Baldwinian strategy was 
found to be consistently effective. It was discovered that the 
20% and 40% partial Lamarckian search strategies yielded the 
best mixture of solution quality and computational efficiency 
based on a minmax criterion (i.e. minimizing the worst case 
performance across all test problems instance). Sasaki and 
Tokoro [112] found that adaptation by Lamarckian evolution 
was much faster for neural networks than Darwinian evolution 
in a static environment. However, when the environment 
changed from generation to generation, the Darwinian 
evolution was superior. Julstrom [24] reported that Baldwinian 
strategies perform poorly in solving the 4-cycle problem 
compared to a pure genetic algorithm and their effectiveness 
deteriorates with an increasing use of learning in contrast to 
Lamarckian strategies. He also found that applying 
Lamarckian leaning to all the individuals produced the most 
effective results. Joines et al. [100] found that using the pure 
Lamarckian approach (100% Lamarckian) produced the best 
convergence speed to the best known solution when solving 
the cell formation problem. Espinoza et al. [112] used 75% 
partial Lamarckian as the optimal leaning strategy in their 
hybrid to optimize two continuous functions. El-Mihoub et al. 
[40] investigated the combined effect of probability of local 
search and leaning strategy on the hybrid performance and 
found that combing a low probability of local search with the 
pure Lamarckian learning strategy can improve the 
convergence speed without disrupting the schema processing. 
Ishibushi et al. [114] found that the 5% partial Lamarckian 
worked well on the multi-objective 0/1 knapsack problem 
using a single population model, however, the 50% partial 
Lamarckian was the optimal choice using the island model. 

The effectiveness of adopting the pure Lamarckian 
approach, the pure Baldwinian approach, or any mixture of 
them in a hybrid is affected by the fitness landscape, the 
representations, the percentage of population performs local 
search and local search method used [40], [99], [100], [103], 
[109], [114].  

B. Balance between Global and Local Search 
The hybrid algorithm should strike a balance between 

exploration and exploitation, in order to be able to solve global 
optimization problems. According to the hybrid theory [115], 
solving an optimization problem and reaching a solution of 
desired quality can be attained in one of two ways. Either the 
global search method alone reaches the solution or the global 
search method guides the search to the basin of attraction from 
where the local search method can continue to lead to the 
desired solution. In the genetic-local hybrid, the main role of 
the genetic algorithm is to explore the search space in order to 
either isolate the most promising regions of the search space, 
or, to hit the global optimum. However, the main role of the 
local search method is to exploit the information gathered by 
the global genetic algorithm. The division of the hybrid’s time 
between the two methods influences the efficiency and the 
effectiveness of the search process. The optimal division of 



 
 

 

the algorithm’s time is an important issue that is faced the 
designers of hybrid genetic algorithms.    

Although the aim of combining a global genetic algorithm 
and a local search method is to get the best out of the 
exploring ability of the former, and the efficiency of the latter 
in reaching local optima, the two methods can interact in a 
more complicated way than the one described above. Rosin et 
al. [116] argued that the mutation operator in a hybrid plays a 
different role than it does in a pure genetic algorithm. The 
local refinement requirement of the mutation operator 
becomes unnecessary in the existence of an explicit local 
operator allowing the mutation operator to take a more 
exploratory role. Land [117] suggested using larger mutations, 
at least large enough to move from one basin to another, in 
cases where each individual of the population is completely 
locally optimized. He went further, when he argued that local 
search obviates the need for crossover in solving the graph 
bisection problem, because local search is able to build the 
very same building blocks that the crossover would otherwise 
combine.  

The exploring ability of the genetic algorithm can be further 
improved by utilizing local search to ensure fair representation 
of different regions of a search. This can improve the ability of 
the genetic algorithm to direct the search to the most 
promising regions of the search space. Once the algorithm has 
guided the search to the basin of attraction of the global 
optimum, utilizing local search can further improve the search 
to produce an effective optimization algorithm. The first goal 
of the hybridization, which is the effectiveness of search, can 
be satisfied if a genetic algorithm and a local search method 
cooperate in the manner mentioned above. However, there are 
other more destructive forms of interaction. For example, the 
mutation and crossover operators can disrupt good and 
complete local solutions which may waste algorithm resources 
and produce an inefficient search. The Lamarckian local 
search can disrupt the schema processing of the genetic 
algorithm which may lead to premature convergence and 
produce an ineffective search.  

In addition to the role of genetic operators in systemically 
exploring the search space, they perform some form of local 
search with relative low cost compared to the more accurate 
local search methods. The improper use of the expensive local 
search in a hybrid can waste algorithm resources. The 
algorithm should be able to decide wisely on both methods, 
especially when both can achieve the desired task, taking into 
account the benefits and costs of their utilization. The 
condition of an appropriate use of both methods in addition to 
the condition of interacting in a cooperative way should be 
satisfied in order to produce an effective and efficient search 
algorithm. 

Researchers have proposed different techniques to enable 
the hybrid to mix both methods wisely or at least to reduce the 
consequences of the improper use of the expensive local 
search. These techniques are based on modifying the different 
parameters of a local search method within a hybrid. 
Modifying the parameters of the local search, such as the 
frequency of local search, the duration of local search, and the 

probability of local search can help the hybrid to strike the 
balance between the two search methods.   

1) Frequency of Local Search 
The number of continuous uninterrupted generations that a 

genetic algorithm performs before applying local search is 
usually referred to as the frequency of local search. In the 
traditional hybrid genetic algorithm, the frequency of local 
search is 1, for example. The staged hybrid genetic algorithm 
[118], [119] was designed to separate the two search methods 
into two distinct stages by increasing the frequency of the 
local search in order to minimize the interference between the 
two search methods. Mathias and Whitely [118] used a local 
search frequency of 2 to solve the TSP. However, in a hybrid 
algorithm to solve the static correction problem [119], the 
genetic search algorithm was allowed to continue 
uninterrupted for ten generations before applying a single 
iteration of waveform steepest ascent iteration to each 
individual in the population. This hybrid algorithm produced 
solutions with improved quality of 5% and additional savings 
in time compared with the traditional hybrid genetic 
algorithm. Espinoza et al. [113] conducted a set of 
experiments to find the optimal local search frequency for two 
two-dimensional continuous test functions and they found that 
the optimal frequency of local search for these test functions 
was 3. 

The optimal frequency of local search is function dependent 
and varies with time because the optimal time that should be 
spent on local and global search algorithms depends on the 
distribution of individuals in the population. Syrjakow and 
Szczerbicka [120] studied the optimal switch point between 
the genetic algorithm and local search to fine-tune the solution 
found by the pre-optimizer genetic algorithm. They studied 
three criteria: the number of function evaluations, the 
convergence speed of the genetic algorithm, and the regional 
accumulation of search points indicating the convergence 
toward a specific region in the search space so as to determine 
the optimal switch point. The convergence speed criterion 
produced the highest efficiency in their experiment. Lobo and 
Goldberg [13] addressed the problem of deciding between 
global search and local search in order to make the most out of 
either technique. They tried to answer the question, “when 
should the local search be used and when should the global 
genetic algorithm be used to achieve the maximum possible 
efficiency?” They viewed the problem as a two armed bandit 
problem where the payoff of each bandit is unknown and 
changes with time. They presented a model for efficient 
hybridizing based on the concept of probability matching. This 
model can be viewed as an adaptive technique that adjusts the 
frequency of local search depending on the efficiency of both 
genetic and local techniques as the search progresses. Tuson 
and Ross [121] used a similar model to adapt the operator 
probability in their cost based operator rate adaptation. They 
used their model to select the use of a mutation or crossover 
operation in a pure genetic algorithm. The same technique has 
been used to solve the three-matching problem [52], where an 
adaptive hybrid algorithm selects one operator from eight 
recombination and local search operators based on their 



 
 

 

current and past benefit-cost ratio.  
Espinoza et al. [113] used the change in coefficient of 

variation of the fitness function to determine whether the 
genetic algorithm is exploring new regions of the search space 
or exploiting the already visited regions. Based on that, the 
algorithm selects to perform either a genetic or a local 
iteration. The algorithm relies on the local search role to 
improve the sampling of the new regions that are being 
explored in the case of any increase in that coefficient. Once 
the search has branched to a local search, the fitness 
improvement-cost ratio of both the last genetic and the local 
iterations and the maximum number of local iterations are 
used to decide on continuing the local search or going to the 
global search. Their experiments showed that the algorithm is 
more efficient than a pure genetic algorithm and is stable 
against a greater range of parameter settings than the standard 
staged hybrid genetic algorithm.  

Hacker et al. [28] proposed an approach that switches 
between global genetic and local search, based on the local 
topology of the search space. The basic idea of this approach 
ignores the role of local search in improving the sampling 
ability of the genetic algorithm. It concentrates on the 
efficiency of local search, i.e. finding the optimum once the 
global genetic algorithm has defined its basin of attraction. 
The utilization of the relative homogeneity of the population 
and regression analysis to determine whether the search is 
exploring a single basin or multiple basins was investigated. 
The coefficient of variance of both the fitness and phenotype 
is used to quantify the relative homogeneity of the population. 
A decrease in the values of the coefficient of variance 
indicates that the genetic algorithm has converged to a small 
area of the search space and the search process can therefore 
be made more efficient by switching to a local search. In 
contrast, an increase in its value indicates that a new region of 
the search space is being explored and hence there is less need 
to use a local search. Regression analysis has also been used to 
determine when to switch between global and local 
techniques. The value of the error of fitting the population of 
solutions to a second-order surface can indicate whether the 
genetic algorithm is exploring multiple basins or a single basin 
in the search space. Depending on the value of that error, the 
algorithm decides to switch to a local search or continue the 
global search. They concluded that utilizing local search could 
be helpful for small search spaces in the early stages of search 
due to their role in helping the genetic algorithm to define the 
most promising regions of the search space. However, for 
large and complicated search spaces, their role is limited to 
accelerating finding of the global optimum once the genetic 
algorithm isolates the most promising region and can be 
helpful in later stages of the search. 

2) Duration of Local Search 
Local search duration influences the balance between the 

global exploration of genetic algorithms and local refinement 
of the neighborhood search method in hybrid genetic 
algorithms [122], [123]. A hybrid with long local search 
duration will execute fewer generations of the genetic 
algorithm than a hybrid with shorter local duration, if both 

terminate after the same number of function evaluations.  
On combinatorial domains, a local search can be performed 

until a solution converges to a local optimum. However, on 
continuous domains, the local search is typically truncated 
before reaching a local optimum when its step length becomes 
too small. Performing local search until a solution converges 
to a local optimum, which is referred to as complete local 
search, may lead to the loss of population diversity [102] 
depending on the learning strategy used. Hybrid genetic 
algorithms that adopt the pure Lamarckian approach are more 
prone to loss of diversity than others which utilize other 
learning techniques.  

Applying a complete local search on costly function 
evaluations can also be expensive. However, there is a certain 
class of problems, decomposable fitness problems [124], 
where calculating the fitness of a solution given the fitness of 
its neighbor, is significantly less computationally expensive 
than computing its fitness from scratch. TSP is an example of 
this group of problems where computing the length of a tour 
that shares most of its edges with another tour, whose length is 
already known, is much cheaper than computing the length of 
a complete tour. Radcliffe and Surry [124] argued that hybrids 
are more suitable for problems exhibiting this property. 

A few studies have been conducted which investigate the 
optimal duration of local search. Hart [7] found that using a 
short duration of local search produced the best results for the 
Griewank functions [125], whereas a long duration produced 
better results for the Rastrigin functions [126]. Rosin et al. 
[116] experimented with very short and very long local search 
durations in a hybrid to optimize the drug-docking 
configuration. Both durations were found to yield similar 
performance. Hart et al. [122] concluded that duration of local 
search is an important factor and hybrid genetic algorithms 
with long local searches will be most effective for nontrivial 
problems. 

The high cost of a complete local search on expensive 
function evaluations makes any improper use of the local 
search difficult to recover from. However, the recovering from 
any misuse of partial local search is still possible. Partial local 
search is more suitable for hybrids that decide on a global or a 
local approach depending on the current state of the search 
and the previous performance of both methods. In this case, 
where there is a possibility of misjudgment in some 
circumstances, the use of partial local search gives the hybrid 
a higher chance to recover from such errors than using a 
complete local search. 

3) Probability and Selection of Local Search 
In any hybrid algorithm, a local search can be applied to 

either every individual in the population or only few 
individuals. In traditional hybrid genetic algorithms, a local 
search is applied to every individual in the population. 
However, applying a local search to every individual in the 
population on costly function evaluations can waste resources 
without providing any more useful information. In this case, 
the local search can be applied to individuals that fall in the 
same basin of attraction of the search space, whereby 
producing the same local optimum. Applying a local search to 



 
 

 

a large fraction of the population can limit exploration of the 
search space by allowing the genetic algorithm to evolve for a 
small number of generations. The possibility of applying local 
search on more than one individual from the same basin can 
be reduced by performing local search on only a small fraction 
of the population. This also lowers the chances of applying an 
unnecessary local search on individuals that fall in non-
promising regions of the search space. Deciding upon the 
optimal fraction of the population which should perform local 
search, and the basis on which these individuals are chosen, 
has a great impact on the performance of a hybrid. 

Hart [7] investigated the impact of the fraction of the 
population that undergo local search on the performance of 
real-coded genetic algorithms. He found that a relation exists 
between this fraction, the population size and the performance 
of the hybrid. He also found that performing local search on 
small fractions could be more efficient when using larger 
populations and those large fractions can help to reflect the 
search space characteristics when using small populations. He 
concluded that a more selective use of local search could 
improve the efficiency of hybrids. Hart and Belew [127] 
studied the impact of the local search probability on the 
efficiency of hybrids. Their studies indicate that the 
probability of local search should be kept low in the initial 
stages and incremented in later generations. The population 
diversity in the initial stages of genetic algorithm enables good 
sampling of the search space. However, as the diversity 
diminishes in the later stages, the sampling ability of the 
genetic algorithm requires additional help from the local 
search. 

Different techniques, such as tuning, distribution-based [7], 
fitness-based [7] techniques, and local search potential [117], 
have been proposed to decide on the optimal fraction of the 
population that should perform a local search. These 
techniques aim to reduce unnecessary local searches. 
However, they differ in the way they select individuals that 
perform the local search. 

a) Tuning Technique 
In the tuning technique, a primary experiment is conducted 

in order to find the optimal fraction of the population that 
should perform local search. This fraction is usually referred 
to as the probability of local search. This value is then used to 
run the real experiment and remains fixed during the run. 
Typically, the individuals that undergo local search are chosen 
uniformly at random. Rosin et al. [116] applied local search to 
7% of the population in each generation in their hybrid to 
solve the docking problem. In Land et al. [128], only 5% of 
randomly selected individuals of the population perform a 
Marquardt-Levenberg local search in their hybrid to determine 
the basic parameters that describe the structure of a 
semiconductor wafer. Hart et al. [122] and Morris et al. [17] 
applied local search to 6% of the population. Espinoza et al. 
[113] found applying local search on 10% of the population 
produces the best efficiency for both their adaptive hybrid 
algorithm and the standard staged hybrid algorithm. In their 
adaptive hybrid genetic algorithm, this value is used as an 

initial value for the probability of local search, which is 
reduced by a specific value after applying local search. In a 
hybrid to solve TSP, Krasnogor and Smith [32] applied their 
adaptive local search method with a probability of 1.0 to each 
individual in the population, except the one with the best 
fitness. 

b) Distribution-based Technique 
Distribution-based techniques modify the probability of 

local search based on the distribution of individuals in the 
population. The motivation for these techniques is to ensure 
that only one individual from each basin of attraction in the 
search space can undergo local search. These techniques can 
improve the sampling ability of the hybrid by preventing bad 
representatives of good regions from misguiding the global 
genetic algorithm. 

Hart [7] used the F statistic as a measure of distance over 
the space of genotypes to adapt the probability of local search. 
Joines and Kay [107] combined evolutionary algorithms with 
random linkage and borrowed the concept of short memory 
from tabu search [129] to avoid performing unnecessary local 
search on non-promising regions of the search space. The 
authors defined tabu hyperspheres around the offspring of the 
genetic algorithm to reduce the number of wasted function 
evaluations owing to the rediscovery of the same local 
optimum. The probability of local search of each offspring 
depends on the distance to the nearest tabu region. By 
decreasing the size of these tabu hyperpheres as the search 
progress, the algorithm can intensively search the most 
promising regions of the search space. This in turn can help to 
find the exact local optimum of the region which also 
represents the global optimum of the search space. The 
authors compared their hybrid using the Lamarckian learning 
approach with a pure genetic algorithm, and the standard 
hybrid genetic algorithm where each offspring perform local 
search using two different learning strategies. They reported 
that their hybrid outperformed other algorithms in terms of 
both solution quality and computation effort. Martinez-
Estudillo et al. [130] selected individuals for local search 
using clustering techniques to optimize the structure and the 
weights of product-unit based neural networks. The results 
showed that the clustering approach was able to perform better 
than similar algorithms that do not use clustering analysis. 

c) Fitness-based Technique 
A fitness-based technique adaptively calculates the 

probability with which local search is applied. This technique 
uses the fitness information in the population to bias the local 
search towards individuals that have a better fitness. The local 
search probability of each individual is modified based on the 
relationship of its fitness to the fitness of other individuals. 
These methods assume that individuals with better fitnesses 
are more likely to be in the basins of attraction of the most 
promising regions. This assumption ignores the dynamic of 
genetic algorithms and the cumulative effect of applying local 
search on successive generations which can aggravate the 
sampling ability of the global genetic algorithm and can 



 
 

 

misguide the search. For example, if a promising region of the 
search space is represented poorly by an individual with 
under-average fitness and, in the same population, a non-
promising region is represented by individuals with over-
average fitness, the representative of the non-promising region 
will have more chance to perform local search and improve its 
chances of survive.  

Hart [7] found no statistical differences between the results 
obtained by applying fitness-based selection and the results of 
fixed probability of local search. Espinoza et al. [131] used a 
clustering technique that is tailored to the three different stages 
the authors have defined for constrained problems to adapt the 
probability of local search. In the first stage, where all the 
solutions are infeasible, and the last stage, where all the 
solutions are feasible, the authors experimented with 
clustering the individuals depending on their fitness. The 
selection was performed by means of Latin-hypercube 
sampling from clusters which had formed. In the second stage, 
where a few individuals are feasible, the probability of local 
search is proportional to the number of feasible solutions in 
the population. The results showed that the algorithm, which is 
based on a fitness clustering technique, is more reliably faster 
than the adaptive hybrid genetic algorithm with fixed starting 
local search probability. Lozano et al. [132] proposed a simple 
adaptive scheme which sets the probability of local search of 
each individual to either 1.0 or 0.0625 depending on the 
individuals fitness compared to the fitness of the current worst 
individual in the population. The authors concluded that this 
adaptation mechanism allows the balance between the global 
genetic search and the local search to be adjusted according to 
the particularities of the search space, thus allowing significant 
improvements in the performance for different classes of 
problems. 

d) Local Search Potential Technique 
The local search (LS potential) potential selection 

mechanism has been proposed by Land [117] to decide which 
individuals should perform the local search. Land suggested 
that biasing the local search towards individuals that can be 
most efficiently improved by local methods makes the most 
effective use of local search. The least easily improved 
solutions are likely to be those at or near to the local optimum 
and it is inappropriate to expend effort on fine refinement, as 
long as there are large differences in the population’s fitness. 
In this way, the scheme biases the hybrid towards more 
exploration. As the population gets closer to the optima, this 
mechanism allows local search to progress to the next level of 
refinement. In his algorithm, he used the past local search 
effectiveness as a measure to estimate future effectiveness.  

Different techniques have been used to control the different 
parameters of the local search in order to strike a balance with 
the global genetic methods. Most of the controlling techniques 
which are described by Eiben et al. [17] for controlling the 
parameters of evolutionary algorithms have been applied to 
the local search control parameters in a hybrid.  

The self-adaptation techniques are reported to be 
successfully used to decide between different local search 

methods in solving the OneMax problem, NK-Landscapes, 
and TSP [134]. The self-adaptation technique has also been 
used to adapt the duration of local search in a hybrid through 
encoding the number of local iterations into chromosomes 
[106]. In this way, the global genetic algorithm decides on the 
individuals that should perform a local search and on its 
duration. 

IV. SUMMARY 

In this paper, we have tried to shed some light on the 
effectiveness and efficiency of hybridizing genetic algorithms 
with various techniques through reviewing some of the wide 
variety of hybrid genetic approaches. These approaches show 
that hybridizing is one possible way to build a competent 
genetic algorithm [135] that solves hard problems quickly, 
reliably and accurately without the need for any forms of 
human intervention. Hybridization has been utilized to 
construct competent genetic algorithms that belong to two of 
the three main approaches for building competent genetic 
algorithms, i.e., perturbation, linkage adaptation, and 
probabilistic model-building [136]. The collective learning 
genetic algorithm is an example of a competent genetic 
algorithm that employs specifically designed representation 
and operators for adapting genetic linkage along with the 
evolutionary process. Other search and optimization methods 
can also be used to adapt genetic linkage. Probabilistic Model-
Building Genetic Algorithms (PMBGA) are examples of 
probabilistic model builders which learn genetic linkage via 
building models based on the current population. 

Hybridization is also one of the four main techniques for 
efficiency enhancement of genetic algorithms. Hybridization 
can also be used as a tool to achieve evaluation relaxation, 
which in turn is another main technique for efficiency 
enhancement.  

The ability of a genetic-local hybrid to solve hard problems 
quickly depends on the way of utilizing local search 
information and the mechanism of balancing genetic and local 
search. By reviewing the different hybrid approaches, some of 
the important factors that affect the hybrid performance have 
been presented. This review shows that there is a trend 
towards adapting some of the hybrid design choices through 
adapting the control parameters associated with these choices 
while the search is progressing. Different adaptation 
techniques have been used to adapt the selection of a local 
search method, the selection of individuals for a local search, 
the duration of local search, the learning strategy, and other 
design aspects. 

REFERENCES 
[1] J. Holland, Adaptation in Natural and Artificial Systems: The University 

of Michigan, 1975. 
[2] K. De Jong, "An analysis of the behavior of a class of genetic adaptive 

systems," Doctoral Dissertation. Ann Arbor: The University of 
Michigan, 1975. 

[3] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and 
Machine Learning: Addison-Wesley, 1989. 

[4] D. Beasley, D. R. Bull, R, and R. Martin, "An overview of genetic 
algorithms: part 1, fundamentals," University Computing, vol. 15, pp. 
58-69, 1993. 



 
 

 

[5] H. Asoh and H. Mühlenbein, "On the mean convergence time of 
evolutionary algorithms without selection and mutation," in Parallel 
Problem Solving from Nature, PPSN III, Y. Davidor, H.-P. Schwefel, 
and R. Manner, Eds. Berlin, Germany: Springer-Verlag, 1994, pp. 88–
97. 

[6] D. Thierens, D. Goldberg, and P. Guimaraes, "Domino convergence, 
drift, and the temporal-salience structure of problems," in 1998 IEEE 
International Conference on Evolutionary Computation Anchorage, 
USA: IEEE, 1998, pp. 535-540. 

[7] W. E. Hart, "Adaptive global optimization with local search," Doctoral 
Dissertation. San Diego:  University of California 1994. 

[8] S. Mahfoud and D. Goldberg, "Parallel recombinative simulated 
annealing: a genetic algorithm," Parallel Computing, vol. 21, pp. 11-28, 
1995. 

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by 
simulated annealing," Science, vol. 220, pp. 671-680, 1983. 

[10] S. W. Mahfoud, "Boltzmann selection," in Handbook of Evolutionary 
Computation, T. Back, D. B. Fogel, and Z. Michalewicz, Eds.: IOP 
Publising Ltd and Oxford University Press, 1997, pp. C2.5:1-4. 

[11] F. Gruau and D. Whitley, "Adding learning to the cellular development 
of neural network: evolution and Baldwin effect," Evolutionary 
Computation, vol. 1, pp. 213-233, 1993. 

[12] C. Reeves, "Genetic algorithms and neighbourhood search," in 
Evolutionary Computing, AISB Workshop, vol. 865 Lecture Notes in 
Computer Science, T. C. Fogarty, Ed. Leeds, UK: Springer-Verlag, 
1994, pp. 115-130. 

[13] F. G. Lobo and D. E. Goldberg, "Decision making in a hybrid genetic 
algorithm," in IEEE International Conference on evolutionary 
Computation. Piscataway, USA: IEEE Press, 1997, pp. 122-125. 

[14] K. De Jong, "Genetic algorithms: a 30 year perspective," in Perspectives 
on Adaptation in Natural and Artificial Systems, L. Booker, S. Forrest, 
M. Mitchell, and R. Riolo, Eds.: Oxford University Press, 2005. 

[15] P. Preux and E.-G. Talbi, "Towards hybrid evolutionary algorithms," 
International Transactions in Operational Research, vol. 6, pp. 557-570, 
1999. 

[16] K. Deb, "Limitations of evolutionary computation methods," in 
Handbook of Evolutionary Computation, T. Bäck, D. B. Fogel, and Z. 
Michalewicz, Eds.: IOP Publishing and Oxford University Press, 1997, 
pp. B2.9. 

[17] A. E. Eiben, R. Hinterding, and Z. Michalewicz, "Parameter control in 
evolutionary algorithms," IEEE Transactions on Evolutionary 
Computation, vol. 3, pp. 124-141, 1999. 

[18] N. Krasnogor and J. Smith, "A tutorial for competent memetic 
algorithms: model, taxonomy and design issues," IEEE Transactions on 
Evolutionary Computation, vol. 9, pp. 474-488, 2005. 

[19] P. Moscato, "On evolution, search, optimization, genetic algorithms and 
martial arts: towards memetic algorithms," California Institute of 
Technology 1989. 

[20] E. Talbi, "A Taxonomy of hybrid metaheuristics," Journal of Heuristics, 
vol. 8, pp. 541–564, 2002. 

[21] A. A. Hopgood, Intelligent Systems for Engineers and Scientists, 2nd 
ed: CRC Press, 2001. 

[22] T. Yamada and C. Reeves, "Solving the Csum permutation flowshop 
scheduling problem by genetic local search," in International 
Confrenence on Evolutionary Computation. Anchorage, USA, 1998, pp. 
230-234. 

[23] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. 
Belew, and A. J. Olson, "Automated docking using a Lamarckian 
genetic algorithm and an empirical binding free energy function," 
Journal of Computational Chemistry, vol. 19, pp. 1639-1662, 1998. 

[24] B. Julstrom, "Comparing Darwinian, Baldwinian, and Lamarckian 
search in a genetic algorithm for the 4-cycle problem," in the 1999 
Genetic and Evolutionary Computation Conference, Late Breaking 
Papers, S. Brave and A. S. Wu, Eds. Orlando, USA, 1999, pp. 134-138. 

[25] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution 
Programs third ed: Springer-Verlag, 1996. 

[26] G. Bilchev and I. C. Parmee, "The ant colony metaphor for searching 
continuous design spaces," in AISB Workshop on Evolutionary 
Computing, vol. 993, Lecture Notes In Computer Science, T. C. Fogarty, 
Ed. Sheffield, UK: Springer Verlag, 1995, pp. 25-39. 

[27] M. Dorigo, V. Maniezzo, and A. Colorni, "Positive feedback as a search 
strategy," Politecnico di Milano, Milan 1991. 

[28] K. A. Hacker, J. Eddy, and K. E. Lewis, "Efficient global optimization 
using hybrid genetic algorithms," presented at 9th AIAA/ISSMO 

Symposium on Multidisciplinary Analysis and Optimization, Atlanta, 
USA, 2002. 

[29] E. Cantú-Paz, "A survey of parallel genetic algorithms," Calculateurs 
Parallele, Reseaux et Systems Repartis, vol. 10, pp. 141-171, 1998. 

[30] D. E. Goldberg, "Using time efficiently: genetic-evolutionary algorithms 
and the continuation problem," in the Genetic and Evolutionary 
Computation Conference. Orlando, USA, 1999, pp. 212-219. 

[31] D. E. Goldberg, "Foreward," EURASIP Journal on Applied Signal 
Processing, vol. 8, pp. 731-732, 2003. 

[32] N. Krasnogor and J. Smith, "A memetic algorithm with self-adaptive 
local search: TSP as a case study," in the Genetic and Evolutionary 
Computation Conference. Las Vegas, USA Morgan Kaufmann, 2000, 
pp. 987–994. 

[33] S. Areibi and A. Vannelli, "Advanced search techniques for circuit 
partitioning," in Quadratic Assignment and Related Problems, vol. 16, 
DIMACS series in Discrtete Mathematics and Theoretical Computer 
Science, P. Pardalos and H. Wolkowicz, Eds., 1994, pp. 77-98. 

[34] E. Besnard, N. Cordier-Lallouet, A. Schmitz, O. Kural, and H. P. Chen, 
"Design/optimization with advanced simulated annealing," American 
Insitute of Aeronautic and Astronautics 1999. 

[35] K. Liang, X. Yao, and C. Newton, "Combining landscape approximation 
and local search in global optimization," in the Congress on 
Evolutionary Computation, vol. 2. Washington DC, USA: IEEE Press, 
1999, pp. 1514-1520. 

[36] J. Yen, J. C. Liao, B. Lee, and D. Randolph, "A Hybrid approach to 
modeling metabolic systems using genetic algorithms and simplex 
method," IEEE Transactions on Systems, Man, and Cybernetics, vol. 28, 
pp. 173-191, 1998. 

[37] M. Chen and Q. Lu, "A hybrid model based on genetic algorithm and ant 
colony algorithm," Journal of Information & Computational Science, 
vol. 2, pp. 647-653, 2005. 

[38] G. Harik, E. Cantu-Paz, D. E. Goldberg, and B. l. Miller, "The gambler's 
ruin problem, genetic algorithms, and the sizing of populations," 
Evolutionary Computation, vol. 7, pp. 231 - 253, 1999. 

[39] F. B. Espinoza, B. Minsker, and D. Goldberg, "Performance evaluation 
and population size reduction for self adaptive hybrid genetic algorithm 
(SAHGA)," in the Genetic and Evolutionary Computation Conference, 
vol. 2723, Lecture Notes in Computer Science San Francisco, USA: 
Springer, 2003, pp. 922-933. 

[40] T. El-Mihoub, A. Hopgood, L. Nolle, and A. Battersby, "Performance of 
hybrid genetic algorithms incorporating local search," in 18th European 
Simulation Multiconference (ESM2004), G. Horton, Ed. Magdeburg, 
Germany, 2004, pp. 154-160. 

[41] D. E. Goldberg and R. Lingle, "Alleles, loci, and the traveling salesman 
problem," in the International Conference on Genetic Algorithms and 
their Applications. Hillsdale, USA: Lawrence Erlbaum, 1985, pp. 154-
159. 

[42] J. J. Grefenstette, R. Gopal, B. Rosmaita, and D. van Gucht, "Genetic 
algorithms for the traveling salesman problem," in the First International 
Conference on Genetic Algorithms and Their Applications, J. J. 
Grefenstette, Ed. Pittsburgh, USA: Lawrence Erlbaum, 1985, pp. 160-
165. 

[43] Y. Davidor, Genetic Algorithms and Robotics: A Heuristic Strategy for 
Optimization: World Scientific Publishing, 1991. 

[44] E. K. Burke, D. G. Elliman, and R. F. Weare, "A hybrid genetic 
algorithm for highly constrained timetabling problems," in the sixth 
International Conference on Genetic Algorithms, L. J. Eshelman, Ed. 
Pittsburgh, USA Morgan Kaufmann 1995, pp. 605-610. 

[45] B. Freisleben and P. Merz, "New genetic local search operators for the 
travaling salesman problem," in the Fourth Conference on Parallel 
Problem Solving from Nature vol. 1141, Lectures Notes in Computer 
Science, H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, 
Eds. Berlin, Germany: Springer-Verlag, 1996, pp. 890–899. 

[46] S. Lin and B. Kernighan, "An effective heuristic algorithm for the 
traveling salesman problem," Operations Research, vol. 21, pp. 498-516, 
1973. 

[47] I. M. Oliver, D. J. Smith, and J. R. C. Holland, "A study of permutation 
crossover operators on the traveling salesman problem," in the Second 
International Conference on Genetic Algorithms on Genetic algorithms 
and their application. Hillsdale, USA, 1987, pp. 224 - 230. 

[48] A. Homaifar, S. Guan, and G. E. Liepins, "Schema analysis of the 
traveling salesman problem using genetic algorithms," Complex 
Systems, vol. 6, pp. 533-552 1992. 

[49] J. Wroblewski, "Theoretical foundations of order-based genetic 
algorithms," Fundamenta Informaticae, pp. 423–430, 1996. 



 
 

 

[50] D. Whitley, T. Starkweather, and D. A. Fuquay, "Scheduling problems 
and traveling salesman: the genetic edge recombination operator," in the 
Third International Conference on Genetic Algorithms. Fairfax, USA, 
1989, pp. 133 - 140. 

[51] P. Jog, J. Y. Suh, and D. Van Gucht, "Parallel genetic algorithms applied 
to the traveling salesman problem," SIAM Journal of Optimization, vol. 
1, pp. 515-529, 1991. 

[52] G. Magyar, M. Johnsson, and O. Nevalainen, "An adaptive hybrid 
genetic algorithm for the three-matching problem," IEEE Transaction on 
Evolutionary Computation, vol. 4, pp. 135-146, 2000. 

[53] B. Burdsall and C. Giraud-Carrier, "Evolving fuzzy prototypes for 
efficient data clustering," in Second International ICSC Symposium on 
Fuzzy Logic and Applications. Zurich, Switzerland, 1997, pp. 217-223. 

[54] T. Ibaraki, "Combinations with other optimization methods," in 
Handbook of Evolutionary Computation, T. Back, D. B. Fogel, and Z. 
Michalewicz, Eds.: IOP Publishing and Oxford University Press, 1997, 
pp.  D3:1. 

[55] D. Orvosh and L. Davis, "Shall we repair? genetic algorithms, 
combinatorial optimization, and feasibility constraints," in the Fifth 
International Conference on Genetic Algorithms. Urbana-Champaign, 
USA: Morgan Kaufmann, 1993, pp. 650. 

[56] J. Abela, D. Abramson, M. Krishnamoorthy, A. D. Selva, and G. Mills, 
"Computing optimal schedules for landing aircraft," in the 12th 
Conference of the Australian Society for Operations Research. Adelaide, 
1993, pp. 71-90. 

[57] A. Konak and A. E. Smith, "A hybrid genetic algorithm approach for 
backbone design of communication networks," in the 1999 Congress on 
Evolutionary Computation. Washington D.C, USA: IEEE, 1999, pp. 
1817-1823. 

[58] S. Areibi and Z. Yang, "Effective memetic algorithms for VLSI design = 
genetic algorithms + local search + multi-level clustering," Evolutionary 
Computation, vol. 12, pp. 327 -353   2004. 

[59] Y. Jin, "A comprehensive survey of fitness approximation in 
evolutionary computation," Soft Computing, vol. 9, pp. 3-12, 2005. 

[60] S. Lawrence, A. C. Tsoi, and A. D. Bäck, "Function approximation with 
neural networks and local methods: bias, variance and smoothness," in 
Australian Conference on Neural Networks. Canberra, 1996, pp. 16–21. 

[61] L. Willmes, T. Bäck, Y. Jin, and B. Sendhoff., "Comparing neural 
networks and kriging for fitness approximation in evolutionary 
optimization," in IEEE Congress on Evolutionary Computation. 
Canberra, Australia, 2003, pp. 663-670. 

[62] Y. Jin and B. Sendhoff, "Reducing fitness evaluations using clustering 
techniques and neural network ensembles," in Genetic and Evolutionary 
Computation Conference (GECCO 2004), vol. 3102  Lecture Notes in 
Computer Science. Seattle, USA: Springer, 2004, pp. 688-699. 

[63] C. A. Ankenbrandt, B. Buckles, F. E. Petry, and M. Lybanon, "Ocean 
feature recognition using genetic algorithms with fuzzy fitness 
functions," in the Third Annual Workshop on Space Operations, 
Automation and Robotics. Houston,  USA, 1989, pp. 679-685. 

[64] R. Pearce and P. H. Cowley, "Use of fuzzy logic to describe constraints 
derived from engineering judgment in genetic algorithms," IEEE 
Transactions on Industrial Electronics, vol. 43, pp. 535-540, 1996. 

[65] H.-P. Schwefel, "Advantages (and disadvantages) of evolutionary 
computation over other approaches," in Handbook of Evolutionary 
Computation, T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds.: IOP 
Publishing and Oxford University Press, 1997, pp. A1.3. 

[66] M. Pelikan, D. E. Goldberg, and F. Lobo, "A survey of optimization by 
building and using probabilistic models," IlliGAL 1999. 

[67] S. Baluja, "Population-based incremental learning: a method for 
integrating genetic search based function optimization and competitive 
learning," Carnegie Mellon University 1994. 

[68] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz, "BOA: the Bayesian 
optimization algorithm," in the Genetic and Evolutionary Computation 
Conference. Orlando, USA: Morgan Kaufmann, 1999, pp. 525-532. 

[69] S. Tsutsui, M. Pelikan, and A. Ghosh, "Performance of aggregation 
phermone system on unimodal and multimodal problems," in The 2005 
IEEE Congress on Evolutionary Computation, vol. 1. Edinburgh, UK: 
IEEE, 2005, pp. 880-887. 

[70] L. T. Leng, "Guided genetic algorithm," Doctoral Dissertation. 
University of Essex, 1999. 

[71] E. P. Tsang and C. Voudouris, "Fast local search and guided local search 
and their application to British telecom's workforce scheduling 
problem," In Operations Research Letters, vol. 20, pp. 119-127, 1997. 

[72] A. Hedar and M. Fukushima, "Simplex coding genetic algorithm for the 
global optimization of nonlinear functions," in Multi-Objective 

Programming and Goal Programming, Advances in Soft Computing, T. 
Tanino, T. Tanaka, and M. Inuiguchi, Eds.: Springer-Verlag, 2003, pp. 
135-140. 

[73] K.-H. Han and J.-H. Kim, "Quantum-inspired evolutionary algorithm for 
a class of combinatorial optimization," IEEE Transactions On 
Evolutionary Computation, vol. 6, pp. 580- 593, 2002. 

[74] K.-H. Han and J.-H. Kim, "Quantum-inspired evolutionary algorithm 
with a new termination criterion, He gate, and two-phase scheme," IEEE 
Transactions on Evolutionary Computation, vol. 8, pp. 156-169, 2004. 

[75] H. Talbi, A. Draa, and M. Batouche, "A new quantum-inspired genetic 
algorithm for solving the travelling salesman problem," in 14th 
International Conference on Computer Theory and Applications. 
Alexandria, Egypt 2004. 

[76] K. C. Tan, Y. Li, D. J. Murray-Smith, and K. C. Sharman, "System 
identification and linearisation using genetic algorithms with simulated 
annealing," in First IEE/IEEE Int. Conf. on GA in Eng. Syst.: 
Innovations and Appl. Sheffield, UK, 1995, pp. 164-69. 

[77] T. Yamada and R. Nakano, "A genetic algorithm with multi-step 
crossover for job-shop scheduling problems," in First IEE/IEEE 
International Conference on Genetic ALgorithms in Engineering 
Systems Innovations and Applications (GALESIA ’95): Sheffield, UK, 
1995, pp. 146–151. 

[78] T. P. Riopka and P. Bock, "Intelligent recombination using individual 
learning in a collective learning genetic algorithm," in the Genetic and 
Evolutionary Computation Conference (GECCO-2000), D. Whitley, D. 
Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, and H.-G. Beyer, Eds. 
Las Vegas, USA: Morgan Kaufmann, 2000, pp. 104-111. 

[79] F. Herrera and M. Lozano, "Heuristic crossovers for real-coded genetic 
algorithms based on fuzzy connectives," in the 4th International 
Conference on Parallel Problem Solving from Nature, vol. 1141, Lecture 
Notes In Computer Science. Berlin, Germany: Springer-Verlag   1996, 
pp. 336 - 345. 

[80] J. N. Richter and D. Peak, "Fuzzy evolutionary cellular automata," in 
International Conference on Artificial Neural Networks in Engineering, 
vol. 12. Saint Louis, USA, 2002, pp. 185-191. 

[81] F. Herrera and M. Lozano, "Adaptive genetic operators based on co-
evolution with fuzzy behaviors," IEEE Transactions on Evolutionary 
Computation, vol. 5, pp. 149-165, 2001. 

[82] R. K. Belew, J. McInerney, and N. N. Schraudolph, "Evolving networks: 
using the genetic algorithm with connectionist learning," in Artificial 
Life II. New York, USA: Addison-Wesley, 1991, pp. 511-547. 

[83] H. Liang, Z. Lin, and R. W. McCallum, "Application of combined 
genetic algorithms with cascade correlation to diagnosis of delayed 
gastric emptying from electrogastrograms," Medical Engineering & 
Physics, vol. 22, pp. 229–234, 2000. 

[84] D. J. Montana, "Neural network weight selection using genetic 
algorithms," in Intelligent Hybrid Systems: John Wiley & Sons, 1995, 
pp. 85-104. 

[85] P. Arena, R. Caponetto, I. Fortuna, and M. G. Xibilia, "MLP optimal 
topology via genetic algorithms," in the International Conference on 
Artificial Neural Nets and Genetic Algorithms, A. Dobnikar, N. Steele, 
D. Pearson, and R. F. Albrecht, Eds. Portoroz, Slovenia: Springer-
Verlag, 1993, pp. 670-674. 

[86] N. Chaiyaratana and A. M. Zalzala, "Hybridisation of neural networks 
and a genetic algorithm for friction compensation," in The 2000 
Congress on Evolutionary Computation, vol. 1. San Diego, USA, 2000, 
pp. 22-29. 

[87] J. R. Koza and J. P. Rice, "Genetic generation of both the weights and 
architecture for a neural network," in Joint Conference on Neural 
Networks, vol. 2. Seattle, USA, 1991, pp. 397-404. 

[88] G. F. Miller, P. M. Todd, and S. U. Hegde, "Designing neural networks 
using genetic algorithms," in the Third International Conference on 
Genetic Algorithms, J. D. Schaffer, Ed. San Mateo, USA: Morgan 
Kaufmann, 1989, pp. 379-384. 

[89] D. Chalmers, "The evolution of learning: an experiment in genetic 
connectionism," in Connectionist Models,1990  Summer School, D. 
Touretzky, J. Elman, T. Sejnowski, and G. Hinton, Eds. San Diego, 
USA: Morgan Kaufmann, 1990, pp. 81–90. 

[90] J. Fontanari and R. Meir, "Evolving a learning algorithm for the binary 
perceptron," Network, vol. 2, pp. 353–359, 1991. 

[91] X. Yao, "Evolving artificial neural networks," Proceedings of the IEEE, 
vol. 87, pp. 1423-1447, 1999. 

[92] C. L. Karr, "Design of an adaptive fuzzy logic controller using a genetic 
algorithm," in the Fourth International Conference on Genetic 
Algorithms. San Diego, USA: Morgan Kaufmann, 1991, pp. 450-457. 



 
 

 

[93] C. L. Karr and E. J. Gentry, "Fuzzy control of pH using genetic 
algorithms," IEEE Transaction on Fuzzy Systems, vol. 1, pp. 46-53, 
1993. 

[94] M. Valenzuela-Rendon, "The fuzzy classifier system: motivations and 
first results," in the International Workshop Parallel Problem, vol. 496, 
Lecture Notes in Computer Science. Dortmund, Germany: Springer, 
1991, pp. 338-342. 

[95] T. White, B. Pagurek, and F. Oppacher, " ASGA: improving the ant 
system by integration with genetic algorithms," in the third Conference 
on Genetic Programming (GP/SGA'98). Madison, USA, 1998, pp. 610-
617. 

[96] H. M. Botee and E. Bonabeau, "Evolving ant colony optimization," 
Advanced Complex Systems, vol. 1, pp. 149-159, 1998. 

[97] M. L. Pilat and T. White, "Using genetic algorithms to optimize ACS-
TSP," in the Third International Workshop on Ant Algorithms, vol. 
Lecture Notes In Computer Science 2463. Berlin, Germany: Springer-
Verlag, 2002, pp. 282 - 287. 

[98] G. Hinton and S. J. Nowlan, "How learning can guide evolution," 
Complex Systems, vol. 1, pp. 495-502., 1987. 

[99] C. Houck, J. Joines, M. Kay, and J. Wilson, "Empirical investigation of 
the benefits of partial Lamarckianism," Evolutionary Computation, vol. 
5, pp. 31- 60, 1997. 

[100] J. A. Joines, M. G. Kay, R. King, and C. Culbreth, "A hybrid genetic 
algorithm for manufacturing cell design," Journal of the Chinese 
Institute of Industrial Engineers, vol. 17, pp. 549-564, 2000. 

[101] C. Sung-Soon and M. Byung-Ro, "A graph-based Lamarckian-
Baldwinian hybrid for the sorting network problem" IEEE Transactions 
on Evolutionary Computation, vol. 9, pp. 105- 114, 2005. 

[102] D. Whitley, S. Gordon, and K. Mathias, "Lamarckian Evolution, the 
Baldwin effect and function optimization," in Parallel Problem Solving 
from Nature - PPSN III vol. 866, Lecture Notes in Computer Science, Y. 
Davidor, H.-P. Schwefel, and R. Manner, Eds. Jerusalem: Springer-
Verlag, 1994, pp. 6-15. 

[103] P. Turney, "Myths and legends of the Baldwin effect," in Workshop on 
Evolutionary Computation and Machine Learning at the 13th 
International Conference on Machine Learning. Bari, Italy, 1996, pp. 
135-142. 

[104] P. Turney, D. Whitley, and R. Anderson, "Evolution, learning, and 
instinct: 100 years of the Baldwin effect," Evolutionary Computation, 
vol. 4, pp. iv-viii, 1996. 

[105] G. Mayley, "Landscapes, learning costs and genetic assimilation," 
Evolutionary Computation, vol. 4, pp. 213 - 234, 1996. 

[106] T. El-Mihoub, A. Hopgood, L. Nolle, and A. Battersby, "A self-adaptive 
Baldwinian search in hybrid genetic algorithms," in the 6th Fuzzy Days 
International Conference on Computational Intelligence. Dortmund, 
Germany: Springer, 2006, to be published. 

[107] J. A. Joines and M. G. Kay, "Hybrid genetic algorithms and random 
linkage," in the 2002 Congress on Evolutionary Computation. Honolulu, 
USA: IEEE, 2002, pp. 1733-1738. 

[108] W. E. Hart, T. E. Kammeyer, and R. K. Belew, "The role of 
development in genetic algorithms," in the Third Workshop on 
Foundations of Genetic Algorithms. San Fransico, USA, 1995, pp. 315-
332. 

[109] Z. Michalewicz and G. Nazhiyath, "Genocop III: a co-evolutionary 
algorithm for numerical optimization problems with nonlinear 
constraints," in 2nd IEEE International Conference on Evolutionary 
Computation, vol. 2. Perth, Australia IEEE, 1995, pp. 647-651. 

[110] J. Bala, K. A. D. Jong, J. Huang, H. Vafaie, and H. Wechsler, "Using 
learning to facilitate the evolution of features for recognizing visual 
concepts," Evolutionary Computation, vol. 4, pp. 297–311, 1996. 

[111] K. W. Ku and M. W. Mak, "Exploring the effects of Lamarckian and 
Baldwinian learning in evolving neural networks," in International 
Conference on Evolutionary Computation. Indianapolis, USA, 1997, pp.  
617-622. 

[112] T. Sasaki and M. Tokoro, "Adaptation toward changing environments: 
why Darwinian in nature?," in Fourth European Conference on Artificial 
Life, , Complex Adaptive Systems Series P. Husbands and I. Harvey, 
Eds. Brighton, UK: MIT press, 1997, pp. 145-153. 

[113] F. B. Espinoza, B. Minsker, and D. Goldberg, "A self adaptive hybrid 
genetic algorithm," in the Genetic and Evolutionary Computation 
Conference (GECCO 2001). San Francisco, USA: Morgan Kaufmann 
Publishers, 2001, pp. 759. 

[114] H. Ishibuchi, S. Kaige, and K. Narukawa, "Comparison between 
Lamarckian and Baldwinian repair on multiobjective 0/1 knapsack 
problems," in Evolutionary Multi-Criterion Optimization, Carlos A. 

Coello Coello, A. H. Aguirre, and E. Zitzler, Eds. Guanajuato, Mexico, 
2005, pp. 370-385. 

[115] D. E. Goldberg and S. Voessner, "Optimizing global-local search 
hybrids," in the Genetic and Evolutionary Computation Conference 
(GECCO 1999). Orlando, USA: Morgan Kaufmann, 1999, pp. 222-228. 

[116] C. D. Rosin, R. S. Halliday, W. E. Hart, and R. K. Belew, "A 
comparison of global and local search methods in drug docking," in the 
Seventh International Conference on Genetic Algorithms, T. Bäck, Ed. 
Michigan, USA: Morgan Kaufmann, 1997, pp. 221-228. 

[117] M. Land, "Evolutionary algorithms with local search for combinatorial 
optimization," Doctoral Dissertation. San Diego: University of 
California 1998. 

[118] K. Mathias and D. Whitley, "Genetic operators, the fitness landscape 
and the traveling salesman problem," in Parallel Problem Solving from 
Nature-PPSN 2. Brussels, Belguim: North Holland-Elsevier, 1992, pp. 
219-228. 

[119] K. Mathias, L. Whitley, C. Stock, and T. Kusuma, "Staged hybrid 
genetic search for seismic data imaging," in International Conference on 
Evolutionary Computation. Orlando, USA, 1994, pp. 356-361. 

[120] M. Syrjakow and H. Szczerbicka, "Combination of direct global and 
local optimization methods," in IEEE Conference on Evolutionary 
Computation. Perth, Western Australia: IEEE, 1995, pp. 326-333. 

[121] A. L. Tuson and P. Ross, "Cost based operator rate adaptation: an 
investigation," in the Fourth International Conference on Parallel 
Problem Solving From Nature (PPSN IV), Lecture Notes in Computer 
Science. Berlin, Germany: Springer Verlag, 1996, pp. 461-469. 

[122] W. E. Hart, C. R. Rosin, R. K. Belew, and G. M. Morris, "Improved 
evolutionary hybrids for flexible ligand docking in AutoDock," in 
Optimization in Computational Chemistry and Molecular Biology, C. A. 
Floudas and P. M. Pardalos, Eds.: Springer 2000, pp. 209-230. 

[123] H. Ishibuchi, T. Yoshida, and T. Murata, "Balance between genetic 
search and local search in memetic algorithms for multiobjective 
permutation flowshop scheduling," IEEE Transactions on Evolutionary 
Computation, , vol. 7, pp. 204- 223, 2003. 

[124] N. J. Radcliffe and P. D. Surry, "Formal memetic algorithms," in 
Evolutionary Computing: AISB Workshop. Brighton, UK: Springer-
Verlag, 1994, pp. 1-16. 

[125] A. O. Griewank, "Generalized descent for global optimization," Journal 
of Optimization Theory and Applications, vol. 34, pp. 11-39, 1981. 

[126] A. Törn and A. Zilinskas, "Global optimization," in Lecture Notes in 
Computer Science, vol. 350: Springer-Verlag, 1989. 

[127] W. E. Hart and R. K. Belew, "Optimization with genetic algorithm 
hybrids that use local search," in Adaptive individuals in evolving 
populations: Models and algorithms, vol. 26, R. Belew and M. Mitchell, 
Eds.: Addison-Wesley, 1996, pp. 483-496. 

[128] M. Land, J. J. SIDorowich, and R. K. Belew, "Using genetic algorithms 
with local search for thin film metrology," in the Seventh International 
Conference on Genetic Algorithms. East Lansing, USA: Morgan 
Kaufmann, 1997, pp. 537-544. 

[129] F. Glover, "Tabu search- part I," ORSA Journal on Computing, vol. 1, 
pp. 190-260, 1989. 

[130] A. Martinez-Estudillo, C. Hervas-Martnez, F. Martnez-Estudillo, and N. 
Garca-Pedrajas, "Hybrid method based on clustering for evolutionary 
algorithms with local search," IEEE Transactions on Systems, Man and 
Cybernetics, 2004. 

[131] F. Espinoza, B. S. Minsker, and D. Goldberg, "Local search issues for 
the appliction of a self-adaptive hybrid genetic algorithm in groundwater 
remediation design," in American Society of Civil Engineers (ASCE) 
Environmental & Water Resources Institute (EWRI) World Water & 
Environmental Resources Congress 2003 & Related Symposia. 
Philadelphia, USA, 2003. 

[132] M. Lozano, F. Herrera, N. Krasnogor, and D. Molina, "Real-coded 
memetic algorithms with crossover hill-climbing," Evolutionary 
computation, vol. 12, pp. 273 - 302  2004. 

[133] F. T. Lin, C. Y. Kao, and C. C. Hsu., " Incorporating genetic algorithms 
into simulated annealing," in the Fourth International Symposium on 
Artificial Intelligence. Cancun, Mexico, 1991, pp. 290-297. 

[134] N. Krasnogor and J. Simth, "Emergence of profitable search strategies 
based on a simple inheritance mechanism," in the Genetic and 
Evolutionary Computation Conference. San Francisco, USA: Morgan 
Kaufmann, 2001, pp. 432-439. 

[135] D. Goldberg, "The race, the hurdle, and the sweet spot: Lessons from 
genetic algorithms for the automation of design innovation and 
creativity," in Evolutionary Design by Computers: Morgan Kaufmann, 
1999, pp. 105–118. 



 
 

 

[136] Y. Chen and D. Goldberg, "Convergence time for the linkage learning 
genetic algorithms," Evolutionary computation, vol. 13, pp. 279-302, 
2005. 

 
Tarek A. El-Mihoub graduated with a BSc in computer 
engineering from Al-Fateh Uinversity, Tripoli, Libya in 
1993 and obtained his MSc in engineering multimedia 
from Nottingham Trent University in UK by the end of 
2002.  
 He is currently a PhD Student at Nottingham 
Trent University. He worked as a Teaching Assistant at 
Al-Fatah University in Libya and as a Manager of 
computer department of the Libyan environment general 

rent research is in the field of optimization, genetic 
algorithms, and artificial intelligence. 
authority. His cur

 
 
Adrian A. Hopgood graduated with a BSc (Hons) in 
physics from the University of Bristol in 1981 and 
obtained a PhD from the University of Oxford in 1984. 

He is professor of Computing and Dean of the 
School of Computing & Informatics at Nottingham Trent 
University, UK. He is also a visiting professor at the Open 
University. His main research interests are in intelligent 
systems and their practical applications.  

Prof. Hopgood is a fellow of the British 
Computer Society and a committee member for its 

specialist group on artificial intelligence. 
 

 
Lars Nolle graduated from the University of Applied 
Science and Arts in Hanover in 1995 with a degree in 
Computer Science and Electronics. After receiving his 
PhD in Applied Computational Intelligence from The 
Open University, he worked as a System Engineer for 
EDS.  

He returned to The Open University as a 
Research Fellow in 2000. He joined The Nottingham 
Trent University as a Senior Lecturer in Computing in 

February 2002. His research interests include: applied computational 
intelligence, distributed systems, expert systems, optimization and control of 
technical processes. 

 

 
 

Alan Battersby obtained an MSc in Computer Science 
from Hatfield Polytechnic, UK in 1977.  

Prior to joining the School of Computing and 
Informatics at Nottingham Trent University, UK, he was 
a Computing Development Officer for Bedfordshire 
Education Authority. His research interests include: 
Fuzzy Logic applied to Robotics, wavelets, compression 
and the Internet. 

 
 


	I. INTRODUCTION 
	II. A Complementary View   
	A. Capability Enhancement 
	1) Improving Solution Quality 
	2) Improving Efficiency 
	a) Convergence Speed 
	b) Population Size 

	3) Guarantee Feasible Solutions 
	4) Fitness Function Estimation 
	5) Operation Substitution 

	B. Optimizing the Control Parameters 
	III. Hybrid Design Issues 
	A. Local Search and Learning 
	1)  Lamarckian Learning 
	2) Baldwinian Learning 
	3) Hybrid Lamarckian-Baldwinian Models 

	B. Balance between Global and Local Search 
	1) Frequency of Local Search 
	2) Duration of Local Search 
	3) Probability and Selection of Local Search 
	a) Tuning Technique 
	b) Distribution-based Technique 
	c) Fitness-based Technique 
	d) Local Search Potential Technique 



	IV. SUMMARY 


