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ABSTRACT Vehicular AdhocNetworks (VANETs) are used for efficient communication among the vehicles
to vehicle (V2V) infrastructure. Currently, VANETs are facing node management, security, and routing
problems in V2V communication. Intelligent transportation systems have raised the research opportunity
in routing, security, and mobility management in VANETs. One of the major challenges in VANETs is
the optimization of routing for desired traffic scenarios. Traditional protocols such as Adhoc On-demand
Distance Vector (AODV), Optimized Link State Routing (OLSR), and Destination Sequence Distance
Vector (DSDV) are perfect for generic mobile nodes but do not fit for VANET due to the high and dynamic
nature of vehicle movement. Similarly, swarm intelligence routing algorithms such as Particle Swarm
Optimization (PSO) and Ant Colony Optimization (ACO) routing techniques are partially successful for
addressing optimized routing for sparse, dense, and realistic traffic network scenarios in VANET. Also,
the majority of metaheuristics techniques suffer from premature convergence, being stuck in local optima,
and poor convergence speed problems. Therefore, a Hybrid Genetic Firefly Algorithm-based Routing
Protocol (HGFA) is proposed for faster communication in VANET. Features of the Genetic Algorithm (GA)
are integrated with the Firefly algorithm and applied in VANET routing for both sparse and dense network
scenarios. Extensive comparative analysis reveals that the proposedHGFA algorithm outperforms Firefly and
PSO techniques with 0.77% and 0.55% of significance in dense network scenarios and 0.74% and 0.42% in
sparse network scenarios, respectively.

INDEX TERMS Firefly optimization, genetic algorithm, routing, swarm intelligence, VANET.

I. INTRODUCTION
Vehicular Adhoc Networks (VANETs) can be used as
a driver’s assistance for communication and coordination
among each other that will minimize the critical situation
in V2V communication, e.g., random braking, obstacles,
accidents on the road, bumper to bumper jams, random
increase in speed, pathways for emergency vehicles like fire,
police, and ambulance. Along with these preventive appli-
cations, VANETs are also useful for comfort applications to
drivers and passengers, e.g., multimedia applications, internet
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connectivity, weather forecast, and infotainments during
drives. Crash Avoidance Matrices Partnership (CAMP),
Advance Driver Assistance System (ADASE), FLEETNET,
and CARTALK are some of the famous applications that are
developed by various automobile manufacturers and govern-
ments through public-private partnerships [1].

Figure 1 illustrates the typical VANET structure, but
VANET also has some issues and challenges, like multipath
fading and road obstacles, traffic congestion, random change
of vehicle speed and its mobility, road topology, traffic diver-
sion model, driver’s unpredictable driving behaviour, etc.
VANET mobility is not as same as that of Mobile Adhoc
Network (MANET). In VANET, the vehicle strictly follows
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the rules of traffic laws, and this makes node movement too
complex. There are many limitations in VANET, and these
challenges must be solved to provide reliable services in a
network. Hence, reliable and stable routing is one of themajor
issues in VANET. So, accurate methods in realistic traffic
environments also need to be implemented. The vehicle’s
dynamic behaviour and high mobility speed make routing in
VANET even more challenging. Hence, the selection of the
VANET routing protocol is the most challenging aspect and
has been categorized into five different categories depending
on their routing properties.

FIGURE 1. VANET structure.

The packet forwarding technique is used in topology-
based routing protocols. It uses link-based information of
the nodes in that network. The topology-based protocol is
further divided into three other topologies as per the rout-
ing behaviours and these are reactive, hybrid, and proactive.
These are used in VANET and suits only for specific VANET
network scenarios. The Ad-hoc On-demand Distance Vector
(AODV) [1] and Dynamic Source Routing (DSR) [2] proto-
cols are used mainly in reactive topology-based routing. The
critical analysis of AODV, DSR, and Optimized Link State
Routing (OLSR) presented for highway and realistic city
scenarios [3]. AODV and OLSR protocols are also selected
for performance analysis with the newly devised algorithm
as it is suitable for dense as well as sparse VANET network
scenarios. Other urban-basedmodifiedAODVprotocols were
proposed [4] but they have their limitations and are only
suitable for urban-based VANET network scenarios. Another
routing protocol is cluster routing where packs of vehicles
share the same properties in VANET scenarios. The single
node is considered as the head within the cluster and broad-
casts the information to all other nodes of that network. The
same is proposed in platooning of vehicles in VANET [7].

One of the VANET routing protocols is broadcast. In this
routing technique, the information is disseminated as a flood
of data packets to all other nodes in the entire network.
This is best used for information sharing at the time of
emergencies, climate and weather forecasts, road damage
in upcoming routes, and other urgent announcements. The
DEnsity aware reliable broadCAsting protocol (DECA) and
Distributed Vehicular broadCAST protocol (DV-CAST) are
also proposed that show significant impact in VANET for
broadcasting-based routing [8]. However, Geo-Casting rout-
ing works on a position-based approach to sendmulticast data
packets in a network. The basic concept it uses to send data
packets from one source to many destinations of the same
geographical area is called Zone. The other geo-cast-based
protocols are Geo-CASTRouting for Query Dissemination in
VANET (DG-CASTOR), Inter-Vehicle Geo-cast (IVG), and
Distributed Robust Geo-cast (DRG) [9]. All these geo-cast
routing protocols worked best at the zone of relevance in
VANETs. But none of them integrated the genetic approach
with firefly swarm intelligence to analyze the performance
based on transmission time [10].

It is found that no metaheuristic-based routing tech-
nique performed efficiently for sparse, dense, and real city
traffic scenarios at the same time [10]. Particle Swarm
Optimization (PSO) works fine in city-based scenarios for
dense networks whereas Ant Colony Optimization (ACO) is
best suited for highway-based scenarios in sparse networks.
Also, the majority of metaheuristics techniques suffer from
premature convergence, being stuck in local optima, and poor
convergence speed problems. Hence, in this paper, a hybrid
algorithm is proposed that has the features of the Genetic
Algorithm (GA) along with the properties of the Firefly
routing algorithm. The proposed protocol is capable tomutate
as per the needs of the VANETs to achieve fast and reliable
routing in different highway-based scenarios.

The main contributions of this paper are as follows.

1. Hybrid Genetic Firefly Algorithm-based Routing Pro-
tocol (HGFA) is proposed for faster communication
in VANET.

2. To achieve faster and reliable routing, features of the
Genetic Algorithm (GA) are integrated with the Firefly
algorithm.

3. The proposed HGFA is validated on both sparse and
dense network scenarios.

The remaining paper can be organized as follows:
Section II discusses the related work. The proposed model is
presented in Section III. Simulation and experimental results
are presented in Section IV. Section V concludes the paper.

II. RELATED WORK
A. BACKGROUND INFORMATION
Recently, many researchers have utilized nature-inspired
algorithms for selecting the optimal routes in VANETs. Some
commonly used nature-inspired algorithms are PSO, flower
pollination algorithm, GA, artificial bee colony algorithm,
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ACO, Cuckoo search, bat algorithm, and Firefly Algo-
rithm (FA). In [2], a Genetic Algorithm (GA) was inte-
grated with the Ant Colony Optimization (ACO) technique
called GAACO was proposed for optimal route selection in
VANETs. GAACO, GA, and ACO were implemented and
tested for VANET performance. ACO was used for efficient
routing in VANET traffic scenarios that proved better only
with 0.25% of significance in transmission delay. The natural
behavior of ants was used to find the shortest path from source
to destination through a pheromone trail. GAACO reduced
the overall delay and increased packet data delivery. It fits the
highway traffic scenarios but has some challenges on urban
city traffic because of the huge density of nodes. In [7], ACO
was deployed with a preemptive traffic light algorithm. The
platooning technique was applied to optimize the VANET
routing in city traffic scenarios. However, it is not capable
of sparse network environments.

In [16], the Grey Wolf optimization algorithm was pro-
posed that works on a clustering-based technique for hunting.
The social nature of wolves applied to gather themselves for a
cluster. This makes them chase and hunt for prey in a cluster.
The same clustering technique was incorporated for VANET
scenarios for position and location, speed, direction, and other
parameters. The limitation of [16] is that it only fits for a
cluster-based environment.

In [17], the Bees optimization algorithm was used in
VANET for safety information dissemination. The optimiza-
tion algorithm worked on the idea that bees leave their hives
in search of the nectar and travel until they found the food.
Once they have found the food then this information is passed
through a signal of the waggle dance. Using this concept, the
Bees optimization technique broadcasts the information from
the source node to other nodes accurately and timely. This
algorithm is best suitable where road safety is amajor concern
and hence can prevent accidents. In [18], an optimized routing
algorithm was proposed in VANET by designing route met-
rics and improving the genetic algorithm route optimization
technique (IGAROT). Routemetric was designed considering
path loss, frequency, transmit power, and received signal
strength to improve the communication in VANET. IGAROT
was utilized to select the optimal paths.

In [19], a Reputation-based Weighted Clustering proto-
col (RWCP) was implemented for VANETs to maintain
the cluster structure without any overhead. To stable the
VANET topology, RWCP utilized various parameters like
lane ID, number of nearby vehicles, position, and direc-
tion of vehicles. These parameters were optimized using the
Multi-Objective Firefly Algorithm (MOFA) to reduce cluster
overhead, improve packet delivery ratio, and improve clus-
ter lifetime. In [20], Capacitated Vehicle Routing Problem
(CVRP) was solved utilizing improved GA. This technique
was aimed to reduce time, distance, and transportation costs.

B. LITERATURE REVIEW
In [27], a portable VANET routing protocol (PFQ) proto-
col was designed. Routing was achieved by using a fuzzy

constraint Q-learning based on AODV. Fuzzy logic was uti-
lized to check reliable routes by using multiple metrics,
i.e., relative vehicle movement, path quality, and bandwidth.
In case if position information is unavailable, PFQ can
infer node movement using the information of neighbors.
PFQ-AODV is also independent of lower layers. In [28],
various routing protocols like OLSR, ZRP, and AODV were
implemented on VANETs. It was observed that AODV
achieved a better transfer rate at TCP level. OLSR achieved
a significant reduction of overhead. The hybrid protocol ZRP
achieved significant reduction in latency and enhancement in
packet delivery ratio.

In [29], three routing approaches were designed, i.e.,
Control overhead reduction algorithm (CORA), Intersection
dynamic VANET routing (IDVR), and cluster-based life-time
routing (CBLTR) protocols. CBLTR enhanced the average
throughput and route stability in a bidirectional segment
scenario. IDVR improved the average throughput and route
stability, and minimized end-to-end delay.

IDVR optimized the routes using current and destination
location, and throughput values. CORA minimized the con-
trol overhead messages by optimizing the control overhead
packets between cluster heads and its members. In [30],
Greedy Perimeter Stateless Routing (GBSR)-B was designed
for optimal selection of routes. It has successfully reduced the
packet loss problems with GBSR and AODV protocols.

From the related work, it is found that the metaheuristics-
based routing protocol has achieved better results than the
competitive routing models. However, it is found that no
metaheuristic-based routing technique performed efficiently
for sparse, dense, and real city traffic scenarios at the
same time. Also, the majority of metaheuristics techniques
suffer from premature convergence [2], [11], [21], being
stuck in local optima [7], [12], [13], and poor convergence
speed [2], [7], [14], [15] problems. Therefore, to overcome
these issues, a Hybrid Genetic Firefly Algorithm-based Rout-
ing Protocol (HGFA) is proposed for VANETs.

III. PROPOSED MODEL
A. SYSTEM MODEL
The background study and literature review were done to
identify the research gap that has been used to resolve through
this research. The problems identified in a present system of
VANET routing are that the traditional and meta-heuristic
algorithms are not able to fulfill the present routing chal-
lenges. Hence, this research presents a system model, which
integrates genetic features with the firefly algorithm to
resolve the routing issues in distinctive traffic scenarios. Fur-
ther sub-sections focused on the communication model and
methodology developed for this research work.

B. COMMUNICATION MODEL
In this research problem, vehicle-to-vehicle communica-
tion networks opted for routing optimization. Presently,
VANETs are facing node management, security, and routing
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problems in V2V communication. Intelligent Transportation
System has raised the research opportunity in routing, secu-
rity, mobility management in Vehicular Adhoc Networks
(VANET). These research challenges are not suited for all
types of network communication models. Therefore, this
research work presents the proposed communication model
that fits for sparse as well as dense network traffic scenarios
in VANETs.

C. PROPOSED APPROACH TO OPTIMIZE THE VANET
ROUTING IN DISTINCTIVE NETWORK SCENARIOS
In this approach, each node (vehicle) is considered a fire-
fly. Hence, during the communication period, the frequency
and intensity value of firefly flashes increases so higher the
selection probability. The algorithm works to determine the
shortest path between the source and destination nodes by
calculating the route for the shortest path in-between. The
proposed algorithmic approach is represented in Figure 2.

FIGURE 2. Flowchart of the proposed algorithm.

In this, the intensity value is based on the objective function
value. The initial sorted list depends on the objective function
value is created. Where it represents in rows and columns.

In this region, the column consists of many vehicles whereas
the rows represent the source node. Then the GA algorithm
is applied at the source node with fitness function to check
the packet forwarded to other nodes for that region. Now the
nodewith the highest value of the objective function is chosen
as the next node. And further, browses for the intermediate
node. Whether it is the destination node or not. If yes, then
follow the reverse route to find the source node. Else, if not
then follow the same steps to find the destination node. The
updated objective function value depends on the speed of
the vehicle and density. Hence, predicting the node’s next
position can be determined this gives us the possibility for
making the smarter decision in finding the optimized route of
the vehicle node.

The firefly algorithm works on the principle of attracting
another firefly through its flashlight. Here, all the fireflies
are assumed to be unisex [22]. The intensity of attraction is
proportional to the distance among fireflies and the bright-
ness of their flash. This means that the attraction is directly
proportional to the brightness of the flash whereas inversely
proportional to the distance. Hence, the movement towards
each other depends on their attractiveness of each other. The
objective function is entered in the sorted list.

Now the transmission needs improved for this object func-
tion and increase to maximum. The value of the objective
function is calculated for every node. As the firefly algorithm
works on the assumption that fireflies are unisex hence, they
attract each other [23]. The attraction among the fireflies
is based on the distance and brightness of the flies. When
the brightness is high, and distance is low then the intensity
of attraction will be more or else inverse of it. Therefore,
depending on the intensity of attractiveness between them,
one firefly can proceed ahead to the next firefly. The list is
sorted for an objective function with a specific entry depend-
ing on the selection of the problem. Hence, for improvement
in the network transmission, the value of the objective func-
tion needs to be increased at maximum level and it has to be
calculated for every node as follows:

ξr = ξr0e
−ψ (1)

Here, ξ shows brightness. ψ and ξr0 define delay and initial
value, respectively. Hence, the derived objective function is
(mobility of the fireflies ith firefly to next firefly kth fireflies
derived as) [24]. It can be computed as:

FFi+1 = FFi+ξe−ψr
2 (
FFj − FFi

)
+ω

(
rand−

µ

µk

)
(2)

Here,

ω = ω

(
rand−

µ

µk

)
(3)

Here, ω shows free-flow speed. µ defines density. µk rep-
resents completely blocked traffic jam density.

(
FFj − FFi

)
shows the Cartesian distance of ith and jth firefly.

The distance taken at the stationary point for the derived
object function as the vehicle node’s speed may vary
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and move in a random direction. For computing, the
two-dimensional distance is calculated from the stationary
point of the vehicle node. Hence, it is a Cartesian distance
of these two points. The aim of this is to get the maximum
value of the objective function for each node as there is
dynamic mobility of nodes in comparison to other vehicle
nodes.

GA is integrated with Firefly so that the Firefly algorithm
can be improvised as per the need of the present problem of
routing in sparse and dense network scenarios of VANET.
GA here is used to initialize the initial population of the nodes
and then whenever requires it is used to yield crossover for
recombining of the initial state.

Algorithm 1 GA for Initial and Updated Swarm Position
1. T← 0 // for iteration
2. Initialize S(T) //initial population
3. Evaluate S(T) with computational parameters
5. While T 6= END
6. do
7. Recombine S(T) to yield crossover C(T)
8. Evaluate C(T)
9. Select S(T+1) from S(T) and C(T)
10. T = T+1
11. End
12. End

Algorithm 1 shows steps of GA for initialization and upda-
tion of swarm positions. GA approach derived for firefly
mainly focuses on the metrics like retransmission occurrence
NR, the total time propagation TP and the coverage, i.e., NC.
This function is defined as fitness function f(x). The network
scenario will have time to wait and Time to Live which are
Twr , and TTL respectively. Here, Twr is the time when node v
waits for retransmitting the data packets, and TTL is the time
when the node will broadcast the data packets. They are both
dependent on the probability of the adjacent node’s network
coverage., i.e., Pnc. The probability is computed through the
total number of vehicle nodes, i.e.,Nnp which has received the
data packets, and the total of neighbouring vehicle nodes,Nvh
in that network coverage. Mathematically it can be computed
as:

Pnc =


0 if Nnp = 0
1 if Nvh = 0
Nnp
Nvh

Otherwise

 (4)

GA’s fitness function is derived which has fitness value x
for the function f (x). The value is used for the next genera-
tion Gn, to determine the most possible parent. This fitness
function f(x) has been already validated through NS2 in
earlier research studies [25]. However, in our study, we have
used this approach with the Firefly technique to devise a
new approach that persists with the qualities of both in the
proposed HGFA. Eq. (4) can be redefined as follows:

f (x) =
[
NRTp

]
(5)

NR =
∑Nv

i=1
αi (6)

α =


∑Nvh

i=1
αi if TTL − TI = 0

NR if TTL − TI > 0

 (7)

αi = V (NR,Pnc,Twr ,TTL,TI ,Lv) (8)

Here, f(x) defines the fitness function that consists of
retransmissions time (NR) and propagation time (TP) metrics
values for optimization. Hence, lesser the value of NR and TP
will be considered as the best fitness values.

Algorithm 2 Hybrid Genetic Firefly Algorithm-Based Rout-
ing Protocol (HGFA) Protocol
Input:

FFi Swarm size (Set of i firefly)
where i = 1, 2, 3, . . . .N

ω parameter controlling the step size
ξ Attractiveness of firefly
ψ Light absorption coefficient
FI Light intensity of firefly
r Distance between two firefly
Max Maximum no of iteration, i.e., {as per

opted scenario}
Output: Pareto optimal solution

min
VN∈[LBN ,UBN ]N=1,2,3.....K

f (V_trans)

= {V1,V2,V3 . . . . . . . . .VK }

QoS = Maximize
i=1,2,3,....,I

(
PVi
)

1. f (Obj) = Minimize
i=1,2,3,....,I (V_transi)

2. Sort firefly according to f (Obj)
3. for X← 1 to Max do

for D← X to Y
If FI i > FI j

a) FFi+1 =

FFi+ξe−ψr
2 (
FFj − FFi

)
+ω

(
rand− µ

µk

)
b) update light intensity FI

using a fitness function
c) endif

end for
4. generate new firefly position using GA
5. End for

As in VANET, the movement of vehicles is random with
their speed and directions, so the stationary point distance
is taken for the objective function. For two-dimensional
distance, Cartesian distance is considered among the node
points. The objective was to increase the objective function
value at maximum. Therefore, themovement of vehicle nodes
is made dynamically in respect to each other. The steps of the
proposed algorithm are represented in Algorithm 2.
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D. COMPUTATIONAL COMPLEXITY
The computational complexity of the proposed HGFA proto-
col is computing Big-Oh (O) asymptomatic notation. It lies
for the set of ‘‘1 < logn <

√
n < n < nlogn < n2 < n3< . . .

< 2n< 3n< . . . . . . nn. ’’ Since the Big O is the upper bound
of the function, therefore, function f (n) = O(g(n)) if f ∃+ ve
constants c and number such that f (n) ≤ c ∗ g(n)∀n ≥ n0.
Here, f (n) ≤ c∗g(n), c is a constant. Thus, the computational
complexity can be computed as:

Ct = O(costf ∗ n) (9)

Thus, the computational complexity of the proposed
algorithm is O(n2).

IV. PERFORMANCE ANALYSIS
A. EXPERIMENTAL SET-UP
To simulate the proposed scenario NS3.26 an open-source
network simulation tool is used. The setup is configured on
Ubuntu Operating System with Core i5 and 8 GB RAM.
Only open-source software tools are used to test the proposed
methodology [26]. The parameters required for the experi-
mental analysis are illustrated in Table 1.

TABLE 1. Simulation parameters.

B. COMPARATIVE ANALYSIS
The simulation is performed randomly many times. The
transmission time is calculated for various destination nodes
based on source and destination nodes. To test these two
different network scenarios are selected. The first is with
lesser nodes to create a sparse network environment. This
setup has a maximum of 50 nodes only. Then for the dense
network environment maximum with 500 nodes. The same
parameters and nodes were taken to simulate the test for
pre-existing standard algorithms like the firefly algorithm
and Particle Swarm Optimization using the same simulation
standards. The parameters taken are maximum and minimum

speed as per the real traffic scenarios. A similar simulation
procedure has given utmost results in another VANET net-
work environment also [2]. The number of data packets is
limited to 10 as it is a standard for a vehicle density of 30/km.
The Manhattan communication mobility model is used for a
generic city traffic simulation environment. The transmission
time logs were recorded for comparison. The comparison of
transmission time for three of these algorithms viz., proposed
Hybrid Genetic Firefly Algorithm-based Routing Protocol
(HGFA), standard firefly algorithm, and PSO algorithm illus-
trated in Figures 3 and 4.

FIGURE 3. Comparative analysis of routing algorithm for transmission
time in a sparse network scenario.

FIGURE 4. Comparative analysis of routing algorithm for transmission
time in a dense network scenario.

From Figures 3 and 4, it is found that the performance
of the proposed routing algorithm is better when compared
with the standard routing algorithms of VANET, i.e., Firefly
and PSO. The same test is also performed for other perfor-
mance metrics like packet data delivery ratio and average
throughput computed during simulation results. This has been
found that for both the proposed approach HGFA has shown
better results in comparison with the considered other routing
protocols

VOLUME 10, 2022 9147



G. D. Singh et al.: Hybrid Genetic Firefly Algorithm-Based Routing Protocol for VANETs

FIGURE 5. Comparative analysis of packet delivery ratio for a sparse
network scenario.

FIGURE 6. Comparative analysis of average throughput for a sparse
network scenario.

Figures 5 and 6 represent the performance in the same
traffic scenarios in terms of transmission time and packet
delivery ratio, respectively. It is observed that compared to
the competitive techniques the proposed protocol achieves
significantly lesser transmission time.

Further, to validate the performance in comparisonwith the
proposed technique other traditional non-swarm-based proto-
cols have also been tested. The same simulation environment
and parameters are taken for similarity. The next phase was
to test it for AODV and OLSR in proposed simulation envi-
ronments. Though it is found that these routing protocols are
the standard routing protocols used in VANET and they have
their distinctive properties in VANET for dense, sparse, and
real city traffic network scenarios. The test was performed
to gather the logs for the transmission time of data packets
for each routing protocol. The comparison of transmission
time for three of these algorithms viz., proposed HGFA
algorithm, AODV and OLSR are illustrated in Tables 2 and 3
for dense and sparse network scenarios, respectively. It is
found that the transmission time is minimum in the proposed
algorithm while AODV also performed better in comparison
with OLSR.

TABLE 2. Transmission time computed from standard AODV and OLSR
routing protocol in dense network scenario with respect to proposed
algorithm.

TABLE 3. Transmission time computed from standard AODV and OLSR
routing protocol in a sparse network scenario with respect to proposed
algorithm.

C. DISCUSSION
In [2], the authors illustrated the performance significance
of ACO in comparison with their proposed hybrid algorithm
for sparse network scenarios. But they have not tested it for
AODV, OLSR, Firefly, and PSO techniques. Their results
are shown in Table 4 which shows that integration of the
GA approach has benefitted the ACO performance. Similarly,
this research represents that the proposed HGFA is perform-
ing better in different traffic network environments. For its
robustness and versatility, it is also compared with four differ-
ent types of routing algorithms. The performance significance
statistics are shown for HGFA in comparison with Firefly,
PSO, AODV, andOLSR traditional VANET routing protocols
in Table 5. This shows that the proposed HGFA protocol
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TABLE 4. Performance significance comparison done earlier [2].

TABLE 5. Performance significance comparison with respect to
traditional algorithms.

TABLE 6. Comparative analysis among the proposed and the competitive
protocols on both sparse and dense scenarios.

performs significantly better in respect to transmission time at
two different traffic environments, i.e., dense traffic network
scenario and sparse traffic network scenario

Table 6 shows the comparative analysis among the pro-
posed GAFF and the competitive routing protocols for both
sparse and dense networks. For sparse and dense networks,
we have considered 50 and 300 nodes, respectively. It is
found that the proposed protocol outperforms the compet-
itive protocols in terms of PDR and transmission time by
4.78% and 1.92%, respectively for sparse networks. Also,
for dense networks, the proposed protocol outperforms the
competitive protocols in terms of PDR and transmission
time by 3.92% and 1.76%, respectively. Therefore, the
proposed protocol is effective for both sparse and dense
networks.

V. CONCLUSION
In this paper, an efficient routing protocol was proposed
by using the firefly algorithm with the GA technique. The
proposed methodology has utilized the nature of fireflies
to complete the task and coordinate with other nodes. The
distinctive features of GAwere applied to design a new objec-
tive function for the proposed algorithm. Proposed HGFA
was tested and compared with the standard Firefly and PSO

routing algorithm. The data gathered through the simulation
result validates that the transmission was reduced signifi-
cantly when was applied for sparse and dense traffic networks
and performed even better for the other two performance
metrics such as PDR and average throughput. Comparative
analysis have revealed that the developed approach has shown
better performance in transmission time with 0.77% and
0.55% of significance in dense network scenarios and 0.74%
and 0.42 % in a sparse network scenario in comparison with
the existing VANET routing algorithms such as standard
Firefly and PSO. The resultant comparison for two basic
VANET routing protocols like AODV and OLSR with HGFA
shows significant improvement of 0.62% and 0.46% in the
dense network whereas 0.49% and 0.23% in sparse network
scenarios. It was also found that the proposed protocol outper-
forms the competitive protocols in terms of PDR and trans-
mission time by 4.78% and 1.92%, respectively for sparse
networks. Also, for dense networks, the proposed protocol
outperforms the competitive protocols in terms of PDR and
transmission time by 3.92% and 1.76%, respectively. Hence,
this concludes that the proposed algorithm is better and can be
further deployed for research and implementation of Swarm
Intelligence-based routing algorithm in VANET.
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