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ABSTRACT

This paper addresses two NP-hard and strongly
related problems in production planning of flexible
manufacturing system (FMS), part type selection
problem and machine loading problem. Various flex-
ibilities such as alternative machines, tools, and pro-
duction plans are considered. Real coded genetic al-
gorithms (RCGA) that uses an array of real numbers
as chromosome representation is developed to handle
these flexibilities. Hybridizing with variable neigh-
bourhood search (VNS) is performed to improve the
power of the RCGA exploring and exploiting the large
search space of the problems. The effectiveness of this
hybrid genetic algorithm (HGA) is tested using sev-
eral test bed problems. The HGA improves the FMS
effectiveness by considering two objectives, maximiz-
ing system throughput and minimizing system unbal-
ance. The resulted objective values are compared to
the optimum values produced by branch-and-bound
method. The experiments show that the proposed
RCGA could reach near optimum solution and the
hybridization can improve the performance of the
RCGA.

Keywords: Flexible Manufacturing System, Pro-
duction Planning, Part Type Selection Problem,
Machine Loading Problem, Alternative Production
Plans, Hybrid Genetic Algorithms

1. INTRODUCTION

Flexible manufacturing system (FMS) is an inte-
grated production system that has capability to man-
ufacture large variety of product in small to medium
volume of production batches. Their computer con-
trolled machines can be rapidly configured to produce
different products for different market segments. As a
high investment is required to acquire FMS, higher re-
sources utilization and maximum system throughput
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must be achieved to enable early return on investment
and keep manufacturers competitive in national and
global market. A good production planning is critical
to achieve these objectives.

Production planning is done before starting ac-
tual production and conducted to ensure that the
objectives of the FMS are effectively achieved under
several resources limitations. Problems in the pro-
duction planning stage can be divided into several
sub problems such as part type selection problem,
machine grouping problem, production ratio prob-
lem, resource allocation problem, and machine load-
ing problem [1, 2]. As various different manufacturing
environments exist, several combinations of problems
in FMS production planning were addressed in lit-
eratures. For example, some papers addressed only
machine loading problem [3-6] whereas most papers
simultaneously solved the part type selection and ma-
chine loading problems [7-13]. Another paper simul-
taneously addressed the part type selection and ma-
chine loading problems in the first stage and used the
result on this stage to determine the production ratio
in the next stage [14]. Moreover, the machine loading
problem and the partial machine grouping with tool
life constraints was addressed in [15] whereas the part
type selection and machine loading problems with
tool life constraints was addressed in [16]. This pa-
per focuses on handling various flexibilities when the
part type selection and machine loading problems are
simultaneously solved.

The flexibility is considered as the main feature
of the FMS and can be used to highly utilize all the
production resources and at the same time reduce
the processing time [17, 18]. The flexibility of FMS
refers to an ability to manufacture various products
by using same resources (machines and tools). The
flexibility of FMS can be divided into two categories,
machine flexibility and routing flexibility, that may
be further divided into several sub categories. The
machine flexibility refers to possibility reconfiguring
machines by attaching different tool types so the ma-
chines can perform different operations to produce
new type of products [19, 20]. The routing flexibility
refers to possibility to manufacture a product through
several alternative production routes. Hence, produc-
tion planning is carried out to fully utilize these flex-
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ibilities.

The part type selection problem and the machine
loading problem are strongly related problems in pro-
duction planning of FMS and heavily determine the
systems efficiency [19, 21]. The part type selection
problem is concerned with decision about which part
types (products) on the production order should be
taken into a batch to be produced immediately. This
decision must be made since the system has several
constraints such as certain scheduling period, limited
number of machines, limited tool magazines capacity
(slots) of each machine and limited number of tools.
The machine loading problem deals with allocation of
operations for the selected part types and attaching
appropriate tool types to the machines [1, 22]. A fea-
sible solution for the machine loading problem may be
not obtained if the part type selection problem and
the machine problem are addressed separately and
sequentially. Thus, solving part type selection and
machine loading problems simultaneously is a critical
to obtain a feasible solution that provides a higher
throughput and maintains the balance of machines
workload.

Solving the part type selection and machine load-
ing problems simultaneously requires a powerful
method to deal with a large search space. In fact,
these production planning problems are considered
as NP-hard problems [19] and the optimum solution
may not be achieved by exact methods in a reasonable
amount of time. Genetic Algorithms (GAs) has been
proven as a robust metaheuristic method to solve var-
ious problem with a large search space [23]. Our pre-
vious research has proven that real coded genetic al-
gorithms (RCGA) could solve the part type selection
and machine loading problems and produced near op-
timum solutions in a reasonable amount of time [8,
9]. Here, flexibilities of operations such as the possi-
bility of operation processed on alternative machines
with alternative tools were considered.

This paper as an extension of [24, 25] addresses
more complex problem which considers alternative
production plans which refer to possibility of pro-
ducing part on alternative operation sequence. In
this paper, the capability of variable neighbourhood
search (VNS) is expanded to search the best produc-
tion plan for the part types. This effort will further
exploit the flexibility of the FMS and improve sys-
tem productivity. Therefore, more powerful method
is developed by hybridizing the RCGA with the VNS.
Here, the RCGA is designed to explore a large search
space of the problems whereas the VNS will improve
the power of the RCGA to exploit local areas and
obtain better solutions. Hence, the hybrid genetic
algorithms (HGA) have a balance power to explore
and exploit the search space. A strategy to maintain
population diversity is also developed.

2. LITERATURE REVIEW

A number of approaches have been proposed to
address the part type selection and machine loading
problems such as genetic algorithms [4, 8, 26, 27],
particle swarm optimization [19, 28], ant colony op-
timization [5], immune algorithm [29], multi-agent
system [21], symbiotic evolutionary algorithm [30],
harmony search algorithm [31], and constraint pro-
gramming [32]. Hybrid approaches were also devel-
oped such as hybridizing genetic algorithm with simu-
lated annealing [22, 33], hybridizing genetic algorithm
with particle swarm optimization [12], and hybridiz-
ing tabu search with simulated annealing [34]. Even
if they reported promising results, not all literatures
considered various flexibilities in the FMS due to the
complexity of the problems. Here, several simplicities
were made to reduce the complexity of the problems
[see 8]. This paper attempts to fill this knowledge
gap.

As the part type selection and machine loading
problems have an important role in determining the
productivity and the efficiency of the FMS, an ex-
tensive research has been conducted in these areas.
Mathematical programming based approaches were
applied in few studies. For example, Mgwatu [16]
presented two-stage sequential mathematical models
as integer nonlinear programming (INLP) problems
and used a nonlinear programming software pack-
age called LINGO to solved the problems. The part
type selection, machine loading and machining op-
timisation problems were simultaneously solved in
the first stage. The scheduling problem was solved
in the second stage. Denizell & Sayin [35] formu-
lated the problems as bicriteria mathematical pro-
gramming problem. Their objective was maximizing
system throughput and due-date of part types were
used as weight of the objective function. Their model
was solved using commercial package software called
CPLEX Callable Library12.

Heuristic based approaches were frequently used
in recent studies. For instance, Tiwari, Kumar Jha &
Bardhan Anand [21] developed a combinatorial auc-
tionbased heuristic for multi-agent system. This ap-
proach was used to explore a wide search space of the
part type selection and machine loading problems.
Biswas & Mahapatra [19] modified particle swarm
optimization (PSO) to solve the part type selection
and machine loading problems. Their approach at-
tempted to maintain the balance of the system while
regarding the occurrence of technological constraints
such as the availability of machining time and tool
slots. Two experimental scenarios were used in their
experiments: machine overloading is allowed and is
not allowed. Prakash et al. [29] modified immune al-
gorithm to solve the part type selection and machine
loading problems. They proposed new hypermuta-
tion operator to deal with the drawbacks related to
the basic driving forces of the immune algorithms.
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Their modified method was claimed more efficient
that the original one. The objectives considered were
maximizing throughput and maximizing systems bal-
ance.

A number of specialised Genetic Algorithms (GAs)
were also developed. For example, Abazari, Soliman-
pur & Sattari [7] developed a GA to address the part
type selection and machine loading problems. Infea-
sible solutions were handled by using penalty value.
Yusof, Budiarto & Deris [10] solved the problems us-
ing a constraint-chromosome GA. The chromosome
representation was designed to produce only feasible
solutions and reduce computational time. Each indi-
vidual had two parts of chromosome, part-sequence
and partoperation chromosome. Kumar et al. [36]
proposed constraint-based genetic algorithm (CBGA)
to handle a complex variety of variables and con-
straints in the problems. Their CBGA operators were
designed to prevent premature convergence by em-
ploying exhaustive explorations to exploit the search
space.

More complex approaches have been developed by
integrating two methods to addresses the part type
selection and the machine loading problems. For in-
stance, Arikan & Erol [11] addressed the problems us-
ing hybrid simulated annealing (SA) and tabu search
algorithm. Infeasible solutions were also handled
by using penalty value. Kumar, Murthy & Chan-
drashekara [12] hybridized a GA and particle swarm
optimization. Solution was obtained by converting
chromosome using a binary coding system. Tiwari et
al. [22] proposed hybrid GA and SA. This approach
had a capability to escape from local optimum areas
and provide good solutions.

This paper focuses on the developing of chromo-
some representation for GAs that produces only fea-
sible solutions. The representation can also addresses
more complex problem, the existence of alternative
production plans which refer to possibility of produc-
ing part types on alternative operation sequence. Hy-
bridizing GA with VNS is performed to improve the
performance of the GA to exploit local search areas.

3. PROBLEM FORMULATION

This study considers a FMS that is arranged by
several computer numerically controlled (CNC) ma-
chines and buffers for pre-processed and finished
parts. An automated material handling is used to
interconnect all machines. Each machine has a tool
magazine with certain tool slot capacity. The ma-
chines can perform different operations if tooled dif-
ferently. Several copies of each tool type are available
and each copy can be attached to only one machine.
Each tool requires a number of slots when it is at-
tached to the machine tool magazine.

When a production order that consists several jobs
(part types) arrives, the system selects a set of part
types that should be produced immediately as there

are a number of technological constraints such as lim-
ited number of machines, limited tool magazines ca-
pacity (slots) of each machine and limited number of
tools. Unselected part types will be manufactured in
the next batches.

Each part type can be produced through several al-
ternative production plans. Each production plan re-
quires several machining operations. Each machining
operation can be processed on several alternative ma-
chines with different tool types and processing time.

Several assumptions are made as follows:

− the production resources such as pallets and fix-
tures are sufficient;

− machines do not fail during the production period;
− processing times of the operations are determinis-

tic and known in advance;
− machining operation cannot be interrupted.

The problem is formulated as a mixed-integer pro-
gramming model. However, due to the computational
complexity of the problem, solving the problem using
mathematical programming based approaches is im-
practical for large size problems.

3.1 Parameters

The following notations are used in the formulation:

p=1,. . . ,P index for part type.
a=1,. . . ,Ap index for alternative production

plan of part type p.
o=1,. . . ,Opa index for operation of production

plan a of part type p.
t= t,. . . ,T index for tool type.
m=1,. . . ,M index for machine.
MAGm tool magazine capacity on machine

m.
Nt number of tools type t.
St number of slots required by tool

type t.
QP batch size (quantity) of part type p.
Vp value or price of part type p.
MACpao set of possible machines on which

operation o of production plan a of
part type p can be performed.

TMpaomt = {1,0} = 1 if tool type t is required
for processing operation o of produc-
tion plan a of part type p on machine
m, and 0 otherwise.

Tpaom processing time of operation o of
production plan a of part type p on
machine m.

3.2 Decision and Depending Variables

The system determines values of several decision
variables as follows:
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Xp = {1, 0} = 1 if part type p is selected
in the batch, 0 otherwise.

Xpa = {1, 0} = 1 if production plan a of
part type p is selected, 0 oth-
erwise.

Xpaom = {1, 0} =1 if machine m is chosen
to process operation o of pro-
duction plan a of part type p,
0 otherwise.

The depending variable is variable whose value is
determined once the values of the above decision vari-
ables are determined. The depending variable for this
model is defined as follow:

Ymt = {1, 0} 1 if tool type t is loaded to the
machine m, and 0 otherwise

3.3 Objectives

Various objectives for the production planning
problems have been considered in the literature such
as maximizing system throughput, maintaining the
balance of the system, minimizing part movement,
minimizing tool changeovers, minimizing number of
required tools, minimizing machining or production
costs, minimizing earliness and tardiness costs, mini-
mizing subcontracting cost of part types, maximizing
tool duplication, and minimizing number of batches
[30, 33, 37, 38].

Maximizing system throughput and maintaining
the balance of the system were frequently used for
the production planning of FMS. These objectives
can be used to minimize the idle time of the ma-
chines that lead to maximal machine utilization and
improvement of the overall system output. Maximiz-
ing system throughput is used as an objective as there
is possibility that not all part types can be produced
due to the limited copies of tool types.

Maximizing system throughput is defined as maxi-
mizing the value of the selected part types as shown
in (1) [29, 33]. If all part types have equal value,
the equation calculates the sum of batch size of the
selected part types.

Maximize :
P∑

p=1

XpQpVp (1)

Maintaining the balance of the system is equal
to minimizing system unbalance as expressed in (2)
where Wm is workload of machine m. Here, length
of scheduling period for each machine (SPm) is de-
termined in advance and overloading of the machines
is allowed [19].

Minimize :
M∑

m=1

|SPm −Wm| (2)

where Wm =

P∑
p=1

Ap∑
a=1

Opa∑
o=1

XpaomTpaomQp

3.4 Constraints

While considering the objectives, several techno-
logical constraints must be satisfied as follows:
− Constraint (3) ensures that one of alternative pro-

duction plans of the selected part type is chosen.

Ap∑
a=1

xpa = Xp, p = 1, . . . , P (3)

− Constraint (4) guarantees that all operations of
the selected part types are processed.

Opa∑
o=0

M∑
m=1

Xpaom = OpaXpa (4)

p = 1, . . . , P, a = 1, . . . , Ap

− Constraint (5) ensures that each operation of part
type is completed on a chosen machine.

∑
m∈MACpao

Xpaom = Xp (5)

p = 1, . . . , P, a = 1, . . . , Ap, o = 1, . . . , Opa

− Constraint (6) states that all required tools are
loaded to a machine if the machine is selected to
process an operation.

Ymt=XpaomTMpaom

P =1,. . ., P, a=1,. . ., Ap, o=1,. . ., Opa (6)

m=1, . . . ,M, t = 1, . . . , T

− Constraint (7) guarantees that the number of tools
loaded to the machines do not exceed its availabil-
ity.

M∑
m=1

Ymi ≤ Nt, t = 1, . . . , T (7)

− Constraint (8) ensures that number of tool slots
occupied on a machine magazine must not exceed
tool magazine capacity of the machine.

T∑
t=1

YmtSt ≤ MAGm, m = 1, . . . ,M (8)

A simple problem set is given to show the com-
plexity of the part type selection and machine loading
problems. Table 1 shows different production require-
ments of seven part types. Apparently, part type 1
has 2 alternative production plans. The first pro-
duction plan is composed by 2 machining operations
whereas the second production plan is composed by
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Table 1: Example of Production Requirement of
Part Types.

3 machining operations. Operation 2 of the first pro-
duction plan has 2 alternative machines, machines 2
or 3. So, part type 1 has total 6 machining routes as
follows:

− the first production plan has two machining routes,
(1) 1→2 and (2) 1→3;

− the second production plan has four machining
routes, (1) 2→1→2, (2) 2→1→2, (3) 3→1→2, and
(4) 3→1→2.

Operation 3 of production plan 2 of part type 1 is
considered has two alternative machines even it uses
same machine (machine 2) since different tools and

machining times are required. This flexibility may be
considered as tooling flexibility.

As there are 7 part types, the part type selection
problem deals with 7! part type sequence. For one
such ordering there exist: 6×1×2×4×3×3×2 = 5,040
possible machining routes. Thus, for the integrated
part type selection and machine loading problems
there are 7!×5,040 =4,354,560 possible solutions and
the best solution may be found by using complete
enumeration or branch-and-bound method. However,
the number of possible solutions exponentially in-
creases for larger size problems. Therefore, any pro-
posed approaches must consider this very large search
space.

Table 2: Comparison of ANN, GA, Fuzzy Logic and
SOM.

Tool type 1 2 3 4 5 6 7 8 9 10
copies 2 2 2 2 2 3 3 3 3 3

required
1 2 2 1 3 3 4 4 5 5

slot

4. HYBRID GENETIC ALGORITHMS (HGA)

The HGA maintains pop size (population size) of
chromosomes in population pool to represent possi-
ble candidate solutions. Genetic operator (crossover
and mutation) are employed to produce new chromo-
somes (offspring) that are placed in offspring pool. A
selection method is used to determine which chromo-
somes (from current population and offspring pool)
are passed to the next generation. This procedure is
repeated until termination condition is achieved. In
this study, the iteration is stopped after tRun sec-
onds running time. The running time is determined
in such way that the HGA reaches convergence can-
not obtain better solutions. At the last generation,
the best chromosome is decoded as an optimum or a
near optimum solution [39]. Fig. 1 shows the cycle
of the HGA.

Table 3: Comparison of ANN, GA, Fuzzy Logic and
SOM.
part type

1 2 3 4 5 6 7
index
x 742 220 870 857 846 1126 542
sorted x 220 542 742 846 857 870 1126
part type

2 7 1 5 4 3 6
sequence

4.1 Chromosome Representation

The chromosome representation is designed to pro-
duces only feasible solutions that minimizes a com-
putational time needed by GAs to move its popula-
tion toward a feasible search space or repair infeasible
chromosomes [40]. Production requirement in Table
1 is used to explain the chromosome construction.
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Fig.1: Pseudo Code of the HGA.

Table 3 shows an example of chromosome X =
(x1, x2, . . . , x7) that represents 7 part types in Table
1. xi is treated as a floating number when reproduc-
tion operators (crossover and mutation) are employed
but it will be rounded to a nearest integer value when
decoding operation (into solution) is performed. xi
has value in interval [0,op×m+p+pp 2]. The used vari-
ables are detailed as follows:
− op is maximum number of operations of part type.

Here, op is equal to 3 as shown by production plan
1 of part type 1.

− m is number of bits required to represent a binary
number in interval [0, maximum number of alter-
native machines of each operation]. In this case
the maximum number of alternative machines of
each operation is 2 as shown by operation 2 of pro-
duction plan 1 of part type 1. Thus, m is equal to
2.

− p is number of bits required to represent a binary
number in interval [0, number of part types]. Here,
3 bits are required to represent value in interval [0,
7].

− pp is number of bits required to represent a bi-
nary number in interval [0, maximum number of
production plan of part type]. In this case the
maximum number of production plan of part type
is 2 as shown in part type 1, 3 and 5. Therefore,
pp is equal 2.
The smallest position value (SPV) rule is used to

get the part types sequence. The rule works by sort-
ing x (together with part type index) in ascending
order so a priority of part type that must be pro-
duced is obtained as shown in the third row of Table
3. The production plan and machines for operations
are obtained by using a binary operation as depicted
in Fig. 2. For part type 1, x3 = 742 is converted into

(10 1110 0110)2. Two (according to pp) most right
bits (10)2 is used to determining the production plan
by using the following formula:

productionplan = (10)2modpp1+1 = 2mod2+1 =
1
mod is modulus operator which produces the remain-
der of a division and pp1 is number of alternative pro-
duction plans for part type 1. Therefore, production
plan 1 is chosen for part type 1.

The next two (according to m) most right bits
(01)2 is used to determine the machine for the first
operation by using the following formula:

machineindex = (01)2modnp+1 = 1mod1+1 = 1
np is number of possible machines for operation 1

of production plan 1. Therefore, the first operation of
production plan 1 of part type 1 is processed on the
first possible machine that is machine 1. By using the
next 2 right bits (10)2 and employing the same rule,
part type 1 is sequentially processed on machines 1
and 2.

Fig.2: Binary Operation of Decoding Chromosome.

The next step of decoding chromosome is load-
ing required tools to the machines. By sequentially
choosing part types from the left part of the part type
sequence until violates the constraints (tools avail-
ability and empty slots on the machines), a batch is
performed. For example, after selecting part types 2,
7, 1, 5 and 4 according to the part type sequence as
depicted in Table 3, adding part type 3 to the solution
violates the constraints. Therefore, the chromosome
states that only part types 2, 7, 1, 5 and 4 are selected
for the current batch and the objective functions of
the problem are calculated based on these selected
part types.

The selected part types and their assigned ma-
chined is presented in Table 4. Machines workload
and their assigned tools are shown in Table 5. Here,
there are 3 machines and length of scheduling period
for each machine (SPm) is 4000. Table 6 shows that
number of tool types loaded to the machines do not
exceed their availability.

Table 4: Selected Part Types and Their Production
Plan and Assigned Machines.

part type value prod plan machines
2 90 1 1, 2, 2
7 160 1 2, 3
1 120 1 1, 2
5 120 1 1, 2
4 60 1 3, 1, 1

throughput 550
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Table 5: Selected Part Types and Their Production
Plan and Assigned Machines.

mac w unb slot used
assigned
tools

1 5100 100 15 13 1 2 3 4 6 7
2 4900 100 20 13 3 4 5 6 7
3 2500 2500 25 25 8 9 10

system
2700

unbalance
mac:machine; w:workload; unb:unbalance

slot:number of slots; used:used/occupied slots

Table 6: Used Tool Types.

tool type 1 2 3 4 5 6 7 8 9 10
availability 2 2 2 2 2 3 3 3 3 3

used 1 1 2 2 1 2 2 1 1 1

4.2 Fitness Function

The quality of a chromosome is measured by using
a fitness function. Two objectives in (1) and (2) are
expressed proportionally and converted to the fitness
function in (9). Here, f1 and f2 have value between
0 and 1. The weighted parameters w1 and w2 can be
determined according to the preference of the decision
maker.

Maximize:F = w1f1 + w2f2 (9)

where:
w1, w2: weighted parameters

f1 =

(
P∑

p=1

XpQpVp

)/( P∑
p=1

QpVp

)

f2 = 1−

(
M∑

m=1

|SPm −Wm|

)/ M∑
m=1

SPm

4.3 Reproduction

Reproduction operators (crossover and mutation)
are used to produce new chromosomes during gener-
ation. The number of the new chromosomes is de-
termined by the value of crossover rate and mutation
rate. Two crossover methods (flat-crossover [41] and
extended-intermediate-crossover [42]) and two muta-
tion methods (random exchange mutation and simple-
randommutation) are used. These methods are effec-
tive for the RCGA as proven in our previous research
[8, 43].

Fig. 3 gives an example of flat-crossover. P1 =
(p11, . . . , p

1
n) and P2 = (p21, . . . , p

2
n) are two selected

chromosomes as parents for crossover. Offspring
O = (o1, . . . , on) is produced by generating a ran-
dom number oi on interval [pi1,K,pi2]. Fig. 4 gives
an example of extended-intermediate-crossover. Off-

spring O = (o1, . . . , on) is produced by using a for-
mula oi = p1i + αi(p

2
i − p1i ), where αi is randomly

generated on interval [-0.25, 1.25].
The random exchange mutation produces offspring

O by choosing two genes randomly from parent P
and exchanging their positions as shown in Fig. 5.
The simple-random-mutation produces offspring O =
(o1, . . . , on) from parent P = (p1, . . . , pn) by using a
formula oi = pi(1 + αi), where αi is randomly gener-
ated on interval [-0.1, 0.1]. The example is given in
Fig. 6.

One crossover and one mutation methods are ran-
domly chosen in each generation.

Fig.3: Flat-Crossover.

Fig.4: Extended-Intermediate-Crossover.

Fig.5: Random Exchange Mutation.

Fig.6: Simple-Random-Mutation.

4.4 Selection

During reproduction stage all offspring produced
by crossover and mutation are placed on offspring
pool. Selection procedure is used to determine which
chromosomes from current population and offspring
pool are passed to the next generation. Four common
selection methods in the literature (roulette wheel, bi-
nary tournament, elitist, and replacement) have been
examined to determine which method is the most
suitable for the RCGA. Here, replacement selection
was proved as the best one [9].
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The replacement selection has rules as follows:

− Offspring produced by mutation operator will re-
place their parent if they have better fitness value
than their parent.

− Offspring produced by crossover operator (using
two parents) will replace their weakest parent if
they have better fitness value than their weakest
parent.

This replacement selection method guarantees that
the best chromosome always passes to the next gen-
eration.

4.5 Variable Neighbourhood Search (VNS)

Variable neighborhood search (VNS) is meta-
heuristic technique that manages a local search (LS)
technique. Here, the LS is systematically iterated to
explore larger neighborhood until termination condi-
tion is achieved. The neighborhood structure is de-
signed to enable the LS exploring the search space
from new starting points [44, 45].

As the chromosome representation and reproduc-
tion operators of the RCGA are designed to explore
a large search space, the VNS is employed to enhance
the power of the HGA exploiting local optimum ar-
eas. The VNS is employed for each offspring if there
is no improvement of the best fitness value on g gen-
erations. The proper value of g is determined by
conducting preliminary experiments. The neighbour-
hood structures Nk (k = 1, . . . , kmax) is adopted and
Nk(x) is defined as the set of solutions in the kth
neighbourhood of x.Nk(x) is obtained by randomly
changing k production plans of the part types. kmax

is determined according to the size of problems used
in experiments.

A pseudo code for the VNS is shown in Figure 7.
Here, the VNS do not change the selected part types
in each batch.

The local search works by randomly replacing ma-
chine for each operation with other possible machines
as shown in Figure 8. If the new solution has better
fitness value then it replaces the current solution.

4.6 Maintaining Population Diversity

The performance of GAs is heavily determined by
its ability exploring and exploiting the search space.
Thus, maintaining the balance of exploration and ex-
ploitation of GAs is critical to obtain satisfactory re-
sults. For this purpose, this study adopts injecting
20% of new random chromosomes on every 50 gen-
erations. By injecting new random chromosomes the
population diversity will be maintained. Crossover
between the new random chromosomes with current
chromosomes in the population will produce offspring
that move to other directions in the search space and
enable the HGA to escape from local optimum areas.

Fig.7: Pseudo Code of The VNS.

Fig.8: Pseudo Code of the Local Search.

5. RESULT AND DISCUSSION

The HGA is coded in Java and run on personal
computer equipped with Intelr CoreTM i3-380 pro-
cessor working at speed 2.53 GHz. Twelve test bed
problems with different number of part types are gen-
erated as shown in Table 7. Here, problems 1 to 4
represent small size problems, problems 5 to 8 rep-
resent medium size problems and problems 5 to 8
represent large size problems. Lengths of scheduling
period for all machines are determined in advance and
equal within each problem size. Table 8 presents the
other randomly generated parameters. The weighted
parameters for the fitness function are w1 = 1 and
w2 = 1. Several preliminary experiments are carried
out to determine appropriate parameter values for the
HGA and the results are obtained as follows:

− population size is 100, 200 and 300 for small size
problems, medium size problems and large size
problems respectively;
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− iterations will be stopped after 50, 100, 200 sec-
onds of running time for small size, medium size,
and large size problems respectively.

Table 7: Test-Bed Problems.

num. of
num. of

num. of
scheduling

problem part tool
types machines types period

1 12 4 20 6000
2 12 4 25 6000
3 12 5 20 6000
4 12 5 25 6000
5 24 5 20 9000
6 24 5 25 9000
7 24 6 20 9000
8 24 6 25 9000
9 36 6 20 10000
10 36 6 25 10000
11 36 7 20 10000
12 36 7 25 10000

Table 8: Randomly Generated Parameters.

Parameters Range
tool slot capacity of each machine 40-60
number of copies of each tool type 2-(nMac-1)
number of slots required by each tool 3-7
number of alternative production plans

1-3
of each part type
number of operations of each part type 2-(nMac)
batch size of each part type 40-60
value of each part type (dollar) 5-10
number of possible machines for each

1-3
operation
processing time of each operation 20-40
number of tool types required for each

2-5
operation

nMac: number of machines

Crossover rate and mutation rate must be set in
such way that enable the HGA to balance its ability
to explore and exploit the search space [46]. Thus,
the first stage of experiments is determining the most
suitable crossover rate and mutation rate for the
HGA. The HGA is run on problem 5 and the crossover
rate (cr) is varied from 0 to 0.4. To get a fair compar-
ison, the mutation rate (mr) is set in such way that
cr +mr = 0.4.

Fig. 9 depicts the average of fitness values from 10
runs for each combination of crossover rate and mu-
tation rate. The best result is achieved at crossover
rate of 0.3 and mutation rate of 0.1. Here, by us-
ing a low value of crossover rate the HGA will mostly
depend on its mutation rate and tend acting as a ran-
dom search method and cannot learn from previous
generations. In other hand, the HGA loses its abil-
ity to maintain population diversity if using a high
crossover rate and a low mutation rate. By using
a high crossover rate the offspring will have a high
similarity with their parents and in only few gener-
ations the HGA achieves a premature convergence.
Here, the HGA losses a chance to explore other ar-

eas in the search space and will be trapped in local
optimum areas.

Fig.9: Average Fitness Values over Different
Crossover Rates.

The experiment is designed to measure the perfor-
mance of the HGA and also measure the effective-
ness of the strategy to maintain population diversity
and the hybridization. Therefore, three different ap-
proaches are compared in the experiment as the fol-
lowing:
1. The RCGA without the VNS and strategy to

maintain population diversity (RCGA1)

2. The RCGA equipped with the strategy to main-
tain population diversity (RCGA2)

3. The RCGA equipped with the VNS and strategy
to maintain population diversity (HGA)

The performance of the RCGA1, the RCGA2, and
the HGA is measured by using deviation of their ob-
jective values to the optimum values as shown in (10).
Fopt is the optimum fitness. FGAr is fitness value
obtained by the approaches in run r. Here, each ap-
proach is run 10 times. Branch-and-bound method is
used to obtain the optimum solutions. Note that the
branch-and-bound method requires average compu-
tational time more than 150 hours to solve large size
problems that cannot be accepted on daily operation
of the FMS.

Fdev =

∣∣∣∣∣∣
(
Fopt −

(∑10
r=1 FGAr

)/
10
)

Fopt

∣∣∣∣∣∣× 100% (10)

The average of throughput and system unbalance
from 10 runs is provided in Table 9. In most problems
(problems 1, 5, 6, 8, 9, 10, 11, and 12) the HGA pro-
duces higher throughput and lower system unbalance
comparable to those achieved by the RCGA1 and
RCGA2. Lower throughput produced by the HGA
as shown in problem 2 is compensated by lower sys-
tem unbalance. Higher system unbalance produced
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Table 9: Average of Throughput and System Unbalance.

Table 10: Comparison of Average of Fitness Values.

Fig.10: The Best and Average Fitness Value Re-
sulted by the RCGA1.

Fig.11: The Best and Average Fitness Value Re-
sulted by the HGA.
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by the HGA as shown in problems 3, 4, and 7 is
compensated by higher throughput.

Table 10 shows that the HGA consistently achieves
better results (higher fitness value) in all test
bed problems comparable to those achieved by the
RCGA1 and the RCGA2. Thus, it proves the ef-
fectiveness of the hybridization. The effectiveness of
the strategy to maintain population diversity is also
proved. Here, the RCGA2 outperforms the RCGA1

in 11 out 12 problems. The RCGA1 is slightly better
than the RCGA2 in only problem 10.

Table 10 also reveals that all approaches tend to
produce higher Fdev on larger size problem. On all
small size problems, the HGA achieves Fdev below
5%. On medium size problems the worst solution
achieved by the HGA is on problem 8 with Fdev of
15.1% whereas in the large size problems the worst
solution is on problem 9 with Fdev of 16.9%. The av-
erage of Fdev in the large size problems is 12.6%. This
result could be considered as a good result as the run-
ning time for large size problem is only 200 seconds.
It is should be noted that the purpose of the exper-
iments is to prove the effectiveness of the strategy
to maintain population diversity and the hybridiza-
tion. In real manufacturing environment a better re-
sult may be achieved by increasing population size
and running time of the HGA.

The effectiveness of the HGA is also shown by
number of iterations to obtain the best solution (itr
best) in Table 10. The HGA have significantly higher
itr best than the RCGA1 and the RCGA2. Here, the
RCGA1 and the RCGA2 achieve their convergence
faster which may indicate that they are trapped in
local optimum areas and cannot obtain a better so-
lution.

To show the difference of behaviour of the RCGA1
and the HGA during generation, both approaches are
run on problem 5. The best and average of fitness
values are presented in Fig. 10 and Fig. 11. Fig.
10 reveals that the RCGA1 experience early conver-
gence and cannot obtain better result after 69 genera-
tions. In contrast, Fig. 11 shows the effect of the VNS
and the strategy to maintain population diversity to
the average of fitness values produced by the HGA.
The strategy to maintain population diversity causes
a fluctuation on the average of fitness values as new
chromosomes that may have lower fitness values are
injected to the population. Recombination between
the new random chromosomes with current chromo-
somes in the population produce offspring that ex-
plore other directions in the search space and enable
the HGA to escape from local optimum areas. It is
indicated by its higher number of iterations to obtain
the best solution. Here, the HGA achieves conver-
gence after 2795 generations.

6. CONCLUSIONS

This paper presents the development of a model
for the optimization of the integrated part type selec-
tion and machine loading problems. The tool alloca-
tion problem is considered as the integral part of the
machine loading problem. The chromosome repre-
sentation of the RCGA is designed to address various
flexibilities of operations in the FMS. Here, the flex-
ibility of the FMS on realistic manufacture environ-
ment is exploited to improve system efficiency and
productivity. The experiment proves that hybridiz-
ing the RCGA with variable neighbourhood search
(VNS) and a strategy to maintain population diver-
sity is effective to optimize the objective of the system
in all test bed problems.

Our further work will focus on the integration of
production planning and scheduling in FMS. A ro-
bust and efficient method is required to address this
complex problem. Combining the HGA with Multi
Agent System (MAS) will be considered.
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