

Hybrid Genetic Algorithms: A Review
Tarek A. El-Mihoub, Adrian A. Hopgood, Lars Nolle, Alan Battersby

Abstract—Hybrid genetic algorithms have received significant

interest in recent years and are being increasingly used to solve
real-world problems. A genetic algorithm is able to incorporate
other techniques within its framework to produce a hybrid that
reaps the best from the combination.

In this paper, different forms of integration between genetic
algorithms and other search and optimization techniques are
reviewed. This paper also aims to examine several issues that
need to be taken into consideration when designing a hybrid
genetic algorithm that uses another search method as a local
search tool. These issues include the different approaches for
employing local search information and various mechanisms for
achieving a balance between a global genetic algorithm and a
local search method.

Index Terms—Genetic algorithms, evolutionary computation,
hybrid genetic algorithms, genetic-local hybrid algorithms,
memetic algorithms, Lamarckian search, Baldwinian search.

I. INTRODUCTION
A genetic algorithm is a population-based search and

optimization method that mimics the process of natural
evolution. The two main concepts of natural evolution, which
are natural selection and genetic dynamics, inspired the
development of this method. The basic principles of this
technique were first laid down by Holland [1] and are well
described, for example, in [2],[3].

The performance of a genetic algorithm, like any global
optimization algorithm, depends on the mechanism for
balancing the two conflicting objectives, which are exploiting
the best solutions found so far and at the same time exploring
the search space for promising solutions. The power of genetic
algorithms comes from their ability to combine both
exploration and exploitation in an optimal way [1]. However,
although this optimal utilization may be theoretically true for a
genetic algorithm, there are problems in practice. These arise
because Holland assumed that the population size is infinite,
that the fitness function accurately reflects the suitability of a
solution, and that the interactions between genes are very
small [4].

In practice, the population size is finite, which influences
the sampling ability of a genetic algorithm and as a result
affects its performance. Incorporating a local search method

Manuscript received February 3, 2006.
T. A. El-Mihoub, A. A. Hopgood, Lars Nolle, and A. Battersby are with

School of Computing & Informatics, Nottingham Trent University.
Nottingham, NG11 8NS, UK (phone: +44 (0)870 127 8429; fax: +44 (0)115
848 8365; e-mail: tarek.elmihoub, adrian.hopgood, lars.nolle, and alan.
Battersby @ntu.ac.uk).

within a genetic algorithm can help to overcome most of the
obstacles that arise as a result of finite population sizes.

Incorporating a local search method can introduce new
genes which can help to combat the genetic drift problem [5],
[6] caused by the accumulation of stochastic errors due to
finite populations. It can also accelerate the search towards the
global optimum [7] which in turn can guarantee that the
convergence rate is large enough to obstruct any genetic drift.

The Parallel Recombinative Simulated Annealing (PRSA)
algorithm [8] fights the genetic drift problem in another way
by combining the concept of the cooling schedule of simulated
annealing [9], Boltzmann tournament selection [10], and
standard genetic operators.

Due to its limited population size, a genetic algorithm may
also sample bad representatives of good search regions and
good representatives of bad regions. A local search method
can ensure fair representation of the different search areas by
sampling their local optima [11] which in turn can reduce the
possibility of premature convergence.

In addition, a finite population can cause a genetic
algorithm to produce solutions of low quality compared with
the quality of solution that can be produced using local search
methods. The difficulty of finding the best solution in the best
found region accounts for the genetic algorithm operator’s
inability to make small moves in the neighborhood of current
solutions [12]. Utilizing a local search method within a genetic
algorithm can improve the exploiting ability of the search
algorithm without limiting its exploring ability [7]. If the right
balance between global exploration and local exploitation
capabilities can be achieved, the algorithm can easily produce
solutions with high accuracy [13].

Although genetic algorithms can rapidly locate the region in
which the global optimum exists, they take a relatively long
time to locate the exact local optimum in the region of
convergence [14], [15]. A combination of a genetic algorithm
and a local search method can speed up the search to locate
the exact global optimum. In such a hybrid, applying a local
search to the solutions that are guided by a genetic algorithm
to the most promising region can accelerate convergence to
the global optimum. The time needed to reach the global
optimum can be further reduced if local search methods and
local knowledge are used to accelerate locating the most
promising search region in addition to locating the global
optimum starting within its basin of attraction.

The improper choice of control parameters is another source
of the limitation of genetic algorithms in solving real-world
problems [16] due to its detrimental influence on the trade-off
between exploitation and exploration. Depending on these
parameters the algorithm can either succeed in finding a near-

Engineering Letters, 13:2, EL_13_2_11 (Advance online publication: 4 August 2006)
__

optimum solution in an efficient way or fail. Choosing the
correct parameter values is a time-consuming task. In addition,
the use of rigid, constant control parameters is in contradiction
to the evolutionary spirit of genetic algorithms [17]. For this
reason, other search techniques can be utilized to set the
values of these parameters whilst the search is progressing.

In this paper, hybrid genetic algorithms are reviewed
through presenting the different ways in which the roles of a
search method and a genetic algorithm can be integrated. The
aim of this presentation is not to classify hybrid genetic
algorithms, but to shed light on the possible ways of
combining a search method within the framework of a genetic
algorithm. However, the reader can refer to [18] for an
architectural taxonomy of combinatorial memetic algorithms
(MA) [19] and to [20], where meta-heuristics are classified
based on the design space and implantation space aspects.

This paper also aims to gain an insight into some of the
design issues of hybrid genetic algorithms through reviewing
the different mechanisms of utilizing local search information
within genetic search and the various techniques to achieve a
balance between exploration and exploitation.

II. A COMPLEMENTARY VIEW
Hybrid genetic algorithms, as any hybrid system, are based

on the complementary view of search methods [21 p.223].
Genetic and other search methods can be seen as
complementary tools that can be brought together to achieve
an optimization goal. In these hybrids, a genetic algorithm
incorporates one or more methods to improve the performance
of the genetic search. There are several ways in which a search
or optimization technique can complement the genetic search.

A. Capability Enhancement
A technique can be utilized within a genetic algorithm to

enhance search capabilities. A genetic algorithm is normally
viewed as a global search method that can capture the global
view of a problem domain. Different techniques can be
incorporated within a genetic algorithm to improve its
performance in different ways. When a genetic algorithm as a
global search method is combined with a problem-specific
method as a local method, the overall search capability can be
enhanced. The enhancement can be in terms of solution
quality and/or efficiency. This performance can also be
improved by ensuring production of feasible solutions in the
case of highly constrained problems. This paper focuses on the
global local complementary view of genetic hybrids which
have been variously referred to as memetic algorithms (MA)
[19], genetic-local search methods [22], Lamarckian genetic
algorithms [23], Lamarckian search, and Baldwinian search
[24].

Function approximation techniques can also be incorporated
in a genetic search to speed up the search. It is also possible to
utilize other techniques to replace one or more of the genetic
operators in order to overcome some of the problems that face
genetic search.

1) Improving Solution Quality
Local search methods and genetic algorithms are usually

viewed as two complementary tools. A local search
algorithm’s ability to locate local optima with high accuracy
complements the ability of genetic algorithms to capture a
global view of the search space. Holland [1], cited in [25],
suggested that the genetic algorithm should be used as a pre-
processor for performing the initial search, before invoking a
local search method to optimize the final population. Bilchev
and Parmee [26], for example, used their ant colony
optimization [27] model for continuous search spaces as local
search method to improve the quality of the solutions
produced by a genetic algorithm in order to solve a real-world,
heavily constrained, engineering design problem.

Performing local search on a genetic algorithm’s population
can introduce diversity and help to resist the genetic drift. It
enables fair representation of different search areas in order to
fight premature convergence. Incorporating a local search
algorithm also introduces an explicit refinement operator
which can produce high quality solutions.

2) Improving Efficiency
The efficiency of a local search in reaching a local optimum

integrates the efficiency of a genetic algorithm in isolating the
most promising basins of the search space. Therefore,
incorporating a local search into a genetic algorithm can result
in an efficient algorithm. The efficiency of the search can be
enhanced in terms of the time needed to reach the global
solution, and/or the memory needed to process the population.

a) Convergence Speed
 A major concern in genetic algorithm design is efficiency

in terms of the time needed to reach a solution of desired
quality. In real-world problems, function evaluations are the
most time-consuming part of the algorithm. For example, the
designers of today’s complex engineering systems usually rely
on expensive computer analysis and simulation programs,
where the execution time for a single function evaluation can
be of the order of hours or days [28]. Finite element analysis
(FEA), computational fluid dynamics (CFD), heat transfer and
vehicle dynamic simulations are examples of such programs.
Hybridization in addition to parallelization [29], time
utilization [30], and evaluation relaxation (function
approximation) can be used to speed up a genetic search [31].

Genetic algorithms often show significant improvements in
search speed when combined with local search methods
utilizing domain-specific knowledge [20], [32]. There is an
opportunity in hybrid optimization to capture the best of both
schemes [13]. This is the reason why genetic hybrids are being
increasingly used to solve real-world problems. Different
search methods have been mixed with genetic algorithms in
real-world applications [15], [22], [33-37].

b) Population Size
Population size is crucial in a genetic algorithm. It

determines the memory size and the convergence speed in
serial genetic algorithms and affects the speed of search in the
case of parallel genetic algorithms. Efficient population sizing

is critical for getting the most out of a fixed budget of function
evaluations. The gambler’s ruin model [38] was used to
estimate the population size of genetic algorithms. This model
was used to show that population size depends on two
parameters, which can be affected by incorporating local
search. The two parameters represent the standard deviation of
the population and the signal difference between the best and
second best building blocks. If a local search method is
incorporated in such a way as to reduce the standard deviation
of the population and to increase the signal difference between
the best and the second best chromosome, the resulting hybrid
can be efficient even with small population sizes. Espinoza et
al. [39] showed the effect of a local search method on
reducing the population size, compared to a pure genetic
algorithm. El-Mihoub et al. [40] demonstrated the combined
effect of probability of local search and learning strategy on
the population size requirements of a hybrid.

3) Guarantee Feasible Solutions
In highly constrained optimization problems, the crossover

and mutation operators generally produce illegal or infeasible
solutions and hence waste search time. This problem can be
solved by incorporating problem-specific knowledge.
Problem-specific knowledge can be used either to prevent the
genetic operators from producing infeasible solutions or to
repair them.

The partial matched crossover (PMX) [41] was proposed
for use in order-based problems to avoid the generation of
infeasible solutions. Grefenstette et al. [42] suggested a
heuristic crossover operator that could perform a degree of
local search for the traveling salesman problem (TSP).
Davidor [43] designed “analogous crossover” where local
information is used to decide which crossover sites can
produce unfit solutions. Heuristic crossover operators were
used to solve a timetabling problem in order to ensure that the
most fundamental constraints are never violated [44].
Freisleben and Merz [45] proposed the distance preserving
crossover (DPX) to produce feasible solutions to solve TSP
without losing diversity. They used the non- sequential 4-
change [46] as a mutation operator for the same reason. Cycle
crossover (CX) [47], order crossover (OX) [47], matrix
crossover (MX) [48], modified order crossover (MOX) [49],
edge recombination crossover (ERX) [50], 2-opt operator [51],
3-opt operator [51] and or-opt operators [51] are examples of
crossover and mutation operators which have been developed
for TSP. A special edge recombination crossover [52] has
been constructed for the three-matching problem (3MP). The
crossover operator has been replaced with the gene-pooling
operator to produce feasible solutions when optimizing the
number and positions of fuzzy prototypes for efficient data
clustering [53].

A problem-specific knowledge search method can be used
to recover the feasibility of solutions generated by the standard
genetic operators. Repairing such solutions can help the
genetic search to avoid the danger of premature convergence,
which occurs when all or most solutions are infeasible [54],
[55]. The force feasible heuristic operator [56] was used to
solve the problem of scheduling aircraft landing times. Konak

and Smith [57] combined a genetic algorithm with a cut-
saturation algorithm for the backbone design of
communication networks. They use a uniform crossover
operator with a K-node-connectivity repair algorithm to repair
infeasible offspring. Areibi and Yang [58] used repair
heuristics in their proposed approach to solve VLSI circuit
layout. The approach combines a hierarchical design
technique, genetic algorithms, constructive techniques, and
advanced local search. They also used the OX operator to
avoid infeasible solutions in solving VLSI design problems.

4) Fitness Function Estimation
If the fitness function is excessively slow or complex to

evaluate, approximation function evaluation techniques can be
utilized to accelerate the search without disrupting search
effectiveness. This is because genetic algorithms are robust
enough to achieve convergence in the face of noise produced
by the approximation process. Fitness approximation schemes
replace high-cost accurate fitness evaluation with a low-cost
approximate fitness assignment procedure. This can be
achieved either by evolutionary approximation, where the
fitness of a chromosome is estimated from its parents’ fitness,
or function approximation, where the fitness function is
replaced by an alternate simpler model. Jin [59] provides a
comprehensive survey on fitness approximation techniques.

The selection of an appropriate approximation model to
replace the real function is an important step in ensuring that
the optimization problem is solved efficiently. Neural network
[21 ch. 8] models have widely been used for function
approximation [60]. Willmes et al. [61] compared neural
networks and the Kriging method for constructing fitness
approximation models in evolutionary algorithms. Jin and
Sendhoff [62] combined the k-nearest-neighbor clustering
method and a neural network ensemble to estimate a solutions’
fitness. Burdsall and Giraud-Carrier [53] used an
approximation of the network’s execution to evaluate
solutions fitness instead of constructing a radial basis function
network (RBF) to optimize the topology of a neural network.
The approximation is based on an extension of the nearest-
neighbor classification algorithm to fuzzy prototypes.
Ankenbrandt et al. [63] implemented a system of fuzzy fitness
functions, to grade the quality of chromosomes, representing a
semantic net. The system is used to assist in recognizing
oceanic features from partially processed satellite images.
Pearce and Cowley [64] presented a study of the use of fuzzy
systems to characterize engineering judgment and its use with
genetic algorithms. They demonstrated an industrial design
application where a system of problem-specific engineering
heuristics and hard requirements are combined to form a
fitness function.

5) Operation Substitution
Genetic algorithms present a methodological framework

that is easy to understand and handle. This framework is open
to the incorporation of other techniques [65]. It is possible to
utilize other techniques to perform one or more of the genetic
algorithm operations. These incorporated techniques can be
used to replace either the crossover operator, mutation
operator or both.

In probabilistic model-building genetic algorithms
(PMBGA) or estimation of distribution algorithms (EDA)
[66], a probabilistic model is utilized to learn the structure of a
problem on the fly. This model is used instead of the standard
genetic operators to ensure a proper mixing and growth of
building blocks. These algorithms replace the standard
crossover and mutation operators of genetic algorithms, by
building a probabilistic model that estimates the true
distribution of promising solutions. New potential solutions
are then generated by sampling this model. Population based
incremental learning (PBIL) [67], univariate marginal
distribution algorithm (UMDA), compact genetic algorithm
(CGA), bivariate marginal distribution algorithms (BMDA),
factorized distribution algorithms (FDA) and the Bayesian
optimisation algorithm (BOA) [68] are all examples of
PMBGA that are reported to have a better search ability, than
that of the simple genetic algorithm, in solving a broad class
of problems [66]. Tsutsui et al. [69] proposed the aggregation
pheromone system (APS), which introduced the concept of
pheromone trail of the ant colony optimization [27] into the
PMBGAs, to solve real-valued optimization problems.

Leng [70] proposed the guided genetic algorithm (GGA)
which is a hybrid genetic system that borrows the concept of
feature and penalties from the guided local search (GLS) [71].
The GGA modifies the fitness function by means of penalties
to escape local optima. Two specialized crossover and
mutation operators, which are biased by the penalties to
change genes that are involved in more penalties, are used in
order to explore the search space.

When a problem-specific representation is used in a genetic
algorithm, the standard genetic variation operators are usually
replaced with problem-specific operators. Hedar and
Fukushima [72] replaced the ordinary crossover with a
simplex crossover that produces a simplex offspring from
mating simplex parents (is the dimension of the problem to
be solved). In this hybrid, a mutation operator, which is more
suitable for simplex representation, was used. Quantum-
inspired genetic algorithms [73]-[75] borrow the concepts of
quantum-bits and -states superposition from quantum
computing. In these algorithms, the individuals are represented
as a string of quantum-bits. Quantum-gates are then used to
modify these individuals instead of crossover and mutation
operators. The power of these algorithms comes from the great
diversity they provide by using quantum coding. Each single
quantum individual in reality represents multiple classical
individuals. The results reported from using this hybridization
to solve combinatorial and continuous optimization problems
are promising.

Tan et al. [76] replaced the standard mutation operator by
simulated annealing [9] to solve system identification and
linearization problems. The results showed a more accurate
search and faster convergence when compared with a pure
genetic algorithm. The multi-step crossover (MSX) [77] was
proposed to solve combinatorial optimization problems.
Riopka and Bock proposed a collective learning genetic
algorithm [78], in which an intelligent recombination based on
the exchange of knowledge between chromosomes, is used to

effectively find high quality solutions to combinatorial
optimization problems. Magyar et al. [52] introduce several
heuristic crossover and local hill-climbing operators to solve
the three-matching problem. Fundamental to the technique
here is the adaptation of the selected operator. Two fuzzy
connective-base (FCB) crossover operators types (dynamic
and heuristic) have been proposed in [79] for real-coded
genetic algorithms to fight premature convergence problems.

B. Optimizing the Control Parameters
The setting of genetic algorithm control parameters is a key

factor in the determination of the exploitation versus
exploitation trade-off. Other techniques can be used to monitor
the behavior of a genetic algorithm in order to adapt its control
parameters to improve the search performance. The ability of
fuzzy logic to represent knowledge in imprecise and non-
specific ways enables it to be used to reason on knowledge
that is not clearly defined or completely understood. This
ability makes fuzzy logic a suitable choice for adapting the
control parameters of a genetic algorithm. Fuzzy logic has
allowed a small group of researchers to devise ways of
optimizing performance and solution quality of genetic
algorithms [80]. It is used to incorporate the many heuristics
and techniques of experienced genetic algorithm researchers
into fuzzy logic systems in order to adapt the control
parameters. The goal of such a system is generally to avoid
undesirable behaviors such as premature convergence and to
speed up the convergence of the genetic algorithm [81].

It is also possible to incorporate a genetic algorithm within
another technique to optimize control parameters, since
genetic algorithms are in practice very effective optimization
techniques. A genetic algorithm can be applied to the
optimization of a neural network in a variety of ways. It can be
utilized to adjust the neural network weights [82]-[84] their
topology [85]-[88] and learning rules [89], [90]. For a
comprehensive review of evolving neural networks the reader
can refer to [91]. Karr [92] described an application to the
cart-pole balancing system and used a genetic algorithm to
evolve the membership functions of a fuzzy controller. The
resulting, optimized fuzzy logic controller performed better
than the controller based on membership functions designed
by a human expert. These promising results have been
confirmed by an application of the method for online control
of a laboratory pH system with drastically changing system
characteristics [93]. Genetic algorithms can also be used to
automate the learning of fuzzy control rules [94]. They have
also been used to optimize the control parameters of ant
colony optimization algorithms [95]-[97].

III. HYBRID DESIGN ISSUES
Incorporating a search method within a genetic algorithm

can improve the search performance on the condition that their
roles cooperate to achieve the optimization goal. There is an
opportunity in hybrid optimization to capture the best of both
schemes [13]. This opportunity depends on the design details
of the hybrid genetic algorithm. There are several issues that

need to be taken into consideration when designing a hybrid
genetic algorithm. Some of the design choices faced by hybrid
practitioners while solving real-world problems are discussed
here.

Due to their major impact on hybrid genetic performance,
the discussion is concentrated on the strategies of utilizing
local search information within a hybrid, and mechanisms that
can be used to achieve a balance between exploration and
exploitation. First, the relation between local search and
learning, and its different models, are presented. Then,
different techniques that can be used to achieve the optimal
division of labor between the global genetic algorithm and the
local search method are reviewed.

A. Local Search and Learning
Local search methods use local knowledge to improve a

solution’s chances to propagate its characteristics into the next
generations. Due to the similarities in the role of the local
search within the genetic search and the role of learning within
the evolution process, the local search is usually viewed as a
learning process.

The way by which gained information through local search
is utilized within a hybrid genetic algorithm has a great impact
on the performance of the search process. Two basic
approaches based on biological learning models have been
adopted to utilize local information; the Lamarckian approach
and the Baldwinian approach [98]. There is also a third model,
which is a mixture of the basic models and its effectiveness
has been proven in solving real-world problems [55], [99]-
[101].

1) Lamarckian Learning
The Lamarckian approach is based on the inheritance of

acquired characteristics obtained through learning. This
approach forces the genetic structure to reflect the result of the
local search. The genetic structure of an individual and its
fitness are changed to match the solution found by a local
search method. In the Lamarckian approach, the local search
method is used as a refinement genetic operator that modifies
the genetic structure of an individual and places it back in the
genetic population.

Lamarckian evolution, in spite of being recognized as never
occurring in biological systems due to the lack of a
mechanism to accomplish it, can be simulated in a computer in
order to shed light on issues of general evolvability.
Lamarckian evolution can accelerate the search process of
genetic algorithms [102]. On the other hand, by changing the
genetic structure of individuals, it can disrupt schema
processing which can badly affect the exploring abilities of
genetic algorithms. This may lead to premature convergence
[102]. When a Lamarckian approach is adopted, inverse
mapping from phenotype to genotype is required. The inverse
mapping may be computable in many simple applications.
However, for real-world problem solving, the computation
will typically be intractable [103]. Most of hybrid genetic
algorithms that repair chromosomes to satisfy constrains are
Lamarckian and the technique has been particularly effective
in solving TSP [24].

2) Baldwinian Learning
The Baldwin learning allows an individual’s fitness to be

improved by applying a local search, whereas the genotype
remains unchanged. In this way, it improves the solution’s
chances to propagate its structure to the next generations. Like
natural evolution, learning does not change an individual’s
genetic structure, however it increases its chances of survival.
The Baldwinian approach, in contrast to the Lamarckian one,
does not allow parents to pass their learned or acquired
characteristics to their offspring. Instead, only the fitness after
learning is retained. A local search method in the Baldwinian
approach is usually used as a part of the individual’s
evaluation process. The local search method uses local
knowledge to produce a new fitness score that can be used by
the global genetic algorithm to evaluate the individual’s ability
to be improved.

The Baldwin effect is somewhat Lamarckian in its results
although it uses different mechanisms [103]. It explains
interactions between learning and evolution by paying
attention to balances between benefit and cost of learning. The
Baldwin effect consists of the following two steps [104]. In
the first step, learning gives individuals the chance to change
their phenotypes to improve their fitness. Individuals, who
found learning useful and help their fitness to improve, will
spread in the next population. In the second step, if the
environment is sufficiently stable, the cost associated with
learning results in selection favoring individuals that have the
traits, which are acquired by others through learning, already
coded into their genotype. Through this mechanism, called
genetic assimilation, learning can accelerate the genetic
acquisition of learned traits indirectly. A critical precondition
for genetic assimilation appears to be a strong correlation
between genotype and phenotype space so that nearness in the
phenotype space implies nearness in the genotype space [105].
Otherwise, the acquired traits have little chance of eventually
becoming encoded in the genome via chance through genetic
operations.

Hinton and Nolan [98] illustrated how the Baldwin effect
can transform the fitness landscape of a difficult optimization
problem into a less difficult one, and how the genetic search is
attracted toward the solution found by learning. Gruau and
Whitley [11] showed how local search can change the
landscape of fitness function into flat landscapes around the
basin of attraction. This change in fitness landscape is known
as the smoothing effect. They demonstrated the impact of the
smoothing effect on the search process. This learning strategy
could be more effective but slower than the Lamarckian
approach, since it does not disrupt schema processing of
genetic algorithms [102]. Baldwinian search can also have the
effect of obscuring genetic differences and, thus, hindering the
evolution process [105]. This is known as the hindering effect.
Essentially, this occurs as a result of different genotypes
mapping to the same or similar phenotypes (as a result of the
smoothing effect) with equivalent fitness scores being
produced. The genotypes cannot be effectively discriminated
according to their fitness values without considering the
learning cost and the evolution of effective solutions is

hindered. The hindering effect can also obstruct the ability of
the Baldwinian search to self-adapt the local-search-duration
control parameter [106]. The Baldwinian effect can aggravate
the problem of multiple genotype to phenotype mappings [24],
[99]. This problem can also waste the resources of hybrids that
use clustering techniques in the genotype domain to reduce
unnecessary local search, in contrast to the Lamarckian
approach which has been shown to help alleviate this problem
[107].

Hart et al. [108] pointed to the importance of considering
the cost of learning, which has been ignored by most
researchers when studying the impact of the Baldwinian
strategy on the hybrid search by analyzing its performance
based on the number of generations of the genetic algorithm
only. Learning can introduce a computational cost which
overweighs its benefits in search.

3) Hybrid Lamarckian-Baldwinian Models
Hybrid Lamarckian-Baldwinian models are created with a

view towards combing the advantages of both forms of
learning models [55]. The combination of the Baldwinian and
the Lamarckian approaches can be done at two different
levels. Hybridization can be used at the individual-level,
where some individuals evolve using the Lamarckian
approach while the other individuals evolve using the
Baldwinian approach [99], [100]. Houck et al. [99] found that
this form of partial Lamarckian approach outperformed both
the pure Lamarckian and the pure Baldwinian approaches on a
selected set of test problems. The other level is the gene-level,
where a number of genes evolve using the Lamarckian
strategy and the remaining genes evolve using the Baldwinian
approach [101]. This approach was used to solve the sorting
network problem. It can reduce the problem search space and
help to produce an efficient search [101].

The adoption of any form of learning in a hybrid genetic
algorithm has a great impact on its performance. Several
researchers have investigated how these different leaning
strategies affect the performance of hybrid genetic algorithms
by comparing them with pure genetic algorithms. Gruau and
Whitley [11] compared Lamarckian, Baldwinian and pure
genetic algorithms in evolving the architecture and the weights
of neural networks that learn Boolean functions. They
conclude that using either form of leaning is better than using
a pure genetic algorithm. Orvosh and Davis [55] found that
5% partial Lamarckian is the optimal learning strategy to solve
the survival network design problem and the graph coloring
problem. Michalewicz and Nazhiyath [109] replaced 20% of
the repaired solutions in their hybrid algorithm to solve
numerical optimization problems with nonlinear constraints.
Bala et al. [110] showed how the Baldwin effect can improve
the performance of a genetic algorithm when integrated with a
decision tree in order to evolve useful subsets of
discriminatory features for recognizing complex visual
concepts. However, Ku and Mak [111] found that only using
Lamarckian evolution improved the performance of genetic
algorithm in evolving recurrent neural networks. They also
concluded that effective hybridization depends on the local
search method used and the learning frequency. Houck et al.

[99] used seven problems to compare the performance of
different learning strategies. Their investigation concluded that
neither the pure Lamarckian nor pure Baldwinian strategy was
found to be consistently effective. It was discovered that the
20% and 40% partial Lamarckian search strategies yielded the
best mixture of solution quality and computational efficiency
based on a minmax criterion (i.e. minimizing the worst case
performance across all test problems instance). Sasaki and
Tokoro [112] found that adaptation by Lamarckian evolution
was much faster for neural networks than Darwinian evolution
in a static environment. However, when the environment
changed from generation to generation, the Darwinian
evolution was superior. Julstrom [24] reported that Baldwinian
strategies perform poorly in solving the 4-cycle problem
compared to a pure genetic algorithm and their effectiveness
deteriorates with an increasing use of learning in contrast to
Lamarckian strategies. He also found that applying
Lamarckian leaning to all the individuals produced the most
effective results. Joines et al. [100] found that using the pure
Lamarckian approach (100% Lamarckian) produced the best
convergence speed to the best known solution when solving
the cell formation problem. Espinoza et al. [112] used 75%
partial Lamarckian as the optimal leaning strategy in their
hybrid to optimize two continuous functions. El-Mihoub et al.
[40] investigated the combined effect of probability of local
search and leaning strategy on the hybrid performance and
found that combing a low probability of local search with the
pure Lamarckian learning strategy can improve the
convergence speed without disrupting the schema processing.
Ishibushi et al. [114] found that the 5% partial Lamarckian
worked well on the multi-objective 0/1 knapsack problem
using a single population model, however, the 50% partial
Lamarckian was the optimal choice using the island model.

The effectiveness of adopting the pure Lamarckian
approach, the pure Baldwinian approach, or any mixture of
them in a hybrid is affected by the fitness landscape, the
representations, the percentage of population performs local
search and local search method used [40], [99], [100], [103],
[109], [114].

B. Balance between Global and Local Search
The hybrid algorithm should strike a balance between

exploration and exploitation, in order to be able to solve global
optimization problems. According to the hybrid theory [115],
solving an optimization problem and reaching a solution of
desired quality can be attained in one of two ways. Either the
global search method alone reaches the solution or the global
search method guides the search to the basin of attraction from
where the local search method can continue to lead to the
desired solution. In the genetic-local hybrid, the main role of
the genetic algorithm is to explore the search space in order to
either isolate the most promising regions of the search space,
or, to hit the global optimum. However, the main role of the
local search method is to exploit the information gathered by
the global genetic algorithm. The division of the hybrid’s time
between the two methods influences the efficiency and the
effectiveness of the search process. The optimal division of

the algorithm’s time is an important issue that is faced the
designers of hybrid genetic algorithms.

Although the aim of combining a global genetic algorithm
and a local search method is to get the best out of the
exploring ability of the former, and the efficiency of the latter
in reaching local optima, the two methods can interact in a
more complicated way than the one described above. Rosin et
al. [116] argued that the mutation operator in a hybrid plays a
different role than it does in a pure genetic algorithm. The
local refinement requirement of the mutation operator
becomes unnecessary in the existence of an explicit local
operator allowing the mutation operator to take a more
exploratory role. Land [117] suggested using larger mutations,
at least large enough to move from one basin to another, in
cases where each individual of the population is completely
locally optimized. He went further, when he argued that local
search obviates the need for crossover in solving the graph
bisection problem, because local search is able to build the
very same building blocks that the crossover would otherwise
combine.

The exploring ability of the genetic algorithm can be further
improved by utilizing local search to ensure fair representation
of different regions of a search. This can improve the ability of
the genetic algorithm to direct the search to the most
promising regions of the search space. Once the algorithm has
guided the search to the basin of attraction of the global
optimum, utilizing local search can further improve the search
to produce an effective optimization algorithm. The first goal
of the hybridization, which is the effectiveness of search, can
be satisfied if a genetic algorithm and a local search method
cooperate in the manner mentioned above. However, there are
other more destructive forms of interaction. For example, the
mutation and crossover operators can disrupt good and
complete local solutions which may waste algorithm resources
and produce an inefficient search. The Lamarckian local
search can disrupt the schema processing of the genetic
algorithm which may lead to premature convergence and
produce an ineffective search.

In addition to the role of genetic operators in systemically
exploring the search space, they perform some form of local
search with relative low cost compared to the more accurate
local search methods. The improper use of the expensive local
search in a hybrid can waste algorithm resources. The
algorithm should be able to decide wisely on both methods,
especially when both can achieve the desired task, taking into
account the benefits and costs of their utilization. The
condition of an appropriate use of both methods in addition to
the condition of interacting in a cooperative way should be
satisfied in order to produce an effective and efficient search
algorithm.

Researchers have proposed different techniques to enable
the hybrid to mix both methods wisely or at least to reduce the
consequences of the improper use of the expensive local
search. These techniques are based on modifying the different
parameters of a local search method within a hybrid.
Modifying the parameters of the local search, such as the
frequency of local search, the duration of local search, and the

probability of local search can help the hybrid to strike the
balance between the two search methods.

1) Frequency of Local Search
The number of continuous uninterrupted generations that a

genetic algorithm performs before applying local search is
usually referred to as the frequency of local search. In the
traditional hybrid genetic algorithm, the frequency of local
search is 1, for example. The staged hybrid genetic algorithm
[118], [119] was designed to separate the two search methods
into two distinct stages by increasing the frequency of the
local search in order to minimize the interference between the
two search methods. Mathias and Whitely [118] used a local
search frequency of 2 to solve the TSP. However, in a hybrid
algorithm to solve the static correction problem [119], the
genetic search algorithm was allowed to continue
uninterrupted for ten generations before applying a single
iteration of waveform steepest ascent iteration to each
individual in the population. This hybrid algorithm produced
solutions with improved quality of 5% and additional savings
in time compared with the traditional hybrid genetic
algorithm. Espinoza et al. [113] conducted a set of
experiments to find the optimal local search frequency for two
two-dimensional continuous test functions and they found that
the optimal frequency of local search for these test functions
was 3.

The optimal frequency of local search is function dependent
and varies with time because the optimal time that should be
spent on local and global search algorithms depends on the
distribution of individuals in the population. Syrjakow and
Szczerbicka [120] studied the optimal switch point between
the genetic algorithm and local search to fine-tune the solution
found by the pre-optimizer genetic algorithm. They studied
three criteria: the number of function evaluations, the
convergence speed of the genetic algorithm, and the regional
accumulation of search points indicating the convergence
toward a specific region in the search space so as to determine
the optimal switch point. The convergence speed criterion
produced the highest efficiency in their experiment. Lobo and
Goldberg [13] addressed the problem of deciding between
global search and local search in order to make the most out of
either technique. They tried to answer the question, “when
should the local search be used and when should the global
genetic algorithm be used to achieve the maximum possible
efficiency?” They viewed the problem as a two armed bandit
problem where the payoff of each bandit is unknown and
changes with time. They presented a model for efficient
hybridizing based on the concept of probability matching. This
model can be viewed as an adaptive technique that adjusts the
frequency of local search depending on the efficiency of both
genetic and local techniques as the search progresses. Tuson
and Ross [121] used a similar model to adapt the operator
probability in their cost based operator rate adaptation. They
used their model to select the use of a mutation or crossover
operation in a pure genetic algorithm. The same technique has
been used to solve the three-matching problem [52], where an
adaptive hybrid algorithm selects one operator from eight
recombination and local search operators based on their

current and past benefit-cost ratio.
Espinoza et al. [113] used the change in coefficient of

variation of the fitness function to determine whether the
genetic algorithm is exploring new regions of the search space
or exploiting the already visited regions. Based on that, the
algorithm selects to perform either a genetic or a local
iteration. The algorithm relies on the local search role to
improve the sampling of the new regions that are being
explored in the case of any increase in that coefficient. Once
the search has branched to a local search, the fitness
improvement-cost ratio of both the last genetic and the local
iterations and the maximum number of local iterations are
used to decide on continuing the local search or going to the
global search. Their experiments showed that the algorithm is
more efficient than a pure genetic algorithm and is stable
against a greater range of parameter settings than the standard
staged hybrid genetic algorithm.

Hacker et al. [28] proposed an approach that switches
between global genetic and local search, based on the local
topology of the search space. The basic idea of this approach
ignores the role of local search in improving the sampling
ability of the genetic algorithm. It concentrates on the
efficiency of local search, i.e. finding the optimum once the
global genetic algorithm has defined its basin of attraction.
The utilization of the relative homogeneity of the population
and regression analysis to determine whether the search is
exploring a single basin or multiple basins was investigated.
The coefficient of variance of both the fitness and phenotype
is used to quantify the relative homogeneity of the population.
A decrease in the values of the coefficient of variance
indicates that the genetic algorithm has converged to a small
area of the search space and the search process can therefore
be made more efficient by switching to a local search. In
contrast, an increase in its value indicates that a new region of
the search space is being explored and hence there is less need
to use a local search. Regression analysis has also been used to
determine when to switch between global and local
techniques. The value of the error of fitting the population of
solutions to a second-order surface can indicate whether the
genetic algorithm is exploring multiple basins or a single basin
in the search space. Depending on the value of that error, the
algorithm decides to switch to a local search or continue the
global search. They concluded that utilizing local search could
be helpful for small search spaces in the early stages of search
due to their role in helping the genetic algorithm to define the
most promising regions of the search space. However, for
large and complicated search spaces, their role is limited to
accelerating finding of the global optimum once the genetic
algorithm isolates the most promising region and can be
helpful in later stages of the search.

2) Duration of Local Search
Local search duration influences the balance between the

global exploration of genetic algorithms and local refinement
of the neighborhood search method in hybrid genetic
algorithms [122], [123]. A hybrid with long local search
duration will execute fewer generations of the genetic
algorithm than a hybrid with shorter local duration, if both

terminate after the same number of function evaluations.
On combinatorial domains, a local search can be performed

until a solution converges to a local optimum. However, on
continuous domains, the local search is typically truncated
before reaching a local optimum when its step length becomes
too small. Performing local search until a solution converges
to a local optimum, which is referred to as complete local
search, may lead to the loss of population diversity [102]
depending on the learning strategy used. Hybrid genetic
algorithms that adopt the pure Lamarckian approach are more
prone to loss of diversity than others which utilize other
learning techniques.

Applying a complete local search on costly function
evaluations can also be expensive. However, there is a certain
class of problems, decomposable fitness problems [124],
where calculating the fitness of a solution given the fitness of
its neighbor, is significantly less computationally expensive
than computing its fitness from scratch. TSP is an example of
this group of problems where computing the length of a tour
that shares most of its edges with another tour, whose length is
already known, is much cheaper than computing the length of
a complete tour. Radcliffe and Surry [124] argued that hybrids
are more suitable for problems exhibiting this property.

A few studies have been conducted which investigate the
optimal duration of local search. Hart [7] found that using a
short duration of local search produced the best results for the
Griewank functions [125], whereas a long duration produced
better results for the Rastrigin functions [126]. Rosin et al.
[116] experimented with very short and very long local search
durations in a hybrid to optimize the drug-docking
configuration. Both durations were found to yield similar
performance. Hart et al. [122] concluded that duration of local
search is an important factor and hybrid genetic algorithms
with long local searches will be most effective for nontrivial
problems.

The high cost of a complete local search on expensive
function evaluations makes any improper use of the local
search difficult to recover from. However, the recovering from
any misuse of partial local search is still possible. Partial local
search is more suitable for hybrids that decide on a global or a
local approach depending on the current state of the search
and the previous performance of both methods. In this case,
where there is a possibility of misjudgment in some
circumstances, the use of partial local search gives the hybrid
a higher chance to recover from such errors than using a
complete local search.

3) Probability and Selection of Local Search
In any hybrid algorithm, a local search can be applied to

either every individual in the population or only few
individuals. In traditional hybrid genetic algorithms, a local
search is applied to every individual in the population.
However, applying a local search to every individual in the
population on costly function evaluations can waste resources
without providing any more useful information. In this case,
the local search can be applied to individuals that fall in the
same basin of attraction of the search space, whereby
producing the same local optimum. Applying a local search to

a large fraction of the population can limit exploration of the
search space by allowing the genetic algorithm to evolve for a
small number of generations. The possibility of applying local
search on more than one individual from the same basin can
be reduced by performing local search on only a small fraction
of the population. This also lowers the chances of applying an
unnecessary local search on individuals that fall in non-
promising regions of the search space. Deciding upon the
optimal fraction of the population which should perform local
search, and the basis on which these individuals are chosen,
has a great impact on the performance of a hybrid.

Hart [7] investigated the impact of the fraction of the
population that undergo local search on the performance of
real-coded genetic algorithms. He found that a relation exists
between this fraction, the population size and the performance
of the hybrid. He also found that performing local search on
small fractions could be more efficient when using larger
populations and those large fractions can help to reflect the
search space characteristics when using small populations. He
concluded that a more selective use of local search could
improve the efficiency of hybrids. Hart and Belew [127]
studied the impact of the local search probability on the
efficiency of hybrids. Their studies indicate that the
probability of local search should be kept low in the initial
stages and incremented in later generations. The population
diversity in the initial stages of genetic algorithm enables good
sampling of the search space. However, as the diversity
diminishes in the later stages, the sampling ability of the
genetic algorithm requires additional help from the local
search.

Different techniques, such as tuning, distribution-based [7],
fitness-based [7] techniques, and local search potential [117],
have been proposed to decide on the optimal fraction of the
population that should perform a local search. These
techniques aim to reduce unnecessary local searches.
However, they differ in the way they select individuals that
perform the local search.

a) Tuning Technique
In the tuning technique, a primary experiment is conducted

in order to find the optimal fraction of the population that
should perform local search. This fraction is usually referred
to as the probability of local search. This value is then used to
run the real experiment and remains fixed during the run.
Typically, the individuals that undergo local search are chosen
uniformly at random. Rosin et al. [116] applied local search to
7% of the population in each generation in their hybrid to
solve the docking problem. In Land et al. [128], only 5% of
randomly selected individuals of the population perform a
Marquardt-Levenberg local search in their hybrid to determine
the basic parameters that describe the structure of a
semiconductor wafer. Hart et al. [122] and Morris et al. [17]
applied local search to 6% of the population. Espinoza et al.
[113] found applying local search on 10% of the population
produces the best efficiency for both their adaptive hybrid
algorithm and the standard staged hybrid algorithm. In their
adaptive hybrid genetic algorithm, this value is used as an

initial value for the probability of local search, which is
reduced by a specific value after applying local search. In a
hybrid to solve TSP, Krasnogor and Smith [32] applied their
adaptive local search method with a probability of 1.0 to each
individual in the population, except the one with the best
fitness.

b) Distribution-based Technique
Distribution-based techniques modify the probability of

local search based on the distribution of individuals in the
population. The motivation for these techniques is to ensure
that only one individual from each basin of attraction in the
search space can undergo local search. These techniques can
improve the sampling ability of the hybrid by preventing bad
representatives of good regions from misguiding the global
genetic algorithm.

Hart [7] used the F statistic as a measure of distance over
the space of genotypes to adapt the probability of local search.
Joines and Kay [107] combined evolutionary algorithms with
random linkage and borrowed the concept of short memory
from tabu search [129] to avoid performing unnecessary local
search on non-promising regions of the search space. The
authors defined tabu hyperspheres around the offspring of the
genetic algorithm to reduce the number of wasted function
evaluations owing to the rediscovery of the same local
optimum. The probability of local search of each offspring
depends on the distance to the nearest tabu region. By
decreasing the size of these tabu hyperpheres as the search
progress, the algorithm can intensively search the most
promising regions of the search space. This in turn can help to
find the exact local optimum of the region which also
represents the global optimum of the search space. The
authors compared their hybrid using the Lamarckian learning
approach with a pure genetic algorithm, and the standard
hybrid genetic algorithm where each offspring perform local
search using two different learning strategies. They reported
that their hybrid outperformed other algorithms in terms of
both solution quality and computation effort. Martinez-
Estudillo et al. [130] selected individuals for local search
using clustering techniques to optimize the structure and the
weights of product-unit based neural networks. The results
showed that the clustering approach was able to perform better
than similar algorithms that do not use clustering analysis.

c) Fitness-based Technique
A fitness-based technique adaptively calculates the

probability with which local search is applied. This technique
uses the fitness information in the population to bias the local
search towards individuals that have a better fitness. The local
search probability of each individual is modified based on the
relationship of its fitness to the fitness of other individuals.
These methods assume that individuals with better fitnesses
are more likely to be in the basins of attraction of the most
promising regions. This assumption ignores the dynamic of
genetic algorithms and the cumulative effect of applying local
search on successive generations which can aggravate the
sampling ability of the global genetic algorithm and can

misguide the search. For example, if a promising region of the
search space is represented poorly by an individual with
under-average fitness and, in the same population, a non-
promising region is represented by individuals with over-
average fitness, the representative of the non-promising region
will have more chance to perform local search and improve its
chances of survive.

Hart [7] found no statistical differences between the results
obtained by applying fitness-based selection and the results of
fixed probability of local search. Espinoza et al. [131] used a
clustering technique that is tailored to the three different stages
the authors have defined for constrained problems to adapt the
probability of local search. In the first stage, where all the
solutions are infeasible, and the last stage, where all the
solutions are feasible, the authors experimented with
clustering the individuals depending on their fitness. The
selection was performed by means of Latin-hypercube
sampling from clusters which had formed. In the second stage,
where a few individuals are feasible, the probability of local
search is proportional to the number of feasible solutions in
the population. The results showed that the algorithm, which is
based on a fitness clustering technique, is more reliably faster
than the adaptive hybrid genetic algorithm with fixed starting
local search probability. Lozano et al. [132] proposed a simple
adaptive scheme which sets the probability of local search of
each individual to either 1.0 or 0.0625 depending on the
individuals fitness compared to the fitness of the current worst
individual in the population. The authors concluded that this
adaptation mechanism allows the balance between the global
genetic search and the local search to be adjusted according to
the particularities of the search space, thus allowing significant
improvements in the performance for different classes of
problems.

d) Local Search Potential Technique
The local search (LS potential) potential selection

mechanism has been proposed by Land [117] to decide which
individuals should perform the local search. Land suggested
that biasing the local search towards individuals that can be
most efficiently improved by local methods makes the most
effective use of local search. The least easily improved
solutions are likely to be those at or near to the local optimum
and it is inappropriate to expend effort on fine refinement, as
long as there are large differences in the population’s fitness.
In this way, the scheme biases the hybrid towards more
exploration. As the population gets closer to the optima, this
mechanism allows local search to progress to the next level of
refinement. In his algorithm, he used the past local search
effectiveness as a measure to estimate future effectiveness.

Different techniques have been used to control the different
parameters of the local search in order to strike a balance with
the global genetic methods. Most of the controlling techniques
which are described by Eiben et al. [17] for controlling the
parameters of evolutionary algorithms have been applied to
the local search control parameters in a hybrid.

The self-adaptation techniques are reported to be
successfully used to decide between different local search

methods in solving the OneMax problem, NK-Landscapes,
and TSP [134]. The self-adaptation technique has also been
used to adapt the duration of local search in a hybrid through
encoding the number of local iterations into chromosomes
[106]. In this way, the global genetic algorithm decides on the
individuals that should perform a local search and on its
duration.

IV. SUMMARY

In this paper, we have tried to shed some light on the
effectiveness and efficiency of hybridizing genetic algorithms
with various techniques through reviewing some of the wide
variety of hybrid genetic approaches. These approaches show
that hybridizing is one possible way to build a competent
genetic algorithm [135] that solves hard problems quickly,
reliably and accurately without the need for any forms of
human intervention. Hybridization has been utilized to
construct competent genetic algorithms that belong to two of
the three main approaches for building competent genetic
algorithms, i.e., perturbation, linkage adaptation, and
probabilistic model-building [136]. The collective learning
genetic algorithm is an example of a competent genetic
algorithm that employs specifically designed representation
and operators for adapting genetic linkage along with the
evolutionary process. Other search and optimization methods
can also be used to adapt genetic linkage. Probabilistic Model-
Building Genetic Algorithms (PMBGA) are examples of
probabilistic model builders which learn genetic linkage via
building models based on the current population.

Hybridization is also one of the four main techniques for
efficiency enhancement of genetic algorithms. Hybridization
can also be used as a tool to achieve evaluation relaxation,
which in turn is another main technique for efficiency
enhancement.

The ability of a genetic-local hybrid to solve hard problems
quickly depends on the way of utilizing local search
information and the mechanism of balancing genetic and local
search. By reviewing the different hybrid approaches, some of
the important factors that affect the hybrid performance have
been presented. This review shows that there is a trend
towards adapting some of the hybrid design choices through
adapting the control parameters associated with these choices
while the search is progressing. Different adaptation
techniques have been used to adapt the selection of a local
search method, the selection of individuals for a local search,
the duration of local search, the learning strategy, and other
design aspects.

REFERENCES
[1] J. Holland, Adaptation in Natural and Artificial Systems: The University

of Michigan, 1975.
[2] K. De Jong, "An analysis of the behavior of a class of genetic adaptive

systems," Doctoral Dissertation. Ann Arbor: The University of
Michigan, 1975.

[3] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning: Addison-Wesley, 1989.

[4] D. Beasley, D. R. Bull, R, and R. Martin, "An overview of genetic
algorithms: part 1, fundamentals," University Computing, vol. 15, pp.
58-69, 1993.

[5] H. Asoh and H. Mühlenbein, "On the mean convergence time of
evolutionary algorithms without selection and mutation," in Parallel
Problem Solving from Nature, PPSN III, Y. Davidor, H.-P. Schwefel,
and R. Manner, Eds. Berlin, Germany: Springer-Verlag, 1994, pp. 88–
97.

[6] D. Thierens, D. Goldberg, and P. Guimaraes, "Domino convergence,
drift, and the temporal-salience structure of problems," in 1998 IEEE
International Conference on Evolutionary Computation Anchorage,
USA: IEEE, 1998, pp. 535-540.

[7] W. E. Hart, "Adaptive global optimization with local search," Doctoral
Dissertation. San Diego: University of California 1994.

[8] S. Mahfoud and D. Goldberg, "Parallel recombinative simulated
annealing: a genetic algorithm," Parallel Computing, vol. 21, pp. 11-28,
1995.

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by
simulated annealing," Science, vol. 220, pp. 671-680, 1983.

[10] S. W. Mahfoud, "Boltzmann selection," in Handbook of Evolutionary
Computation, T. Back, D. B. Fogel, and Z. Michalewicz, Eds.: IOP
Publising Ltd and Oxford University Press, 1997, pp. C2.5:1-4.

[11] F. Gruau and D. Whitley, "Adding learning to the cellular development
of neural network: evolution and Baldwin effect," Evolutionary
Computation, vol. 1, pp. 213-233, 1993.

[12] C. Reeves, "Genetic algorithms and neighbourhood search," in
Evolutionary Computing, AISB Workshop, vol. 865 Lecture Notes in
Computer Science, T. C. Fogarty, Ed. Leeds, UK: Springer-Verlag,
1994, pp. 115-130.

[13] F. G. Lobo and D. E. Goldberg, "Decision making in a hybrid genetic
algorithm," in IEEE International Conference on evolutionary
Computation. Piscataway, USA: IEEE Press, 1997, pp. 122-125.

[14] K. De Jong, "Genetic algorithms: a 30 year perspective," in Perspectives
on Adaptation in Natural and Artificial Systems, L. Booker, S. Forrest,
M. Mitchell, and R. Riolo, Eds.: Oxford University Press, 2005.

[15] P. Preux and E.-G. Talbi, "Towards hybrid evolutionary algorithms,"
International Transactions in Operational Research, vol. 6, pp. 557-570,
1999.

[16] K. Deb, "Limitations of evolutionary computation methods," in
Handbook of Evolutionary Computation, T. Bäck, D. B. Fogel, and Z.
Michalewicz, Eds.: IOP Publishing and Oxford University Press, 1997,
pp. B2.9.

[17] A. E. Eiben, R. Hinterding, and Z. Michalewicz, "Parameter control in
evolutionary algorithms," IEEE Transactions on Evolutionary
Computation, vol. 3, pp. 124-141, 1999.

[18] N. Krasnogor and J. Smith, "A tutorial for competent memetic
algorithms: model, taxonomy and design issues," IEEE Transactions on
Evolutionary Computation, vol. 9, pp. 474-488, 2005.

[19] P. Moscato, "On evolution, search, optimization, genetic algorithms and
martial arts: towards memetic algorithms," California Institute of
Technology 1989.

[20] E. Talbi, "A Taxonomy of hybrid metaheuristics," Journal of Heuristics,
vol. 8, pp. 541–564, 2002.

[21] A. A. Hopgood, Intelligent Systems for Engineers and Scientists, 2nd
ed: CRC Press, 2001.

[22] T. Yamada and C. Reeves, "Solving the Csum permutation flowshop
scheduling problem by genetic local search," in International
Confrenence on Evolutionary Computation. Anchorage, USA, 1998, pp.
230-234.

[23] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K.
Belew, and A. J. Olson, "Automated docking using a Lamarckian
genetic algorithm and an empirical binding free energy function,"
Journal of Computational Chemistry, vol. 19, pp. 1639-1662, 1998.

[24] B. Julstrom, "Comparing Darwinian, Baldwinian, and Lamarckian
search in a genetic algorithm for the 4-cycle problem," in the 1999
Genetic and Evolutionary Computation Conference, Late Breaking
Papers, S. Brave and A. S. Wu, Eds. Orlando, USA, 1999, pp. 134-138.

[25] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs third ed: Springer-Verlag, 1996.

[26] G. Bilchev and I. C. Parmee, "The ant colony metaphor for searching
continuous design spaces," in AISB Workshop on Evolutionary
Computing, vol. 993, Lecture Notes In Computer Science, T. C. Fogarty,
Ed. Sheffield, UK: Springer Verlag, 1995, pp. 25-39.

[27] M. Dorigo, V. Maniezzo, and A. Colorni, "Positive feedback as a search
strategy," Politecnico di Milano, Milan 1991.

[28] K. A. Hacker, J. Eddy, and K. E. Lewis, "Efficient global optimization
using hybrid genetic algorithms," presented at 9th AIAA/ISSMO

Symposium on Multidisciplinary Analysis and Optimization, Atlanta,
USA, 2002.

[29] E. Cantú-Paz, "A survey of parallel genetic algorithms," Calculateurs
Parallele, Reseaux et Systems Repartis, vol. 10, pp. 141-171, 1998.

[30] D. E. Goldberg, "Using time efficiently: genetic-evolutionary algorithms
and the continuation problem," in the Genetic and Evolutionary
Computation Conference. Orlando, USA, 1999, pp. 212-219.

[31] D. E. Goldberg, "Foreward," EURASIP Journal on Applied Signal
Processing, vol. 8, pp. 731-732, 2003.

[32] N. Krasnogor and J. Smith, "A memetic algorithm with self-adaptive
local search: TSP as a case study," in the Genetic and Evolutionary
Computation Conference. Las Vegas, USA Morgan Kaufmann, 2000,
pp. 987–994.

[33] S. Areibi and A. Vannelli, "Advanced search techniques for circuit
partitioning," in Quadratic Assignment and Related Problems, vol. 16,
DIMACS series in Discrtete Mathematics and Theoretical Computer
Science, P. Pardalos and H. Wolkowicz, Eds., 1994, pp. 77-98.

[34] E. Besnard, N. Cordier-Lallouet, A. Schmitz, O. Kural, and H. P. Chen,
"Design/optimization with advanced simulated annealing," American
Insitute of Aeronautic and Astronautics 1999.

[35] K. Liang, X. Yao, and C. Newton, "Combining landscape approximation
and local search in global optimization," in the Congress on
Evolutionary Computation, vol. 2. Washington DC, USA: IEEE Press,
1999, pp. 1514-1520.

[36] J. Yen, J. C. Liao, B. Lee, and D. Randolph, "A Hybrid approach to
modeling metabolic systems using genetic algorithms and simplex
method," IEEE Transactions on Systems, Man, and Cybernetics, vol. 28,
pp. 173-191, 1998.

[37] M. Chen and Q. Lu, "A hybrid model based on genetic algorithm and ant
colony algorithm," Journal of Information & Computational Science,
vol. 2, pp. 647-653, 2005.

[38] G. Harik, E. Cantu-Paz, D. E. Goldberg, and B. l. Miller, "The gambler's
ruin problem, genetic algorithms, and the sizing of populations,"
Evolutionary Computation, vol. 7, pp. 231 - 253, 1999.

[39] F. B. Espinoza, B. Minsker, and D. Goldberg, "Performance evaluation
and population size reduction for self adaptive hybrid genetic algorithm
(SAHGA)," in the Genetic and Evolutionary Computation Conference,
vol. 2723, Lecture Notes in Computer Science San Francisco, USA:
Springer, 2003, pp. 922-933.

[40] T. El-Mihoub, A. Hopgood, L. Nolle, and A. Battersby, "Performance of
hybrid genetic algorithms incorporating local search," in 18th European
Simulation Multiconference (ESM2004), G. Horton, Ed. Magdeburg,
Germany, 2004, pp. 154-160.

[41] D. E. Goldberg and R. Lingle, "Alleles, loci, and the traveling salesman
problem," in the International Conference on Genetic Algorithms and
their Applications. Hillsdale, USA: Lawrence Erlbaum, 1985, pp. 154-
159.

[42] J. J. Grefenstette, R. Gopal, B. Rosmaita, and D. van Gucht, "Genetic
algorithms for the traveling salesman problem," in the First International
Conference on Genetic Algorithms and Their Applications, J. J.
Grefenstette, Ed. Pittsburgh, USA: Lawrence Erlbaum, 1985, pp. 160-
165.

[43] Y. Davidor, Genetic Algorithms and Robotics: A Heuristic Strategy for
Optimization: World Scientific Publishing, 1991.

[44] E. K. Burke, D. G. Elliman, and R. F. Weare, "A hybrid genetic
algorithm for highly constrained timetabling problems," in the sixth
International Conference on Genetic Algorithms, L. J. Eshelman, Ed.
Pittsburgh, USA Morgan Kaufmann 1995, pp. 605-610.

[45] B. Freisleben and P. Merz, "New genetic local search operators for the
travaling salesman problem," in the Fourth Conference on Parallel
Problem Solving from Nature vol. 1141, Lectures Notes in Computer
Science, H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel,
Eds. Berlin, Germany: Springer-Verlag, 1996, pp. 890–899.

[46] S. Lin and B. Kernighan, "An effective heuristic algorithm for the
traveling salesman problem," Operations Research, vol. 21, pp. 498-516,
1973.

[47] I. M. Oliver, D. J. Smith, and J. R. C. Holland, "A study of permutation
crossover operators on the traveling salesman problem," in the Second
International Conference on Genetic Algorithms on Genetic algorithms
and their application. Hillsdale, USA, 1987, pp. 224 - 230.

[48] A. Homaifar, S. Guan, and G. E. Liepins, "Schema analysis of the
traveling salesman problem using genetic algorithms," Complex
Systems, vol. 6, pp. 533-552 1992.

[49] J. Wroblewski, "Theoretical foundations of order-based genetic
algorithms," Fundamenta Informaticae, pp. 423–430, 1996.

[50] D. Whitley, T. Starkweather, and D. A. Fuquay, "Scheduling problems
and traveling salesman: the genetic edge recombination operator," in the
Third International Conference on Genetic Algorithms. Fairfax, USA,
1989, pp. 133 - 140.

[51] P. Jog, J. Y. Suh, and D. Van Gucht, "Parallel genetic algorithms applied
to the traveling salesman problem," SIAM Journal of Optimization, vol.
1, pp. 515-529, 1991.

[52] G. Magyar, M. Johnsson, and O. Nevalainen, "An adaptive hybrid
genetic algorithm for the three-matching problem," IEEE Transaction on
Evolutionary Computation, vol. 4, pp. 135-146, 2000.

[53] B. Burdsall and C. Giraud-Carrier, "Evolving fuzzy prototypes for
efficient data clustering," in Second International ICSC Symposium on
Fuzzy Logic and Applications. Zurich, Switzerland, 1997, pp. 217-223.

[54] T. Ibaraki, "Combinations with other optimization methods," in
Handbook of Evolutionary Computation, T. Back, D. B. Fogel, and Z.
Michalewicz, Eds.: IOP Publishing and Oxford University Press, 1997,
pp. D3:1.

[55] D. Orvosh and L. Davis, "Shall we repair? genetic algorithms,
combinatorial optimization, and feasibility constraints," in the Fifth
International Conference on Genetic Algorithms. Urbana-Champaign,
USA: Morgan Kaufmann, 1993, pp. 650.

[56] J. Abela, D. Abramson, M. Krishnamoorthy, A. D. Selva, and G. Mills,
"Computing optimal schedules for landing aircraft," in the 12th
Conference of the Australian Society for Operations Research. Adelaide,
1993, pp. 71-90.

[57] A. Konak and A. E. Smith, "A hybrid genetic algorithm approach for
backbone design of communication networks," in the 1999 Congress on
Evolutionary Computation. Washington D.C, USA: IEEE, 1999, pp.
1817-1823.

[58] S. Areibi and Z. Yang, "Effective memetic algorithms for VLSI design =
genetic algorithms + local search + multi-level clustering," Evolutionary
Computation, vol. 12, pp. 327 -353 2004.

[59] Y. Jin, "A comprehensive survey of fitness approximation in
evolutionary computation," Soft Computing, vol. 9, pp. 3-12, 2005.

[60] S. Lawrence, A. C. Tsoi, and A. D. Bäck, "Function approximation with
neural networks and local methods: bias, variance and smoothness," in
Australian Conference on Neural Networks. Canberra, 1996, pp. 16–21.

[61] L. Willmes, T. Bäck, Y. Jin, and B. Sendhoff., "Comparing neural
networks and kriging for fitness approximation in evolutionary
optimization," in IEEE Congress on Evolutionary Computation.
Canberra, Australia, 2003, pp. 663-670.

[62] Y. Jin and B. Sendhoff, "Reducing fitness evaluations using clustering
techniques and neural network ensembles," in Genetic and Evolutionary
Computation Conference (GECCO 2004), vol. 3102 Lecture Notes in
Computer Science. Seattle, USA: Springer, 2004, pp. 688-699.

[63] C. A. Ankenbrandt, B. Buckles, F. E. Petry, and M. Lybanon, "Ocean
feature recognition using genetic algorithms with fuzzy fitness
functions," in the Third Annual Workshop on Space Operations,
Automation and Robotics. Houston, USA, 1989, pp. 679-685.

[64] R. Pearce and P. H. Cowley, "Use of fuzzy logic to describe constraints
derived from engineering judgment in genetic algorithms," IEEE
Transactions on Industrial Electronics, vol. 43, pp. 535-540, 1996.

[65] H.-P. Schwefel, "Advantages (and disadvantages) of evolutionary
computation over other approaches," in Handbook of Evolutionary
Computation, T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds.: IOP
Publishing and Oxford University Press, 1997, pp. A1.3.

[66] M. Pelikan, D. E. Goldberg, and F. Lobo, "A survey of optimization by
building and using probabilistic models," IlliGAL 1999.

[67] S. Baluja, "Population-based incremental learning: a method for
integrating genetic search based function optimization and competitive
learning," Carnegie Mellon University 1994.

[68] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz, "BOA: the Bayesian
optimization algorithm," in the Genetic and Evolutionary Computation
Conference. Orlando, USA: Morgan Kaufmann, 1999, pp. 525-532.

[69] S. Tsutsui, M. Pelikan, and A. Ghosh, "Performance of aggregation
phermone system on unimodal and multimodal problems," in The 2005
IEEE Congress on Evolutionary Computation, vol. 1. Edinburgh, UK:
IEEE, 2005, pp. 880-887.

[70] L. T. Leng, "Guided genetic algorithm," Doctoral Dissertation.
University of Essex, 1999.

[71] E. P. Tsang and C. Voudouris, "Fast local search and guided local search
and their application to British telecom's workforce scheduling
problem," In Operations Research Letters, vol. 20, pp. 119-127, 1997.

[72] A. Hedar and M. Fukushima, "Simplex coding genetic algorithm for the
global optimization of nonlinear functions," in Multi-Objective

Programming and Goal Programming, Advances in Soft Computing, T.
Tanino, T. Tanaka, and M. Inuiguchi, Eds.: Springer-Verlag, 2003, pp.
135-140.

[73] K.-H. Han and J.-H. Kim, "Quantum-inspired evolutionary algorithm for
a class of combinatorial optimization," IEEE Transactions On
Evolutionary Computation, vol. 6, pp. 580- 593, 2002.

[74] K.-H. Han and J.-H. Kim, "Quantum-inspired evolutionary algorithm
with a new termination criterion, He gate, and two-phase scheme," IEEE
Transactions on Evolutionary Computation, vol. 8, pp. 156-169, 2004.

[75] H. Talbi, A. Draa, and M. Batouche, "A new quantum-inspired genetic
algorithm for solving the travelling salesman problem," in 14th
International Conference on Computer Theory and Applications.
Alexandria, Egypt 2004.

[76] K. C. Tan, Y. Li, D. J. Murray-Smith, and K. C. Sharman, "System
identification and linearisation using genetic algorithms with simulated
annealing," in First IEE/IEEE Int. Conf. on GA in Eng. Syst.:
Innovations and Appl. Sheffield, UK, 1995, pp. 164-69.

[77] T. Yamada and R. Nakano, "A genetic algorithm with multi-step
crossover for job-shop scheduling problems," in First IEE/IEEE
International Conference on Genetic ALgorithms in Engineering
Systems Innovations and Applications (GALESIA ’95): Sheffield, UK,
1995, pp. 146–151.

[78] T. P. Riopka and P. Bock, "Intelligent recombination using individual
learning in a collective learning genetic algorithm," in the Genetic and
Evolutionary Computation Conference (GECCO-2000), D. Whitley, D.
Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, and H.-G. Beyer, Eds.
Las Vegas, USA: Morgan Kaufmann, 2000, pp. 104-111.

[79] F. Herrera and M. Lozano, "Heuristic crossovers for real-coded genetic
algorithms based on fuzzy connectives," in the 4th International
Conference on Parallel Problem Solving from Nature, vol. 1141, Lecture
Notes In Computer Science. Berlin, Germany: Springer-Verlag 1996,
pp. 336 - 345.

[80] J. N. Richter and D. Peak, "Fuzzy evolutionary cellular automata," in
International Conference on Artificial Neural Networks in Engineering,
vol. 12. Saint Louis, USA, 2002, pp. 185-191.

[81] F. Herrera and M. Lozano, "Adaptive genetic operators based on co-
evolution with fuzzy behaviors," IEEE Transactions on Evolutionary
Computation, vol. 5, pp. 149-165, 2001.

[82] R. K. Belew, J. McInerney, and N. N. Schraudolph, "Evolving networks:
using the genetic algorithm with connectionist learning," in Artificial
Life II. New York, USA: Addison-Wesley, 1991, pp. 511-547.

[83] H. Liang, Z. Lin, and R. W. McCallum, "Application of combined
genetic algorithms with cascade correlation to diagnosis of delayed
gastric emptying from electrogastrograms," Medical Engineering &
Physics, vol. 22, pp. 229–234, 2000.

[84] D. J. Montana, "Neural network weight selection using genetic
algorithms," in Intelligent Hybrid Systems: John Wiley & Sons, 1995,
pp. 85-104.

[85] P. Arena, R. Caponetto, I. Fortuna, and M. G. Xibilia, "MLP optimal
topology via genetic algorithms," in the International Conference on
Artificial Neural Nets and Genetic Algorithms, A. Dobnikar, N. Steele,
D. Pearson, and R. F. Albrecht, Eds. Portoroz, Slovenia: Springer-
Verlag, 1993, pp. 670-674.

[86] N. Chaiyaratana and A. M. Zalzala, "Hybridisation of neural networks
and a genetic algorithm for friction compensation," in The 2000
Congress on Evolutionary Computation, vol. 1. San Diego, USA, 2000,
pp. 22-29.

[87] J. R. Koza and J. P. Rice, "Genetic generation of both the weights and
architecture for a neural network," in Joint Conference on Neural
Networks, vol. 2. Seattle, USA, 1991, pp. 397-404.

[88] G. F. Miller, P. M. Todd, and S. U. Hegde, "Designing neural networks
using genetic algorithms," in the Third International Conference on
Genetic Algorithms, J. D. Schaffer, Ed. San Mateo, USA: Morgan
Kaufmann, 1989, pp. 379-384.

[89] D. Chalmers, "The evolution of learning: an experiment in genetic
connectionism," in Connectionist Models,1990 Summer School, D.
Touretzky, J. Elman, T. Sejnowski, and G. Hinton, Eds. San Diego,
USA: Morgan Kaufmann, 1990, pp. 81–90.

[90] J. Fontanari and R. Meir, "Evolving a learning algorithm for the binary
perceptron," Network, vol. 2, pp. 353–359, 1991.

[91] X. Yao, "Evolving artificial neural networks," Proceedings of the IEEE,
vol. 87, pp. 1423-1447, 1999.

[92] C. L. Karr, "Design of an adaptive fuzzy logic controller using a genetic
algorithm," in the Fourth International Conference on Genetic
Algorithms. San Diego, USA: Morgan Kaufmann, 1991, pp. 450-457.

[93] C. L. Karr and E. J. Gentry, "Fuzzy control of pH using genetic
algorithms," IEEE Transaction on Fuzzy Systems, vol. 1, pp. 46-53,
1993.

[94] M. Valenzuela-Rendon, "The fuzzy classifier system: motivations and
first results," in the International Workshop Parallel Problem, vol. 496,
Lecture Notes in Computer Science. Dortmund, Germany: Springer,
1991, pp. 338-342.

[95] T. White, B. Pagurek, and F. Oppacher, " ASGA: improving the ant
system by integration with genetic algorithms," in the third Conference
on Genetic Programming (GP/SGA'98). Madison, USA, 1998, pp. 610-
617.

[96] H. M. Botee and E. Bonabeau, "Evolving ant colony optimization,"
Advanced Complex Systems, vol. 1, pp. 149-159, 1998.

[97] M. L. Pilat and T. White, "Using genetic algorithms to optimize ACS-
TSP," in the Third International Workshop on Ant Algorithms, vol.
Lecture Notes In Computer Science 2463. Berlin, Germany: Springer-
Verlag, 2002, pp. 282 - 287.

[98] G. Hinton and S. J. Nowlan, "How learning can guide evolution,"
Complex Systems, vol. 1, pp. 495-502., 1987.

[99] C. Houck, J. Joines, M. Kay, and J. Wilson, "Empirical investigation of
the benefits of partial Lamarckianism," Evolutionary Computation, vol.
5, pp. 31- 60, 1997.

[100] J. A. Joines, M. G. Kay, R. King, and C. Culbreth, "A hybrid genetic
algorithm for manufacturing cell design," Journal of the Chinese
Institute of Industrial Engineers, vol. 17, pp. 549-564, 2000.

[101] C. Sung-Soon and M. Byung-Ro, "A graph-based Lamarckian-
Baldwinian hybrid for the sorting network problem" IEEE Transactions
on Evolutionary Computation, vol. 9, pp. 105- 114, 2005.

[102] D. Whitley, S. Gordon, and K. Mathias, "Lamarckian Evolution, the
Baldwin effect and function optimization," in Parallel Problem Solving
from Nature - PPSN III vol. 866, Lecture Notes in Computer Science, Y.
Davidor, H.-P. Schwefel, and R. Manner, Eds. Jerusalem: Springer-
Verlag, 1994, pp. 6-15.

[103] P. Turney, "Myths and legends of the Baldwin effect," in Workshop on
Evolutionary Computation and Machine Learning at the 13th
International Conference on Machine Learning. Bari, Italy, 1996, pp.
135-142.

[104] P. Turney, D. Whitley, and R. Anderson, "Evolution, learning, and
instinct: 100 years of the Baldwin effect," Evolutionary Computation,
vol. 4, pp. iv-viii, 1996.

[105] G. Mayley, "Landscapes, learning costs and genetic assimilation,"
Evolutionary Computation, vol. 4, pp. 213 - 234, 1996.

[106] T. El-Mihoub, A. Hopgood, L. Nolle, and A. Battersby, "A self-adaptive
Baldwinian search in hybrid genetic algorithms," in the 6th Fuzzy Days
International Conference on Computational Intelligence. Dortmund,
Germany: Springer, 2006, to be published.

[107] J. A. Joines and M. G. Kay, "Hybrid genetic algorithms and random
linkage," in the 2002 Congress on Evolutionary Computation. Honolulu,
USA: IEEE, 2002, pp. 1733-1738.

[108] W. E. Hart, T. E. Kammeyer, and R. K. Belew, "The role of
development in genetic algorithms," in the Third Workshop on
Foundations of Genetic Algorithms. San Fransico, USA, 1995, pp. 315-
332.

[109] Z. Michalewicz and G. Nazhiyath, "Genocop III: a co-evolutionary
algorithm for numerical optimization problems with nonlinear
constraints," in 2nd IEEE International Conference on Evolutionary
Computation, vol. 2. Perth, Australia IEEE, 1995, pp. 647-651.

[110] J. Bala, K. A. D. Jong, J. Huang, H. Vafaie, and H. Wechsler, "Using
learning to facilitate the evolution of features for recognizing visual
concepts," Evolutionary Computation, vol. 4, pp. 297–311, 1996.

[111] K. W. Ku and M. W. Mak, "Exploring the effects of Lamarckian and
Baldwinian learning in evolving neural networks," in International
Conference on Evolutionary Computation. Indianapolis, USA, 1997, pp.
617-622.

[112] T. Sasaki and M. Tokoro, "Adaptation toward changing environments:
why Darwinian in nature?," in Fourth European Conference on Artificial
Life, , Complex Adaptive Systems Series P. Husbands and I. Harvey,
Eds. Brighton, UK: MIT press, 1997, pp. 145-153.

[113] F. B. Espinoza, B. Minsker, and D. Goldberg, "A self adaptive hybrid
genetic algorithm," in the Genetic and Evolutionary Computation
Conference (GECCO 2001). San Francisco, USA: Morgan Kaufmann
Publishers, 2001, pp. 759.

[114] H. Ishibuchi, S. Kaige, and K. Narukawa, "Comparison between
Lamarckian and Baldwinian repair on multiobjective 0/1 knapsack
problems," in Evolutionary Multi-Criterion Optimization, Carlos A.

Coello Coello, A. H. Aguirre, and E. Zitzler, Eds. Guanajuato, Mexico,
2005, pp. 370-385.

[115] D. E. Goldberg and S. Voessner, "Optimizing global-local search
hybrids," in the Genetic and Evolutionary Computation Conference
(GECCO 1999). Orlando, USA: Morgan Kaufmann, 1999, pp. 222-228.

[116] C. D. Rosin, R. S. Halliday, W. E. Hart, and R. K. Belew, "A
comparison of global and local search methods in drug docking," in the
Seventh International Conference on Genetic Algorithms, T. Bäck, Ed.
Michigan, USA: Morgan Kaufmann, 1997, pp. 221-228.

[117] M. Land, "Evolutionary algorithms with local search for combinatorial
optimization," Doctoral Dissertation. San Diego: University of
California 1998.

[118] K. Mathias and D. Whitley, "Genetic operators, the fitness landscape
and the traveling salesman problem," in Parallel Problem Solving from
Nature-PPSN 2. Brussels, Belguim: North Holland-Elsevier, 1992, pp.
219-228.

[119] K. Mathias, L. Whitley, C. Stock, and T. Kusuma, "Staged hybrid
genetic search for seismic data imaging," in International Conference on
Evolutionary Computation. Orlando, USA, 1994, pp. 356-361.

[120] M. Syrjakow and H. Szczerbicka, "Combination of direct global and
local optimization methods," in IEEE Conference on Evolutionary
Computation. Perth, Western Australia: IEEE, 1995, pp. 326-333.

[121] A. L. Tuson and P. Ross, "Cost based operator rate adaptation: an
investigation," in the Fourth International Conference on Parallel
Problem Solving From Nature (PPSN IV), Lecture Notes in Computer
Science. Berlin, Germany: Springer Verlag, 1996, pp. 461-469.

[122] W. E. Hart, C. R. Rosin, R. K. Belew, and G. M. Morris, "Improved
evolutionary hybrids for flexible ligand docking in AutoDock," in
Optimization in Computational Chemistry and Molecular Biology, C. A.
Floudas and P. M. Pardalos, Eds.: Springer 2000, pp. 209-230.

[123] H. Ishibuchi, T. Yoshida, and T. Murata, "Balance between genetic
search and local search in memetic algorithms for multiobjective
permutation flowshop scheduling," IEEE Transactions on Evolutionary
Computation, , vol. 7, pp. 204- 223, 2003.

[124] N. J. Radcliffe and P. D. Surry, "Formal memetic algorithms," in
Evolutionary Computing: AISB Workshop. Brighton, UK: Springer-
Verlag, 1994, pp. 1-16.

[125] A. O. Griewank, "Generalized descent for global optimization," Journal
of Optimization Theory and Applications, vol. 34, pp. 11-39, 1981.

[126] A. Törn and A. Zilinskas, "Global optimization," in Lecture Notes in
Computer Science, vol. 350: Springer-Verlag, 1989.

[127] W. E. Hart and R. K. Belew, "Optimization with genetic algorithm
hybrids that use local search," in Adaptive individuals in evolving
populations: Models and algorithms, vol. 26, R. Belew and M. Mitchell,
Eds.: Addison-Wesley, 1996, pp. 483-496.

[128] M. Land, J. J. SIDorowich, and R. K. Belew, "Using genetic algorithms
with local search for thin film metrology," in the Seventh International
Conference on Genetic Algorithms. East Lansing, USA: Morgan
Kaufmann, 1997, pp. 537-544.

[129] F. Glover, "Tabu search- part I," ORSA Journal on Computing, vol. 1,
pp. 190-260, 1989.

[130] A. Martinez-Estudillo, C. Hervas-Martnez, F. Martnez-Estudillo, and N.
Garca-Pedrajas, "Hybrid method based on clustering for evolutionary
algorithms with local search," IEEE Transactions on Systems, Man and
Cybernetics, 2004.

[131] F. Espinoza, B. S. Minsker, and D. Goldberg, "Local search issues for
the appliction of a self-adaptive hybrid genetic algorithm in groundwater
remediation design," in American Society of Civil Engineers (ASCE)
Environmental & Water Resources Institute (EWRI) World Water &
Environmental Resources Congress 2003 & Related Symposia.
Philadelphia, USA, 2003.

[132] M. Lozano, F. Herrera, N. Krasnogor, and D. Molina, "Real-coded
memetic algorithms with crossover hill-climbing," Evolutionary
computation, vol. 12, pp. 273 - 302 2004.

[133] F. T. Lin, C. Y. Kao, and C. C. Hsu., " Incorporating genetic algorithms
into simulated annealing," in the Fourth International Symposium on
Artificial Intelligence. Cancun, Mexico, 1991, pp. 290-297.

[134] N. Krasnogor and J. Simth, "Emergence of profitable search strategies
based on a simple inheritance mechanism," in the Genetic and
Evolutionary Computation Conference. San Francisco, USA: Morgan
Kaufmann, 2001, pp. 432-439.

[135] D. Goldberg, "The race, the hurdle, and the sweet spot: Lessons from
genetic algorithms for the automation of design innovation and
creativity," in Evolutionary Design by Computers: Morgan Kaufmann,
1999, pp. 105–118.

[136] Y. Chen and D. Goldberg, "Convergence time for the linkage learning
genetic algorithms," Evolutionary computation, vol. 13, pp. 279-302,
2005.

Tarek A. El-Mihoub graduated with a BSc in computer
engineering from Al-Fateh Uinversity, Tripoli, Libya in
1993 and obtained his MSc in engineering multimedia
from Nottingham Trent University in UK by the end of
2002.
 He is currently a PhD Student at Nottingham
Trent University. He worked as a Teaching Assistant at
Al-Fatah University in Libya and as a Manager of
computer department of the Libyan environment general

rent research is in the field of optimization, genetic
algorithms, and artificial intelligence.
authority. His cur

Adrian A. Hopgood graduated with a BSc (Hons) in
physics from the University of Bristol in 1981 and
obtained a PhD from the University of Oxford in 1984.

He is professor of Computing and Dean of the
School of Computing & Informatics at Nottingham Trent
University, UK. He is also a visiting professor at the Open
University. His main research interests are in intelligent
systems and their practical applications.

Prof. Hopgood is a fellow of the British
Computer Society and a committee member for its

specialist group on artificial intelligence.

Lars Nolle graduated from the University of Applied
Science and Arts in Hanover in 1995 with a degree in
Computer Science and Electronics. After receiving his
PhD in Applied Computational Intelligence from The
Open University, he worked as a System Engineer for
EDS.

He returned to The Open University as a
Research Fellow in 2000. He joined The Nottingham
Trent University as a Senior Lecturer in Computing in

February 2002. His research interests include: applied computational
intelligence, distributed systems, expert systems, optimization and control of
technical processes.

Alan Battersby obtained an MSc in Computer Science
from Hatfield Polytechnic, UK in 1977.

Prior to joining the School of Computing and
Informatics at Nottingham Trent University, UK, he was
a Computing Development Officer for Bedfordshire
Education Authority. His research interests include:
Fuzzy Logic applied to Robotics, wavelets, compression
and the Internet.

	I. INTRODUCTION
	II. A Complementary View
	A. Capability Enhancement
	1) Improving Solution Quality
	2) Improving Efficiency
	a) Convergence Speed
	b) Population Size

	3) Guarantee Feasible Solutions
	4) Fitness Function Estimation
	5) Operation Substitution

	B. Optimizing the Control Parameters
	III. Hybrid Design Issues
	A. Local Search and Learning
	1) Lamarckian Learning
	2) Baldwinian Learning
	3) Hybrid Lamarckian-Baldwinian Models

	B. Balance between Global and Local Search
	1) Frequency of Local Search
	2) Duration of Local Search
	3) Probability and Selection of Local Search
	a) Tuning Technique
	b) Distribution-based Technique
	c) Fitness-based Technique
	d) Local Search Potential Technique

	IV. SUMMARY

