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Abstract: In recent years, mining user multi-behavior information for prediction has become a hot
topic in recommendation systems. Usually, researchers only use graph networks to capture the
relationship between multiple types of user-interaction information and target items, while ignoring
the order of interactions. This makes multi-behavior information underutilized. In response to the
above problem, we propose a new hybrid graph network recommendation model called the User
Multi-Behavior Graph Network (UMBGN). The model uses a joint learning mechanism to integrate
user–item multi-behavior interaction sequences. We designed a user multi-behavior information-
aware layer to focus on the long-term multi-behavior features of users and learn temporally ordered
user–item interaction information through BiGRU units and AUGRU units. Furthermore, we also
defined the propagation weights between the user–item interaction graph and the item–item relation-
ship graph according to user behavior preferences to capture more valuable dependencies. Extensive
experiments on three public datasets, namely MovieLens, Yelp2018, and Online Mall, show that our
model outperforms the best baselines by 2.04%, 3.82%, and 3.23%.

Keywords: multi-behavior recommendation; sequential recommendation; graph neural network;
embedding propagation

1. Introduction

Recommendation systems have been widely used in various Internet business services
in the era of big data. The recommendation model can recommend products that match
its users for various businesses and find suitable user groups for enterprises [1]. In order
to better personalize recommendations for each user, it is crucial to fully understand the
interests and behavioral preferences of users. For sales platforms, understanding users’
purchasing interests and behavioral preferences can increase sales and profit margins. For
the user him/herself, identifying the user’s shopping interests and behavioral preferences
on the client side can improve the user’s experience and save unnecessary browsing time.
The early popular collaborative filtering algorithm (CF) decomposes a single user–item
interaction into latent representations for finding similar users and related items and then
predicting the next user behavior [2,3]. However, since traditional CF cannot model user
attributes and item auxiliary information, there are data-sparsity and cold-start problems
in practical application scenarios [4]. To address these issues, supervised learning (SL)
models such as Factorization Machine (FM) [5] and NFM (Neural FM) [6] have emerged one
after another. With the development of neural network techniques, collaborative filtering
architectures for enhancing nonlinear feature interactions utilize multilayer perceptrons to
handle advanced nonlinear relationships, such as NCF [7] and DMF [8].

In recent years, deep neural networks based on graph data have received extensive
attention, showing good results in processing high-dimensional sparse user interaction
data. These neural network structures, called graph neural networks [9,10], are used to
learn meaningful representations in graph data structures. Since user–item interactions
are often sparse non-Euclidean data, graph data structures can be used to store their
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interactions. In addition, the introduction of external Knowledge Graph (KG) data can
expand the additional information about users and items [11]. This provides a feasible
solution for improving the accuracy and interpretability of recommendation systems. Given
the strong performance of graph neural networks in aggregating and propagating graph-
structured data, it provides an unprecedented opportunity to improve the performance of
recommendation systems.

However, recommendation systems based on graph neural networks also face many
problems: (1) Different graph data provide user and item information from different
perspectives. How to aggregate and learn more accurate node representations from different
types of graphs is crucial for recommendation models [12]. (2) The connections between
nodes are diverse rather than single [13]. The assignment of weights to different connection
methods requires more consideration. (3) Graph neural networks show good performance
in learning the relationships between nodes. However, it is difficult for them to process
sequence information [14]. Therefore, it is worth considering how to incorporate temporal
information into the model. In this paper, our research question is how to utilize multi-
behavior interaction time-series information for an accurate recommendation.

Because of the limitations of existing graph network methods, it is crucial to develop
a hybrid graph neural network model that focuses on user behavioral characteristics and
user–item interaction habits. Therefore, we designed a user multi-behavior awareness
module and an item-information-relation module based on the graph neural network.
Specifically, we propose a new method called the User Multi-Behavior Graph Neural
Network (UMBGN) Hybrid Model, which has four sections. (1) User–item connection
weight calculation: It provides unique weight information for each edge to describe the
connection relationship between nodes according to the multi-behavior interaction infor-
mation between users and items. (2) User–item graph network information transfer: It
aggregates the feature information of the node’s neighbors according to the edge weights to
obtain the final feature representation. (3) Information perception based on user behavior
sequence: It uses a behavior-aware network module with bidirectional GRU and AUGRU
to enrich the user’s behavioral information representation, fully considering the user’s
behavioral characteristics. (4) Information aggregation between items. It aggregates user–
item interaction information by using an attention mechanism and considers the order of
interactions between items. Compared with traditional graph network models, our model
computes weight information between nodes according to different behavioral interac-
tions. This allows for a more accurate dissemination of information between neighboring
nodes. Furthermore, compared with the existing state-of-the-art graph neural network
recommendation models, our proposed method introduces user multi-behavior sequential
information perception, achieving more accurate recommendation performance. This ben-
efits from the fact that our model considers not only the global nature of multi-behavior
interactions but also each user’s personality. Therefore, the contributions of the paper can
be summarized as follows:

(1) We constructed a user multi-behavior awareness module with bidirectional GRU
and AUGRU to enrich user-behavior-information representation. We input the user’s inter-
action with items into the network in chronological order to obtain the user’s interaction
behavior feature vector, which helps us understand the user’s behavioral preferences. Then
we integrate the interaction behavior feature vector with the user’s feature vector to more
accurately locate the user’s interest.

(2) We propose the connection weights between user–item nodes by focusing on
user–item multi-behavior interaction information to make information aggregation and
dissemination more accurate. In addition, we design an item-information relation module
based on the user’s dependencies on items. Then we use the attention mechanism to aggre-
gate the item–item connections information to further enrich the embedding representation
of items.

(3) The experiments performed on three real datasets indicate that our UMBGN
model achieves significant improvements over existing models. In addition, we also
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extensively studied the overall impact of different modules on the experiments to prove
the effectiveness of our method.

2. Methods

In this section, we elaborate on our method; the basic architecture is shown in Figure 1.
Our model consists of four modules: (1) a user–item interaction information module,
which mines user–item multi-behavior interaction information; (2) a user multi-behavior
awareness module, which further learns the strength of each user interaction behavior
and extracts long-term user behavior preference; (3) an item-information-relation module,
which, according to the user–item interaction information, calculates the information of
other items related to an item; and (4) a joint prediction module, which combines the
information of each module to obtain the final output result.
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Figure 1. The framework of the UMBGN model. It contains four modules: module (a) is used to
extract user multi-behavior interaction information, module (b) is used to extract user long-term
multi-behavior preferences, module (c) is used to extract association information between items, and
module (d) is used to output the result.

2.1. Symbol Description

We use the set U = {u1, u2, . . . , um} to represent user information, where m is the total
number of users. Similarly, we use set I = {i1, i2, . . . , in} to represent item information,
where n is the total number of items. The set K = {k1, k2, . . . , kL} is used to represent user
interactions with items (e.g., favorites, purchases, and clicks).

User–item interaction sequence: In the recommendation scenario, we usually obtain
the historical sequence of user–item interactions and the time information of their inter-
actions, defined as S =

{
s1, s2, . . . , s|S|

}
. Moreover, si = (u, i, k, t) indicates that user u

interacts with item i through behavior k at time t.
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Input: User–item multi-behavior interaction sequence S =
{

s1, s2, . . . , s|S|
}

.
Output: The probability, ŷ(p,q), that user up interacts with item iq, with which he/she

has no interaction.

2.2. Preliminary Preparation
2.2.1. Generation of the Bipartite Graph of User–Item Interactions

Our task is to use various interaction information to make recommendations for
target users. According to Zhang et al. [15,16], the interaction information between users
and items is sparse with non-Euclidean data, and building a knowledge graph can better
represent the relationship between them. Therefore, we generate an extended user–item
interaction graph G0 = (V0, E0), using the user–item interaction data S =

{
s1, s2, . . . , s|S|

}
,

where node V0 consists of user node u ∈ U and item node i ∈ I. Similar to existing graph
models in [17], the d-dimensional vectors pu and pi are used to represent the user and
item embeddings. The edge, set E0, is a two-tuple composed of interaction type, k ∈ K,
and timestamp information, t, denoted as E0 = (k, t). Different edges represent different
behaviors. This can help extract behavior-based information between users and items.

2.2.2. User’s Behavior Interaction Information Extraction

Traditional graph network recommendation often only focuses on the users’ single-
behavior interaction information, ignoring the influence of edge sets on information dis-
semination in the graph network. In this paper, we add a certain weight to the edge set
of the graph network according to the user–item interaction behavior. This optimizes the
process of information transfer in the graph network. We consider two factors that affect
user–item interaction preferences: the relative importance of interactions and the temporal
order of interactions. On the one hand, users have their own unique interactive behavior
habits. For example, user u1 likes to favorite items, but user u2 prefers to put the favorite
items in the shopping cart. Then their unique behaviors have different relative importance.
On the other hand, items also have unique interactions with users. For example, item i1
is usually favorited by users, but item i2 is usually added to the shopping cart by users.
Therefore, we design different interactive behavior weights, αuk and αik, between users and
items:

αuk =
wu

k ·nuk

∑m∈N(u) wu
m·num

; αik =
wi

k·nik

∑m∈N(i) wi
m·num

, (1)

where wu
k and wi

k are learnable parameters, representing the degree of influence of users
and items on behavior, k; nuk represents the number of items that user u interacts with
through type k; nik represents the number of users that user i interacts with through type k;
N(u) represents all items interacting with user u; and N(i) represents all users interacting
with the item i.

2.3. User–Item Multi-Behavior Interaction Information Transfer and Aggregation
2.3.1. Construction of User–Item Relationship Graph

We not only pay attention to local relations but also global interaction relations to learn
user–item interaction multi-behavior information. According to the user–item interaction
graph, G0, we calculate the weight of the edge set through normalization and obtain the
connection strength information, eui and eiu, between every two points:

eui = σ

 ∑
k∈N(u,i)

αuk + b

; eiu = σ

 ∑
k∈N(i,u)

αik + b

, (2)

where σ is the sigmoid function, b is the bias, and N(i, u) is the sum of the interaction
types between i and u. Then eui, eiu ∈ E1, and point set V0 are combined to obtain the
user–item bidirectional relationship graph, G1 = (V0, E1). Compared with the traditional
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undirected graph network, the bidirectional graph network with weight information has
better performance in information transmission.

2.3.2. Information Dissemination of User–Item Relationship Graph

It is an effective method to use graph neural networks to analyze graph data struc-
tures [9,10]. These networks used an iterative message aggregation method to mine struc-
tural information within node neighborhoods. According to the method of Xiang et al. [18],
our graph network has a total of L layers and follows their aggregation and propagation
method. Firstly, the nodes in the graph network aggregate the information of their neighbor
nodes in the previous layer. Then they update themselves by combining the aggregated
information with their original information. Different from Xiang et al., we designed a
propagation weight according to the connection strength of nodes in order to achieve a
better information transmission effect. Specifically,

h(l)u = ϕ

W1h(l−1)
u + ∑

i∈N(u)
λi

uW2h(l−1)
i

, (3)

where h(l)u ∈ Rd is the user’s embedding in the l-th layer, h(l)i ∈ Rd is the item’s embedding

in the l-th layer; h(0)u = pu, h(0)i = pi; ϕ represents the LeakyReLU function for information
transformation; and W1 and W2 ∈ Rd×d are learnable weight matrices. Moreover, λi

u is the
attention coefficient of user u to item i, and its calculation formula is as follows:

λi
u =

exp(eui)

exp
(

∑j∈N(u) euj

) . (4)

Similarly, we can obtain the l-th embedding information, h(l)i , of item node i. After
embedding propagation, neighborhood information is fused into each node’s embedding
information. To obtain a better representation of the nodes’ information, we use a standard
multilayer perceptron (MLP) to combine the L layers embedding representations of nodes
into the final embedding representation. Among them, all the embedding information of
the L layers is concatenated together before being input into the MLP. The specific form is
as follows:

h(∗)u = MLP
(

h(0)u ‖h
(1)
u . . . ‖h(L)

u

)
; h(∗)i = MLP

(
h(0)i ‖h

(1)
i . . . ‖h(L)

i

)
, (5)

where MLP is a multilayer perceptron; ‖ represents the concatenation operation of vectors;
and h(∗)u and h(∗)i ∈ Rd are the final embedding representations of user u and item i,
respectively.

2.4. Perceptron Module Based on User–Item Multi-Behavior Interaction Sequence
2.4.1. User Multi-Behavior Feature Extraction

The purpose of this module is to aggregate heterogeneous information generated
by multi-behavior patterns between users and their interacting items. Different from
the extraction of neighbor information, we also mine user multi-behavior embedding
features based on user historical interaction behavior sequences. To obtain the preference
information of users interacting with items, we designed a user multi-behavior awareness
module. This module extracts the target user, u, and the neighbor nodes, i ∈ N(u),
interacting with it, and it arranges them into Su =

{
s1

u, s2
u, . . . , s|Su |

u

}
according to the time

sequence.
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According to the embedding information of item nodes and edge nodes, we can obtain
the behavior characteristics of user u:

bj
u,i,k = σ(αukhi + bθ), (6)

where hv ∈ Rd is the embedding representation information of item v, σ is the sigmoid
function, and bθ is the bias. By using Formula (6), we can obtain an embedding interaction
sequence

(
b1, b2, . . . , b|N(u)|

)
of user u.

2.4.2. Bi-GRU-Based Behavior Feature Extraction

To mine the overall features of user-embedded behavioral feature sequences, we use
an RNN model to explore their temporal information and generate a single representation
to encode their overall semantics. Different from basic RNN units, GRU units can memorize
long-term dependencies sequentially [19]. Therefore, in this module, we use GRU to capture
the user’s multi-behavior preferences. Guo et al. [20] demonstrate that Bi-LSTM and Bi-
GRU can achieve better results in sequential problems than LSTM and GRU. Therefore, we
input the embedding interaction sequence

(
b1, b2, . . . , b|N(u)|

)
into a Bi-GRU network:(

h1
b, h2

b, . . . , h|N(u)|
b

)
= Bi− GRU

(
b1, b2, . . . , b|N(u)|

)
. (7)

where hi
b ∈ Rd.

We obtain the user’s multi-behavior preference sequence based on the user’s behavior
information and interactive item information. As we all know, users’ way of thinking and
external market conditions change over time. If the model does not pay attention to changes
in the user’s core behavior, it will cause errors in subsequent recommendations. Inspired
by Chang et al. [21], we input the user multi-behavior preference sequence into a GRU
network with an attention update gate (AUGRU) to obtain the user’s final multi-behavior
preference representation:

hub = AUGRU
(

h1
b, h2

b, . . . , h|N(u)|
b

)
(8)

The AUGRU model uses an attention mechanism to process differentiated multi-
behavior information. It scales the individual multi-behavior features of the update gates
by using attention scores. Therefore, behavior features with less correlation have less
influence on the hidden state. This makes the acquired multi-behavior information changes
more accurate.

2.5. Item–Item Multi-Behavior Interaction Information Aggregation
2.5.1. Construction of Item–Item Relationship Graph

Even for the same item, different users may show different meanings when interacting
with the item. We can mine the connection between items from the perspective of users,
and then obtain the potential representation of items. Therefore, we extract the item set
with the same interaction type as the target item, ij, in the user–item interaction graph,
G0 (Figure 2). Then we construct the item–item multi-behavior interaction graph, Gi, for
further learning the latent factors of items. The weight of each interactive edge is expressed
as follows:

e∗jj′ = ∑
m∈NG1

(j,j′)
ejmej′m, ejj′ =

exp
(

e∗jj′
)

exp
(

∑r∈NG1
(j) e∗jr

) , (9)

where αjm and αj′m are the weight information calculated by Formula (1). NG1(j, j′) rep-
resents the users adjacent to j and j′ in graph G1. NG1(j) represents the items that are
second-order adjacent to G1 and j in the graph. The final attention weight ejj′ is obtained by
normalizing e∗jj′ using the Softmax function.
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2.5.2. Information Propagation of Item–Item Relationship Graph

Through the weight information, we can define the information propagation method
of neighbor item j to item i. Based on the weight information of the item-relation graph and
the feature information of neighbor items, we obtain the extended representation of item i:

his = f ( ∑
j∈Ni(i)

eijh
(∗)
i + hi), (10)

where Ni(i) represents the neighborhood of i in the item–item interaction graph Gi, and
his is the aggregated information of i. Moreover, f ( ) is an activation function similar to
LeakyReLU.

2.6. Joint Prediction Module

After the above three modules, we obtain the user’s preference behavior, hub ; the

user interest feature, h(∗)u ; the clustering feature, his ; and the feature, h(∗)i , of the item. We
combine the above feature information to obtain the final embeddings of users and items
for the final prediction:

hu = h(∗)u ⊕ hub , hi = h(∗)i ⊕ hus , (11)

where ⊕ represents addition between vector elements. Finally, we inner-product the final
representations of users and items to predict their match scores:

ŷ(u,i) = hu
T·hi, (12)

2.7. Model Learning

Given a user–item interaction sequence, S =
{

s1, s2, . . . , s|S|
}

, we extract its top |S| − x
items to predict the x items of its last interaction. To optimize our UMBGN model, we
choose BPRloss [22], which is widely used in recommendation systems [9,17]. Specifically,
the final loss function is denoted as follows:

L = ∑
(u,i+ ,i−)∈O

−lnσ
(

ŷ(u,i+) − ŷ(u,i−)

)
+ λ‖Θ‖2

2, (13)

where O = {(u, i+, i−)|(u, i+) ∈ R+, (u, i−) ∈ R−} represents the paired target behavior
training dataset; R+ and R− refer to target behaviors that have occurred and target behav-
iors that have not occurred, respectively; σ refers to the sigmoid function; Θ is a parameter
that can be trained in the network; and λ is the L2 normalization coefficient.

3. Experiment

In this section, we recount the experiments we conducted on three real datasets, namely
MovieLens, Yelp2018, and Online Mall, to evaluate our UMBGN model. We explore the
following four questions:
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RQ1: In this paper, we consider user multi-behavior information. Does this improve
recommendation performance? How does UMBGN perform compared to existing models?

RQ2: We also set the propagation weight among network nodes according to the
behavior information. Does this improve the performance of the model? If the weight
information is not considered, what will be the effect on the experimental results?

RQ3: How does each module of the model contribute to the improvement of the
accuracy of the prediction results?

RQ4: What are the effects of various parameters of the model on the final performance
of our proposed method?

3.1. Experimental Environment
3.1.1. Datasets

To evaluate the performance of UMBGN, we conduct experiments on MovieLens,
Yelp2018, and the real e-commerce dataset Online Mall, respectively.

MovieLens is a widely used benchmark dataset in recommendation systems containing
20 million movie ratings (accessed at https://grouplens.org/datasets/movielens/20m/,
accessed on 15 April 2022). In the experiment, we divided user ratings into multiple
behavior types: (1) dislike behavior, (2) neutral behavior, and (3) like behavior.

Yelp2018 is a famous merchant-review website in the US (accessed at https://www.
yelp.com/dataset/download, accessed on 16 April 2022). Users can rate merchants, submit
reviews, and give tips on the Yelp website. We divided the Yelp dataset into four behaviors
(like, dislike, neutral, and tip), using the same criteria as we did for MovieLens.

Online Mall is provided by JD.com, a commerce company with a huge number of
users and a full range of goods (accessed at https://jdata.jd.com/html/detail.html?id=8,
accessed on 16 April 2022). User-behavior types include click, favorite, add to cart, and
purchase.

To ensure the accuracy of the experiments, we performed basic preprocessing on the
dataset. We removed users and items with fewer than 10 interactions. Then we divide the
dataset into the training set, validation set, and test set according to 80%, 10%, and 10%.
The dataset information after data preprocessing is shown in Table 1.

Table 1. Experimental dataset statistics.

Dataset User Item Interaction Behavior Type

Yelp2018 31,668 38,048 1,561,406 {Tip, Dislike, Neutral, Like}
ML-20 M 138,493 26,744 19,989,593 {Dislike, Neutral, Like}

Online Mall 102,703 24,677 37,059,872 {Buy, Cart, Fav, PV}

3.1.2. Comparison Methods

To evaluate our method, we adopted two evaluation metrics that were widely used in
previous work: recall@K and NDCG@K [18]. They are defined as follows:

Recall@K: It is used to measure the probability that the actual interaction item appears
in the top-K leaderboard recommendation task. Recall@K does not pay attention to the
order in which the user actually clicks an item in the recommended task list; it only
considers whether the item appears in the top N positions of the recommended task list.

NDCG@K: In the top-K ranking list, NDCG@K evaluates the quality of the recom-
mendation list according to the rank order of correct items. It assigns higher scores to
higher-ranked positions, which means that test items should be ranked as high as possible.

For each user in the test set, we adopt the next-item-recommendation task [23]. For
each user, we pair the ground-truth items in the test set with other negative items that are
interactions, obtain the user’s preference score for all items, and then rank them. In this
paper, we set K=10. It is known that higher HR and NDCG scores indicate a better model
performance.

https://grouplens.org/datasets/movielens/20m/
https://www.yelp.com/dataset/download
https://www.yelp.com/dataset/download
https://jdata.jd.com/html/detail.html?id=8
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3.1.3. Parameter Setting

In this paper, we use TensorFlow to implement the UMBGN model and use the Adam
optimizer to infer the model parameters. We performed experiments on two NVIDIA
GeForce GTX2080 Ti GPUs. Firstly, we initialized the user–item embedding matrix and the
weights of each item in the mixture model. The embedding dimension of users and items
is set to 32. The initial learning rate and the batch size are set to 0.01 and 64, respectively.
Secondly, a regularization strategy with weight decay selected from the set of {0.1, 0.05,
0.01, 0.005, 0.001} was used to alleviate the overfitting problem during the training phase.
In our evaluation, we employed early stopping to terminate training when the performance
on the validation data degraded for 5 consecutive epochs.

3.1.4. Baseline

To verify the effectiveness of the UMBGN model, we compare it with six baseline
models: two traditional recommendation methods, two RNN-based methods, and two
graph network recommendation methods. We briefly describe the six baseline models as
follows:

BPR-MF [24]: It optimizes the latent factor of implicit feedback, using pairwise ranking
loss in Bayesian methods to maximize the gap between positive and negative terms.

FPMC [25]: This is a classic mixed model that captures sequential effects and the
general interest of users. FPMC fuses sequence and personalized information for recom-
mendation by constructing a Markov transition matrix.

GRURec [19]: It is a GRU model trained based on a parallel mini-batch top1 loss
function. GRURec uses parallel computation, as well as mini-batch computation, to learn
model parameters.

GRU4Rec+ [26]: This is an improved version of GRURec, which concatenates the hot
term vector and the feature vector as the input GRU network and has a new loss function
and sampling strategy.

GraphRec [27]: It is a deep graph neural network model that enriches the information
representation of nodes through embedding propagation and aggregation. GraphRec also
aggregates social relations among users through a graph neural network structure.

NGCF [18]: It is an advanced graph neural network model. NGCF has some special
designs that can combine traditional collaborative filtering with graph neural networks for
application in recommendation systems.

Among all of these methods, BPR-MF and FPMC are traditional recommendation
methods, GRURec and GRU4Rec+ are RNN-based methods, and GrahRec and NGCF are
graph-network-based methods.

3.2. Performance Comparison

We demonstrate the performance of the above methods in predicting target types
for user–item interactions on three real datasets. As shown in Table 2, UMBGN achieves
significant performance improvement on different types of datasets. This improvement
benefits from our consideration of the user’s multi-behavior interaction sequence and the
relationship between items.

Table 2. Performance comparison of all methods in terms of Recall@10 and NDCG@10 on all datasets.

Dataset Metric BPR-MF FPMC GRURec GRU4Rec+ NGCF GraphRec UMBGN

Yelp2018 Recall 0.2136 0.3811 0.6689 0.7051 0.7813 0.7594 0.7938
NDCG 0.1208 0.2439 0.3607 0.4518 0.5232 0.4943 0.5362

ML-20 M
Recall 0.2608 0.3404 0.3748 0.4976 0.6020 0.5891 0.6351
NDCG 0.1365 0.3163 0.2942 0.4129 0.5029 0.4982 0.5137

Online
Mall

Recall 0.2679 0.3637 0.4474 0.6786 0.7801 0.7546 0.8293
NDCG 0.1347 0.2692 0.3815 0.4641 0.5832 0.5317 0.5841
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The experimental result shows that BPR-MF performed poorly overall. This may
be because it cannot consider the user’s long-term preference information. It proves
that some traditional matrix factorization methods are not suitable for multi-behavior
recommendation tasks. Although FPMC has an improved performance compared with BPR-
MF, it still has not achieved satisfactory results. RNN-based models (GRURec, GRU4Rec+)
have been greatly improved compared to traditional methods because RNN-based models
can capture users’ long-term preferences more effectively. In addition, GRU4Rec+ performs
better than GRURec. This may be attributed to GRU4Rec+ considering personalized
information.

Graph-network-based models (GraphRec, NGCF, and UMBGN) significantly outper-
form traditional methods and RNN-based methods. This shows that using the graph
network method can better mine user–item connections and have a better ability to recom-
mend the next item. Furthermore, we observe that UMBGN outperforms other datasets in
the Online Mall dataset. One possible explanation is that Online Mall has a large amount of
data and rich types of user–item interactions. In addition, the number of users in the Online
Mall dataset is relatively large, thus enabling the model to better model user preference
information. Therefore, UMBGN is more practical in the real world with massive user data,
such as online shopping platforms and social platforms. This shows that considering the
multi-behavior information of users improves the recommendation performance.

3.3. Ablation Experiments
3.3.1. The Influence of Different Behavioral Weights on the Experimental Results

To evaluate the impact of different behavioral information on user purchase intention,
we compared the performance of our method on the Online Mall dataset. We designed
the following controlled experiments: (1) setting the behavior weight of each user to the
same weight, αuk; and (2) setting each interaction behavior to the same weight, wu

k . We
present the results of the ablation experiments in Table 3. It shows that our UMBGN model
with learnable behavior weight information is 68.45% higher than the model with the same
αuk and 34.10% higher than the model with the same wu

k on recall@10. It is 50.27% higher
than the model with the same αuk and 25.21% higher than the model with the same wu

k on
NDCG@10. This indicates that focusing on multi-behavior weights is necessary and should
be learned by the model itself. Therefore, setting the propagation weights between graph
network nodes according to multi-behavior information improves the performance of the
model.

Table 3. Results of ablation experiments with multi-behavior weights on Online Mall.

Model UMBGN Same αuk Same wu
k

Recall@10 0.8293 0.4923 0.6182
NDCG@10 0.5841 0.3887 0.4665

3.3.2. The Influence of Each Module in UMBGN on the Experimental Results

The user multi-behavior awareness module aims to obtain the user’s behavior prefer-
ence information, and the item-information-relation module aims to obtain the relevant
information between items. They are both complementary to the user–item interaction
information module. We conducted an ablation study to test the effectiveness of the
user multi-behavior awareness module and the item information relation module in our
UMBGN. The results are shown in Table 4.
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Table 4. Performance of user multi-behavior awareness module and item information relation
module.

Dataset
Yelp2018 ML-20 M Online Mall

Recall NDCG Recall NDCG Recall NDCG

UMBGN 0.7938 0.5362 0.6351 0.5137 0.8293 0.5841
w/o UBAM 0.6905 0.4803 0.5960 0.4821 0.7294 0.5267
w/o IIRM 0.7513 0.5189 0.6127 0.5088 0.7687 0.5502

The results of the ablation experiments (Figure 3) show that the UMBGN model has a
higher recall rate and NDCG than the model without the user multi-behavior awareness
model and the item-information-relation model. Especially on the Online Mall dataset,
it improves the recall rate by 13.70% and 7.88%, respectively. Moreover, it improves the
NDCG by 9.83% and 5.80%, respectively. This shows that taking into account the user’s
multi-behavior interaction sequence and the relationship between items can make more
accurate recommendations to users. This shows that each module is necessary to improve
the accuracy of the prediction results.
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3.4. Parametric Analysis
3.4.1. The Effect of Sequence Length on Prediction Results

We also explored the effect of the maximum length, N, of user–item interaction se-
quences on the model recommendation performance. Figure 4 shows the impact of the
maximum length, N, on the recommendation performance on the ML-20 m dataset and
the Online Mall dataset, respectively. We observe that the recommendation performance
improves as the N increases until the N is less than 40. This indicates that the length of the
user’s behavior sequence has an impact on the recommendation performance. However,
when N exceeds 40, the recommendation performance on the ML-20 m dataset no longer
increases significantly. Moreover, the recommendation performance of the Online Mall
dataset has also declined. This suggests that the model does not always benefit from larger
N, as larger N tends to introduce more noise. However, our model remains stable when
the length N becomes larger. This also proves that our model can handle noisy behavioral
sequence information well.
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3.4.2. The Influence of the Number of Layers of the Graph Neural Network on the
Prediction Results

We wish to test the effect of the number of layers of the GNN on the UMBGN model.
In the user–item interaction information module, UMBGN, with two recursive message
propagation layers, achieves the best results. This shows that it is essential to model higher-
order relationships between items and features via GNNs. However, as shown in Figure 5,
the performance starts to degrade as the depth of the graph model increases. This is
because multiple embedded propagation layers may contain some noisy signals, resulting
in over-smoothing [28]. This shows that determining the optimal parameters of the model
through a large number of experiments is conducive to improving the performance of the
model.
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4. Related Work
4.1. Recommendation Based on Graph Neural Network

In recent years, graph networks that can naturally aggregate node information and
topology have attracted extensive attention. Especially in recommendation systems, the
use of graph networks to mine user–item interaction data has achieved remarkable re-
sults [29–31]. Yang et al. [32] constructed a Hierarchical Attention Convolutional Network
(HAGERec) combined with a knowledge graph. They exploited the high-order connec-
tivity relationship of heterogeneous knowledge graphs to mine users’ latent preferences.
In addition, information aggregation was performed on user and item entities through
local proximity and attention mechanisms. Gwadabe et al. [33] proposed a GNN-based
recommendation model, GRASER, for the session-based recommendation. It used GNN to
learn the sequential and non-sequential complex transformation relationship between items
in each session, which improved the performance of the recommendation. Zhang et al. [34]
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proposed a dynamic graph neural network (DGSR) for the sequential recommendation. It
explicitly modeled the dynamic collaboration information between different user sequences
in sequential recommendations. Therefore, it could transform the task of the next prediction
in sequential recommendation into a link prediction between user nodes and item nodes
in a dynamic graph. Fan et al. [27] designed a graph network framework (GraphRec) for
the social recommendation. The method jointly captured users’ purchase preferences from
the user’s social graph and the user–item interaction graph. The SURGE graph neural
network frame proposed by Chang et al. [21] combined the sequential recommendation
model and the graph neural network model. This method first integrated the different
preferences in the user’s long-term behavior sequence into the graph structure, and then it
performed operations such as perception, propagation, and pooling of the graph network.
It could dynamically extract the core interests of the current user from noisy user behavior
sequences. Different from their work, our work defines new multi-behavior information
weights for information propagation in graph neural networks.

4.2. Multi-Behavior Recommendation

Traditional recommendation systems usually rely only on a single type of user–item
interaction, which limits the performance of the methods. Recommendation methods
utilizing multiple behaviors can more accurately capture user preference information. Guo
et al. [20] designed a Deep Intent Prediction Network (DIPN) to predict users’ purchase
intentions from multiple perspectives. They combined touch interaction behavior with
traditional browsing behavior and introduced multi-task learning to differentiate user
behavior. Experiments on large-scale datasets showed that the network significantly out-
performs traditional methods that used only browsing interaction behavior. Rosaci [35,36]
proposed a CILIOS method to determine inter-ontology similarities between agents. It
monitored user behavior and interests to extend the recommendation dataset generated
by traditional methods. In addition, this method extracted logical knowledge in recom-
mendation scenarios to support web recommendations. Wu et al. [37] constructed a new
multi-behavior multi-view contrastive learning recommendation model (MMCLR) to solve
the data sparsity and cold-start problems in traditional recommender models. They consid-
ered the similarities and differences between different user behaviors and views through
three tasks. Experiments on real datasets indicate that MMCLR significantly improved the
performance of recommendations. Pan et al. [38] designed a Spatiotemporal Interaction
Augmented Graph Neural Network (SIGMA). It encoded a mobile graph to represent
individual mobile behavior and used a stacked scoring approach to generate recommen-
dation scores. This showed that the mobile behavior of individuals and groups played an
important role in location recommender systems. Xia et al. [39] developed a Multi-Behavior
Graph Meta Network (MB-GMN) to extract the interaction information of multiple behavior
types between users and items. The proposed method jointly models behavioral hetero-
geneity and interaction behavioral diversity, combined with the meta-learning paradigm. A
large number of comparative experiments on three datasets demonstrated the effectiveness
of their method. Inspired by the above research work, we propose a new multi-behavior
awareness module to further mine time-series based user multi-behavior information.

5. Conclusions

In this paper, we explored the problem of graph network recommendation, focusing
on user multi-behavior interaction sequences, and proposed a UMBGN model. Compared
with the traditional GNN model, our model updates the node connection weights of the
user–item interaction graph according to the multi-behavior interaction information, so that
it can capture the user’s interest in specific items under different behavioral information. In
this study, we designed two modules to further mine the user’s multi-behavior preference
information. Firstly, we put the multi-behavior sequence information of the target user into
an improved Bi-GRU model, the AUGRU model, to enrich the user’s embedding represen-
tation. Secondly, we built an item–item graph based on the user’s dependencies on items to
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further enrich the embedding representation of items. The comparative experiments that
we performed on three real datasets demonstrate the effectiveness of the UMBGN model.
Further ablation experiments prove the necessity of the user multi-behavior awareness
module and item information awareness module in our UMBGN model. In addition, we
also evaluated the impact of different parameters on recommendation performance, con-
firming the applicability of UMBGN in practical applications. However, our approach does
not consider potential connections among users. In the future, we plan to introduce users’
social relations into our method to improve the accuracy of the next-item recommendation.
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