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Abstract—This paper proposes a novel hybrid genetic algorithm for feature selection. Local search operations are devised and

embedded in hybrid GAs to fine-tune the search. The operations are parameterized in terms of their fine-tuning power, and their

effectiveness and timing requirements are analyzed and compared. The hybridization technique produces two desirable effects: a

significant improvement in the final performance and the acquisition of subset-size control. The hybrid GAs showed better

convergence properties compared to the classical GAs. A method of performing rigorous timing analysis was developed, in order to

compare the timing requirement of the conventional and the proposed algorithms. Experiments performed with various standard data

sets revealed that the proposed hybrid GA is superior to both a simple GA and sequential search algorithms.

Index Terms—Feature selection, hybrid genetic algorithm, sequential search algorithm, local search operation, atomic operation,

multistart algorithm.
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1 INTRODUCTION

FEATURE selection is the problem of selecting a subset of d
features from a set of D features based on some

optimization criterion. The primary purpose of feature
selection is to design a more compact classifier with as little
performance degradation as possible. The features removed
should be useless, redundant, or of the least possible use. It
is well known that, for a problem of nontrivial size, the
optimal solution is computationally intractable due to the
resulting exponential search space and, hence, all of the
available algorithms mostly lead to suboptimal solutions.
Literatures on the subject of feature selection are abundant,
presenting excellent tutorials [11], [28], proposing a taxon-
omy of feature selection algorithms [9], [3], and compara-
tive studies [5], [9], [12].

Recently, interest in feature selection has been on the

increase for several reasons. First, new applications dealing

with vast amounts of data have been developed, such as

data mining [24], [17], multimedia information retrieval

[18], [16], [15], and medical data processing [26]. Since the

fast processing of a large volume of data is critical in these

applications for the purpose of real-time processing or to

provide a quick response to users, limiting the number of

features is a very important requirement. Feature selection

is a prerequisite when using multiple sets of features, as this

is required for the subsequent processing involving

classification or clustering. Some examples include aerial

photo interpretation [7], correspondence in stereo vision [8],

and handwriting recognition [22].

Among the different categories of feature selection
algorithms, the genetic algorithm (GA) is a rather recent
development. The GA is biologically inspired and has many
mechanisms mimicking natural evolution [6]. It has a great
deal of potential in scientific and engineering optimization
or search problems. Furthermore, GA is naturally applic-
able to feature selection since the problem has an
exponential search space. The pioneering work by Siedlecki
and Sklansky demonstrated evidence for the superiority of
the GA compared to representative classical algorithms
[29]. Subsequently, many literatures were published that
have shown advantages of the GAs for feature selection [1],
[30], [13], [27]. Although they presented experimental data
supporting the superiority of GA, other literatures invol-
ving comparative studies did not give satisfactory argu-
ments. Our review of those comparative studies and our
own experimental results indicate that, to date, the SFFS
(sequential floating forward search) algorithm is the best
among the sequential search algorithms, but between the
SFFS and GA no clear cut case can be made for which is the
better of the two. A review and our comments on the
previous comparative studies are given in Section 2.3.

The main reason for the above inconsistencies stems
from the inherent nature of the GA itself, i.e., the fact that it
has too many variations and parameters that need to be
handled properly for reasonable or good performance to be
obtained. Our review reveals that the specification of the
GA implementation provided in the literature is insufficient
for the readers to reproduce the program codes.

The limitations associated with a simple or pure GA
(SGA) have been uncovered in many applications. Under
normal conditions, solutions provided by a simple GA are
likely to be inferior or comparable to classical heuristic
algorithms. A practical and effective way of overcoming
this limitation is to hybridize the GA, by incorporating
domain-specific knowledge. Three ways of hybridizing are
suggested in [4]: problem-specific encoding, the use of
special genetic operators, and the incorporation of the good
features of classical algorithms. Hybrid GAs (HGA) which
follow these principles have been developed in diverse
application areas and successful performance has been
obtained [10], [2], [32].
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This paper proposes a hybrid GA designed to solve the
feature selection problem. The idea was originally intro-
duced in [23]. The goal of this study is to develop a GA with
improved capability that has leading-edge performance over
the conventional algorithms. Our idea lies in the hybridizing
of the GA by embedding local search operations into the
simple GA. These local search operations move solutions
towards local optima, and these improvements are accumu-
lated over all of the generations, resulting in a significant
improvement in the overall performance. A number of local
search operations were devised for our hybrid GA. These
operations are useful in describing our hybrid GAs as well as
the conventional heuristic algorithms.

Through the experimental results obtained using various
data sets, the performances of our HGA and other
algorithms are compared, in terms of the accuracy of their
classification and the computational time. We were able to
conclude that our HGA is superior to the other algorithms
in terms of accuracy, particularly for large-sized problems.

Section 2 defines several local search operations. It also
reviews the prior comparative studies and provides our
comments on them. In Section 3, we give a detailed
specification of a simple GA designed for feature selection.
Section 4 proposes a hybrid GA and describes a way of
embedding the local search operations. A timing analysis is
given in Section 5. Our experimental results and a
discussion are presented in Section 6. Finally, Section 7
concludes the paper.

2 FEATURE SELECTION AND

CLASSICAL ALGORITHMS

This section first defines the feature selection problem by
describing the associated terminologies, notations, and
basic local search operations. The algorithms are classified
into three categories and described using the basic local
search operations. At the end of this section, representative
comparative studies are reviewed and our contributions are
discussed.

2.1 Feature Selection Problem

The feature selection problem involves the selection of a
subset of d features from a total of D features, based on a
given optimization criterion. Let us denote the D features
uniquely by distinct numbers from 1 to D, so that the total
set of D features can be written as U ¼ f1; 2; . . . ; Dg. X

denotes the subset of selected features and Y denotes the set
of remaining features. So, U ¼ X [Y at any time. JðXÞ
denotes a function evaluating the performance of X. J may
evaluate either the accuracy of a specific classifier on a
specific data set (e.g., the wrapper approach as in [14]) or a
generic statistical measurement (e.g., the filter approach).
The choice of evaluation function, J, depends on the
particular application.

We introduce the basic operations that allow the search
toward local optima during the feature selection process. In
describing these operations, we do not show explicit
parameters for the size of X and Y since they are implicitly
clear. The operations remg and addg are generalized
operations that choose g features simultaneously. The size
of the set, S, is denoted by jSj.

Local search operations:
remg: Choose the least significant feature subset L of X such

that jLj ¼ g and L ¼ argmaxA�XJðX�AÞ, and move all

the features in L from X to Y.

addg: Choose the most significant feature subset L of Y such

that jLj ¼ g and L ¼ argmaxA�YJðX [AÞ, and move all

the features in L from Y to X.

remð¼ rem1Þ: Choose the least significant feature x in X

such that x ¼ argmaxa2XJðX� fagÞ, and move x to Y.
addð¼ add1Þ: Choose the most significant feature y in Y such

that y ¼ argmaxa2YJðX [ fagÞ, and move y to X.

REMðkÞ: Repeat operation rem k consecutive times.

ADDðkÞ: Repeat operation add k consecutive times.

2.2 Feature Selection Algorithms

2.2.1 Enumeration Algorithms

. Exhaustive Search. All the possible D
d

� �

subsets are
evaluated and the best one among them is chosen.
This guarantees the optimal solution, but the
computational time is intractable when the problem
size is not small.

. Branch and Bound [20], [31]. This algorithm
generates a search tree that identifies the features
being removed from the original set. It achieves a
substantial reduction in the number of subset
evaluations by pruning those subtrees that will
never be superior to the current best solution.
However, the main problem with this algorithm is
its exponential time complexity. Additionally, this
algorithm requires the strict assumption of mono-
tonicity, i.e., adding new features never degrades the
performance.

2.2.2 Sequential Search Algorithms

. SFS (sequential forward search) and SBF (sequential
backward search).

Algorithm SFS:

1. X ¼ �; Y ¼ fij1 � i � Dg;
2. ADDðdÞ;

Algorithm SBS:

1. X ¼ fij1 � i � Dg; Y ¼ �;

2. REMðD� dÞ;

Algorithm Generalized-SFS:

1. X ¼ �; Y ¼ fij1 � i � Dg;
2. repeat addg until jXj ¼ d;

Algorithm Generalized-SBS:

1. X ¼ fij1 � i � Dg; Y ¼ �;

2. repeat remg until jXj ¼ d;

. PTAðl; rÞ (plus-l and take away-r)

Algorithm PTAðl; rÞ with l > r:

1. X ¼ �; Y ¼ fij1 � i � Dg;

2. repeat fADDðlÞ;REMðrÞ; g until jXj ¼ d;
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Algorithm PTAðl; rÞ with l < r:

1. X ¼ fij1 � i � Dg; Y ¼ �;

2. repeat fREMðrÞ;ADDðlÞ; g until jXj ¼ d;

Algorithm Generalized-PTAðl; rÞ with l > r:

1. X ¼ �; Y ¼ fij1 � i � Dg;

2. repeat {

3. perform addg l=g times;
4. perform remg r=g times;

5. } until jXj ¼ d;

Algorithm Generalized-PTAðl; rÞ with l < r:

1. X ¼ fij1 � i � Dg; Y ¼ �;

2. repeat{

3. perform remg r=g times;

4. perform addg l=g times;
5. } until jXj ¼ d;

. SFFS (sequential forward floating search) and SBFS
[25]. These algorithms cannot be compactly de-
scribed using the local search operations. The
operation rem captures the least significant feature
with respect to the current subset, X, and immedi-
ately moves the feature from X to Y. However, SFFS
and SFBS move the captured feature conditionally;
so that these algorithms do not fix the values of l and
r in PTAðl; rÞ in advance, but determine them
dynamically. Also, they require the simultaneous
existence of D temporary subsets denoted by Xk,
1 � k � D, each containing k features. The Xk keeps
track of the current best subset of size k. In line 2,
more processing is allowed after the desired subset
size is acquired, in order to obtain a better solution.
When the condition is k ¼ D, the best solutions are
achieved.

Algorithm SFFS:

1. X0 ¼ �; Y ¼ fij1 � i � Dg; k ¼ 0; // initialization

2. while ðk < dþ �Þ {

3. y ¼ argmaxa2Y�XkJðXk [ fagÞ;

// find the most significant feature

4. Xkþ1 ¼ Xk [ fyg; kþþ;

5. x ¼ argmaxa2XkJðXk � fagÞ;

// find the least significant feature
6. while ðJðXk � fxgÞ > JðXk�1ÞÞ {

7. Xk�1 ¼ Xk � fxg; k��;

8. x ¼ argmaxa2XkJðXk � fagÞ;

// find the least significant feature

9. }

10.}

2.2.3 Genetic Algorithms (GAs)

GA is a stochastic algorithm that mimics natural evolu-

tion. The most distinct aspect of this algorithm is that it

maintains a set of solutions (called individuals or

chromosomes) in a population. As in the case of

biological evolution, it has a mechanism of selecting fitter

chromosomes at each generation. To simulate the process

of evolution, the selected chromosomes undergo genetic
operations, such as crossover and mutation. The details
are described in Section 3.

2.3 Comparative Studies and Discussions

Three typical comparative studies will be discussed. Ferri
et al. asserted that SFFS is the best among the sequential
search algorithms [5]. They also compared the SFFS and
GA, and demonstrated that the performances of these two
algorithms are comparable, but that the GA becomes
inferior to the SFFS algorithm as the dimension (i.e., the
value of D) increases. Jain and Zonker [9] concluded that
SFFS is superior to other algorithms. Their experiments
with the GA attained peak performance at the seventh or
eighth generation, and they emphasized the difficulty of
correctly setting the parameters when implementing GA.
This is strong evidence of premature convergence. A recent
work by Kudo and Sklansky [12] presented a rather fair
comparison. They divided the problem into three cate-
gories, in terms of the problem size: small with 0 < D � 19,
medium with 20 � D � 49, and large with 50 � D. They
concluded that SFFS is the best among the sequential search
algorithms and is suitable for small and medium-sized
problems, while the GA is suitable for large-sized problems.
This argument contradicts that of Ferry et al. [5], and Kudo
and Sklansky suspected that this contradiction is due to the
different versions and implementation skills of GAs
involved. Some papers claimed that GA is superior to other
heuristic algorithms [29], [30], [27].

The above review leads us to make the following
conclusions:

. SFFS is the best among the sequential search
algorithms, but between the SFFS and GA, no clear
cut case can be made for which is the better of the
two. Although the superiority of GA was claimed in
some literatures, more rigorous analyses are needed.

. Insufficient information was provided for the repro-
duction of the program code. Details and parameter
settings should be provided to the readers so that they
can obtain the same or similar performance.

. No serious attempts have been made to improve
the capability of GA by incorporating domain
knowledge.

The above factors provide the motivations for this study
and the resolution of these problems is one of the most
important contributions of this paper.

3 SIMPLE GAS FOR FEATURE SELECTION

An important issue in designing a GA is the procedure used
to control the genetic operations. Two alternatives are
available and are shown below: the steady-state and
generational procedures.

steady_state_GA()

{
initialize population P;

repeat {

select two parents p1 and p2 from P;

offspring ¼ crossoverðp1; p2Þ;

mutation(offspring);

1426 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 11, NOVEMBER 2004



replace(P, offspring);
} until (stopping condition);

}

generational_GA()

{

initialize population P;

repeat {

for (i ¼ 1 to jPj) {
select two parents p1 and p2 from P;

offspringi ¼ crossoverðp1; p2Þ;

mutationðoffspringiÞ;

}

replace P with offspring1; ::; offspringjP j;

} until (stopping condition);

}

The most important difference between these two proce-
dures lies in the method used to update the population. The
steady-state procedure generally updates one chromosome
in each generation, whereas the generational procedure
updates the whole or most of the population. This
difference has a significant impact on the behavior and
power of the GA to find a solution in a large search space.
The detailed specification of our GA is given below.

3.1 Chromosome Encoding

For the feature selection problem, a string with D binary
digits is used. A binary digit represents a feature, values 1
and 0 meaning selected and removed, respectively. As an
example, chromosome 00101000 means that the third and
fifth features are selected. That is, the chromosome
represents X ¼ f3; 5g and Y ¼ f1; 2; 4; 6; 7; 8g.

3.2 Initial Population

The generation of the initial population is straightforward, as
shown below. The function random_uniform() generates a
random floating number within [0,1]. The expected number
of selected features in an arbitrary initial solution is d.

Initial population:

for (i ¼ 1 to jPj)

for (each gene g in ith chromosome)

if (random uniformðÞ < d=D) g ¼ 1; else g ¼ 0;

3.3 Fitness Evaluation, Selection, Replacement,
and Stop

The evaluation is straightforward since a chromosome
represents a selected feature subset, X, and the evaluation
function is clear. In order to force a feature subset to satisfy
the given subset size requirement, the size value, d, is taken
as a constraint and a penalty is imposed on chromosomes
breaking this constraint. The fitness of a chromosome C is
defined as

fitnessðCÞ ¼ JðXCÞ � penaltyðXCÞ;

where XC is the corresponding feature subset of C, and
penaltyðXCÞ ¼ w�jjXCj � dj with a penalty coefficient, w.

The chromosome selection for the next generation is
done on the basis of fitness. The selection mechanism
should ensure that fitter chromosomes have a higher
probability of survival. Our design adopts the rank-based

roulette-wheel selection scheme. The chromosomes in the
population are sorted nonincreasingly in terms of their
fitness, and the ith chromosome is assigned a probability of
selection by a nonlinear function, PðiÞ ¼ qð1� qÞi�1. A
larger value of q enforces a stronger selection pressure.
The actual selection is done using the following roulette
wheel procedure.

Chromosome selection by roulette wheel:

1. Calculate accumulative probabilities for the
ith chromosome by pi ¼ �j¼1;iPðjÞ for i ¼ 1; . . . ; n

and p0 ¼ 0.

2. Generate a random number r within ½0; pn�.

3. Select the ith chromosome such that pi�1 < r < pi.

* n: population size

For the steady state GA, we select two parent chromo-
somes using the above method. The crossover operation
generates a new chromosome (offspring) out of the two
parents, and the mutation operation slightly perturbs the
offspring.

If the mutated chromosome is superior to both parents, it
replaces the similar parent; if it is in between the two
parents, it replaces the inferior parent; otherwise, the most
inferior chromosome in the population is replaced. This
replacement scheme was developed in [2]. The GA stops
when the number of generations reaches the preset
maximum generation T .

3.4 Crossover and Mutation

We use the standard crossover and mutation operators with
a slight modification. An m-point crossover operator is used
which chooses m cutting points at random and alternately
copies each segment out of the two parents. The operations
are exemplified in Fig. 1. The crossover may result in
offspring that break the subset size requirement, because
the exchanged gene segments may have different numbers
of occurrences of 1.

The mutation is applied to the offspring. The mutation is
likely to violate the subset size requirement, so we need to
carefully control the numbers of 1-0 and 0-1 conversions.
The following code forces the numbers to be similar, where
the parameter pm represents the mutation rate.

Controlled mutation:

1. Let n0 and n1 to be numbers of 0-bits and 1-bits in the
chromosome.

2. p1 ¼ pm; p0 ¼ pm � n1=n0;

3. for (each gene g in the chromosome)

4. Generate a random number r within [0,1].

5. if(g ¼ 1 and r < p1) convert g to 0;

else if(g ¼ 0 and r < p0) convert g to 1;

3.5 Parameters

No systematic parameter optimization process has so far
been attempted, but the following parameter set was used

OH ET AL.: HYBRID GENETIC ALGORITHMS FOR FEATURE SELECTION 1427

Fig. 1. An example of 3-point crossover and mutation.



in our experiments. Tuning the values to be suitable for a
specific data set may give rise to improved performance.

Parameter setting:

Control procedure: steady-state

population size = 20

pc (crossover probability) = 1.0 for steady-state

(always applied), 0.6 for generational
pm (mutation rate) = 0.1

q (in rank-based selection) = 0.25

w (penalty coefficient) = 0.5

T (maximum generation): dependent on data set

4 HYBRID GA

Genetic algorithms are able to escape from local optima by
means of the crossover and mutation operators, and to
explore a wide range of search space when the selection
pressure is properly controlled. However, they are weak in
fine-tuning near local optimum points, and this results in
their having a long running time. To improve the fine-
tuning capability of simple GAs, hybrid GAs have been
developed in many applications, including the traveling
salesman problem [10], graph partitioning problem [2], and
image compression [32]. In a hybrid GA, chromosomes are
improved by proper local search operations. We propose a
hybrid GA for the feature selection problem.

The basic idea behind our hybrid GA (HGA) is to embed

the problem-specific local search operations in a GA. The

steady-state procedure incorporating this idea is outlined

below.

HGA()

{

initialize population P;

repeat{

select two parents p1 and p2 from P;

offspring ¼ crossoverðp1; p2Þ;

mutation(offspring);

local-improvement(offspring);

replace(P, offspring);

} until (stopping condition);

}

local_improvement(C) /* C: a chromosome */
{

put features of 1-bits in C into X;

put features of 0-bits in C into Y;

switch{

case jXj ¼ d: ripple remðrÞ; ripple addðrÞ;

case jXj < d: repeat ripple addðrÞ d� jXj times;

case jXj > d: repeat ripple remðrÞ jXj � d times;
}

set bits in C for features in X to be 1;

set bits in C for features in Y to be 0;

}

It is probable that the offspring generated after the
crossover and mutation operations will inherit the parents’
good characteristics and be either superior or inferior to
their parents. In our hybrid GA, before the replacement
stage, the offspring is given the chance to be improved by
means of local search operations.

A major concern in realizing the above idea is related to
the problem of choosing the proper operations for local
improvement. It is natural that we use the operations
defined in Section 2.1: rem, add, REMðkÞ, and ADDðkÞ. The
operations work with a current feature subset, X, repre-
sented by a chromosome, and they perform local searches
around the current solution by removing the least sig-
nificant features or adding the most significant features. By
applying them in a proper sequence, we can accomplish
local improvement of the chromosome. In addition, we can
control the subset size by designing a proper sequence of
operations. In other words, removing or adding features
can be regarded as repairing operators.

The local improvement of a chromosome is accom-
plished using the code shown above. First, it converts the
chromosome, C, into two feature subsets, X and Y. To
describe the algorithm briefly, we define two local search
operations. The ripple remðrÞ procedure first removes the
least significant features r times and then adds the most
significant features r� 1 times, resulting in the removal of
one feature. Likewise, ripple addðrÞ increases the size of X
by 1. We call the parameter r the ripple factor. Fig. 2 shows
two examples of local search operations.

Local search operations:

ripple remðrÞ � fREMðrÞ;ADDðr� 1Þ; g, r � 1

ripple addðrÞ � fADDðrÞ;REMðr� 1Þ; g, r � 1

Depending on the number of features in X and subset
size requirement, the algorithm handles three different
cases, as illustrated in the code.

1. The size requirement is satisfied: X is perturbed by
applying ripple remðrÞ and ripple addðrÞ.

2. There are fewer features in X than required: X is
increased by applying ripple addðrÞ a number of
times.

3. There are more features in X than required: X is
decreased by applying ripple remðrÞ a number of
times.

The ripple factor is used to control the strength of local
improvement. Although the reduction in the number of
features caused by ripple remðrÞ is 1, independent of r, the
ripple factor directly influences the actual number of rem
and add operations to be executed. The larger the ripple
factor, r, the stronger the local improvement we obtain. For
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example, ripple remð2Þ is accomplished by two rems and
one add and it is evidently stronger than ripple remð1Þ
which performs only one rem.

We obtain two beneficial effects that are useful in solving
the feature selection problem. The first effect concerns the
overall performance improvement obtained from the local
improvement of chromosomes. Because we use the basic
operations of rem and add that seek the least significant and
the most significant features, a chromosome tends to
improve its performance locally. The second beneficial
effect concerns the control of the subset size. By conducting
a sequence of rem and add operations, we can easily repair a
subset, in order for it to satisfy the subset-size requirement.

Local search operations require considerable processing
time. A larger ripple factor requires more computation time.
On the other hand, the GA converges faster due to the fine-
tuning power of local searches. One of the crucial issues in
designing an efficient hybrid GA is how to speed up the
local search operations, while minimizing the number of
operations to be executed.

5 TIMING ANALYSIS AND EFFICIENCIES

Rigorous timing analysis helps us to perform a fair
comparison of various algorithms and to estimate the
actual computation times. Most conventional literatures
are somewhat weak with regard to this matter. As an
example, Kudo and Sklansky used the number of subset
evaluations and big-O notation [12]. This kind of analysis is
not very helpful, because the evaluations of subsets with
different sizes consume significantly different amounts of
computation time.

5.1 Analysis for Local Search Operations

Our analysis is rigorous in the sense that it uses atomic
operations requiring a fixed amount of CPU cycles. Every
feature selection algorithm consists of two major tasks: a
control process managing X and Y and a subset evaluation
process. The control process is computationally trivial and
negligible, and most of the time is consumed by the subset
evaluation process. Let tðsÞ be the computation time
required to evaluate a feature subset, X, with size s. The
value of tðsÞ depends not only on s, but also on the size of
the training sample set, when we use a wrapper approach
to subset evaluation. Since the size of the sample sets is
fixed in advance for a given feature selection job, it can be
regarded as constant. Therefore, tðsÞ depends only on the
value of s. The evaluation of a single feature is called an
atomic operation, and tð1Þ for the atomic operation is referred
to as the atomic time.

For the simplicity of analysis, a linearity assumption is
made, i.e., tðsÞ ffi s�where � represents the atomic time. The
linearity assumption holds for k-NN classifiers, since the
dominant operation is the distance calculation that is linear
to the number of features. This assumption also holds for a
neural network classifier, MLP (multiple layer perceptron)
since both the forward classification and backward learning
processes have OðsÞ time complexity.

Now, we analyze the computation time for the local
search operations. TðopÞ denotes the timing requirement for
the operation, op, measured in terms of the number of
atomic operations. In this notation, the current size of X is s.
Fig. 3 visually illustrates an example set of timing data for a

problem with D ¼ 60. Note that the operations rem and add
are the same as ripple remð1Þ and ripple addð1Þ, respec-
tively. TðremÞ has its peak at s ¼ D, while TðaddÞ has its
peak at s ¼ D=2. For ripple factors r � 2, the peaks are
located at s ¼ D. As the ripple factor increases, the gap
between Tðripple remðrÞÞ and Tðripple addðrÞÞ decreases.
We note that ripple remðrÞ and ripple addðrÞ consume
approximately r times the number of atomic operations
consumed by rem and add, respectively.

Timing analysis for local search operations:

TðremÞ ¼ tðs� 1Þ � s ¼ �ðs2 � sÞ

TðaddÞ ¼ tðsþ 1Þ � ðD� sÞ ¼ �ðD � s� s2 � sþDÞ

Tðripple remðrÞÞ ¼ �s0¼s�rþ1;stðs
0 � 1Þ � s0

þ �s0¼s�r;s�2tðs
0 þ 1Þ � ðD� s0Þ

Tðripple addðrÞÞ ¼ �s0¼s;sþr�1tðs
0 þ 1Þ � ðD� s0Þ

þ �s0¼sþ2;sþrtðs
0 � 1Þ � s0

Tðripple remð1ÞÞ ¼ �ðs2 � sÞ

Tðripple remð2ÞÞ ¼ �ðD � sþ s2 � s�DÞ

Tðripple remð3ÞÞ ¼ �ð2D � sþ s2 � s� 3DÞ

Tðripple remð4ÞÞ ¼ �ð3D � sþ s2 � s� 6DÞ

Tðripple addð1ÞÞ ¼ �ðD � s� s2 � sþDÞ

Tðripple addð2ÞÞ ¼ �ð2D � s� s2 � sþ 3DÞ

Tðripple addð3ÞÞ ¼ �ð3D � s� s2 � sþ 6DÞ

Tðripple addð4ÞÞ ¼ �ð4D � s� s2 � sþ 10DÞ

We can classify the feature selection algorithms into two
categories: deterministic (enumeration algorithms and
sequential search algorithms) and stochastic (GA). A
deterministic algorithm performs the same sequence of
operations and always produces the same result. On the
other hand, a stochastic algorithm executes a different
sequence of operations from one run to another, and
produces a different solution on each occasion. If more
CPU time is allowed, stochastic algorithms are likely to
produce better solutions. A simple way of giving more time
to a GA is to increase the generation number or the
population size. This aspect of the GA is advantageous in
most circumstances. Since feature selection is usually done
in offline mode, CPU time is not tightly restricted. The GA
is also inherently parallel, since the chromosomes in a
population can be evaluated in parallel.

5.2 Time Saving by Bookkeeping

As mentioned above, the dominant operation of any feature
selection algorithm is the evaluation of the feature subsets.
Since these algorithms repeatedly add and remove features,
it is possible that the same subsets are re-evaluated. By
bookkeeping the already evaluated subsets and their
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performance data, we can avoid duplicate computations
and, thus, speed up the algorithms.

To assess the effectiveness of the bookkeeping operation,
we can use the hit ratio, which is defined as the probability
that the subsets currently being evaluated are found in the
book. However, this is not precise, for the same reason as
that mentioned at the beginning of Section 5. We use the
atomic operations in formulating the time saving ratio, e,
and the speedup factor, p. The atomic operations related to
the actually evaluated subset are referred to as pure and
those that are skipped when the same subsets recur are
called duplicate.

e ¼ Ndup=ðNpure þNdupÞ and p ¼ 1=ð1� eÞ;

where Npure and Ndup represent the number of pure and
duplicate atomic operations, respectively.

The SFS algorithm always proceeds in the forward
direction, so duplicate evaluation never occurs. The PTA
and SFFS algorithms proceed in both the forward and
backward directions repeatedly, so duplicate evaluations
are likely to occur. Since the GAs generate new chromo-
somes through the genetic operators, duplicate evaluation
can occur. The hybrid GAs have the operations ripple rem
and ripple add that repeat the rems and adds sequentially, so
they are more likely to perform duplicate evaluations than a
simple GA.

6 EXPERIMENTAL RESULTS AND DISCUSSIONS

6.1 Environment

The 11 data sets used to test the algorithms are
summarized in Table 1. Ten data sets were chosen from
the UCI repository [19] with the condition that the number
of features be 10 or greater, that there be no missing
feature, and that all of the features be numeric. The other
data set was obtained by extracting the gray-mesh features
from the CENPARMI handwritten numeral samples [21].
To extract the gray-mesh features, a sample numeral image
was size-normalized to 10*10 mesh and each of the pixel
values in the mesh was taken as a feature value. All of the
11 data sets have been widely used in the pattern

recognition community. The sources of the data sets are
diverse, including character recognition, speech recogni-
tion, object recognition, and medical diagnosis. Addition-
ally the dimensionalities covered by the data sets have a
large spectrum ranging from 10 to 100.

Table 1 shows the specification of the data sets. For the
sake of the performance analysis, we follow the categoriza-
tion of problem sizes described by Kudo and Sklansky [12]:
small with 0 < D � 19, medium with 20 � D � 49, and
large with 50 � D. The small-sized data sets include Glass,
Vowel, Wine, Letter, Vehicle, and Segmentation. The next
three data sets, WDBC, Ionosphere, and Satellite, are
medium-sized. The last two data sets, Sonar and Numeral,
are large-sized.

The evaluation was conducted in terms of two criteria:
classification accuracy and computation time. Accuracy was
measured by determining the recognition rate of 1-NN
classifiers without rejection, and time was measured by
determining the number of atomic operations. Eight
algorithms were tested: SFS, PTAðl ¼ 2; r ¼ 1Þ, SFFS, simple
GA (SGA), and four hybrid GAs (HGAs) with different
ripple factors. The HGAs are referred to as HGAðrÞ, where r
represents the ripple factor.

The steady-state version of the GA procedure was used
for the SGA and HGA. The number of generations for the
SGA and HGAs (i.e., T in the stopping condition) was
controlled, such that the four HGAs use similar amounts of
atomic operations and the SGA uses more than the HGAs.
Table 2 shows the actual values for T . All of the data sets
used the same values of T for the four HGAs. The
recognition rates and timing data were collected with
various values of d. The SFFS has an option related to the
parameter � in line 2 of the algorithm SFFS described in
Section 2.2.2. We set the condition to be k ¼ D, so that the
best possible results are obtained by SFFS. For GA, five
independent runs were executed and their average and
maximum performances were presented.

6.2 Classification Accuracy

Table 3 summarizes the performance of the nine feature
selection algorithms for the 11 data sets. For each of the data
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sets, the recognition rates were measured for four values of
d: D=5, 2D=5, 3D=5, and 4D=5. For the data sets with low-
dimensional feature spaces, the optimal solutions were
provided as a result of an exhaustive search. In the case of
the GAs, the average (x) and maximum (y) rates of the five
runs are denoted by xðyÞ. The bold-faced figures represent
the best results.

First, the effectiveness of the hybridization is analyzed.
For this purpose, the five GAs are compared. In the case of
the small-sized data sets, all of the GAs found the optimal
solutions with only one exception: SGA with d ¼ 11 in
Vehicle. Since the average and maximum rates are the same
for most cases, these small-sized data sets seem to be easy
for the GAs. For the few cases that the SGA could not find
the optima, the HGA found them.

For the medium-sized data sets (WDBC, Ionosphere, and
Satellite), the best solutions were always found by the
HGAs and some of them were also found by the SGA.

In the case of the large-sized data sets (Sonar and
Numeral), the SGA found no best solutions and the HGAs
outperformed the SGA. It is also notable that HGAðr � 2Þ
were superior to HGA(1). In the case of the Sonar data set,
the solutions obtained by HGAðr � 2Þ were better than the
ones obtained by HGA(1) by about 0.5-1.0 percent.
Additionally, with respect to the gaps between the average
and maximum rates, HGAðr � 2Þ gave rise to less devia-
tions than HGA(1). That is, HGAðr � 2Þ was more attractive
than HGA(1) in terms of both solution quality and stability.
More rigorous comparisons among the GAs will be made in
Section 6.4, using their convergence characteristics.

Among the three sequential search algorithms, SFFS
produced the best overall solutions with only a few
exceptions. The PTA always outperformed SFS, and SFFS
always outperformed PTA with only two exceptions, i.e.,
when d ¼ 27 in Ionosphere and d ¼ 48 in Sonar. For the
small-sized data sets of Glass and Segmentation, SFS also
produced the optimal solutions. It is worth noting that the
gaps among the three algorithms grew with increasing
problem size. As an example, using Sonar, SFFS produced
better solutions than PTA by about 1.5-3 percent and PTA
was better than SFS by about 0.5-3.5 percent.

Next, we compare the GAs with the sequential search
algorithms. Since SFFS outperformed PTA and SFS, only

SFFS was used for comparison. Overall, the SGA produced
solutions comparable to those of SFFS on average. When
considering the best solutions, SGA seemed more attractive
than SFFS. The HGAs considerably improved the results of
SGA. The HGAs were thus superior to SFFS in every case.
In addition, the gaps between the GAs and SFFS become
larger as the problem size increases.

6.3 Computation Time

Four data sets were chosen to analyze the computational
times of the algorithms. The timing data used for them are
illustrated in Table 4. The data used for the GAs are the
averages of five runs. Since we used the condition k ¼ D for
stopping SFFS, the data used with SFFS are the same for all
values of d. Two data were measured in the form NðeÞ,
where N represents the total number of atomic operations
(i.e., Npure þNdup) and e denotes the time-saving ratio
defined in Section 5.2. As an example, HGA(2) produced
the data N ¼ 0:42M and e ¼ 0:28 to select a subset with
d ¼ 12 in Sonar. So, HGA(2) performed about 302K
(= 0.42M*0.72) pure atomic operations and skipped about
117K (= 0.42M*0.28) duplicate atomic operations. The
speedup factor, p, is 1.39 in this case.

Since SFS always proceeds in the forward direction, no
redundant subset evaluation occurs and, thus, e is always 0.
The PTA and SFFS obtained significant speedups by a factor
of about 1:1 
 1:7. The GAs showed large variations in the
value of e depending on the size of the search spaces defined
by D and d. As D increased, e decreased substantially. The
factor d influenced e in the same manner. The large search
spaces in the cases where d ¼ 24 and 36 in Sonar and d ¼ 40

and 60 in Numeral resulted in negligible speedups in the
case of SGA and HGA(1). However, HGAðr � 2Þ showed
notable speedups for the same cases. We noted a trend that
large ripple factors led to greater speedups.

The SFFS consumed the longest time among the
sequential search algorithms. The GAs consumed more
time than the sequential algorithms due to their stochastic
nature. According to Table 4, the GAs consumed about 3-
6 times the computation time of SFFS for the large-sized
data sets. Note that in SGA the time increased linearly with
d since the same amount of computation is required for
every generation. However, in the HGAs the time did not
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increase linearly with d because the local search operations
vary from generation to generation.

6.4 Convergences and Comparisons of GAs

The aim of this section is twofold: to provide an analysis of
the convergence characteristics of the GAs and a more
rigorous comparison of the GAs and SFFS. To make the
computation time for the algorithms comparable, the
stopping condition was modified to use the same number
of pure atomic operations rather than the same number of
generations. For each value of d, we set the unit amount of
pure atomic operations—denoted by Natom—to be similar to
the amount used in the experiments shown in Table 3. The

recognition rates were observed at six positions, as shown

in Tables 5, 6, 7, and 8. The early generations (i.e.,

1=8 
 1=2 Natom) allows us to compare the GAs and SFFS

with similar computation times. As before, the averages and

maxima of five runs are presented. The best solutions are

shown in bold typefaces.
We compared five GAs at the six time positions. Most of

the best solutions were found by HGAs over the four data

sets. HGAsðr � 2Þ were better than HGA(1) in finding the

best solutions. Regarding the convergence, HGAsðr � 2Þ

showed more consistent improvements than SGA and

HGA(1), particularly after the time 1Natom.
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Next, we compare the GAs with SFFS under the
condition that the computation time be the same. The last
column shows the accuracy rates produced by SFFS with
the same time budgets as the GAs.

We have 16 cases, four for each of the four data sets. The
SFFS produced 1 
 4 solutions for them. The marks “NA”
and “-” represent the situations of SFFS execution,
corresponding to “solution not found yet” and “execution
already ended,” respectively. We observed that no im-
provement was afforded by SFFS after the first solution,
except in three cases: d ¼ 6 for WDBC, d ¼ 27 for Iono-
sphere, and d ¼ 36 for Sonar. Although SFFS adds and
removes features dynamically, it is prone to become stuck at
a local optimum point, due to its highly localized search
nature. In 8 out of 16 cases, SFFS led all the five GAs in the
early stages, in terms of the average rates. As time went by,
however, the GAs turned out to be comparable or superior
to SFFS.

We also counted the numbers of wins, ties, and losses for

each of the GAs versus SFFS, for additional information.

There are a total of 41 solutions produced by SFFS in

Tables 5, 6, 7, and 8. As an example, HGA(2) recorded

24 wins, 3 ties, and 14 losses. The ratio of wins to losses was

63 percent. HGA(3) and HGA(4) showed similar ratios of 66

and 61 percent, respectively. HGA(1) was comparable to

SFFS with a ratio of 50 percent. Based on the above results,

it would appear that the HGAs provide better overall

performance than SFFS, in the case where the computation

time is the same.

6.5 Comparisons of GAs and Multistart Algorithms

The multistart algorithm (MS) is a heuristic that repeats the
“random initial solution + local optimization” mechanism a
number of times and returns the best solution found. Here,
we compare MS with HGA, in order to determine how
much the genetic process contributes to the search, in
addition to the search power provided by the local

optimization. To accomplish this, MS has to use the same
local optimization and the same time budget as that used
in HGA. The structure of the multistart algorithm is as
follows:

Algorithm multistart:

1. T ¼ 0;

2. repeat {

3. X ¼ �; Y ¼ �;

4. for(i ¼ 1; i <¼ D; iþþ) if(random uniformðÞ < d=D)

X ¼ X [ fig; elseY ¼ Y [ fig;

5. switch{

6. casejXj ¼ d: ripple remðrÞ; ripple addðrÞ;
7. casejXj < d: repeat ripple addðrÞ d� jXj times;

8. casejXj > d: repeat ripple remðrÞ jXj � d times;

9. }

10. Jx ¼ JðXÞ;

11. if (Jx > T ) T ¼ Jx;

12. until (time limitation is reached);

13. report T as accuracy of the final solution;

Step 4 is the same as the statement used by the GAs for
generating the initial population. Steps 5 through 9 are the
same as the local search used by the function loca-
l_improvement() in the HGA of Section 4.

We ran MS with two ripple factors, r¼2 and 3. MSðrÞ
refers to the MS with ripple factor r. Table 9 presents the
average and maximum rates from five runs. The data for
HGA(2) and HGA(3) were copied from Table 3 for
comparison.

HGA and MS were comparable for the smallest problem,
WDBC. HGA outperformed MS for all the other problems.
It is notable that the performance gap between them
increased as the problem size grew. This gap reflects the
contribution of the genetic process.

6.6 Discussion

Based on the experimental results and analyses, we draw a

number of conclusions. It should be noted that the
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experimental results and analyses from which we draw our

conclusions were based on various standard data sets

covering a large spectrum of problem sizes.

1. The SFFS is the best among the sequential search

algorithms.
2. The GAs, including the SGA and HGAs, outperform

SFFS regardless of the problem size.
3. The HGAs outperform both SFFS and SGA. The

ripple factor r � 2 is recommended.

4. The HGAs are somewhat more attractive for large-
sized problems.

It would be worthwhile discussing these conclusions in
more detail. It is interesting to compare our conclusions
with the ones made by other comparative studies [5], [9],
[12]. The first conclusion is the same as that made in
conventional studies. However, the second conclusion is
inconsistent with these previous results. Ferri et al. [5]
insisted that SFFS and GA are comparable, but that the
GA becomes inferior to SFFS as the problem size increases.
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Jain et al. [9] concluded that the GA always gives rise to

premature convergence and is inferior to SFFS. The work by

Kudo and Sklansky in [12] presented a recommendation

that SFFS is suitable for small and medium-sized problems,

while the GA is more suitable for large-sized problems.
The inconsistency among these different studies seems to

be due to the difference in the specifications of the GA used.

As mentioned in Section 1, GA has many inherent

variations and parameters that need to be handled properly

in the implementation stage, in order for reasonable or good

performance to be obtained. In order to maximize the

reproducibility and minimize the ambiguity in the GA
implementation, we presented rather detailed specifications
for the GAs in Sections 3 and 4.

The SFFS consumed the longest computation time
among the sequential search algorithms. The GAs required
more time than the sequential search algorithms for their
convergence. A good way of accelerating GAs is to use
parallel computation since the local search operations, as
well as the genetic process have abundant parallelism. For
example, to execute an instance of the local search
operations, remg, we may generate all the candidate subsets
and then evaluate them in parallel, and finally choose the
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least significant one. Given a sufficient number of proces-
sors, all of the local search operations can be accomplished
in constant time, independent of the sizes of X and Y.

The GAs are very advantageous compared to the
deterministic algorithms, in the sense that further improve-
ments can bemade in variousways. Although, in Section 3.6,
the same set of parameter values was used for all of the data
sets, tuning the genetic parameters for a particular data set
may lead to an improvement. As shown in Section 6.4, the
convergence characteristics of HGAðr � 2Þ encourage us to
go further in order to come closer to the optimum point.
Performing multiple executions and then choosing the best
solution may also be another way of improving this
algorithm. Note that the use of such methods is not possible
in the deterministic algorithms.

7 CONCLUDING REMARKS

Novel hybrid GAs were proposed to solve the feature
selection problem, with the goal of achieving leading-edge
performance over the conventional algorithms. Local search
operations parameterized with ripple factors were devised
and embedded in the HGAs. The experimental results
obtained for a variety of standard data sets revealed that the
stated objective was successfully accomplished.

Our contributions can be summarized as follows:
Significant improvements were observed through the
proposed hybrid GAs. This will contribute to the perfor-
mance improvements of various applications requiring
feature selection. Another advantage offered by the hybri-
dization was the acquisition of subset size control. The
concept of atomic operations has proven to be useful in
rigorously analyzing and comparing the timing efficiencies
of the algorithms.

In the future, it would be worthwhile developing other

schemes, such as gene rearrangement for chromosomal

encoding or more suitable genetic operators. Analyzing the

effect of varying population sizes and the further tuning of

other genetic parameters leave some room for further

improvement. Speeding up the processing of local search

operations is another important issue.
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